
Chapter 4
Measures

In this chapter, we shall study the (complex) Banach lattice M(K) consisting of
all complex-valued, regular Borel measures on a locally compact space K and, in
particular, the positive measures in M(K), which form the cone M(K)+. The Banach
space M(K) is isometrically isomorphic to the dual of C0(K). In §4.2, we shall
discuss the linear spaces of discrete measures and of continuous measures on K.

In §4.3, we shall show that a specific quotient of the lattice M(K)+ is a Dedekind
complete Boolean ring B such that the Banach space of bounded, continuous func-
tions on the Stone space of B is isometrically isomorphic to the dual space of M(K),
and hence to the bidual of C0(K); this Boolean ring will reappear in §5.4.

We shall also describe, in §4.4, the Banach lattices Lp(K,μ) and the Boolean
algebra Bμ for μ ∈M(K)+ and 1≤ p≤ ∞. Important features to be discussed will
include consideration of when spaces of the form C(K) are Grothendieck spaces (in
§4.5); maximal singular families of measures in M(K)+ (in §4.6), to be used in a
later explicit construction of C0(K)′′; and the closed subspace N(K) of M(K) con-
sisting of the normal measures (in §4.7). We shall give several examples of spaces
with N(K) = {0}; for example, we shall show in Theorem 4.7.23 that N(K) = {0}
whenever K is a locally connected, compact space without isolated points. However,
we shall show in Theorem 4.7.26 that there is a non-empty, connected, compact
space K with N(K) �= {0}.

4.1 Measures

Let K be a non-empty, locally compact space. We recall that a Borel measure μ on
K is a function μ : BK →C such that μ( /0) = 0 and μ is σ -additive, in the sense that

μ(B) =∑{μ(Bn) : n ∈ N}
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110 4 Measures

whenever (Bn) is a sequence of pairwise-disjoint sets in BK with
⋃{Bn : n∈N}=B.

Thus a Borel measure on K is just the same as a σ -normal measure on the
Boolean algebra BK in the sense of Definition 1.7.12. Further, in the case where
μ(B)≥ 0 (B ∈BK), the triple (K,BK ,μ) is a measure space.

Definition 4.1.1. Let K be a non-empty, locally compact space, and take a Borel
measure μ defined on BK . Then

|μ |(B) = sup
∞

∑
i=1
|μ(Bi)| (B ∈BK) ,

where the supremum is taken over all partitions of a Borel set B by a countable
family {Bi : i∈N} in BK . Then |μ | is the total variation measure of μ . The measure
μ is regular if, for each B ∈BK and each ε > 0, there is a compact subset L ⊂ B
and an open set U ⊃ B with |μ |(U \L)< ε .

The total variation measure of μ is indeed a Borel measure on K that is regular
when μ is regular. On a locally compact space with a countable basis, every Borel
measure is regular, but there are compact spaces on which there are Borel measures
which are not regular; see [39, §7.1].

Definition 4.1.2. Let K be a non-empty, locally compact space. Then we denote by
M(K) the space of complex-valued, regular Borel measures on K, and we set

‖μ‖= |μ |(K) (μ ∈M(K)).

Henceforth, we shall just write ‘measure on K’ for ‘complex-valued, regular
Borel measure on K’. The pair (M(K),‖ ·‖) is a Banach space.

Let L be a closed subspace of K, and take μ ∈ M(L). Then we regard μ as an
element of M(K) by setting μ(B) = μ(B∩ L) (B ∈ BK). Thus M(L) is a closed
subspace of M(K).

The following Riesz representation theorem (of F. Riesz) identifies M(K) as the
dual space of C0(K).

Theorem 4.1.3. Let K be a non-empty, locally compact space. Then the dual space
to C0(K) is identified isometrically with M(K) via the duality specified by

〈 f , μ〉=
∫

K
f dμ ( f ∈C0(K), μ ∈M(K)) .

��
In particular, we have the identifications

(c0)
′′′ = (�1)′′ = (�∞)′ =C(βN)′ = M(βN) .

For details of the Riesz representation theorem, see the recent text of Bogachev
[39, §§7.10,7.11] and the classic texts of Halmos [132] and Rudin [217, Theorem
6.19], for example. The latter two texts were the congenial companions of the aut-
hors’ distant youths.
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Let K be a non-empty, locally compact space. The space of real-valued measures
in M(K) is MR(K). For μ ,ν ∈MR(K), set

{

(μ ∨ν)(B) = sup{μ(C)+ν(B\C) : C ∈BK ,C ⊂ B} ,
(μ ∧ν)(B) = inf{μ(C)+ν(B\C) : C ∈BK ,C ⊂ B} , (B ∈BK) . (4.1)

Then MR(K) is a real Banach lattice with respect to the operations ∨ and ∧. The
definitions in (4.1) agree with those in equation (2.8) when we regard MR(K) as the
dual lattice to C0,R(K), and so MR(K) and M(K) are Dedekind complete lattices.

As before, for μ ∈MR(K), we set μ+ = μ ∨0, μ− = (−μ)∨0, and

|μ |= μ++ μ− = μ ∨ (−μ) ,

so that μ = μ+− μ−, and |μ | coincides with the total variation measure of Defin-
ition 4.1.1; the two measures μ+ and μ− are uniquely characterized by the facts that
μ = μ+− μ− and ‖μ‖= ‖μ+‖+ ‖μ−‖.

Now take μ ∈M(K). Then we shall write ℜμ and ℑμ for the real and imaginary
parts of μ , respectively, so that μ = ℜμ + iℑμ ; the conjugate of μ is defined to
be μ = ℜμ − iℑμ . The measure |μ | defined in equation (2.5) is indeed the total
variation measure of μ defined in Definition 4.1.1. Further, the space M(K), the
complexification of MR(K), is a Banach lattice, and the norm defined by equation
(2.7) agrees with that defined in Definition 4.1.2. Clearly the Banach lattice M(K)
is an AL-space.

The set of positive measures in M(K) is denoted by M(K)+; this set M(K)+ is
weak∗-closed in M(K). We note that positive measures correspond to positive linear
functionals on C0(K), in the sense that, for μ ∈M(K), we have μ ∈M(K)+ if and
only if 〈 f ,μ〉 ≥ 0 ( f ∈C0(K)+). We also note that, in the case where K is compact
and μ ∈M(K), we have

μ ∈M(K)+ if and only if 〈1K , μ〉= ‖μ‖ . (4.2)

A measure μ ∈M(K)+ with ‖μ‖ = 1 is a probability measure; the set of these
measures is denoted by P(K). In the case where K is compact, P(K) can be iden-
tified with the state space KC(K) of the unital C∗-algebra C(K), and P(K) is then
clearly a Choquet simplex in the ambient space (M(K),σ(M(K),C(K)), and so, as
in Example 1.7.15, CompP(K) is a complete Boolean algebra.

Let K and L be two non-empty, locally compact spaces, and take μ∈M(K) and
ν ∈M(L). Then there is a unique measure μ⊗ν ∈M(K×L) such that

(μ⊗ν)(B×C) = μ(B)ν(C) (B ∈BK ,C ∈BL) ;

μ⊗ν is the product of μ and ν . In the case where μ ∈ P(K) and ν ∈ P(L), we have
μ⊗ν ∈ P(K×L).

There is one special measure m ∈ P(I) that we shall use.

Definition 4.1.4. Denote by m the Lebesgue measure on the interval I= [0,1].
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As well as integrating continuous functions, we can integrate Borel functions
against a measure. Recall from Definition 3.3.1 that Bb(K) denotes the space of
bounded Borel functions on a locally compact space K.

Definition 4.1.5. Let K be a non-empty, locally compact space. For f ∈ Bb(K),
define κ( f ) on M(K) by

〈κ( f ), μ〉=
∫

K
f dμ (μ ∈M(K)). (4.3)

We see immediately that κ( f ) ∈M(K)′ =C0(K)′′ and that

μ(B) = 〈κ(χB), μ〉 (B ∈BK , μ ∈M(K)) .

Indeed, we are regarding each μ ∈M(K) as a continuous linear functional on Bb(K)
which extends μ defined on C0(K); we note that this extension of μ ∈ C0(K)′ to
Bb(K) is usually not unique.

Let G be a group. Then the identity of G is denoted by eG. For an element t ∈ G
and subsets S and T of G, we set

tS = {ts : s ∈ S} , S−1 = {s−1 : s ∈ S} , ST = {st : s ∈ S, t ∈ T} .

A locally compact group is a group that is also a locally compact topological
space such that the group operations are continuous. For example, the Cantor cube
{0,1}κ = Z

κ
2 of weight κ , where κ is an infinite cardinal, is a compact group.

Let G be a locally compact group. Then the Banach space M(G) of all measures
on G is a Banach algebra with respect to the convolution product � : given measures
μ ,ν ∈M(G), we must define μ � ν , and we do this by specifying the action of μ � ν
on an element f ∈C0(G) and using the Riesz representation theorem. Indeed,

〈 f , μ � ν〉=
∫

G

∫

G
f (st)dμ(s)dν(t) ( f ∈C0(G)) .

It is standard that M(G) = (M(G), � ,‖·‖) is a unital Banach algebra; the identity
is δeG . This Banach algebra is called the measure algebra of G. For a study of this
algebra, see the books [68, 137, 194, 195], and the memoir [72], for example.

Let G be a locally compact group. Then there is a positive measure mG defined
on BG such that mG(U) > 0 for each non-empty, open subset U of G and such
that mG is left-translation invariant, in the sense that mG(sB) = mG(B) for each
s ∈ G and B ∈ BG. Such a measure is a left Haar measure on G; it is unique up
to multiplication by a positive constant. For constructions of this measure, see the
classic texts of Hewitt and Ross [137] and Rudin [218].

For example, Haar measure on (R,+) is the usual Lebesgue measure. Also, set
L = Z

c
2, and let mL be the product measure on L from the measure on {0,1} that

gives the value 1/2 to each of the two points. Then mL is the Haar measure on L,
with mL(L) = 1.
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We now return to the spaces M(K). Let K be a non-empty, locally compact space.
A measure μ ∈M(K) is supported on a Borel subset B of K if |μ |(K \B) = 0. The
support of a measure μ ∈M(K) is denoted by supp μ : it is the complement of the
union of the open sets U in K such that |μ |(U) = 0, and so is a closed subset of K.

Proposition 4.1.6. Let K be a non-empty, locally compact space, and suppose that
μ is a non-zero measure in M(K)+. Then supp μ satisfies CCC. In the case where
K is a compact F-space, supp μ is Stonean.

Proof. It follows quickly from the definition of supp μ that μ(U)> 0 for each non-
empty, open subset U of supp μ . Thus supp μ satisfies CCC. In the case where K is
a compact F-space, supp μ is Stonean by Proposition 1.5.14. ��

A measure μ ∈M(K)+ is strictly positive on K if μ(U)> 0 for each non-empty,
open subset U of K, equivalently, if supp μ = K.

We shall use Hahn’s decomposition theorem and Lusin’s theorem in the following
forms; see [217, Theorems 2.24 and 6.14], for example.

Theorem 4.1.7. Let K be a non-empty, locally compact space, and take μ ∈MR(K).

(i) There exist Borel subsets P and N of K such that {P,N} is a partition of K,
such that μ(B) ≥ 0 for each Borel subset B of P, and such that μ(B) ≤ 0 for each
Borel subset B of N.

(ii) For each Borel function f on K and each ε > 0, there is a compact subset L
of K such that |μ |(K \L)< ε and f | L is continuous. ��

The partition {P,N} in clause (i) of Theorem 4.1.7 is called a Hahn decomp-
osition of K with respect to μ; it is unique up to sets of measure zero.

Proposition 4.1.8. Let K be a non-empty, compact space, and let E be a real-linear
subspace of MR(K) such that

| f |K = sup{|〈 f , μ〉| : μ ∈ E[1]} ( f ∈CR(K)) .

For each non-empty, open subset U of K and each ε > 0, there exists μ ∈ SE with
μ(U ∩P)> 1− ε , where {P,N} is a Hahn decomposition of K with respect to μ .

Proof. Let U be a non-empty, open subset of K, and take ε > 0. Choose f ∈C(K)+

with | f |K = 1 and supp f ⊂U , and then take μ ∈ SE with 〈 f ,μ〉 > 1− ε . We see
that

1− ε <
∫

K
f dμ =

∫

U
f dμ ≤

∫

U∩P
f dμ ≤ μ(U ∩P) ,

which gives the result. ��

We shall also require the following version of Choquet’s theorem; we state a
general form, which is the Choquet–Bishop–de Leeuw theorem; see, for example,
[4, §1.4], [104, Theorem 2.10], or [201, §4]. In the case where the specified space
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K is metrizable, exK is a Gδ -set (by Proposition 2.1.9), and hence a Borel set. As
explained in [178, Remark 2.32(c), p. 16], the case of complex scalars is a simple
extension of the real case.

Theorem 4.1.9. Let K be a non-empty, compact, convex subset of a locally convex
space E over R or C, and let x0 ∈ K. Then there exists μ ∈ P(K) such that

〈x0, λ 〉=
∫

K
λ dμ =

∫

K
〈x, λ 〉dμ(x) (λ ∈ E ′) (4.4)

and such that μ vanishes on every Baire subset and on every Gδ -subset of K which
is disjoint from exK. In the case where K is metrizable, μ(exK) = 1. ��

In the above setting, x0 is termed the resultant or barycentre of the measure μ .
We shall use the following known application of the Choquet–Bishop–de Leeuw

theorem. It is given in [104, Theorem 2.18]; the proof here is somewhat shorter.

Theorem 4.1.10. Let E be a normed space, and let K be a weak∗-compact, convex
subset of E ′. Suppose that D is a countable, ‖·‖-dense subset of exK. Then K is the
‖·‖-closure of the convex hull of D, and so K is ‖·‖-separable.

Proof. The result is trivial when D is finite, and so we may suppose that D is infinite,
say D = {λi : i ∈ N}. Fix ε > 0, and, for each i ∈N, set

Ki = {λ ∈ K : ‖λ −λi‖ ≤ ε} ,

so that Ki is a weak∗-compact subspace of E ′ and exK ⊂ ⋃{Ki : i ∈ N} ⊂ K. Take
λ0 ∈ K. By Theorem 4.1.9, there exists μ0 ∈ P(K) such that

〈x, λ0〉=
∫

K
〈x, λ 〉dμ0(λ ) (x ∈ E)

and such that μ0 vanishes on each Gδ -subset of K that is disjoint from exK. Clearly
⋂{K \Ki : i ∈ N} is such a Gδ -set, and so μ0(

⋃{Ki : i ∈ N}) = 1.
Choose pairwise-disjoint Borel sets Bi for i ∈ N such that Bi ⊂ Ki (i ∈ N) and

⋃

i∈N Bi =
⋃

i∈N Ki, and set αi = μ0(Bi) ∈ I (i ∈N), so that ∑∞
i=1αi = 1. Next set

Λ =
∞

∑
i=1

αiλi ∈ coD .

Take x ∈ E[1]. For each i ∈N and λ ∈ Bi, we have |〈x, λi〉− 〈x, λ 〉|< ε , and so

∣

∣

∣

∣

〈x, αiλi〉−
∫

Bi

〈x, λ 〉dμ0(λ )
∣

∣

∣

∣

≤ αiε .

It follows that |〈x,Λ〉− 〈x,λ0〉| ≤ ε , and hence ‖Λ −λ0‖ ≤ ε . Thus K = coD. ��
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Definition 4.1.11. Let K be a non-empty, compact, convex subset of a locally con-
vex space, and suppose that μ ,ν ∈M(K)+. Then

μ ≈ ν if 〈h, μ〉= 〈h, ν〉 (4.5)

for each affine function h ∈CR(K), and

μ ≺ ν if 〈h, μ〉 ≤ 〈h, ν〉 (4.6)

for each convex function h ∈CR(K).

Let K be a non-empty, compact, convex subset of a locally convex space. The
relation ≺ is a partial order on M(K)+; a measure μ ∈ M(K)+ is maximal if it is
maximal in the partially ordered set (M(K)+,≺). It is shown in [201, Lemma 4.1]
that, for each ν ∈M(K)+, there is a maximal measure μ ∈M(K)+ with ν ≺ μ .

The following result combines Propositions 3.1 and 10.3 of [201] and the
Choquet–Meyer theorem from [201, p. 56]. Recall that a Choquet simplex was de-
fined within Example 1.7.15.

Theorem 4.1.12. Let K be a non-empty, compact, convex subset of a locally convex
space. Suppose that μ ∈ P(K) is such that supp μ ⊂ exK. Then μ is a maximal
measure on K. Suppose further that K is a Choquet simplex. Then, for each x ∈ K,
there is a unique maximal measure μ such that μ ≈ εx. ��

Proposition 4.1.13. Let K be a non-empty, locally compact space. Suppose that
(μα) is a net in M(K) which converges to μ ∈ M(K) in the weak∗ topology
σ(M(K),C0(K)). Then

|μ |(U)≤ liminf
α

|μα | (U)

for each open set U in K. In particular, ‖μ‖ ≤ liminfα ‖μα‖.
Further, the following maps from (M(K),σ(M(K),C0(K))) to R are lower semi-

continuous: μ �→ |μ |(U), for each fixed open subset U of K; μ �→ ∫

K gd |μ |, for each
fixed g ∈C0(K)+; μ �→ ‖μ‖.
Proof. Let U be a non-empty, open set in K, and choose ε > 0. Then there exists
f ∈C00(K)[1] such that | f | ≤ χU and |∫K f dμ |> |μ |(U)− ε . For each α , we have

|μα |(U) =

∫

K
χU d |μα | ≥

∫

K
| f | d |μα | ≥

∣

∣

∣

∣

∫

K
f dμα

∣

∣

∣

∣

,

and so

liminf
α

|μα |(U)≥ lim
α

∣

∣

∣

∣

∫

K
f dμα

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

K
f dμ

∣

∣

∣

∣

> |μ |(U)− ε ,

giving the main result. The remainder is clear. ��
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Note that the map μ �→ |μ | on M(K) is not always weak∗-weak∗-continuous. For
example, for n ∈ N, set

sn(t) = sin(nt) (t ∈ I) ,

and regard (sn) as a sequence in L1(I) ⊂ M(I). Then (sn) converges weakly to 0
in L1(I). To see this, let J be a subinterval of I. Then

∫

J sn(t)dt → 0 as n → ∞,
and so

∫

I
f (t)sn(t)dt → 0 as n → ∞ whenever f is a finite linear combination of

characteristic functions of intervals. Since each f ∈ L∞(I) is the limit in ‖·‖1 of
such functions,

∫

I
f (t)sn(t)dt → 0 as n→ ∞ for each f ∈ L∞(I). In particular, (sn)

converges weak∗ to 0 in M(I). But of course (|sn|) does not converge weak∗ to 0.

Let K and L be two non-empty, compact spaces, and again suppose that η : K → L
is a continuous surjection. For μ ∈M(K), there is a measure ν = (η ◦)′(μ) ∈M(L),
called the image of μ , such that

∫

K
η ◦( f )(x)dμ(x) =

∫

K
( f ◦ η)(x)dμ(x) =

∫

L
f (y)dν(y) ( f ∈C00(L)) .

It is proved in [132, Theorem 39 (C)] and [138, Theorem (12.46(i))] that

ν(B) = μ(η−1(B)) =
∫

K
(χB ◦ η)(x)dμ(x) (B ∈BL) . (4.7)

We write η [μ ] for the image measure ν , so that η [μ ] ∈ M(L); in the case where
μ ∈ P(K), we have η [μ ] ∈ P(L). The following three results are taken from [206];
see Theorem 4.7.26 for our application of the results.

Proposition 4.1.14. Let L be a non-empty, connected, compact space. Suppose that
ν ∈ P(L) is a strictly positive measure and that F is a closed subset of L such that
ν(F)> 0. Then there are a non-empty, connected, compact space K containing L as
a closed subspace, a strictly positive measure μ ∈P(K), and a continuous surjection
η : K → L such that η [μ ] = ν and intKη−1(F) �= /0.

Proof. Let F0 = supp(ν | F), so that

F0 = F \
⋃

{U : U open in L, ν(F ∩U) = 0} .

Set K =(F0×I)∪(L×{0}), so that K is a non-empty, connected, compact subspace
of F × I. The map η is defined by η(x, t) = x ((x, t) ∈ K), so that η : K → L is a
continuous surjection. The set η−1(F) contains F0× (0,1], and the latter is a non-
empty, open subset of K, and so intKη−1(F) �= /0.

Let C ∈BK , and define μ(C) by setting

μ(C) = ν(C∩ (L\F0))+ (ν⊗m)((F0× I)∩C) ,

where we recall that m denotes Lebesgue measure on I. Then it is clear that
μ ∈ P(K) and that μ is strictly positive. Further, μ(η−1(B)) = ν(B) (B ∈BL), and
so η [μ ] = ν . ��
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The notion of an inverse limit of an inverse system of compact spaces arose in
Definition 1.4.31.

Let κ be an ordinal. An inverse system with measures is an inverse system of
compact spaces (Kα ,π

β
α : 0≤ α ≤ β < κ), together with measures μα ∈ P(Kα) for

each α with 0≤ α < κ such that πβα [μβ ] = μα for 0≤ α ≤ β < κ ; such a system is
denoted by

(Kα ,μα ,π
β
α : 0≤ α ≤ β < κ) .

Proposition 4.1.15. Let κ be an ordinal, let (Kα ,μα ,πβα : 0 ≤ α ≤ β < κ) be an
inverse system of compact spaces with measures, and take (K,πα) to be the inverse

limit of (Kα ,πβα : 0 ≤ α ≤ β < κ). Then there is a unique measure μ ∈ P(K) such
that πα [μ ] = μα for 0 ≤ α < κ . In the case where each μα is strictly positive, the
measure μ is strictly positive.

Proof. For each ordinal α with 0≤ α < κ , the map π ◦α identifies C(Kα ) with a uni-
tal, self-adjoint, closed subalgebra, say Aα , of C(K). Set A =

⋃{Aα : 0≤ α < κ}.
Then A separates the points of K, and so, by the Stone–Weierstrass theorem, Theo-
rem 1.4.26(ii), A is dense in (C(K), | · |K). Set

λ ( f ) =
∫

Kα
f dμα ( f ∈ Aα) .

Since πβα [μβ ] = μα for 0 ≤ α ≤ β < κ , the value of λ ( f ) is independent of
the choice of α . It is clear that λ is a positive, continuous linear functional on
(A, | · |K) with ‖λ‖= 1, and so λ extends to a positive, continuous linear functional
on (C(K), | · |K) with ‖λ‖ = 1. By the Riesz representation theorem, there exists
μ ∈ P(K) such that λ ( f ) = 〈 f , μ〉 ( f ∈ C(K)). The measure μ has the required
properties. ��

Theorem 4.1.16. Let L be a non-empty, connected, compact space, and suppose
that ν ∈ P(L) is a strictly positive measure. Then there are a non-empty, connected,
compact space L#, a strictly positive measure μ# ∈ P(L#), and a continuous surjec-
tion η# : L# → L such that η#[μ#] = ν and intL#(η#)−1(Z) �= /0 for each Z ∈ Z(L)
with ν(Z)> 0.

Proof. Let {Zα : 0≤ α < κ} be an enumeration of the sets Z ∈ Z(L) with ν(Z)> 0,
where κ is a cardinal. We shall define inductively an inverse system with strictly
positive measures

(Kα ,μα ,πβα : 0≤ α ≤ β < κ)

such that K0 = L and μ0 = ν .
In the case where 0≤ γ < κ is such that (Kα ,μα ,π

β
α : 0≤α ≤β ≤ γ) is an inverse

system with non-empty, connected, compact spaces Kα and strictly positive mea-
sures μα (for 0 ≤ α ≤ γ), we define Kγ+1 and μγ+1 by applying Proposition 4.1.14
with L = Kγ , with ν = μγ , and with F = (πγ0 )

−1(Zγ ) (and also defining the maps
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πγ+1
α to be η ◦ πγα for 0≤ α ≤ γ , where η arises in Proposition 4.1.14, and πγ+1

γ+1 to
be the identity on Kγ+1).

In the case where 0≤ γ ≤ κ , γ is a limit ordinal, and (Kα ,μα ,π
β
α : 0≤α ≤ β < γ)

is an inverse system with non-empty, connected, compact spaces Kα and strictly
positive measures μα , we define (Kγ ,πγα : 0 ≤ α < γ) to be the inverse limit of

(Kα ,π
β
α : 0≤ α ≤ β < γ) (and take πγα to be the continuous surjections that arise in

Theorem 1.4.32), so that Kγ is compact and connected by Theorem 1.4.32; we take
μγ ∈ P(Kγ ) to be the measure specified in Proposition 4.1.15. In the special case
in which γ = κ , we set L# = Kγ , μ# = μγ ∈ P(L#), and η# = πκ0 : L# → L, so that
η#[μ#] = ν . Then L#, μ# and η# have the required properties.

Now suppose that Z ∈ Z(L) with ν(Z) > 0. Then Z = Zα for some α < κ . The
interior of the set

(πα+1
0 )−1(Zα) =

(

(πα+1
α )−1 ◦ (πα0 )−1)(Zα)

is non-empty by the basic construction of Proposition 4.1.14, and so we see that
intL#(η#)−1(Z) = intL#(η#)−1(Zα ) �= /0, as required. ��

In the case where L = I and ν = m, we see that |{Z ∈ Z(L) : ν(Z)> 0}|= c, and
so κ = c in the above proof. It follows by an easy induction that w(L#) = c.

4.2 Discrete and continuous measures

We now introduce discrete, continuous, singular, and absolutely continuous mea-
sures.

Definition 4.2.1. Let K be a non-empty, locally compact space. The measures μ for
which every set A with |μ |(A) > 0 contains a point x with |μ |({x}) > 0 are the
discrete measures, and the measures μ such that μ({x}) = 0 for each x ∈ K are
the continuous measures.

Let K be a non-empty, locally compact space. The sets of discrete and continuous
measures on K are denoted by Md(K) and Mc(K), respectively; they are closed linear
subspaces of M(K) and

M(K) = Md(K)⊕1 Mc(K) . (4.8)

Further, both Md(K) and Mc(K) are closed C0(K)-submodules of M(K), both are
lattice ideals in M(K), and it is standard that Md(K) is σ(M(K),C0(K))-dense in
M(K); see Corollary 4.4.16. The point mass at x ∈ K is denoted by δx, so that
δx ∈Md(K). Indeed, Md(K) = �1(K) when we identify the measure δx with the
function χ{x} for x ∈ K. The measure m on I is continuous. We set

Pd(K) = P(K)∩Md(K) and Pc(K) = P(K)∩Mc(K) .
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Proposition 4.2.2. Let K be a non-empty, locally compact space that contains a
countable, dense subset Q, and suppose that μ ∈Mc(K)+. Then K contains a dense
Gδ -subset D such that Q⊂ D and μ(D) = 0.

Proof. Set Q = {xn : n ∈N}. Since the measure μ is continuous, it follows that, for
each k,n ∈N, there is an open neighbourhood Uk,n of xn such that μ(Uk,n)< 1/2nk.
Set

Uk =
⋃

{Uk,n : n ∈ N} (k ∈ N) .

Then each Uk is an open subset of K with μ(Uk)< 1/k. The set D :=
⋂{Uk : k ∈N}

is a Gδ -subset of K; it is dense in K because it contains {xn : n ∈ N}, and clearly
μ(D) = 0. ��

Proposition 4.2.3. Let K be an uncountable, compact, metrizable space. Then we
have |M(K)| = c.

Proof. By Proposition 1.4.14, |K|= c, and so |M(K)| ≥ |Md(K)| ≥ c.
The topological space K has a countable base; we may suppose that this base is

closed under finite unions. Each open set in K is a countable, increasing union of
members of the base, and so each μ ∈M(K) is determined by its values on the sets
of this base. Hence |M(K)| ≤ c. ��

Definition 4.2.4. Let K be a non-empty, locally compact space, and suppose that
μ ,ν ∈M(K). Then μ ⊥ ν if μ and ν are mutually singular, in the sense that there
exists B ∈BK with |μ |(B) = 0 and |ν| (K \B) = 0, and μ " ν if |μ | is absolutely
continuous with respect to |ν|, in the sense that |μ |(B) = 0 whenever B ∈BK and
|ν|(B) = 0.

For μ ,ν ∈M(K), set

μ ∼ ν if μ " ν and ν " μ .

We recall that μ " ν if and only if, for each ε > 0, there exists δ = δ (ε) > 0
such that |μ(B)|< ε whenever B ∈BK and |ν| (B)< δ . Suppose that μ ,ν ∈M(K)
with μ " ν . Then supp μ ⊂ supp ν .

It is easy to check that ∼ is an equivalence relation on the space M(K). Clearly
μ ∼ |μ | for each μ ∈M(K).

It follows from the Hahn decomposition theorem that each μ ∈M(K) has a Jor-
dan decomposition:

μ = μ1− μ2 + i(μ3− μ4) , (4.9)

where μ1 = (ℜμ)+, μ2 = (ℜμ)−, μ3 = (ℑμ)+, and μ4 = (ℑμ)−. Note that μ1,μ2,
μ3,μ4 ∈M(K)+ and μ j " μ for j = 1,2,3,4.

The following inequality, which follows easily, will be useful. Let K be a non-
empty, locally compact space, and take μ ∈M(K). Then, for each B ∈BK , we have

|μ |(B)≤ 4sup{|μ(C)| : C ∈BK ,C ⊂ B} . (4.10)
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The following two results are clear.

Proposition 4.2.5. Let K be a non-empty, locally compact space, and suppose that
μ ,ν ∈M(K). Then μ ⊥ ν if and only if

‖μ+ν‖= ‖μ−ν‖= ‖μ‖+ ‖ν‖ .
��

Corollary 4.2.6. Let K and L be non-empty, locally compact spaces. Suppose that
E is a linear subspace of M(K) and that T : E → M(L) is a linear isometry. Take
measures μ ,ν ∈ E. Then Tμ ⊥ Tν if and only if μ ⊥ ν . ��

Proposition 4.2.7. Let K be a non-empty, locally compact space, and suppose that
μ ∈M(K). Then μ is continuous if and only if, for each ε > 0, there exist n ∈N and
μ1, . . . ,μn ∈M(K) with

μ = μ1 + · · ·+ μn ,

with μi ⊥ μ j (i, j ∈ Nn, i �= j), and with ‖μi‖< ε (i ∈ Nn).

Proof. Suppose that μ ∈ Mc(K), and take ε > 0. Then there is a compact sub-
set L of K such that |μ |(K \ L) < ε . Each point x ∈ L has an open neighbour-
hood Ux with |μ |(Ux) < ε , and the union, say

⋃{Uj : j ∈ Nn}, of finitely many
of these neighbourhoods contains L. Set V1 =U1 and Vj =Uj \ (U1∪·· ·∪Uj−1) for
j = 2, . . . ,n. Then set μ0 = μ | (K \L) and μ j = μ | (Vj ∩L) ( j ∈ Nn). We see that
μ0,μ1, . . . ,μn ∈M(K), and they have the required properties (after re-labelling).

The converse is immediate. ��

Corollary 4.2.8. Let K and L be non-empty, locally compact spaces, and suppose
that T : M(K)→M(L) is a linear isometry. Then Tμ ∈Mc(L) whenever μ ∈Mc(K).

Proof. Take μ ∈Mc(K) and ε > 0. Then there exist n ∈ N and μ1, . . . ,μn ∈M(K)
with μ = μ1 + · · ·+μn, with μi ⊥ μ j (i, j ∈ Nn, i �= j), and with ‖μi‖< ε (i ∈ Nn).
Then Tμ = Tμ1 + · · ·+Tμn, with Tμi ⊥ Tμ j (i, j ∈ Nn, i �= j) by Corollary 4.2.6
and with ‖Tμi‖< ε (i ∈ Nn). Thus Tμ ∈Mc(L). ��

The following theorem is the Lebesgue decomposition theorem; see [59, Theorem
4.3.2] and [217, Theorem 6.10(a)], for example.

Theorem 4.2.9. Let K be a non-empty, locally compact space, and suppose that
μ ∈ M(K)+ and ν ∈ M(K). Then there is a unique pair {νa,νs} of measures in
M(K) with ν = νa +νs, with νa " μ , and with νs ⊥ μ . ��

It is clear that, in the above setting, the maps ν �→ νa and ν �→ νs are Banach-
lattice homomorphisms on M(K).

Proposition 4.2.10. Let K be a non-empty, locally compact space, and suppose that
μ ,ν ∈M(K)+ with ν" μ . Then there exists B ∈BK with ν ∼ μ | B.



4.2 Discrete and continuous measures 121

Proof. Take μ = μa +μs with μa " ν and μs ⊥ ν , and partition K into two disjoint
Borel subsets B and C such that μs(B) = ν(C) = 0. Then

(μ | B)(E) = μa(E ∩B)+ μs(E ∩B) = μa(E) (E ∈BK) ,

and so μ | B = μa. Now μa ∼ ν because, for each A ∈BK with μa(A) = 0, we have
ν(A) = ν(A∩B) = μa(A∩B) = 0. Hence ν ∼ μ | B, as desired. ��

Definition 4.2.11. Let K be a non-empty, locally compact space. For each measure
μ ∈M(K), the disjoint complement of μ is

μ⊥ = {ν ∈M(K) : ν ⊥ μ} .

It is clear that μ⊥ is a linear subspace of M(K). Further, μ " ν if and only if
ν⊥ ⊂ μ⊥ . The following proposition is easily verified by using elementary vector-
lattice exercises.

Proposition 4.2.12. Let K be a non-empty, locally compact space, and suppose that
μ ,ν ∈M(K)+. Then:

(i) μ ⊥ ν if and only if μ ∧ν = 0 ;

(ii) (μ ∨ν)⊥ = μ⊥∩ν⊥ = (μ+ν)⊥ ;

(iii) μ⊥∪ν⊥ ⊂ (μ ∧ν)⊥ ;

(iv) μ ∼ ν if and only if μ⊥ = ν⊥. ��

Proposition 4.2.13. Let K be a non-empty, locally compact space, and suppose that
F is a complemented face of P(K). Take μ ∈ F and ν ∈ F⊥. Then μ ∧ν = 0.

Proof. Set λ = μ ∧ν . Clearly λ ≤ ν , and λ �= μ because μ � ν . Assume towards a
contradiction that λ �= 0. Then

μ = ‖λ‖
(

λ
‖λ‖

)

+ ‖μ−λ‖
(

μ−λ
‖μ−λ‖

)

,

and ‖λ‖+ ‖μ−λ‖ = 1 because μ − λ ≥ 0 and ‖·‖ is additive on M(K)+. Thus
λ/‖λ‖ ∈ F . Similarly, λ/‖λ‖ ∈ F⊥, a contradiction because F ∩F⊥ = /0. Thus
λ = 0. ��

Proposition 4.2.14. Let K be an infinite, locally compact space. Then

M(K) ∼= M(K∞) .

Proof. By equation (4.8), it suffices to show that the subspaces of discrete measures
and of continuous measures on K and on K∞, respectively, are isometrically iso-
morphic to each other. However, Md(K) ∼= Md(K∞) because |K| = |K∞|, and, since
BK ⊂BK∞ , the map μ �→ μ |BK determines a linear isometry from Mc(K∞) onto
Mc(K). ��
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Example 4.2.15. Let S be a semigroup. In §1.5, we noted that the space βS be-
comes a right or left topological semigroup with respect to the operations � and �,
respectively. Thus the products of u and v in βS are u�v and u � v.

The Banach space (�1(S),‖·‖1) is a Banach algebra with respect to the convolu-
tion product � defined by

( f � g)(t) =∑{ f (r)g(s) : r,s ∈ S, rs = t} (t ∈ S)

for f ,g ∈ �1(S), where we take the sum to be 0 when there are no elements r,s ∈ S
with rs = t. It is easily checked that (�1(S),‖·‖1 , �) is a Banach algebra; it is called
the semigroup algebra on S.

The bidual of the space (�1(S),‖·‖1) is identified with the space M(βS) of mea-
sures on βS, and so the Arens products described in §3.1 give the products μ �ν
and μ � ν for μ ,ν ∈ M(βS). In particular, we can define the products δu �δv and
δu �δv of point masses for u,v ∈ βS. These products are easily seen to be consistent
with those in βS, in the sense that

δu �δv = δu�v , δu�δv = δu�v (u,v ∈ βS) .

The Banach algebras (M(βS),�) and (M(βS),�) are studied in the memoir [71].
In particular, it is shown that �1(S) is usually (but not always) strongly Arens irreg-
ular. The interplay between properties of the Banach algebras and the combinatorial
properties of the semigroup βS is rather subtle. For further results, see [47]. ��

4.3 A Boolean ring

An introduction to the general theory of Boolean rings and algebras was given in
§1.7. We shall now discuss a specific Boolean ring B defined for each non-empty,
locally compact space K, with the property that Cb(St(B)) ∼= M(K)′; this Boolean
ring will be used to give a new representation of C0(K)′′ in §5.4.

Definition 4.3.1. Let (Ω ,Σ ,μ) be a measure space. The family of subsets S of Ω
such that μ(S) = 0 is denoted by Nμ . Then Σμ = Σ/Nμ and πμ : Σ → Σμ is the
quotient map.

Clearly Nμ is a σ -complete ideal in the Boolean algebra Σ , and so Σμ is a
σ -complete Boolean algebra. We regard μ as a measure on Σμ , so that

μ(πμ(A)) = μ(A) (A ∈ Σ) .

In particular, let K be a non-empty, locally compact space, and suppose that
μ ∈M(K)+. Then Bμ = BK/Nμ . For example, with K = I and μ = m, we ob-
tain the basic example, Bm. Note that, when regarded as a function on the Boolean
algebra Bμ , the measure μ is a σ -normal measure in the sense of Definition 1.7.12.
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Proposition 4.3.2. Let (Ω ,Σ ,μ) be a finite measure space.

(i) Each increasing net C in Σμ has a supremum B ∈ Σμ , and

μ(B) = sup{μ(C) : C ∈ C } .

(ii) The Boolean algebra Σμ is complete, and so St(Σμ) is a Stonean space.

(iii) Suppose that Σμ is atomless, and take B ∈ Σμ and α ∈ [0,μ(B)]. Then there
exists C0 ∈ Σμ with C0 ≤ B and μ(C0) = α .

Proof. (i) Choose an increasing sequence (Bn) in C such that

lim
n→∞

μ(Bn) = sup{μ(B) : B ∈ C }< ∞ ,

and define B =
∨{Bn : n ∈ N}, so that B ∈ Σμ and limn→∞ μ(Bn) = μ(B).

We first claim that μ(C− B) = 0 (C ∈ C ). Indeed, take C ∈ C , and assume
towards a contradiction that there exists δ > 0 such that μ(C − B) > δ . Then
μ(C∨Bn)> μ(Bn)+ δ (n ∈ N). Choose m ∈ N with μ(Bm) > μ(B)− δ/2. Since
C∨Bm ⊂D for some D∈C , there exists n∈N such that μ(Bn)> μ(C∨Bm)−δ/2.
Thus μ(Bn)> μ(Bm)+ δ/2 > μ(B), the required contradiction. The claim holds.

We next claim that B =
∨{C : C ∈ C }. By the above paragraph, C ≤ B (C ∈ C ).

Now suppose that D∈Σμ is such that C≤D (C ∈C ). Then B=
∨{Bn : n∈N}≤D.

It follows that B =
∨{C : C ∈ C }, as claimed, and so μ(B) = sup{μ(C) : C ∈ C }.

(ii) It is immediate from (i) that Σμ is complete. By Corollary 1.7.5, St(Σμ) is a
Stonean space.

(iii) Let C be a chain in Σμ such that C is maximal with respect to the properties
that C ≤ B and that μ(C)≤ α whenever C ∈ C . By (i), there exists C0 ∈ Σμ with

μ(C0) = sup{μ(C) : C ∈ C } .

Clearly C0 ≤ B and μ(C0) ≤ α . Assume that μ(C0) < α . Since Σμ is atomless, it
follows from a remark on page 43 that there is an element D ∈ Σμ with D≤ B\C0

such that 0< μ(D)<α−μ(C0). But now C ∪{C0∨D} is a chain with the property
that μ(C)≤ α (C ∈ C ∨{C0∨D}), a contradiction of the maximality of C . Hence
μ(C0) = α . ��

Corollary 4.3.3. Let K be a non-empty, locally compact space.

(i) Suppose that μ ∈ P(K). Then Bμ is atomless if and only if μ is continuous.

(ii) Suppose that μ ∈Mc(K)+ and μ �= 0. Then Bμ is not a separable Boolean
algebra.

Proof. (i) Suppose that μ is not continuous. Then there exists x ∈ K such that
μ({x})> 0, and then πμ(δx) is an atom in Bμ .
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Suppose that μ is continuous. Then it follows easily from Proposition 4.2.7 that
Bμ is atomless.

(ii) Since μ is a non-zero, σ -normal measure on Bμ , this follows from Prop-
osition 1.7.13. ��

Definition 4.3.4. Let (Ω ,Σ ,μ) be a probability measure space. We set

ρμ(B,C) = μ(BΔC) (B,C ∈ Σμ) .

It is easy to see that ρμ is a metric on the Boolean algebra Σμ .

Proposition 4.3.5. Let (Ω ,Σ ,μ) be a probability measure space. Then the metric
space (Σμ ,ρμ) is complete.

Proof. As in any metric space, it suffices to show that there exists B ∈ Σμ such
that ρμ(Bk,B) ≤ 1/2k (k ∈ N) whenever (Bn : n ∈ N) is a sequence in Σμ with
ρμ(Bn,Bn+1)< 1/2n+1 (n ∈ N).

Given such a sequence (Bn), note that ρμ(Bk,Bn) < 1/2k (n ≥ k). For each
n ∈ N, set Dn = Bn∪⋃k∈N(Bn+k−1Δ Bn+k). Then Dn = Bn∪Dn+1 ⊃ Dn+1 and also
BnΔDn⊂⋃k∈N(Bn+k−1ΔBn+k), so that ρμ(Bn,Dn)→ 0 as n→∞. Set B=

⋂

n∈NDn.
Then μ(Dn) → μ(B) by the countable additivity of the measure μ , and hence
ρμ(Dn,B)→ 0 as n→ ∞. We have

ρμ(Bk,B)≤ ρμ(Bk,Bn)+ρμ(Bn,Dn)+ρμ(Dn,B) (k,n ∈N) ; (4.11)

we fix k ∈ N, and then take limits in (4.11) as n→ ∞ to see that ρμ(Bk,B) ≤ 1/2k,
giving the result. ��

Theorem 4.3.6. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be two probability measure spaces
such that Σμ1 and Σμ2 are atomless Boolean algebras and (Σμ1 ,ρμ1) and (Σμ2 ,ρμ2)
are separable metric spaces. Then there is an isomorphism θ : Σμ1 → Σμ2 such that

μ2(θ (B)) = μ1(B) (B ∈ Σ1) .

Proof. Let {Un : n ∈N} and {Vn : n ∈N} be countable, dense families in (Σμ1 ,ρμ1)
and (Σμ2 ,ρμ2), respectively, where we write Σμi for Σi/Nμi for i = 1,2.

We shall first define increasing sequences (Fn : n ∈ N) and (Gn : n ∈ N) of finite
Boolean subalgebras of Σμ1 and Σμ2 , respectively, and an isomorphism

θ :
∞
⋃

n=1

Fn →
∞
⋃

n=1

Gn

such that μ2(θ (B)) = μ1(B) (B ∈⋃∞
n=1 Fn).
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We start by setting F1 = { /0,Ω1}, G1 = { /0,Ω2}, θ ( /0) = /0, and θ (Ω1) =Ω2.
Now take n∈N, and assume inductively that F1, . . . ,Fn and G1, . . . ,Gn have been

defined in Σμ1 and Σμ2 , respectively, and that θ has been defined on Fn.
Suppose that n is even, and choose r ∈ N to be the smallest number such that

Ur �∈ Fn. By Proposition 4.3.2(iii), for each atom A ∈ Fn, there exists EA ∈ Σμ2 such
that EA ≤ θ (A) and μ2(EA) = μ1(A∧Ur). We set

θ (A∧Ur) = EA , θ (A−Ur) = θ (A)−EA ,

for each such atom A, and we define Fn+1 to be the (finite) Boolean subalgebra of
Σμ1 generated by Fn∪{Ur}; we then extend θ to Fn+1 in the obvious way, and finally
set Gn+1 = θ (Fn+1).

Suppose that n is odd, and choose r ∈ N to be the smallest number such that
Vr �∈ Gn. In a similar manner, we extend θ−1 to the Boolean subalgebra of Σμ2

generated by Gn∪{Vr}. This completes the inductive construction.
We observe that

θ :

(

∞
⋃

n=1

Fn,ρμ

)

→
(

∞
⋃

n=1

Gn,ρν

)

is an isometry and that
⋃∞

n=1 Fn and
⋃∞

n=1 Gn are dense in the metric spaces (Σμ1 ,ρμ1)
and (Σμ2 ,ρμ2), respectively. By Proposition 4.3.5, these two metric spaces are
complete, and so the map θ can be extended to an isometry, also called θ , from
(Σμ1 ,ρμ1) onto (Σμ2 ,ρμ2). Clearly θ is an isomorphism between Σμ1 and Σμ1 . ��

The following consequence of the above theorem, which refers to the measure
space (I,Σm,m), is sometimes called von Neumann’s isomorphism theorem. How-
ever, the result was essentially known in the 1930s (see Kolmogorov [158, §20] and
Szpilrajn [233, Theorem I; note the reference to Jaskowski (1932)]), but apparently
the first complete, published proof was by Caratheodory [52, Satz 7 (Hauptsatz)].
Several books now have a proof of this result; a short proof is in Birkhoff [36, p. 262,
Corollary]; see also Bogachev [39, Theorem 9.3.4], Halmos [132, §41, Theorem C],
and Royden [216, Theorem 15.4].

Corollary 4.3.7. Let (Ω ,Σ ,μ) be a probability measure space such that Σμ is an
atomless Boolean algebra and (Σμ ,ρμ) is a separable metric space. Then there is
an isomorphism θ : Σμ → Σm such that m(θ (B)) = μ(B) (B ∈ Σμ).
Proof. Since m is a continuous measure, it follows from Corollary 4.3.3(i) that the
Boolean algebra Σm is atomless, and (Σm,ρm) is a separable metric space. Now the
result follows from Theorem 4.3.6. ��

Let K be a non-empty, locally compact space, and take μ ,ν ∈ M(K). In Defi-
nition 4.2.4, we said that μ ∼ ν if μ " ν and ν " μ , so that ∼ is an equivalence
relation on M(K). The equivalence class containing μ is denoted by [μ ]. It is now
trivial to check that the relation ≤ defined on M(K)/∼ by

[μ ]≤ [ν] if and only if μ " ν

is a well-defined partial order on M(K)/ ∼.
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We wish to show that the partially ordered space (M(K)/ ∼,≤) is a Boolean
ring with certain nice properties. In virtue of the fact that [μ ] = [|μ |], the space
(M(K)/∼,≤) is isomorphic to (M(K)+/∼,≤), and so we shall simplify notation
and restrict the discussion to positive measures; in particular, for μ ∈ M(K)+, we
restrict μ⊥ to M(K)+.

Definition 4.3.8. Let K be a non-empty, locally compact space. We define opera-
tions ∨ and ∧ on M(K)+/∼ by:

[μ ]∨ [ν] = [μ ∨ν] , [μ ]∧ [ν] = [μ ∧ν] (μ ,ν ∈M(K)+) .

We have to show that the above operations are well defined.

Proposition 4.3.9. Let K be a non-empty, locally compact space. Then

(M(K)+/∼,≤)

is a distributive lattice with a minimum element in which ∨ and ∧ are the supremum
and infimum in the partial order ≤. In particular, ∨ and ∧ are well defined.

Proof. Let μ ,ν ∈M(K)+, and set L = M(K)+/∼ and S = {[μ ], [ν]} in L.
We claim that [μ ∨ν] is the supremum of S. Indeed, μ " μ ∨ν and ν " μ ∨ν ,

and so [μ ∨ν] is an upper bound for S. Now suppose that η ∈M(K)+ is such that
[η ] is an upper bound for S. Then μ " η and ν " η , and so μ ∨ν " η , whence
[μ ∨ν]≤ [η ]. The claim follows, and hence [μ ∨ν] = [μ ]∨ [ν].

We also claim that [μ∧ν] is the infimum of S. Indeed, μ∧ν" μ and μ∧ν" ν ,
and so [μ ∧ν] is a lower bound for S. Now suppose that η ∈M(K)+ is such that [η ]
is a lower bound for S, so that μ⊥ ⊂ η⊥ and ν⊥ ⊂ η⊥. To show that [η ]≤ [μ ∧ν],
we must show that (μ ∧ν)⊥ ⊂ η⊥. For this, take γ ∈ (μ ∧ν)⊥ . Then γ ∧μ ∧ν = 0,
whence γ ∧ μ ∈ ν⊥ ⊂ η⊥, and so γ ∧ μ ∧η = 0, i.e., γ ∧η ∈ μ⊥ ⊂ η⊥. It follows
that γ ∧η ∧η = 0 = γ ∧η , and γ ∈ η⊥ as desired. The claim follows, and hence
[μ ∧ν] = [μ ]∧ [ν].

We have shown that L is a lattice. Clearly [0] is the minimum element of L. That
L is a distributive lattice follows immediately from the distributivity of the lattice
(M(K)+, ∨, ∧). ��

We remark that an examination of the proof of the preceding proposition shows
that an analogous result is valid for any distributive lattice with a minimum element,
provided that the relation a" b is defined by the formula b⊥ ⊂ a⊥.

Theorem 4.3.10. Let K be a non-empty, locally compact space, and suppose that
μ ∈M(K)+. Then

{[ν] : ν ∈M(K)+, ν" μ}
is a Boolean algebra in the order ≤ inherited from (M(K)+/ ∼ ,≤), and it is iso-
morphic as a Boolean algebra to Bμ =BK/Nμ .
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Proof. Take ν ∈M(K)+ with ν" μ , and, using the Lebesgue decomposition theo-
rem, Theorem 4.2.9, write μ = μa+μs, where μa,μs ∈M(K)+ are such that μa " ν
and μs ⊥ ν . Thus:

[μa]≤ [ν]≤ [μ ] ; [μs]≤ [μ ] ; [μs]∧ [ν] = [0] .

We claim that [ν]∨[μs] = [μ ]. Indeed, [ν∨μs] = [ν+μs] by Proposition 4.2.12(ii),
and so

[μ ] = [μa + μs]≤ [ν+ μs] = [ν ∨μs] = [ν]∨ [μs]≤ [μ ] ,

proving the claim.
We have shown that [μs] is the relative complement of [ν] with respect to [μ ]

and that the order interval [[0], [μ ]] is a Boolean algebra. Moreover, we observe that
μa ∼ ν , i.e., [μa] = [ν], because each is the (unique) relative complement of [μs]
with respect to [μ ].

The required Boolean isomorphism is as follows. Take ν ∈M(K)+ with ν" μ .
By Proposition 4.2.10, ν ∼ μ | B for some B ∈BK ; the image of ν in BK/Nμ is
the equivalence class of B. Note that for B,C ∈BK , we have μ | B ∼ μ | C if and
only if μ(BΔC) = 0, i.e., if and only if B and C define the same equivalence class in
Bμ . It is now a simple matter to verify that the map so defined is a bijection which
preserves the Boolean operations. ��

Theorem 4.3.11. Let K be a non-empty, locally compact space. Then

(M(K)+/∼,≤)

is a Dedekind complete Boolean ring such that, for each μ ∈ M(K)+, the order
interval [[0], [μ ]] is a complete Boolean algebra. Further, the Stone space

SK := St(M(K)+/∼,≤)

is an extremely disconnected, locally compact space. For each μ ∈ M(K)+, the
space St(Bμ) is compact and open in SK. Further, each compact–open subspace
of SK has the form St(Bμ) for some μ ∈M(K)+, and

SK =
⋃

{St(Bμ) : μ ∈M(K)+} .

Proof. By Proposition 4.3.9 and Theorem 4.3.10, (M(K)+/ ∼,≤) is a distributive
lattice with a minimum element such that each order interval [0,μ ] is a Boolean
algebra, and so it is a Boolean ring.

For each μ ∈M(K)+, the order interval [[0], [μ ]] is isomorphic to Bμ , which, by
Proposition 4.3.2(ii), is a complete Boolean algebra, and so St(Bμ) is a Stonean
space. The form of SK follows from Theorem 1.7.2. Thus (M(K)+/ ∼,≤) is
Dedekind complete and SK is extremely disconnected. ��
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4.4 The spaces Lp(K,μ)

We now define the standard spaces L∞(K,μ) and Lp(K,μ) for μ ∈M(K)+ and p
with 1 ≤ p < ∞. In fact, we have already mentioned these spaces when they are
defined on a general measure space (Ω ,Σ ,μ); here we give more details in our
special setting.

Let K be a non-empty, locally compact space, and take μ ∈M(K)+. Then two
bounded, Borel functions f and g are said to be equivalent (with respect to μ) if
μ({x ∈ K : f (x) �= g(x)}) = 0, or, equivalently, if

∫

K
| f − g| dμ = 0;

the family of these equivalence classes is the standard Banach space

L∞(μ) = L∞(K,μ) ,

with the essential supremum norm, ‖·‖∞, so that

‖ f‖∞ = inf{α > 0 : μ({x ∈ K : | f (x)| > α}) = 0} .

The equivalence class containing an element f of Bb(K) is sometimes denoted by
[ f ]. The collection of (equivalence classes of) real-valued functions in L∞(μ) is
denoted by L∞

R
(μ), and the positive functions form the space L∞(μ)+.

We note that lin{[χB] : B ∈BK} is a dense linear subspace of L∞(μ).
We remark that every equivalence class in L∞(K,μ) contains a representative

in the second Baire class, B2(K), that was defined in §3.3. This is a classical fact
for real functions on an interval in R; see [39, Example 2.12.15] or [116, Theorem
4b, p. 194], for example. The argument in the case of a general locally compact
space K and μ ∈M(K)+ follows a parallel route based on Lusin’s theorem, Theo-
rem 4.1.7(ii).

Proposition 4.4.1. Let K be an infinite, locally compact space, and suppose that
μ ∈M(K)+ with supp μ = K. Then �∞ is isometrically isomorphic to a 1-comp-
lemented subspace of L∞(K,μ).

Proof. Let (Un) be a sequence of pairwise-disjoint, non-empty, open subsets of K,
so that μ(Un)> 0 (n ∈ N). The map

(αn) �→
∞

∑
n=1

αnχUn , �∞→ L∞(K,μ) ,

is an isometric embedding, with range E , say. The map

P : f �→
∞

∑
n=1

1
μ(Un)

(

∫

Un

f dμ
)

χUn , L∞(K,μ)→ �∞ ∼= E ,
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is a bounded projection onto E with ‖P‖ = 1, and so E is a 1-complemented sub-
space of L∞(K,μ). ��

In the following, we shall write L∞(G) for L∞(G,mG) when G is a locally com-
pact group G.

Theorem 4.4.2. Let G be a non-discrete, locally compact group. Then Cb(G) is not
complemented in L∞(G), and so Cb(G) is not injective.

Proof. Assume towards a contradiction that there is a bounded projection Q of
L∞(G) onto the closed subspace Cb(G).

It is standard that there is a compact, symmetric neighbourhoodU of eG such that
G0 :=

⋃{Un : n ∈ N} is an infinite, clopen subgroup of G. By replacing G by G0

and Q by R ◦ (Q | L∞(G0)), where R denotes the restriction map from Cb(G) onto
Cb(G0), we may suppose that G is σ -compact.

By [137, Theorem (8.7)], for each countable family {Un : n∈N} in NeG , there is
a compact, normal subgroup N of G such that N ⊂ ⋂{Un : n ∈ N} and the quotient
group H := G/N is metrizable; take η : G→ H to be the quotient map. Since G is
not discrete, we have mG({eG}) = 0, and so we may suppose that mG(N) = 0; this
implies that N is not open in G, and so H is not discrete. Hence there is a sequence
(xn) of distinct points in H with limn→∞ xn = eH .

For f ∈Cb(G), define

(P f )(x) =
∫

N
f (xζ )dmN(ζ ) (x ∈ H) ,

so that P f ∈Cb(H) and the map P : Cb(G)→Cb(H) is a continuous linear surjec-
tion. The map

R : f �→ ( f (xn)− f (eH)), Cb(H)→ c0 ,

is also a continuous linear surjection. As before, there exists a sequence ( fn) in
C(H,I) with fn(xn) = 1 (n∈N) and such that supp fm∩ supp fn = /0 when m,n∈N

with m �= n. The map

T : α = (αn) �→
∞

∑
n=1

αn( fn ◦ η) , �∞→ L∞(G) ,

is an isometric embedding, and T (c0)⊂Cb(G). Thus S := R ◦ P ◦ Q ◦ T : �∞→ c0

is a bounded operator with S | c0 = Ic0 . But Phillips’ theorem, Theorem 2.4.11,
shows that there is no such projection S.

Thus we have a contradiction, and so Cb(G) is not complemented in L∞(G). ��

For a result related to the above, see [167, Theorem 4].

In fact, it is proved in [198, Theorem 8.9] that, for each infinite, compact group
G, the space C(G) is isomorphic to C(Zκ2 ), where κ = w(G), so this gives another
route to the fact that C(G) is not injective for each infinite, compact group G: as we
remarked on page 79, C(Zκ2 ) is not injective. In contrast, there are many compact,
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non-metrizable spaces K such that C(K) is not isomorphic to a space of the form
C(Zκ2 ); such a K can be any infinite Stonean space, or any non-metrizable scattered
space, or any space not satisfying CCC [198, Theorem 8.13].

Corollary 4.4.3. Let G be an infinite, locally compact group. Then C0(G) is not
injective.

Proof. This follows from Theorem 4.4.2 when G is compact and from Theorem
2.4.12 when G is not pseudo-compact. However a locally compact group that is
pseudo-compact as a topological space is already compact. Indeed, take G to be
a locally compact, non-compact group, and let K be a compact, symmetric neigh-
bourhood of eG. Then K2 �= G: take x ∈ G \K2. Then xK ∩K = /0. Continuing, we
find infinitely many, pairwise-disjoint sets xnK, where xn ∈ G (n ∈ N). For each
n ∈ N, there exists a function fn ∈C(G,I) with fn(xn) = 1 and supp fn ⊂ xnK, and
then ∑∞

n=1 n fn is an unbounded, continuous function on G, and so G is not pseudo-
compact. ��

Corollary 4.4.4. Let G be a locally compact group that is extremely disconnected
as a topological space. Then G is discrete.

Proof. By Proposition 1.5.9(ii), βG is Stonean, and so, by Theorem 2.5.11, the
space Cb(G) =C(βG) is 1-injective. By Theorem 4.4.2, G is discrete. ��

In fact, every locally compact group that is an F-space is discrete; for this, see
[60, §2.12].

It is clear that each space L∞(K,μ), for a non-empty, locally compact space K
and μ ∈ P(K), is a commutative, unital C∗-algebra with respect to the pointwise
product and conjugation as involution.

Definition 4.4.5. Let K be a non-empty, locally compact space, and suppose that
μ ∈ P(K). Then the character space of the C∗-algebra L∞(K,μ) is denoted by Φμ ,
and the Gel’fand transform is Gμ : L∞(K,μ)→C(Φμ).

ThusΦμ is a non-empty, compact space and Gμ is a unital C∗-isomorphism and a
Banach-lattice isometry. It follows that (C(Φμ),≤) is a Dedekind complete Banach
lattice, and so, by Theorem 2.3.3, Φμ is a Stonean space.

Theorem 4.4.6. Let K be a non-empty, locally compact space, and suppose that
μ ∈ P(K). Then L∞(K,μ) is a 1-injective space.

Proof. We know that L∞(K,μ)∼=C(Φμ) and that Φμ is a Stonean space. By Theo-
rem 2.5.11, C(Φμ) is 1-injective. ��

The following is a famous isomorphism theorem of Pełczyński [196].

Theorem 4.4.7. The spaces �∞ and L∞(I) are isomorphic, so that �∞ ∼ L∞(I).
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Proof. Set E = L∞(I) and F = �∞. By Proposition 2.2.6, E ∼ E×E and F ∼ F×F .
By Theorem 4.4.6, both E and F are injective spaces. Since E is the dual of L1(I), it
follows from Proposition 2.2.17(iii), there is a linear isometry from E onto a closed
subspace of F; by Proposition 4.4.1, there is a linear isometry from F onto a closed
subspace of E . It now follows from Proposition 2.5.4 that E ∼ F . ��

The exact Banach–Mazur distance between �∞ and L∞(I) seems to be unknown.

Again let K be a non-empty, locally compact space, and take μ ∈ M(K)+. For
each p with 1≤ p < ∞, we define

Lp(K,μ) = Lp(μ) =
{

f ∈ C
K : f measurable,

∫

K
| f |p dμ < ∞

}

and

‖ f‖p =

(

∫

K
| f |p dμ

)1/p

( f ∈ Lp(μ)) .

As usual, we identify equivalent functions f and g, that is, those with ‖ f − g‖p = 0.
Then (Lp(μ),‖·‖p) is a Banach space. In particular, with K = I and μ = m, we
obtain the standard Banach spaces Lp(I) of page 5, where we recall that every
Lebesgue measurable function on I is equivalent to a Borel measurable function.

The real-valued and positive functions in Lp(μ) are denoted by Lp
R
(μ) and

Lp(μ)+, respectively. Again Lp(μ) is a Dedekind complete Banach lattice: for an
explicit proof, see [39, Corollary 4.7.2] or [180, Example 23.3(iv), p. 126], where
these spaces are, in fact, shown to be super-Dedekind complete, which means that
each subset D of these spaces that is bounded above has a supremum which is,
moreover, the supremum of some countable subset of D.

We note that C0(K) and lin{[χB] : B ∈BK} are dense linear subspaces of Lp(μ)
for each p with 1≤ p < ∞.

Proposition 4.4.8. Let K be a non-empty, compact, metrizable space, and suppose
that μ ∈M(K)+ and 1≤ p < ∞. Then (Lp(K,μ),‖·‖p) is separable.

Proof. By Theorem 2.1.7(i), (C(K), | · |K) is separable, and so this follows because
C(K) is dense in Lp(K,μ). ��

The following theorem is the Radon–Nikodým theorem; see [39, Theorem 3.2.2],
[59, Theorem 4.2.4] and [217, Theorem 6.10(b)], for example.

Theorem 4.4.9. Let K be a non-empty, locally compact space, and suppose that
μ ∈M(K)+ and ν ∈M(K) with ν " μ . Then there is a unique function h ∈ L1(μ)
such that

ν(B) =
∫

B
hdμ , |ν| (B) =

∫

B
|h| dμ (B ∈BK) .

Further, ‖h‖1 = ‖ν‖. In particular, there is a measurable function h on K with
|h(x)|= 1 (x ∈ K) and such that dμ = hd |μ |. ��
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Thus, when μ ,ν ∈M(K)+ with ν " μ , we may regard L1(ν) as a closed linear
subspace of L1(μ). Further, we may identify L1(μ) with the closed subspace

{ν ∈M(K) : ν " μ}

of measures in M(K) that are absolutely continuous with respect to μ , so that
L1(μ) is a lattice ideal in M(K); we have M(K) = L1(μ)⊕1 μ⊥, so that L1(μ)
is 1-complemented in M(K).

The measures on a locally compact group G that are absolutely continuous with
respect to left Haar measure mG are identified with the Banach space

L1(G,mG) ,

which is regarded as a closed subspace of M(G). This subspace is a closed ideal in
the measure algebra (M(G), �) of G, and it is called the group algebra of G; the
formula for the product of f and g in L1(G,mG) is:

( f � g)(s) =
∫

G
f (t)g(t−1s)dmG(t) (s ∈ G) .

There is an enormous literature on the group algebra of a locally compact group; it
is the central object in the subject ‘harmonic analysis’. Again, for example, see the
books [68, 137, 194, 195] and the memoir [72].

The following duality theorem is given in [39, §4.4], [59, Proposition 3.5.2],
[137, Theorem (12.18)], and [217, Theorem 6.16], for example. For clause (ii), see
[138, Theorem (20.20)].

Theorem 4.4.10. (i) Let (Ω ,Σ ,μ) be a measure space, and take p with 1 < p < ∞.
Then (Lp(Ω ,μ),‖·‖p)

′ is isometrically isomorphic to (Lq(Ω ,μ),‖·‖q), where q is
the conjugate index to p. The duality is given by

〈 f ,λ 〉=
∫

K
fλ dμ ( f ∈ Lp(Ω ,μ), λ ∈ Lp(Ω ,μ)′) .

(ii) Let (Ω ,Σ ,μ) be a decomposable measure space. Then (L1(Ω ,μ),‖·‖1)
′ is

isometrically isomorphic to (L∞(Ω ,μ),‖ ·‖∞). ��

Corollary 4.4.11. Let K be a non-empty, locally compact space, and take μ ∈ P(K).
Then L1(K,μ) is 1-complemented in its bidual

Proof. We may suppose that K = supp μ , and so C0(K) is a closed subspace of
L∞(K,μ).

Take Λ ∈ L1(K,μ)′′. ThenΛ acts on L1(K,μ)′ = L∞(K,μ) and hence on C0(K);
we set R(Λ) = Λ | C0(K), so that R is a bounded projection of L1(K,μ)′′ onto
C0(K)′ = M(K) with ‖R‖ = 1. Since L1(K,μ) is 1-complemented in M(K), the
result follows. ��
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We now come to a certain uniqueness result for the Banach lattice L1(I,m). A
generalization to the lattices Lp(I,m) for 1≤ p < ∞ is given in the book [184, The-
orem 2.7.3].

Theorem 4.4.12. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be probability measure spaces
such that Σμ1 and Σμ2 are atomless Boolean algebras and the Banach spaces
L1(Ω1,μ1) and L1(Ω2,μ2) are separable. Then there is a Banach-lattice isometry
from L1(Ω1,μ1) onto L1(Ω2,μ2).

Proof. Since L1(Ω1,μ1) and L1(Ω2,μ2) are separable Banach spaces, (Σμ1 ,ρμ1)
and (Σμ2 ,ρμ2) are separable metric spaces. By Theorem 4.3.6. there is an isomor-
phism θ : Σμ1 → Σμ2 such that μ2(θ (B)) = μ1(B) (B ∈ Σ1). There is an exten-
sion of θ to a linear bijection from lin{χB : B ∈ Σ1} onto lin{χC : C ∈ Σ2} with
θ (χB) = χθ(B) (B ∈ Σ1), and this map is an isometry with respect to the respec-
tive norms ‖·‖1. Finally, the map θ extends to an isometry from L1(Ω1,μ1) onto
L1(Ω2,μ2). Clearly the final map θ is a lattice isomorphism. ��

In fact, let us suppose just that (Ω1,Σ1,μ1) is a σ -finite measure space. Then,
using a remark on page 6, the same conclusion follows.

Corollary 4.4.13. Let K and L be non-empty, locally compact spaces, and suppose
that μ ∈ Pc(K) and ν ∈ Pc(L) are such that (L1(K,μ),‖ ·‖1) and (L1(L,ν),‖ ·‖1)
are separable Banach spaces. Then there is a Banach-lattice isometry from L1(K,μ)
onto L1(L,ν).

Proof. The Boolean algebras Bμ and Bν are atomless by Corollary 4.3.3(i), and so
this is immediate from Theorem 4.4.12. ��

Theorem 4.4.14. Let K be a non-empty, locally compact space, and suppose that
μ ∈ Pc(K). Then there is an isometric lattice embedding of L1(I) into L1(K,μ). In
the case where (L1(K,μ),‖ ·‖1) is separable, L1(K,μ) is Banach-lattice isometric
to L1(I,m).

Proof. Since the measure μ is continuous, it follows easily from Proposition 4.2.7
that there is a separable, complete, atomless Boolean algebra B contained in Bμ .
The isomorphism from Bm onto B extends to the required isometric lattice embed-
ding. ��

Proposition 4.4.15. Let K be a non-empty, locally compact space.

(i) The extreme points of M(K)[1] have the form ζδx, where ζ ∈T and x∈ K, and
the extreme points of P(K) have the form δx, where x ∈ K.

(ii) Take μ ∈Mc(K)+ with μ �= 0. Then exL1(μ)[1] = /0.

(iii) Take μ ∈ M(K)+. Then each extreme point of L1(μ)[1] has the form ζδx,
where ζ ∈ C, x ∈ K, and |ζ |μ({x}) = 1. Further, co(exL1(μ)[1]) = L1(μd)[1].
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Proof. (i) Take μ ∈ exM(K)[1], so that μ �= 0, and assume towards a contradiction
that supp μ is not a singleton. Then there exists B0 ∈BK with α := |μ |(B0)> 0 and
|μ |(Bc

0)> 0, so that α ∈ (0,1). Define

μ1(B) =
1
α
μ(B∩B0) , μ2(B) =

1
1−α μ(B∩Bc

0) (B ∈BK) .

Then μ1,μ2 ∈M(K)[1] and μ = αμ1 +(1−α)μ2, but μ1 �= μ and μ2 �= μ , a contra-
diction of the fact that μ is an extreme point of M(K)[1]. The result follows.

(ii) Suppose that f ∈ L1(μ)[1]with ‖ f‖1 = 1. Then there exists B ∈BK with

0 <
∫

B
| f | dμ < 1 ,

and now essentially the same argument as above shows that f is a convex comb-
ination of two distinct elements of L1(μ)[1]. Thus exL1(μ)[1] = /0.

(iii) Trivially, the extreme points of L1(μd)[1] have the form ζδx, where ζ ∈ C,
x ∈ K and |ζ |μ({x}) = 1. By (ii) and Proposition 2.1.10, exL1(μ)[1] = exL1(μd)[1],
and so the result follows. ��

Corollary 4.4.16. Let K be a non-empty, locally compact space. Then Md(K)[1] is
weak∗-dense in M(K)[1].

Proof. By the Krein–Milman theorem, Theorem 2.6.1, each element of M(K)[1]
belongs to the weak∗-closure of the convex hull of the set of extreme points of
M(K)[1]. By the proposition, the extreme points of M(K)[1] belong to Md(K)[1]. ��

We saw in Theorem 2.4.15 that c0 is not isomorphically a dual space: this fol-
lowed because c0 is not complemented in its bidual. We now consider the analogous
question for the spaces L1(K,μ) = (L1(K,μ),‖·‖1), especially in the case where
L1(K,μ) is separable; by Proposition 4.4.8, the latter case includes that in which
K is compact and metrizable. However, we cannot follow the same argument as in
the case of c0 because, by Corollary 4.4.11, L1(K,μ) is complemented in its bidual.
The fact that the Banach space L1(I) is not isomorphic to a subspace of a separable
dual space was first proved by Gel’fand himself in 1938 [110, p. 265]. The situation
for more general spaces L1(K,μ) is given below.

Theorem 4.4.17. Let K be a non-empty, locally compact space, and suppose that
μ ∈ P(K).

(i) The following are equivalent:

(a) L1(K,μ) is isomorphic to a subspace of a separable dual space;

(b) L1(K,μ) is isometrically isomorphic to a subspace of a separable dual
space;

(c) μ is a discrete measure.

(ii) The space L1(K,μ) is isometrically a dual space if and only if μ is discrete.
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Proof. We may suppose that L1(K,μ) is an infinite-dimensional space.

First, suppose that μ is discrete. Then L1(K,μ) is isometrically isomorphic to a
Banach space of the form

{

α = (αn) : ‖α‖=
∞

∑
n=1

|αn|ωn < ∞

}

for a sequence (ωn) in R
+ \{0} such that ∑∞

n=1ωn = 1. This space is the dual of the
Banach space

{(βn) : |βn|/ωn → 0 as n→ ∞} ,
taken with the norm ‖(βn)‖ = sup{|βn|/ωn : n ∈ N}, and so L1(K,μ) is isometri-
cally a dual space.

(i) It is sufficient to show that (a)⇒ (c).
Take a Banach space F with L1(K,μ) ∼ F , where F is a closed subspace of a

separable dual space E ′. Since E ′ is separable, E is separable by Proposition 2.1.6.
By Corollary 2.6.17, E ′ has the Krein–Milman property, and so F and L1(K,μ) have
the Krein–Milman property. Take μc ∈Mc(K) and μd ∈Md(K) with μ = μc + μd .
Then L1(μc)[1] is closed, bounded, and convex in L1(K,μ), and so, by Proposi-
tion 4.4.15(ii), μc = 0. Hence, μ = μd is discrete.

(ii) Since μ(K) = 1, the set S := {x ∈ K : μ({x})> 0} is countable. Let T be a
countable, dense subset of T. Then, with the identification of Proposition 4.4.15(iii),
{ζδx/μ({x}) : ζ ∈ T, x ∈ S} is a countable, dense subset of exL1(K,μ)[1], and so
exL1(K,μ)[1] is separable.

Now suppose that L1(K,μ) is isometrically a dual space. By Theorem 4.1.10, the
space L1(K,μ) is separable, and so μ is discrete by (i), (b)⇒ (c). ��

Corollary 4.4.18. Let K be a non-empty, locally compact space, and suppose that
μ ∈ Mc(K)+ and L1(K,μ) is separable. Then there is no embedding of L1(K,μ)
into a space �1(D) for an index set D.

Proof. Assume to the contrary that there is an embedding of L1(K,μ) into a space
�1(D). Since L1(K,μ) is separable, there is a countable subset D0 of D such that
L1(K,μ) embeds into �1(D0), a separable dual space. This is a contradiction of
Theorem 4.4.17(i), (a)⇒ (c). ��

The above theorem gives Gel’fand’s theorem, which we state explicitly.

Theorem 4.4.19. The Banach space L1(I) is not isomorphic to a subspace of a sep-
arable dual space. In particular, L1(I) is not isomorphically a dual space. ��

There is a different, self-contained proof of the above theorem, along with some
informative remarks, in [3, Theorem 6.3.7].

An alternative proof that the space L1(K,μ) of Corollary 4.4.18 does not embed
in �1 is mentioned after Corollary 4.5.8, below.

Let K be a non-empty, locally compact space. Using more sophisticated tech-
niques than the above, Pełczyński showed in [197] that, for a σ -finite positive mea-
sure μ , the space L1(K,μ) is isomorphically a dual space if and only if μ is discrete.
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See also [168] and [211]. A different proof, for the case of finite measures, is given
in [85, p. 83]. For positive measures μ on K that are not σ -finite, it seems to be
unknown which L1(K,μ) spaces are isomorphically dual spaces. In the isometric
theory, an early result of this type is given in [94, Exercise 4, p. 458]. Let (Ω ,μ)
be a measure space, where μ is a σ -finite positive measure. Then L1(Ω ,μ) is iso-
metrically a dual space if and only if Ω is a countable union Ω =

⋃

Ωi, where each
Ωi is a measurable subset of Ω with μ(Ωi)< ∞ and such that, for each measurable
subset A of each Ωi, we have either μ(A) = 0 or μ(A) = μ(Ωi). Suppose that, in
fact, μ({x}) = 1 for each x ∈Ω . Then it follows that L1(Ω ,μ)∼= �1.

We conclude this section with two well-known results on weak compactness in
L1-spaces that we shall use. The first proposition is a result on equi-continuity.

Proposition 4.4.20. Let K be a non-empty, compact space, and take ν ∈ M(K)+.
Suppose that (μn) is a sequence in L1(K,ν) that converges weakly. Then, for each
ε > 0, there exists δ > 0 such that |μn|(B) ≤ ε (n ∈ N) whenever B ∈ BK with
ν(B)≤ δ .

Proof. We may suppose that ν ∈ P(K). By Proposition 4.3.5, the metric space
(Bν ,ρν) is complete.

First, suppose that (μn) converges weakly to 0. Fix ε > 0, and, for n ∈ N, set

Gn = {B ∈Bν : |μm(B)| ≤ ε (m≥ n)} .

Then each set Gn is closed in the space (Bν ,ρν), and
⋃{Gn : n ∈N}=Bν because

limn→∞ μn(B) = 0 for each B∈BK . By Baire’s theorem, Theorem 1.4.11, there exist
n0 ∈ N, B0 ∈BK , and δ0 > 0 such that |μn(B)| < ε whenever n ≥ n0 and B ∈BK

with ρν(B,B0)< δ0.
Suppose that B∈BK with ν(B)< δ0. Then ρν(B0∪B,B0) = ν(B\B0)< δ0 and

ρν(B0 \B,B0) = ν(B0∩B)< δ0, and so

|μn(B)| ≤ |μn(B0∪B)|+ |μn(B0 \B)|< 2ε (n≥ n0) .

By inequality (4.10), |μn|(B) ≤ 8ε (n ≥ n0). By reducing δ0, if necessary, we may
suppose that the same inequality holds for each n ∈ Nn0 , and hence for all n ∈ N.
The result now follows in this special case.

Now suppose that (μn) converges weakly to some limit in M(K). We claim that,
for each ε > 0, there exist δ0 > 0 and n0 ∈N such that |μm− μn|(B)≤ ε/2 whenever
m,n≥ n0 and B ∈BK with ν(B)≤ δ0. Assume that this is not the case. Then there
exist ε > 0, strictly increasing sequences (mk) and (nk) in N, and sets Bk in BK such
that ν(Bk)≤ 1/k and

∣

∣μmk − μnk

∣

∣(Bk)≥ ε for each k ∈ N. Since

lim
k→∞

(μmk − μnk)(B) = 0 (B ∈BK) ,

this contradicts the result in the special case. Thus the claim holds.
Finally, choose δ ∈ (0,δ0) such that |μn|(B) < ε/2 whenever n ∈ Nn0 and

B ∈BK with ν(B)≤ δ . Then the required conclusion follows. ��
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Theorem 4.4.21. Let K be a non-empty, compact space, and take ν ∈M(K)+. Sup-
pose that S is a subset of L1(K,ν). Then S is relatively weakly compact if and only if:

(i) S is norm-bounded;

(ii) for each ε > 0, there exists δ > 0 such that |μ(B)| < ε (μ ∈ S) whenever
B ∈BK with ν(B)≤ δ .

Proof. Suppose that S is relatively weakly compact. Then S is weakly bounded, and
hence norm-bounded by Corollary 2.2.2, so that (i) holds. Assume towards a contra-
diction that (ii) fails. Then there exist ε > 0, a sequence (μn) in S, and a sequence
(Bn) in BK with ν(Bn) ≤ 1/n and |μn(Bn)| > ε for all n ∈ N. By the Eberlein–
Šmulian theorem, Theorem 2.1.4(vii), (μn) has a weakly convergent subsequence,
say (μnk). By Proposition 4.4.20, there exists δ > 0 with

∣

∣μnk

∣

∣(B) < ε/2 (k ∈ N)
whenever B ∈BK with ν(B)≤ δ . Take k ∈ N with 1/nk < δ . Then

ε ≤ ∣∣μnk(Bnk)
∣

∣≤ ∣∣μnk

∣

∣(Bnk)≤
ε
2
,

a contradiction. Thus (ii) holds.

Conversely, suppose that S satisfies clauses (i) and (ii). We regard E := L1(K,ν)
and S as subsets of E ′′. Then S is norm-bounded in E ′′, and so has a weak∗-limit
point, say M, in E ′′. Define

λ (B) = 〈χB, M〉 (B ∈BK) .

Take ε > 0, and choose δ = δ (ε) > 0 as specified in (ii). Now take η > 0. For
each B ∈BK with ν(B)≤ δ , we have χB ∈ E ′, and so there exists μ ∈ S with

|〈χB, M〉− μ(B)|< η ,

and then |λ (B)| ≤ ε+η . This holds for each η > 0, and so |λ (B)| ≤ ε .
Suppose that (Bn) is a sequence in BK with ν(Bn)↘ 0. Then |λ (Bn)| ↘ 0, and

so λ is countably additive on BK , and hence λ ∈M(K). Also λ " ν , and so, by the
Radon–Nikodým theorem, Theorem 4.4.9, λ ∈ E . It follows that M is a weak-limit
point of S in E , and hence that S is relatively weakly compact. ��

4.5 The space C(K) as a Grothendieck space

We now consider when a space C(K) for K compact is a Grothendieck space. Of
course we have characterized such spaces in the (unproved) Proposition 2.4.7. We
shall show in Corollary 4.5.10 that C(K) is a Grothendieck space whenever it is an
injective space.
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First note that C(K) is certainly not a Grothendieck space whenever K contains
a convergent sequence (xn) of distinct points, say with limit x ∈ K. Indeed, the se-
quence (δxn−δx) in M(K) converges weak∗ to 0, but it does not converge weakly to
0, as can be seen by considering the linear functional μ �→ ∑∞

n=1 μ({xn}) on M(K).
We shall also use the following result of Grothendieck from [124] about relative

weak compactness in the Banach space M(K).

Theorem 4.5.1. Let K be a non-empty, compact space, and take S to be a norm-
bounded subset of M(K). Then the following conditions are equivalent:

(a) S is relatively weakly compact;

(b) for each sequence (μn) in S, necessarily limn→∞ μn(Un) = 0 for each se-
quence (Un) of pairwise-disjoint, open sets in K.

An early proof of this theorem is contained in Bade’s notes [24, §9]; see also
[3, §5.3], [94, Theorem IV.9.1], and [184, Theorem 2.5.5], for example.

We shall first prove two lemmas, in which we suppose that the set S is a norm-
bounded subset of M(K) that satisfies clause (b) of Theorem 4.5.1.

Lemma 4.5.2. Let (μn) be a sequence in S. Then limn→∞ |μn|(Un) = 0 for each
sequence (Un) of pairwise-disjoint, open sets in K.

Proof. For n ∈ N, take νn to be either ℜμn or ℑμn. Then limn→∞ νn(Un) = 0 for
each sequence (Un) of pairwise-disjoint, open sets in K.

Assume to the contrary that there is a sequence (Un) of pairwise-disjoint, open
sets in K such that (|νn|(Un)) does not converge to 0. Set νn = ν+n − ν−n (n ∈ N);
we may suppose that (ν+n (Un)) does not converge to 0, and, by passing to a sub-
sequence, we may suppose that there exists δ > 0 with ν+n (Un) > δ (n ∈ N). By
Hahn’s decomposition theorem, Theorem 4.1.7(i), for each n ∈ N, there is a Borel
subset Bn of Un with νn(Bn) = ν+n (Un), and, by the regularity of νn, there is an open
set Vn with Bn ⊂Vn ⊂Un and νn(Vn)> δ , a contradiction.

Thus limn→∞ |νn|(Un) = 0 for each sequence (Un) of pairwise-disjoint, open sets,
and then the result follows. ��

The second lemma states that the subset S of M(K) is uniformly regular.

Lemma 4.5.3. For each compact subset L of K and each ε > 0, there is an open
subset U of K with U ⊃ L such that |μ |(U \L)≤ ε (μ ∈ S).

Proof. Assume that the conclusion fails. Then there is a compact subset L of K
and ε > 0 such that, for each open neighbourhood U of L, there exists μ ∈ S with
|μ |(U \L)> ε .

We claim that there are a sequence (Wn) of open subsets of K such that the sets
Wn are contained in K \L and are pairwise disjoint and a sequence (μn) in S such
that |μn(Wn)|> ε/4 (n ∈N).

Indeed, take V1 = K, and choose μ1 ∈ S with |μ1|(V1 \L)> ε . By the regularity
of |μ1|, there is an open set W1 in K with W1 ⊂ V1 \ L and with |μ1(W1)| > ε/4,



4.5 The space C(K) as a Grothendieck space 139

where we are using inequality (4.10). Now take k ∈ N, and assume that W1, . . . ,Wk

and μ1, . . . ,μk have been determined to satisfy the claim for each n ∈ Nk. Set
Vk+1 =

⋃k
j=1(K \Wj), and then choose μk+1 ∈ S and an open set Wk+1 such that

Wk+1 ⊂ Vk+1 \ L and |μk+1(Wk+1)| > ε/4. This continues the inductive construc-
tion, and hence the claim holds.

However, the claim contradicts clause (b) of Theorem 4.5.1, and so the conclu-
sion holds. ��

Proof of Theorem 4.5.1. We first show that clause (b) of Theorem 4.5.1 holds when-
ever S is relatively weakly compact.

Indeed, take a sequence (μn) in S. By the Eberlein–Šmulian theorem, Theo-
rem 2.1.4(vii), we may suppose, by passing to a subsequence, that (μn) converges
weakly in M(K). Define

ν =
∞

∑
n=1

|μn|
2n ∈M(K)+ . (4.12)

For each n ∈ N, we have μn " ν , and so, by the Radon–Nikodým theorem, Theo-
rem 4.4.9, we may suppose that μn ∈ L1(K,ν) (n ∈ N). Clearly the sequence (μn)
converges weakly in L1(K,ν), and so, by Proposition 4.4.20, clause (b) holds.

We now show that clause (b) implies that S is relatively weakly compact.
By the Eberlein–Šmulian theorem, it is sufficient to show that each countable

subset of S is relatively weakly compact in M(K); we take such a countable set
T := {μn : n ∈ N}, and define ν as in equation (4.12). Clearly, it suffices to show
that the set T is relatively weakly compact in L1(K,ν); for this, we shall show that
T satisfies clauses (i) and (ii) of Theorem 4.4.21.

By hypothesis, S is norm-bounded in M(K), and so T satisfies clause (i) of 4.4.21.
Assume towards a contradiction that T does not satisfy clause (ii). Then, by using

the regularity of ν and passing to a subsequence of (μn), we may suppose that there
are ε > 0 and a sequence (Bn) of sets in BK such that

ν(Bn)≤ 1
n

and |μn|(Bn)≥ |μn(Bn)|> ε

for all n ∈ N.
For each m ∈ N, we have limn→∞ |μm|(Bn) = 0, and so, by passing to a further

subsequence, we may suppose that

|μm| (Bn)<
ε

2n+2 (n > m, m,n ∈ N) .

Take m ∈ N, and set Cm = Bm \⋃{Bn : n ≥ m+ 1}. Then Cm is a Borel subset
of Bm such that |μm|(Cm) > ε/2. Further, the sets Cm are pairwise disjoint. By the
regularity of the measures μm, we can choose compact subsets Lm of Cm such that
|μm|(Lm) > ε/2. It follows from Lemma 4.5.3 that there is an open set Wm with
Wm ⊃ Lm such that |μn|(Wm \Lm) < ε/2m+4 (n ∈ N). We can then choose an open
set Vm such that Lm ⊂Vm ⊂Vm ⊂Wm.



140 4 Measures

Now take m,n ∈ N with m < n. Then

(Vm∩Vn)⊂ (Vm \Lm)∪ (Vn \Ln)⊂ (Wm \Lm)∪ (Wn \Ln) ,

and so |μn| (Vn ∩Vm) < ε/2m+3. For n ≥ 2, set Gn = Vn \V1∪·· ·∪Vn−1. Then
the sequence (Gn : n ≥ 2) consists of pairwise-disjoint, open subsets of K, and
|μn|(Gn) > ε/2− ε/4 = ε/4. This is a contradiction of Lemma 4.5.2, and so T
satisfies clause (ii) of Theorem 4.4.21. By Theorem 4.4.21, T is relatively weakly
compact in L1(K,ν), as required. ��

Corollary 4.5.4. Let K be a non-empty, compact space, and take ν ∈M(K). Then
the set {μ ∈M(K) : |μ | ≤ |ν|} is weakly compact.

Proof. This result follows immediately from Theorem 4.5.1. ��

We shall use Corollary 4.5.4 to give the following direct, elementary proof that
each space C0(K) is Arens regular; in fact, this result will also follow from the
construction of the bidual of C0(K), to be given in Theorem 5.4.1.

Theorem 4.5.5. Let K be a non-empty, locally compact space. Then the C∗-algebra
C0(K) is Arens regular, and (C0(K)′′,�) is commutative.

Proof. Take M ∈ C0(K)′′ = M(K)′ and μ ∈ C0(K)′[1] = M(K)[1], and consider the
continuous linear functional

θ : N �→ 〈M�N,μ〉 = 〈M, N · μ〉 , M(K)′ → C.

We claim that θ is weak∗-continuous on M(K)′[1]. For suppose that Nα → N0

in (M(K)′[1],σ(M(K)′,M(K))). Then (Nα · μ) is a net in {ν ∈ M(K) : |ν| ≤ |μ |};
by Corollary 4.5.4, this latter set is weakly compact, and so (Nα · μ) has a weakly
convergent subnet, say (Nαβ ·μ). For each f ∈C0(K), we have

〈 f , N0 · μ〉= 〈N0, μ · f 〉 = lim
α
〈Nα , μ · f 〉 = lim

β
〈Nαβ , μ · f 〉= lim

β
〈 f , Nαβ · μ〉 ,

and hence limβ Nαβ · μ = N0 · μ in (M(K),σ(M(K),C0(K))). This implies that the
net (Nα ·μ) converges weakly to N0 ·μ , and so

lim
α
θ (Nα) = lim

α
〈M, Nα · μ〉= 〈M, N0 · μ〉= θ (N0) ,

giving the claim.
It follows from Theorem 2.1.4(iv), (c)⇒ (a), that there exists ν ∈M(K) such that

θ (N) = 〈N,ν〉 (N ∈M(K)′) .

For each f ∈C0(K), we have 〈 f , ν〉= 〈M · f ,μ〉= 〈M, f · μ〉= 〈 f , μ ·M〉, and so
ν = μ ·M. We have shown that
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〈M�N,μ〉= θ (N) = 〈N,μ ·M〉= 〈M�N,μ〉 (M,N ∈C0(K)′′, μ ∈C0(K)′) ,

and hence M�N = M�N (M,N ∈C0(K)′′). Thus C0(K) is Arens regular.
Since C0(K) is commutative, (C0(K)′′,�) is commutative. ��

The next result is a classic theorem of Grothendieck [124]. Grothendieck’s proof
utilized a lemma of Phillips [202] on sequential convergence in the space of finitely
additive measures onP(N), as described in [24]; we give a direct and self-contained
proof.

Theorem 4.5.6. Let K be a Stonean space. Then C(K) is a Grothendieck space.

Proof. Let (μn) be a sequence in C(K)′ = M(K) that converges weak∗ to 0; we
must show that (μn) converges weakly, and, for this, it suffices to show that the set
{μn : n ∈ N} is relatively weakly compact in M(K).

Assume to the contrary that this fails. Then, it follows from Theorem 4.5.1
that, after passing to a subsequence and rescaling, we may suppose that there is
a pairwise-disjoint sequence (Un) of open subsets of K with |μn(Un)|> 1 (n ∈ N).
Since K is Stonean and each μn is regular, we may suppose that all the sets Un are
clopen.

We shall define inductively a subsequence (μnk) of (μn) such that (nk) is strictly
increasing in N and

|μnr(Uns)|<
1

2s+1 (r,s ∈ N, r �= s) . (4.13)

First, take n1 = 1. Now suppose that k ∈ N, and assume that n1, . . . ,nk have been
defined such that (4.13) holds whenever r,s ∈Nk and r �= s. For each j ∈ Nk, the set

{

n ∈ N :
∣

∣μn j (Un)
∣

∣≥ 1
2k+2

}

is finite and limn→∞ μn(Un j) = 0, and so we can choose nk+1 > nk such that
∣

∣μn j (Unk+1)
∣

∣< 1/2k+2 and
∣

∣μnk+1(Un j )
∣

∣< 1/2 j+1 for j ∈Nk. This continues the in-
ductive construction of the sequence (nk). The sequence satisfies (4.13); set νk = μnk

and Vk =Unk for k ∈ N.
As in Proposition 1.5.5, there are an index set A such that |A| = c and a family

{Sα : α ∈ A} of infinite subsets of N such that Sα ∩Sβ is finite whenever α,β ∈ A
with α �= β . For each α ∈ A, set

Wα =
⋃

{Vk : k ∈ Sα} ,

a clopen subset of K, and set V =
⋃{Vk : k ∈ N}, an open subset of K. We note

that {Wα \V : α ∈ A} is a family of pairwise-disjoint, closed subsets of K. For each
k ∈ N, it is the case that νk(Wα \V ) �= 0 for only countably many values of α ∈ A,
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and so there exists α ∈ A with νk(Wα \V ) = 0 (k ∈ N). Thus, for each k ∈ Sα , we
have

|〈χWα , νk〉|= |νk(Wα ∩V )| ≥ |νk(Vk)|−∑
{∣

∣νk(Vj)
∣

∣ : j ∈N, j �= k
}

> 1/2 ,

using (4.13), a contradiction of the fact that (νk) converges weak∗ to 0.
The result follows. ��

Definition 4.5.7. A Banach space E has the Schur property if every weakly con-
vergent sequence in E is norm-convergent.

Corollary 4.5.8. Let S be a non-empty set. Then �∞(S) is a Grothendieck space.
Further, suppose that (μn) is sequence in M(βS) that is weak∗-convergent to 0.
Then

lim
n→∞

‖μn | S‖= 0 ,

and �1(S) has the Schur property.

Proof. Since �∞(S) ∼= C(βS) and βS is a Stonean space, certainly �∞(S) is a
Grothendieck space by Theorem 4.5.6.

Suppose that (μn) in M(βS) is weak∗-convergent to 0, and assume towards a
contradiction that it is not true that limn→∞ ‖μn | S‖ = 0. By passing to a sub-
sequence and rescaling, we may suppose that ‖νn‖> 1 (n ∈ N), where νn = μn | S.
Essentially as in the above proof, there is a sequence (Fn) of pairwise-disjoint, finite
subsets of S such that |μn(Fn)| = |νn(Fn)| > 1 (n ∈ N). By Theorem 4.5.1, the se-
quence (μn) is not relatively weakly compact, and this contradicts Theorem 4.5.6.

In the case where (μn) is weakly convergent to 0 in �1(S), it follows that (μn),
regarded as a sequence in M(βS), is weak∗-convergent to 0, and so (μn) is norm-
convergent to 0 in �1(S). ��

The fact that �1 has the Schur property goes back to Schur in 1921 and is included
in Banach’s book [30, Table (property 17), p. 245; also, p. 239]; for a modern dis-
cussion, see [2, Theorem 2.3.6 and p. 102].

It is easily seen that L1(I) does not have the Schur property, and hence also that
the spaces L1(K,μ) for K locally compact and μ ∈ Pc(K) do not have the Schur
property. Indeed, consider the sequence (sn) of page 116. This sequence is weakly
convergent to 0 in L1(I). However, (sn) is certainly not norm-convergent to 0 in
L1(I). Hence L1(K,μ) does not embed in �1.

The above results give a slightly different proof of Phillips’ theorem, Theo-
rem 2.4.11. Indeed, assume towards a contradiction that P : �∞→ c0 is a bounded
projection, so that P′ : c′0 →M(βN) is a bounded operator. Regard δn as a continu-
ous linear functional on c0 for n ∈N. Then

〈 f , P′(δn)〉= 〈P f , δn〉 → 0 as n→ ∞ ( f ∈ �∞) ,
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and so P′(δn) → 0 weak∗ in M(βN). By Corollary 4.5.8, |P′(δn)({n})| → 0 as
n→ ∞. But P′(δn)({n}) = 1 (n ∈ N), a contradiction.

The following corollary of Theorem 4.5.6 was noted by Seever in [224]; see also
[184, Corollary 2.5.17].

Corollary 4.5.9. Let K be a compact F-space. Then C(K) is a Grothendieck space.

Proof. Let (μn) be a sequence in M(K) =C(K)′ that converges weak∗ to 0, and de-
fine μ = ∑∞

n=1 μn/2n ∈M(K). Set L = supp μ . By Proposition 4.1.6, L is a Stonean
space. Then, by Theorem 4.5.6, (μn | L) converges weak∗ to 0 in M(L), and so it
converges weakly to 0 in M(L), i.e., (μn) converges weakly to 0 in M(K). Hence
C(K) is a Grothendieck space. ��

Corollary 4.5.10. Each injective space is a Grothendieck space.

Proof. Let E be a Banach space. By Proposition 2.2.14(i), there is a set S and an
isometric embedding of E onto a subspace, say F , of �∞(S). In the case where E
is injective, F is complemented in �∞(S). Since �∞(S) is a Grothendieck space and
complemented subspaces of Grothendieck spaces are also Grothendieck spaces (see
page 73), E is a Grothendieck space. ��

We shall see in Example 6.8.17 that there are compact spaces K such that C(K) is
a Grothendieck space, but C(K) is not injective. The Baire classes Bα(I) for ordinals
α with 1≤ α ≤ ω1 are examples of C(K)-spaces that are Grothendieck spaces (see
Theorem 3.3.9), but are such that K is not an F-space when α < ω1 [76].

A beautiful generalization of Theorem 4.5.1 characterizing weak compactness
in the dual of a C∗-algebra was given by Pfitzner in [200]. For a shorter proof, see
[101]; see also [2]. It follows that each von Neumann algebra is a Grothendieck
space; it is proved in [219] that each monotone σ -complete C∗-algebra is a Groth-
endieck space.

4.6 Singular families of measures

We now introduce singular families and maximal singular families of measures.

Definition 4.6.1. Let K be a non-empty, locally compact space. A family F of mea-
sures in M(K)+ is singular if μ ⊥ ν whenever μ ,ν ∈F and μ �= ν .

The collection of such singular families in M(K)+ is ordered by inclusion.
Let S be a non-empty subset of M(K)+. It is clear from Zorn’s lemma that the

collection of singular families contained in S has a maximal member that contains
any specific singular family in S; this is a maximal singular family in S. In the case
where S = P(K), we may suppose that such a maximal singular family contains
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all the measures that are point masses and that all other members are continuous
measures, so that, in the case where K is discrete, the family of point masses is a
maximal singular family in P(K).

We shall see in Proposition 5.2.7 that any two infinite, maximal singular families
of continuous measures have the same cardinality.

Proposition 4.6.2. (i) Let K be a non-empty, locally compact space, and suppose
that S is a separable subspace of M(K)+. Then each singular family of measures in
S is countable.

(ii) The space Mc(Δ) contains a singular family in P(Δ) of cardinality c.

(iii) Let K be an uncountable, compact, metrizable space. Then there is a maxi-
mal singular family of measures in P(K) consisting of exactly c point masses and c
continuous measures.

Proof. (i) Let F be a singular family of measures in S. For each μ ,ν ∈ F with
μ �= ν , we have ‖μ−ν‖= ‖μ‖+‖ν‖. For n ∈N, set Fn = {μ ∈F : ‖μ‖> 1/n}.
For μ ,ν ∈Fn with μ �= ν , we have ‖μ−ν‖> 2/n, and so the open balls B1/n(μ)
and B1/n(ν) are disjoint. Since S is separable, it follows that Fn is countable for
each n ∈N, and so F is countable.

(ii) The Cantor cube L = Z
ω
2 , identified with Δ , is a compact group and so has

a Haar measure, say mL, as on page 112, and mL ∈ Mc(L). By Proposition 1.4.5,
L contains c pairwise-disjoint, closed subspaces, each homeomorphic to L. We may
transfer a copy of mL to each of these subspaces; the resulting measures are mutually
singular.

(iii) By Proposition 1.4.14, K contains Δ as a closed subspace. Let F be a max-
imal singular family of measures in P(K) containing the family specified in (ii), so
that F contains at least c continuous measures. By Proposition 4.2.3, |M(K)| = c,
and so |F | ≤ c. By Corollary 1.4.15, |K|= c, and hence F contains exactly c point
masses. ��

We note that, under some mild set-theoretic axioms, such as Martin’s axiom,
there exists a compact space K with |K| = c such that there is a maximal singular
family in P(K) of cardinality 2c: see [108].

Lemma 4.6.3. Let K be a non-empty, locally compact space, and let F be a max-
imal singular family in P(K). Then, for each ν ∈ M(K), there exist a countable
subset Γ of F and νμ ∈M(K) for each μ ∈Γ such that νμ " μ (μ ∈Γ ), such that
ν = ∑{νμ : μ ∈ Γ }, and such that

‖ν‖=∑
{∥

∥νμ
∥

∥ : μ ∈ Γ} .

The correspondence ν �→ (νμ), M(K)→M(K)F , is a lattice homomorphism.

Proof. Take ν ∈ M(K). By the Lebesgue decomposition theorem, Theorem 4.2.9,
for each μ ∈ F , there exist νμ " μ and σμ ⊥ μ such that ν = νμ + σμ . Set
Γ = {μ ∈F : νμ �= 0}.
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For distinct elements μ1, . . . ,μn ∈F , we have μi ⊥ μ j whenever i, j ∈ Nn with
i �= j, and so ν = νμ1 + · · ·+ νμn +σ for some σ ∈M(K) with σ ⊥ νμi (i ∈ Nn),
and then ∑n

i=1

∥

∥νμi

∥

∥ ≤ ‖ν‖. It follows that Γ is countable, that we can define
ρ = ∑{νμ : μ ∈ Γ } in M(K), and that ∑{

∥

∥νμ
∥

∥ : μ ∈ Γ } ≤ ‖ν‖.
Clearly |ν−ρ | ⊥ μ for each μ ∈F , and so ν−ρ = 0 by the maximality of F .

Thus ν = ∑{νμ : μ ∈ Γ }, and so ‖ν‖ ≤ ∑{
∥

∥νμ
∥

∥ : μ ∈ Γ }.
It follows that ‖ν‖ = ∑{

∥

∥νμ
∥

∥ : μ ∈ Γ }.
Clearly, the correspondence ν �→ (νμ), M(K) → M(K)F , is a lattice homo-

morphism. ��

Let K be a non-empty, locally compact space, and take μ ∈ P(K). As in Defin-
ition 4.4.5, Φμ denotes the character space of the C∗-algebra L∞(K,μ).

Definition 4.6.4. Let K be a non-empty, locally compact space, let S be a non-empty
subset of P(K), and let F be a maximal singular family in S. Define UF to be the
space that is the disjoint union of the sets Φμ for μ ∈ S, with the topology in which
each Φμ is a compact and open subspace of UF .

We now give our first representation of the Banach space M(K)′ =C0(K)′′.

Theorem 4.6.5. Let K be a non-empty, locally compact space, and let F be a max-
imal singular family in P(K). Then

‖Λ‖= sup{|〈Λ ,ν〉| : ν " μ , ‖ν‖ ≤ 1, μ ∈F} (Λ ∈M(K)′) , (4.14)

and M(K)′ ∼=Cb(UF ).

Proof. Set U =UF .
Take Λ ∈M(K)′, say with ‖Λ‖ = 1. For each μ ∈F , set Λμ =Λ | L1(K,μ), so

that Λμ ∈ L1(K,μ)′ =C(Φμ) with
∥

∥Λμ
∥

∥≤ 1. Hence there exists Fμ ∈C(Φμ) with
∣

∣Fμ
∣

∣

Φμ
≤ 1 and

〈ρ , Fμ〉= 〈ρ ,Λ〉 (ρ ∈ L1(K,μ)) .

Now define F ∈ Cb(U) by requiring that F | Φμ = Fμ (μ ∈F ); set α = |F |U , so
that α ≤ 1.

Take ν ∈ M(K)[1]. By Lemma 4.6.3, there is a countable subset Γ of F and
νμ ∈M(K) for each μ ∈Γ such that νμ" μ (μ ∈Γ ), such that ν =∑{νμ : μ ∈Γ },
and such that ‖ν‖= ∑{

∥

∥νμ
∥

∥ : μ ∈ Γ }. We have

|〈Λ , ν〉|= ∣∣∑{〈Λ , νμ〉 : μ ∈ Γ }∣∣≤∑{
∣

∣〈Fμ ,νμ〉
∣

∣ : μ ∈ Γ } ≤ α ,

and so 1 ≤ α . Thus |F |U = ‖Λ‖. Set T (Λ) = F , so that T : M(K)′ →Cb(U) is an
isometric linear map.

Conversely, given F ∈ Cb(U), set Fμ = F | Φμ (μ ∈F ). For each ν ∈ M(K),
write ν = ∑{νμ : μ ∈ Γ }, as before, and define

Λ(ν) =∑{〈Fμ , νμ〉 : μ ∈F} .
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Then Λ ∈M(K)′ and T (Λ) = F . It follows that T is a surjection, and so we have
shown that M(K)′ ∼=Cb(U).

To obtain equation (4.14), takeΛ ∈M(K)′ and ε > 0. Then there exists a measure
μ ∈ F such that

∣

∣T (Λ) |Φμ
∣

∣

Φμ
> ‖Λ‖− ε , and also there exists ν ∈ L1(K,μ)[1]

with |〈Λ ,ν〉| > ‖Λ‖− ε . Since ν" μ , equation (4.14) follows. ��

Theorem 4.6.6. Let K be an uncountable, compact, metrizable space. Then there
are an index set J with |J|= c, measures μ j ∈ Pc(K) for each j ∈ J, and a set Γ with
|Γ |= c such that

Mc(K)∼=
⊕

1

{L1(K,μ j) : j ∈ J} ∼=
⊕

1

{L1(I) j : j ∈ J} (4.15)

and
M(K)∼=

⊕

1

{L1(I) j : j ∈ J}⊕1 �
1(Γ ) , (4.16)

where L1(I) j = L1(I) for each j ∈ J. Further, all the above identifications are
Banach-lattice isometries.

Proof. By Proposition 4.6.2(iii), there is a maximal singular family, say {μ j : j ∈ J},
where |J|= c, of measures in Pc(K). Set

E =
⊕

1

{L1(K,μ j) : j ∈ J} .

Clearly E is a closed subspace of Mc(K). Take μ ∈ Mc(K). For each j ∈ J, there
exist ρ j,σ j ∈Mc(K) with ρ j " μ and σ j ⊥ μ ; we can regard each ρ j as an element
of L1(μ j). It follows from Lemma 4.6.3 that μ = ∑ j∈J ρ j, with ‖μ‖ = ∑ j∈J

∥

∥ρ j
∥

∥,
so that μ ∈ E . Thus Mc(K)∼=⊕1{L1(K,μ j) : j ∈ J}; the identification is a Banach-
lattice isometry.

For each j ∈ J, the space L1(K,μ j) is separable, and so, by Theorem 4.4.14,
L1(μ j) is Banach-lattice isometric to L1(I,m). Equation (4.15) follows.

Again by Proposition 4.6.2(iii), a maximal singular family in P(K) is the set
{μ j : j ∈ J}∪{δx : x ∈ K}, and so equation (4.16) follows, where we set Γ = K, so
that |Γ |= c by Proposition 1.4.14. ��

Corollary 4.6.7. Let K and L be two uncountable, compact, metrizable spaces. Then
M(K) and M(L) are Banach-lattice isometric.

Proof. This is immediate from equation (4.16). ��

A generalization of Theorem 4.6.6 for an arbitrary measure space is given in
Maharam’s theorem [182], which is discussed in [166, §14] and [225, §26].
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Theorem 4.6.8. Let K be a non-empty, locally compact space, and suppose that
{μ j : j ∈ J} is a singular family in Pc(K) with J uncountable. Then there is no
embedding of the Banach space

⊕

1

{L1(K,μ j) : j ∈ J}

into a Banach space of the form F⊕1 �
1(D) for any separable Banach space F and

any set D.

Proof. Let D be an index set, and take G to be the Banach space (�1(D),‖·‖1), and
let F be a separable Banach space.

We shall apply Proposition 2.2.31. For each j ∈ J, the Banach space L1(K,μ j)
contains an isometric copy of L1(I) by Theorem 4.4.14, and so, by Corollary 4.4.18,
there is no embedding of L1(K,μ) into G = �1(D). Thus, by Proposition 2.2.31,
there is no embedding of

⊕

1{L1(K,μ j) : j ∈ J} into F⊕1 �
1(D). ��

Corollary 4.6.9. Let K be an uncountable, compact, metrizable space. Then the
spaces Mc(K) and M(K) are not isomorphic to any closed subspace of a space
of the form F⊕1 �

1(D), where F is a separable Banach space and D is any set.

Proof. Let Mc(K) and M(K) have the forms specified in equations (4.15) and
(4.16), respectively. By Theorem 4.6.8, there is no isomorphism from the space
⊕

1{L1(K,μ j) : j ∈ J} into F⊕1 �
1(D), and so there is no such isomorphism from

either Mc(K) or M(K). ��

4.7 Normal measures

Let K be a non-empty, locally compact space. In this section, we shall introduce the
(complex) Banach lattice N(K) that consists of the normal measures on K, and we
shall give a variety of examples of compact spaces K such that N(K) = {0} and
such that N(K) �= {0}. A ‘normal measure’ was defined by Dixmier [91] to be an
order-continuous measure μ ∈M(K). Thus we have the following definition.

Definition 4.7.1. Let K be a non-empty, locally compact space, and let μ ∈M(K).
Then μ is normal if 〈 fα , μ〉 → 0 for each net ( fα : α ∈ A) in (C0(K)+,≤) with
fα ↘ 0 in the lattice, and μ is σ -normal if μ is σ -order-continuous, in the sense
that〈 fn, μ〉 → 0 for each sequence ( fn : n ∈N) in (C0(K)+,≤) with fn ↘ 0.

Definition 4.7.2. Let K be a non-empty, locally compact space. The subset of M(K)
consisting of the normal measures is N(K); the set of real-valued measures in N(K)
is NR(K), and the set of positive measures in N(K) is N(K)+. The sets of continuous
and discrete normal measures on K are denoted by Nc(K) and Nd(K), respectively;
further, we set Nc(K)+ = Nc(K)∩M(K)+ and Nd(K)+ = Nd(K)∩M(K)+.
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It follows easily that N(K), Nd(K), and Nc(K) are closed linear subspaces of
M(K). The point mass at an isolated point of K is a discrete normal measure.

The following proposition was proved in [91] and in detail by Bade in [24]. At
certain points these sources require that the space K be Stonean; this is also the as-
sumption in [234, Proposition III.1.11]. However, this assumption is not necessary.

Proposition 4.7.3. Let K be a non-empty, locally compact space. Then:

(i) μ ∈M(K) is normal if and only if ℜμ and ℑμ are normal;

(ii) μ ∈MR(K) is normal if and only if |μ | is normal if and only if μ+ and μ−
are normal;

(iii) μ ∈M(K) is normal if and only if |μ | is normal;

(iv) N(K) is a lattice ideal in M(K) , and N(K) = Nd(K)⊕1 Nc(K).

Proof. (i) This is immediate.

(ii) Suppose that μ+,μ− ∈ N(K). Then certainly μ , |μ | ∈ N(K).
Suppose that |μ | ∈ N(K) and that ν ∈M(K) with |ν| ≤ |μ |. Then

0≤
∣

∣

∣

∣

∫

K
fα dν

∣

∣

∣

∣

≤
∫

K
fα d |μ | → 0 (4.17)

when fα ↘ 0 in C0(K)+, and so ν ∈ N(K). In particular, μ , μ+, and μ− are normal
whenever |μ | is normal.

Suppose that μ ∈MR(K) is normal and that fα ↘ 0 in C0(K)+
[1]. Let {P,N} be a

Hahn decomposition of K with respect to μ , as in Theorem 4.1.7(i), and take ε > 0.
Since μ is regular, there exist a compact set L and an open set U in K with L⊂P⊂U
and |μ |(U \L)< ε . By Theorem 1.4.25, there exists g∈C00(K)+ with χL≤ g≤ χU .
Then

∫

K
fα dμ+ =

∫

P
fα dμ ≤

∫

L
g fα dμ+

∫

U\L
g fα dμ+ 2ε =

∫

K
g fα dμ+ 2ε .

Since g fα ↘ 0 and μ is normal, limα〈g fα ,μ〉= 0, and so

limsup
α

〈 fα ,μ+〉 ≤ 2ε .

This holds true for each ε > 0, and so limα 〈 fα ,μ+〉= 0. Thus μ+ is normal; simi-
larly, μ− is normal.

(iii) Suppose that μ ∈N(K). Then |ℜμ |+ |ℑμ | ∈N(K) from (i) and (ii). However
|μ | ≤ |ℜμ |+ |ℑμ |, and so |μ | ∈ N(K).

(iv) This is immediate from (4.17). ��

Note that λμ ∈ N(K) for each λ ∈ L∞(μ) and μ ∈ N(K)+, and so we may re-
gard L∞(K,μ) as a closed subspace of N(K) for each μ ∈ N(K)+. In particular,
the restriction of a normal measure on K to a Borel subspace of K is still a normal
measure in the space N(K).
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The spaces of σ -normal measures on K have analogous properties to those in
Proposition 4.7.3.

Let K be a locally compact space. Recall from Definition 1.4.1 that KK denotes
the family of compact subsets L of K such that intKL= /0. Clause (i) of the following
theorem, for Stonean spaces K, is due to Dixmier [91]; see [225, p. 341]. Clause (ii)
was formulated and proved in [76, p. 405].

Theorem 4.7.4. Let K be a non-empty, locally compact space. Then:

(i) a measure μ ∈M(K) is normal if and only if μ(L) = 0 (L ∈KK) ;

(ii) a measure μ ∈ M(K) is σ -normal if and only if μ(L) = 0 for each Gδ -set
L ∈KK .

Proof. (i) Suppose that μ ∈ N(K). By Proposition 4.7.3(iii), we may suppose that
μ ∈ N(K)+. Now take L ∈KK , and consider the non-empty set

F = { f ∈CR(K) : f ≥ χL} .
Suppose that g = infF in C0,R(K). Then g(x) = 0 (x∈ K \L), and so g = 0 because
intKL = /0. Thus infF = 0. Since μ(L) = inf{〈 f , μ〉 : f ∈F}, we have μ(L) = 0.

Conversely, suppose that μ ∈ M(K) and μ(L) = 0 (L ∈KK) . Again by Prop-
osition 4.7.3(iii), it suffices to suppose that μ ∈M(K)+. Take ( fα ) in C0(K)+ with
fα ↘ 0; we may suppose that fα ≤ 1 for each α . Set

g(x) = inf
α

fα(x) (x ∈ K) .

Then g is a Borel function because g−1(V ) is an Fσ -set in K for each open set V in
R, and g≥ 0. For n ∈ N, set Bn = {x ∈ K : g(x)> 1/n}, so that Bn ∈BK . For each
compact subset L of Bn, we have intKL = /0, and so μ(L) = 0. Thus μ(Bn) = 0, and
so μ({x ∈ K : g(x)> 0}) = 0, whence

∫

K gdμ = 0. Hence it suffices to show that

lim
α

∫

K
fα dμ =

∫

K
gdμ . (4.18)

Take ε > 0. By Lusin’s theorem, Proposition 4.1.7(ii), there is a compact subset L of
K with μ(K \L)< ε and such that g | L∈C(L). By Dini’s theorem, Theorem 1.4.28,
limα | fα | L− g | L|L = 0, and so there exists α0 with | fα | L− g | L|L < ε (α ≥ α0).
It follows that

∣

∣

∣

∣

∫

K
fα dμ−

∫

K
gdμ

∣

∣

∣

∣

<

∫

L
| fα − g| dμ+ 2ε < (‖μ‖+ 2)ε (α ≥ α0) ,

giving (4.18).

(ii) This is similar. ��

Consider Lebesgue measure m on I. There are Cantor-type closed subsets L of I
such that intL = /0 and m(L)> 0. This shows that m is not a σ -normal measure.
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Corollary 4.7.5. Let K be a non-empty, locally compact space, and suppose that
μ ∈M(K). Then the following are equivalent:

(a) μ ∈ N(K) ;

(b) |μ |(B\ intB) = 0 for each B ∈BK ;

(c) μ(B1) = μ(B2) for each B1,B2 ∈BK with B1 ≡ B2.

Proof. We may suppose that μ ∈M(K)+.

(a) ⇒ (b) Take B ∈ BK . For each ε > 0, there exists an open set U in K with
B⊂U and μ(U \B)< ε . Since U \U ∈KK , we have μ(U \U) = 0. Thus

μ(B)≤ μ(B)≤ μ(U) = μ(U)≤ μ(B)+ ε ,

and so μ(B) = μ(B). By taking complements, it follows that μ(intB)= μ(B). Hence
μ(B\ intB) = 0.

(a) ⇒ (c) We know that μ(B) = 0 for each nowhere dense set B in BK , and so
μ(B) = 0 for each meagre set B in BK . Thus μ(B1) = μ(B2) whenever B1,B2 ∈BK

with B1ΔB2 meagre.

(b), (c)⇒ (a) These are immediate from Theorem 4.7.4(i). ��

Corollary 4.7.6. Let K be a Stonean space, and suppose that μ ∈ N(K)∩ P(K)
is a strictly positive measure. Then every equivalence class in L∞(K,μ) con-
tains a continuous function, the C∗-algebras (L∞(K,μ),‖·‖∞) and (C(K), | · |K) are
C∗-isomorphic, and Φμ is homeomorphic to K.

Proof. By Theorem 3.3.5(iii), there is a C∗-isomorphism P : Bb(K)/MK → C(K).
However μ(B) = 0 for each meagre set B ∈BK by Corollary 4.7.5, and so ker P is
exactly the kernel of the projection of Bb(K) onto L∞(K,μ). The result follows. ��

Proposition 4.7.7. Let K be a non-empty, locally compact space satisfying CCC.
Then every σ -normal measure on K is normal.

Proof. Let μ ∈ M(K) be σ -normal. We must show that μ ∈ N(K); it suffices to
suppose that μ ∈M(K)+. Recall from page 23 that Z(K) denotes the family of zero
sets of K. By Theorem 4.7.4(ii), μ(Z) = 0 for each Z ∈KK ∩Z(K).

Take L ∈KK . We claim that there exists Z ∈KK∩Z(K) such that L⊂ Z. Indeed,
let F be a maximal disjoint family of cozero sets contained in the open set K \L.
By CCC, F is countable, and so the set

Z :=
⋂

{K \V : V ∈F}

is a zero set containing L. Hence Z has empty interior by the maximality of F ,
proving the claim.

By hypothesis, μ(Z) = 0. Thus μ(L) = 0, and so it follows from Theorem 4.7.4(i)
that μ ∈ N(K). ��
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Consider the compact space K := [0,ω1]. Then δω1 ∈ M(K)+ and δω1(Z) = 0
for each Z ∈KK that is a zero set because each zero set that contains ω1 has non-
empty interior. Thus δω1 is a σ -normal measure on K which is not normal (because
{ω1} is compact with empty interior). Another such example will be given below
in Example 4.7.16.

We note that, if one asks whether such an example can be found on a Stonean
space K, large cardinals come into the picture. The existence of a Stonean space K
with a non-zeroσ -normal measure which is not normal is equivalent to the existence
of a measurable cardinal; see [107, Theorem 363S] or [179].

Theorem 4.7.8. Let K be a non-empty, locally compact space. Then:

(i) N(K) is a Dedekind complete lattice ideal in M(K);

(ii) there is a closed subspace S(K) of M(K) such that M(K) = N(K)⊕1 S(K)
and ν ⊥ σ for each ν ∈ N(K) and σ ∈ S(K) ;

(iii) N(K) is a 1-complemented subspace of M(K).

Proof. (i) By Proposition 4.7.3(iv), N(K) is a lattice ideal in M(K).
Let F be a family that is bounded above in N(K)+, and set μ =

∨

F in M(K)+,
so that

μ(B) = sup{ν(B) : ν ∈ F} (B ∈BK) .

This implies that μ(L) = 0 (L∈KK), and so μ ∈N(K)+; clearly, μ is the supremum
of F in N(K)+, and so N(K) is Dedekind complete.

(ii) Set
S(K) = {σ ∈M(K) : ν ⊥ σ (ν ∈ N(K))} .

Then S(K) is a closed linear subspace of M(K) and N(K)∩S(K) = {0}.
Now take μ ∈M(K)+, and set

μn =
∨

{ν ∈ N(K)+ : ν ≤ μ} ,

so that μn ∈N(K)+; set μs = μ−μn. For ν ∈N(K)+, we have μn+(μs∧ν)≤ μ , and
hence μn+(μs∧ν)≤ μn. Thus μs∧v = 0 (ν ∈ N(K)+). It follows that μs ∈ S(K)+.

For μ ∈M(K), write μ = μ1− μ2 + i(μ3− μ4), where μ1, . . . ,μ4 ∈M(K)+. For
i = 1, . . . ,4, the measure μi can be decomposed as μi,n +μi,s with μi,n ∈ N(K)+ and
μi,n ∈ S(K)+. Set

μn = μ1,n− μ2,n + i(μ3,n− μ4,n) and μs = μ1,s− μ2,s+ i(μ3,s− μ4,s) .

Then μn ∈ N(K), μs ∈ S(K), and μ = μn +μs, so that M(K) = N(K)⊕S(K). Since
μn ⊥ μs, we have ‖μ‖= ‖μn‖+ ‖μs‖, and so M(K) = N(K)⊕1 S(K).

(iii) This is immediate from (ii). ��
The measures in S(K) are sometimes called the singular measures, although this

is a somewhat unfortunate term.

Proposition 4.7.9. Let K be a non-empty, locally compact space, and suppose that
μ ∈ N(K). Then supp μ is a regular–closed set.
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Proof. Since supp μ = supp |μ |, we may suppose that μ ∈ N(K)+.
Set F = supp μ , a closed set, and set U = intF , so that U ⊂ F . Since F \U is

nowhere dense, μ(F \U) = 0 by Theorem 4.7.4(i). Thus μ(K\U) = 0, and so, by
the definition of supp μ , we have K\U ⊂ K\F . Hence U = F , and F is regular-
closed. ��

The next corollary does use the fact that K is Stonean; the result is due to Dixmier
[91], and is set out by Bade in [23, Lemma 8.6].

Corollary 4.7.10. Let K be a Stonean space, and suppose that μ ∈ N(K)+ \ {0}.
(i) The space supp μ is clopen in K, and hence Stonean.

(ii) For each B ∈ BK, there is a unique set C ∈ CK with C ⊂ supp μ and
μ(BΔC) = 0, and so each equivalence class in Bμ contains a unique clopen subset
of supp μ .

Proof. (i) In a Stonean space, every regular–closed set is clopen.

(ii) By (i), suppμ is a clopen subset of K and μ(K \ suppμ) = 0, and so we may
suppose that K = suppμ .

Take B∈BK . By Proposition 1.4.4, there is a uniqueC ∈CK with B≡C, and then
μ(BΔC) = 0. Suppose that C1,C2 ∈ CK are such that μ(BΔC1) = μ(BΔC2) = 0.
Then C1ΔC2 ⊂ (BΔC1)∪ (BΔC2), so that μ(C1ΔC2) = 0. Since C1ΔC2 is an open
set and K = suppμ , it follows from Proposition 4.1.6 that C1ΔC2 = /0, i.e., C1 =C2.
This establishes the required uniqueness of C. ��

Corollary 4.7.11. Let K be a Stonean space, and suppose that μ ,ν ∈ N(K). Then:

(i) supp ν ⊂ supp μ if and only if ν " μ ;

(ii) supp ν = supp μ if and only if ν ∼ μ ;

(iii) μ ⊥ ν if and only if supp μ ∩ supp ν = /0.

Proof. (i) Always supp ν ⊂ supp μ when ν " μ .
For the converse, we may suppose that μ ,ν ∈ N(K)+. By Proposition 1.4.4, for

each B ∈Bμ , there exists C ∈ CK with C ≡ B. Now suppose that B ∈Nμ . Then, by
Corollary 4.7.5(ii), C ∈Nμ , and so C∩ supp ν = /0, whence ν(B) = ν(C) = 0. This
shows that ν " μ .

(ii) This is immediate from (i).

(iii) Clearly μ ⊥ ν when supp μ ∩ supp ν = /0.
Now suppose that μ ⊥ ν , and set U = supp μ ∩ supp ν , so that, by Corol-

lary 4.7.10(i), U is an open set. Then (ν | U) ⊥ μ and, by (i), ν | U " μ . Thus
ν |U = 0, and hence U = /0. ��

We now determine the set of extreme points of the closed unit ball of the normal
measures. Recall that DX denotes the set of isolated points of a topological space X .

Proposition 4.7.12. Let K be a non-empty, locally compact space. Then

ex N(K)[1] = {ζδx : ζ ∈ T, x ∈ DK} and ex N(K)∩P(K) = {δx : x ∈DK} .
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Proof. By Proposition 2.1.10 and Theorem 4.7.8(ii),

ex M(K)[1] = ex N(K)[1]∪ ex S(K)[1] .

Thus, by Proposition 4.4.15(i), each point of ex N(K)[1] has the form ζδx for some
ζ ∈ T and x ∈ K. By Theorem 4.7.4(i), intK{x} �= /0, and so x ∈ DK .

Conversely, ζδx ∈ ex N(K)[1] whenever ζ ∈ T and x ∈DK . ��

Corollary 4.7.13. Let K be a non-empty, locally compact space. Then we can iden-
tify Nd(K) with �1(DK) and Nc(K) with N(K \DK).

Proof. We know that δx ∈ Nd(K) for each x ∈ DK , and so �1(DK) ⊂ Nd(K). Con-
versely, it is clear that Nd(K)⊂ �1(DK). Thus Nd(K) = �1(DK).

For each μ ∈ N(K), we have |μ |(DK \DK) = 0 by Corollary 4.7.5, and so we
have supp μ ⊂ K \DK for each μ ∈ Nc(K). Conversely, take μ ∈ N(K \DK). Then
|μ |({x}) = 0 (x ∈ K \DK), and so μ ∈ Nc(K). ��

Corollary 4.7.14. Let S be a non-empty set. Then N(βS) = Nd(βS) = �1(S) and
Nc(βS) = N(S∗) = {0}.

Proof. By Proposition 1.5.9(ii), βS is Stonean, and DβS = S = βS. By Corol-
lary 4.7.13, N(βS) = Nd(βS) = �1(S) and Nc(βS) = {0}.

We now show that N(S∗) = {0}. Assume to the contrary that μ ∈ N(S∗) with
μ �= 0. By Theorem 4.7.4(i), supp μ has non-empty interior, and so supp μ contains
a clopen set of the form A∗, where A is an infinite subset of S. By Proposition 1.5.5,
A∗ contains an uncountable family of non-empty, pairwise-disjoint, open subsets.
But this contradicts the fact that, by Proposition 4.1.6, supp μ satisfies CCC. Thus
μ = 0. ��

Corollary 4.7.15. Let X be a non-empty, compact space such that N(X) is isomet-
rically a dual space. Suppose that DX is countable and infinite. Then N(X)∼= �1.

Proof. Take E to be a Banach space with E ′ ∼=N(X); we shall apply Theorem 4.1.10
with K taken to be E ′[1]. Take a countable, dense subset T of T, and consider the
countable set

D = {ζδx : ζ ∈ T, x ∈ DX} .
Then, using Proposition 4.7.12, we see that D is ‖·‖-dense in exK, and so, by The-
orem 4.1.10, K is the ‖·‖-closure of the absolutely convex hull of {δx : x ∈ DX}. It
follows that E ′ ∼= �1, and so N(X)∼= �1. ��

The next example gives some σ -normal measures on a space K that is such that
N(K) = {0}.
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Example 4.7.16. Consider the compact space K =N
∗. By Proposition 1.5.3(i), there

are no non-empty Gδ -sets in KK . Thus all measures in M(K) are σ -normal. How-
ever N(K) = {0} by Corollary 4.7.14. ��

Let K and L be non-empty, compact spaces, and again suppose that η : K → L is
a continuous surjection. Recall that we defined

η ◦ : f �→ f ◦ η , C(L)→C(K) ,

in equation (2.9) on page 83, so that η ◦ is a unital C∗-embedding and a lattice
homomorphism. The dual of η ◦ is therefore a surjection

Tη := (η ◦)′ : M(K)→M(L)

with
∥

∥Tη
∥

∥= 1; of course, as in equation (4.7) on page 116,

(Tημ)(B) = μ(η−1(B)) (B ∈BL, μ ∈M(K)) , (4.19)

and Tημ is the image measure η [μ ]. We shall use this notation in the next result.
Note that Tημ ∈ M(L)+ when μ ∈ M(K)+, and so Tη is a positive operator

on the Banach lattice M(K), and hence is an order homomorphism. (However,
it is easily seen that Tη is not necessarily a lattice homomorphism.) Now take
ν ∈ M(L)+. Then ν defines a positive linear functional on η ◦(C(L)), and so has
a norm-preserving extension to a linear functional on C(K), and hence to a measure
μ ∈M(K) with ‖μ‖= ‖ν‖; by equation (4.2), μ ∈M(K)+. In particular, this shows
that Tη(M(K)+) = M(L)+.

Proposition 4.7.17. Let K and L be non-empty, compact spaces, and suppose that
η : K → L is a continuous surjection that is either open or irreducible. Then

Tη(N(K))⊂ N(L) .

Suppose, further, that N(L) = {0}. Then N(K) = {0}.
Proof. Take μ ∈ N(K). For L0 ∈KL, set K0 = η−1(L0). Then K0 is certainly com-
pact in K. We claim that intKK0 = /0. This is obvious when η is open, and fol-
lows from Proposition 1.4.21(ii) when η is irreducible. Thus K0 ∈KK . By The-
orem 4.7.4(i), μ(K0) = 0, and so (Tημ)(L0) = 0. Again by Theorem 4.7.4(i),
Tημ ∈ N(L). Thus Tη(N(K)) ⊂ N(L).

Now suppose that N(L) = {0}, and take μ ∈ N(K)+. Then Tημ = 0. But this
implies that μ(K) = (Tημ)(L) = 0, and hence μ = 0. Thus N(K) = {0}. ��

Theorem 4.7.18. Let K and L be two non-empty, compact spaces, and suppose that
η : K → L is an irreducible surjection. Then the map

Tη | N(K) : N(K)→ N(L) (4.20)

is a Banach-lattice isometry.
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Proof. By Proposition 4.7.17, Tη (N(K)) ⊂ N(L). We shall now show that the map
Tη : N(K)→ N(L) is a bijection.

Set
η−1(BL) = {η−1(B) : B ∈BL} ,

so that η−1(BL) is a subset of BK .
We claim that each C ∈ BK is congruent to a set in η−1(BL). First suppose

that U is a non-empty, open set in K, and define V = {y ∈ L : Fy ⊂ U}, where
Fy = η−1({y}) (y ∈ L). By Proposition 1.4.21(ii), V is open in L and η−1(V ) is a
dense, open subset of U , and so η−1(V ) ∈ η−1(BL) and U ≡ η−1(V ). As on page
13, each C ∈BL has the Baire property, and so there is an open set U in K with
C ≡U . The claim follows.

Now suppose that μ ∈ N(K) with Tημ = 0. Then μ(η−1(B)) = 0 (B ∈BL), and
so μ(C) = 0 (C ∈BK) by the claim and Corollary 4.7.5, (a) ⇒ (c). Thus the map
Tη : N(K)→ N(L) is an injection.

We next claim that Tη : N(K)→ N(L) is a surjection and that the map

Tη | N(K)+ : N(K)+→ N(L)+

is an isometry. Indeed, take ν ∈ N(L)+. As above, there exists μ ∈ M(K)+ with
‖μ‖= ‖ν‖ and Tημ = ν . Take K0 ∈KK , and set L0 = π(K0). By Proposition 1.4.22,
L0 ∈KL, and so ν(L0) = 0. Thus μ(π−1(L0)) = 0. Since μ ∈M(K)+, it follows
that μ(K0) = 0, and hence μ ∈ N(K)+ by Theorem 4.7.4(i). The claim follows.

We have shown that the map Tη | NR(K)→ NR(L) is a bijection and that it is
an order isomorphism, and so Tη | N(K) : N(K)→ N(L) is a Banach-lattice isomor-
phism. By Proposition 2.3.5 and the above claim, it is a Banach-lattice isometry. ��
Corollary 4.7.19. Let L be a non-empty, compact space. Then the map

TπL | N(GL) : N(GL)→ N(L)

is a Banach-lattice isometry. In particular, N(GL)∼= N(L).

Proof. As in Theorem 1.6.5, the map πL : GL → L is an irreducible surjection, and
so this is a special case of the theorem. ��

Later, we shall be concerned with compact spaces that have many normal mea-
sures, but first we shall give various examples of compact spaces that have no non-
zero normal measures.

Proposition 4.7.20. Let K be a non-empty, separable, locally compact space with-
out isolated points. Then there are no non-zero σ -normal measures on K, and so
N(K) = {0}.
Proof. We first claim that each σ -normal measure μ on EK is a continuous measure.
Indeed, take x ∈ K. Since the point x is not isolated, there is a countable subset, say
S = {xn : n∈N}, of K \{x} such that S is dense in K. Choose a sequence (Un) in Nx
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such that U1 is compact and such that Un+1 ⊂Un and xn �∈Un for each n ∈ N, and
set L =

⋂

Un. Then L is a compact Gδ -set in K with x ∈ L, and intKL = /0 because
L∩S = /0. By Theorem 4.7.4(ii), μ(L) = 0. This implies that μ({x}) = 0, and hence
μ is continuous, as claimed.

Again, let {xn : n∈N} be a dense subset of K. Fix ε > 0 and a compact subset L of
K; take g ∈C0,R(K) with g≥ χL and g(K)⊂ I. For each n ∈ N, take Un ∈Nxn with
|μ |(Un)< ε/2n, choose fn ∈C00(K) with χ{xn} ≤ fn≤ χUn , and set gn = g∧∨n

j=1 f j ,
so that gn ↗ g in C0(K)+. We have

〈gn, |μ |〉 ≤ |μ |
(

n
⋃

k=1

Uk

)

≤
n

∑
k=1

|μ |(Uk)< ε (n ∈N) .

Since |μ | is σ -normal, 〈gn, |μ |〉 ↗ 〈g, |μ |〉 in R
+, and so |μ |(L) ≤ 〈g, |μ |〉 ≤ ε .

This holds true for each ε > 0, and hence |μ |(L) = 0. Thus μ = 0.
This gives the result. ��

It is natural to wonder whether N(K) = {0} when the condition ‘separable’ in
Proposition 4.7.20 is replaced by the weaker condition that K satisfies CCC. The
example of Theorem 4.7.26, to be given below, will show that this is not the case.

Corollary 4.7.21. There are no non-zero, σ -normal measures on GI, and hence
N(GI) = {0}.
Proof. As remarked within Example 1.7.16, GI is an infinite, separable Stonean
space without isolated points, and so this follows from the proposition. The result
also follows from Proposition 1.7.13. ��

Corollary 4.7.22. Let G be a locally compact group that is not discrete. Then
N(G) = {0}.
Proof. Take μ ∈ N(G)+ and a compact subspace K of G. Then there is an infinite,
clopen, σ -compact subgroup G0 of G with G0 ⊃ K. As in Theorem 4.4.2, there is
a non-discrete, metrizable group H and a quotient map η : G0 → H; the map η is
open. The space η(K) is separable and has no isolated points, and so, by Proposi-
tion 4.7.20, N(η(K)) = {0}. By Proposition 4.7.17, N(K) = {0}, and so μ(K) = 0.
It follows that N(G) = {0}. ��

The following result is essentially contained in [103].

Theorem 4.7.23. Let K be a non-empty, locally connected, locally compact space
without isolated points. Then N(K) = {0}.
Proof. Assume that there exists μ ∈ N(K)+ with μ �= 0. Again, μ ∈ Nc(K)+.

For each n ∈N, let Fn be a family of non-empty, open subsets of K such that Fn

is maximal with respect to the following properties:
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(i) μ(U)< 1/n for each U ∈Fn ; (ii) distinct sets in Fn are disjoint.

It is clear from Zorn’s lemma that such a family Fn exists. Set Gn =
⋃{U : U ∈Fn,

an open subset of K. Since μ is continuous, each open set in K contains an open set
of arbitrary small μ-measure, and so Gn = K. By Theorem 4.7.4(i), μ(K \Gn) = 0.

Now set H =
⋂{Gn : n ∈ N}, a Gδ -set in K. We have μ(K \H) = 0, and so

μ(H)> 0. By Theorem 4.7.4(i), μ(intKH)> 0. Assume that each x ∈ intKH has an
open neighbourhood Vx in K with μ(Vx) = 0. For each compact subset L of intKH,
there are finitely many points x1, . . . ,xn ∈ intKH with L ⊂ Vx1 ∪ ·· · ∪Vxn , and so
μ(L) = 0. But

μ(intKH) = sup{μ(L) : L compact, L⊂ intKH}

because μ is a regular measure, and so μ(intKH) = 0, a contradiction. Thus there
exists x0 ∈ intKH such that μ(V ) > 0 for each V ∈Nx0 . Let V0 be an open neigh-
bourhood of x0 with V0 ⊂ intKH. Since K is locally connected, we may suppose that
V0 is connected. We have V0 ⊂ Gn for each n ∈N.

Since μ(V0) > 0, there exists n ∈ N with μ(V0) > 1/n. Choose U ∈ Fn with
x0 ∈U , and set V = Gn \U , so that V is open in K. Since μ(U)< 1/n < μ(V0), we
have V0 ∩V �= /0, and so {V0 ∩U,V0 ∩V} is a partition of V0 into two non-empty,
disjoint, open subsets, a contradiction of the fact that V0 is connected.

Thus N(K) = {0}, as required. ��

Proposition 4.7.24. Let K be a non-empty, connected, locally compact F-space.
Then N(K) = {0}.
Proof. Assume that there exists μ ∈N(K)+ \{0}, and choose a compact subset L of
K such that μ(L)> 0. Since L is a compact F-space satisfying CCC (by Proposition
4.1.6), the space L is Stonean, and so there is a non-empty, open subset U of K with
U ⊂ L. Choose a non-empty, open subset V of K such that V ⊂U . Then V is open
in U , and hence in K. We have shown that K contains a non-empty, clopen subset,
and so K is not connected, the required contradiction. ��
Proposition 4.7.25. Let L be a compact space without isolated points which is either
separable or a locally compact group or locally connected or a connected F-space,
and suppose that K is a compact space such that there is a continuous surjection that
is open or irreducible from K onto L. Then N(K) = {0}. In particular, N(GL) = {0}
and N(L×R) = {0} for each compact space R.

Proof. This follows from Proposition 4.7.17, Proposition 4.7.20, Corollary 4.7.22,
Theorem 4.7.23, and Proposition 4.7.24. ��

In the text [220, p. 2], a monotone complete C∗-algebra is said to be wild if there
are no non-zero normal states. Let K be a non-empty, compact space. Then, as we
remarked on page 107, C(K) is a monotone complete C∗-algebra if and only if K
is Stonean; C(K) is wild if and only if N(K) = {0}. In [220, §4.3], it is shown that
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there are many examples of monotone complete C∗-subalgebras of �∞ that are wild,
and so we obtain many examples of Stonean spaces K such that N(K) = {0}.

In the light of Theorem 4.7.23 and Proposition 4.7.24, it is natural to wonder
whether N(K) = {0} for each connected, compact set K. This question was an-
swered by Grzegorz Plebanek [206] with the following counter-example; we are
very grateful to him for his permission to include it here. Preliminary results on
inverse systems with measures were given in §4.1.

Theorem 4.7.26. There is a non-empty, connected, compact set K satisfying CCC,
and such that N(K) �= {0}. Indeed, there exists a strictly positive measure in N(K).

Proof. Let L = I, a connected, compact space, and take m to be the strictly positive
measure on I that is Lebesgue measure.

We shall define inductively an inverse system with strictly positive measures

(Kα ,μα ,π
β
α : 0≤ α ≤ β < ω1)

with K0 = L and μ0 = m.
When 0 ≤ γ < ω1 is such that (Kα ,μα ,πβα : 0 ≤ α ≤ β ≤ γ) is an inverse sys-

tem with non-empty, connected, compact spaces Kα and strictly positive measures
μα ∈ P(Kα) (for 0≤ α ≤ γ), we define Kγ+1 and μγ+1 by applying Theorem 4.1.16
with L = Kγ and ν = μγ and by setting Kγ+1 = K#

γ and μγ+1 = μ#
γ (and defining the

maps πγ+1
α to be η# ◦ πγα for 0≤ α ≤ γ and πγ+1

γ+1 to be the identity on Kγ+1).

As in Theorem 4.1.16, we have intKγ+1(π
γ+1
γ )−1(W ) �= /0 for each W ∈ Z(Kγ )

with μγ (W )> 0.
When 0 ≤ γ ≤ ω1, γ is a limit ordinal, and Kα and μα ∈ P(Kα) are defined for

0 ≤ α < γ , we define (Kγ ,π
γ
α : 0 ≤ α < γ) to be the inverse limit of the inverse

system (Kα ,π
β
α : 0≤ α ≤ β < γ) (and take πγα to be the continuous surjections that

arise in Theorem 1.4.32), so that Kγ is compact and connected; we take μγ ∈ P(Kγ)
to be the strictly positive measure specified in Proposition 4.1.15. In the special case
in which γ = ω1, we set K = Kγ , μ = μγ ∈ P(K), and η = πγ0 .

It follows from Corollary 1.4.33 that, for each Z ∈Z(K), there exists α <ω1 and
W ∈ Z(Kα ) such that Z = π−1

α (W ). Suppose that μ(Z) > 0. Then μα(W ) > 0, and
so (πα+1

α )−1(W ) has non-empty interior. Hence

intKZ = intK(π−1
α+1((π

α+1
α )−1(W ))) �= /0 ,

and so μ(Z) = 0 whenever Z ∈ Z(K) and intKZ = /0, i.e., μ is σ -normal by Theo-
rem 4.7.4(ii). Since μ is strictly positive, K satisfies CCC, as is generally the case
for the support of any μ ∈M(K). By Proposition 4.7.7, μ ∈ N(K).

This completes the proof of the theorem. ��

It can be shown, using the remark after Theorem 4.1.16, that w(K) = c, where K
is the space of the above proof.
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We have earlier defined a ‘normal measure’ on a Boolean algebra; see Defini-
tion 1.7.12. One might guess that a normal measure on a compact space K would
give a normal measure on the Boolean algebra BK . However this is not correct.
Indeed, suppose that there exists μ ∈ Nc(K)+ with ‖μ‖ = 1, and take the net (Uα)
in BK consisting of the complements of the finite subsets of K, so that Uα ↘ 0 in
BK , but μ(Uα) = 1 for each α , and so limα∈A μ(Uα) �= 0. However, we do have the
following result involving the Boolean algebra of regular–open sets, as defined in
Example 1.7.16.

Theorem 4.7.27. Let K be a non-empty, compact space. Then the map

R : μ �→ μ |RK , N(K)→ N(RK) ,

is a Riesz isomorphism

Proof. Take μ ∈ N(K). Then it is clear that Rμ is a measure on the Boolean algebra
RK in the sense of Definition 1.7.12.

We first claim that Rμ ∈ N(RK). For this, it suffices to suppose that μ ∈ N(K)+.
Take a net (Uα) with Uα ↘ /0 in RK , and consider the set

Γ =
⋃

α
{ f ∈C(K) : χUα ≤ f},

regarded as a downward-directed net in C(K)+. Take g∈C(K)+ with g≤ f ( f ∈Γ );
we shall show that g = 0. Indeed, assume towards a contradiction that g �= 0. Then
there is a non-empty, open set V in K with g(x)> 0 (x ∈V ). Assume that α is such
that V �⊂Uα . Then V �⊂Uα because Uα is regular–open, and so there exists x∈V and
f ∈C(K) with f (x) = 0 and χUα ≤ f , using the fact that K is compact. Thus f ∈Γ ,
and hence g(x) = 0, a contradiction. This shows that V ⊂ ⋂Uα , a contradiction of
the fact that Uα ↘ /0. Hence g = 0, and so infΓ = 0.

Since μ ∈ N(K)+, we see that inf{μ( f ) : f ∈ Γ }= 0. However, for each f ∈ Γ ,
there exists α with χUα ≤ f , and so infα μ(Uα) = 0. We have shown that Rμ satisfies
the condition given in Definition 1.7.12 for it to be a normal measure on RK , and so
Rμ ∈ N(RK)

+, giving the claim.
It is clear that R : N(K)→ N(RK) is a Riesz homomorphism.
We now claim that R is injective. Indeed, suppose that μ ∈ NR(K) with Rμ = 0.

Then R(|μ |) = |Rμ |= 0, and so |μ |(K) = R(|μ |)(K) = 0. Thus μ = 0, and so R is
injective, as claimed.

We finally claim that R is surjective. Indeed, take ν ∈ N(RK)
+, and define

̂μ(B) = ν(VB) (B ∈ BK), where VB is the unique regular–open subset of K with
B≡VB.

We claim that ̂μ is a measure on K. First, note that, for disjoint sets B,C ∈BK ,
we have VB∩VC ≡ B∩C = /0, and so ̂μ(B∪C) = ̂μ(B)+ ̂μ(C). Now suppose that
(Bn) is an increasing sequence in BK with union B ∈BK . Then

BΔ
(

⋃

{VBn : n ∈ N}
)

⊂
⋃

{BnΔVBn : n ∈N}
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is meagre. Set U =
∨{VBn : n∈N} in RK , so that UΔB is meagre and U =VB. Then

̂μ(B) = ν(VB) = limn→∞ ν(VBn) because ν is normal, and so ̂μ(B) = limn→∞ ̂μ(Bn).
This shows that ̂μ is σ -additive. Thus ̂μ ∈M(K), and ̂μ(B)≥ 0 (B∈BK). (Note that
it is not immediately obvious that ̂μ is regular, but ̂μ does define a continuous linear
functional on C(K).) By the Riesz representation theorem, there exists μ ∈M(K)+

with
∫

K
f dμ = 〈 f , ̂μ〉 ( f ∈C(K)) .

Let L be a non-empty, closed subspace of K. The family U of sets in RK that
contain L is a net with infimum intL in RK , and so {ν(U) : U ∈ U } is a net in R

with infimum ν(intL). For each U ∈U , there exists fU ∈C(K) with χL ≤ fU ≤ χU ,
and then

μ(L)≤
∫

K
fU dμ = 〈 f , ̂μ〉 ≤ ̂μ(U) = ν(U) .

Thus μ(L)≤ ν(intL).
Take U ∈ RK . By the previous remark, we have μ(U) = μ(intU) ≤ ν(U),

and hence μ(int(K \U)) ≤ ν(int (K \U)), i.e., μ(U ′) ≤ ν(U ′), which implies that
μ(U)≥ ν(U). It follows that μ(U) = ν(U).

For each B∈BK , the set BΔVB is meagre, and so μ(B) = μ(VB) = ν(VB) = ̂μ(B).
Thus μ = ̂μ . Clearly Rμ = ν and so R is a surjection.

We conclude that R : N(K)→ N(RK) is a Riesz isomorphism. ��

Corollary 4.7.28. Let K and L be two compact spaces such that RK and RL are iso-
morphic as Boolean algebras. Then N(K) and N(L) are Banach-lattice isometric.

Proof. Let ρ : RK →RL be an isomorphism, and then define

̂ρ(μ)(V ) = μ(ρ−1(V )) (μ ∈ N(RK),V ∈RL) ,

so that ̂ρ : N(RK)→ N(RL) is the induced Riesz isomorphism. Next, let

RK : N(K)→ N(RK) and RL : N(L)→ N(RL)

be the Riesz isomorphisms given by the theorem. Set

T = R−1
L ◦ ̂ρ ◦ RK : N(K)→ N(L) .

Then T is a Riesz isomorphism. Further, ‖Tμ‖ = |Tμ |(L) = |μ |(K) (μ ∈ N(K))
because ρ−1(L) = K. By Proposition 2.3.5, there is a Banach-lattice isometry from
N(K) onto N(L). ��

We recall from Example 1.7.16 that RK and RL are isomorphic as Boolean
algebras if and only if the Gleason covers GK and GL are homeomorphic. Thus
Corollary 4.7.28 also follows easily from Corollary 4.7.19.
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