
Chapter 1

A linear operator between two ordered vector spaces that carries positive el-
ements to positive elements is known in the literature as a positive operator.
As we have mentioned in the preface, the main theme of this book is the
study of positive operators. To obtain fruitful and useful results the domains
and the ranges of positive operators will be taken to be Riesz spaces (vector
lattices). For this reason, in order to make the material as self-sufficient as
possible, the fundamental properties of Riesz spaces are discussed as they
are needed.

Throughout this book the symbol R will denote the set of real numbers,
N will denote the set of natural numbers, Q will denote the set of rational
numbers, and Z will denote the set of integers.

1.1. Basic Properties of Positive Operators

A real vector space E is said to be an ordered vector space whenever it
is equipped with an order relation ≥ (i.e., ≥ is a reflexive, antisymmetric,
and transitive binary relation on E) that is compatible with the algebraic
structure of E in the sense that it satisfies the following two axioms:

(1) If x ≥ y, then x + z ≥ y + z holds for all z ∈ E.

(2) If x ≥ y, than αx ≥ αy holds for all α ≥ 0.

An alternative notation for x ≥ y is y ≤ x. A vector x in an ordered
vector space E is called positive whenever x ≥ 0 holds. The set of all
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positive vectors of E will be denoted by E+, i.e., E+ :=
{
x ∈ E : x ≥ 0

}
.

The set E+ of positive vectors is called the positive cone of E.

Definition 1.1. An operator is a linear map between two vector spaces.

That is, a mapping T : E → F between two vector spaces is called an
operator if and only if T (αx + βy) = αT (x) + βT (y) holds for all x, y ∈ E
and all α, β ∈ R. As usual, the value T (x) will also be designated by Tx.

Definition 1.2. An operator T : E → F between two ordered vector spaces
is said to be positive (in symbols T ≥ 0 or 0 ≤ T ) if T (x) ≥ 0 for all x ≥ 0.

Clearly, an operator T : E → F between two ordered vector spaces is
positive if and only if T (E+) ⊆ F+ (and also if and only if x ≤ y implies
Tx ≤ Ty).

A Riesz space (or a vector lattice) is an ordered vector space E with
the additional property that for each pair of vectors x, y ∈ E the supremum
and the infimum of the set {x, y} both exist in E. Following the classical
notation, we shall write

x ∨ y := sup{x, y} and x ∧ y := inf{x, y} .

Typical examples of Riesz spaces are provided by the function spaces.
A function space is a vector space E of real-valued functions on a set Ω
such that for each pair f, g ∈ E the functions

[f ∨ g](ω) := max
{
f(ω), g(ω)

}
and [f ∧ g](ω) := min

{
f(ω), g(ω)

}
both belong to E. Clearly, every function space E with the pointwise or-
dering (i.e., f ≤ g holds in E if and only if f(ω) ≤ g(ω) for all ω ∈ Ω) is a
Riesz space. Here are some important examples of function spaces:

(a) R
Ω, all real-valued functions defined on a set Ω.

(b) C(Ω), all continuous real-valued functions on a topological space Ω.
(c) Cb(Ω), all bounded real-valued continuous functions on a topolog-

ical space Ω.
(d) �∞(Ω), all bounded real-valued functions on a set Ω.
(e) �p (0 < p < ∞), all real sequences (x1, x2, . . .) with

∑∞
n=1|xn|p <∞.

The class of Lp-spaces is another important class of Riesz spaces. If
(X, Σ, µ) is a measure space and 0 < p < ∞, then Lp(µ) is the vector space
of all real-valued µ-measurable functions f on X such that

∫
X |f |p dµ < ∞.

Also, L∞(µ) is the vector space of all real-valued µ-measurable functions
f on X such that esssup |f | < ∞. As usual, functions differing on a set
of measure zero are treated as identical, i.e., f = g in Lp(µ) means that
f(x) = g(x) for µ-almost all x ∈ X. (In other words, each Lp(µ)-space
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consists of equivalence classes rather than functions.) It is easy to see that
under the ordering f ≤ g whenever f(x) ≤ g(x) holds for µ-almost all x ∈ X,
each Lp(µ) is a Riesz space.

There are several useful identities that are true in a Riesz space some of
which are included in the next few results.

Theorem 1.3. If x, y and z are elements in a Riesz space, then:

(1) x ∨ y = −
[
(−x) ∧ (−y)

]
and x ∧ y = −

[
(−x) ∨ (−y)

]
.

(2) x + y = x ∧ y + x ∨ y.
(3) x+(y∨ z) = (x+y)∨ (x+ z) and x+(y∧ z) = (x+y)∧ (x+ z).
(4) α(x∨y) = (αx)∨(αy) and α(x∧y) = (αx)∧(αy) for all α ≥ 0.

Proof. (1) From x ≤ x ∨ y and y ≤ x ∨ y we get −(x ∨ y) ≤ −x and
−(x ∨ y) ≤ −y, and so −(x ∨ y) ≤ (−x) ∧ (−y). On the other hand, if
−x ≥ z and −y ≥ z, then −z ≥ x and −z ≥ y, and hence −z ≥ x∨y. Thus,
−(x ∨ y) ≥ z holds and this shows that −(x ∨ y) is the infimum of the set
{−x,−y}. That is, (−x) ∧ (−y) = −(x ∨ y). To get the identity for x ∧ y
replace x by −x and y by −y in the above proven identity.

(2) From x∧ y ≤ y it follows that y−x∧ y ≥ 0 and so x ≤ x+ y−x∧ y.
Similarly, y ≤ x + y − x ∧ y. Consequently, we have x ∨ y ≤ x + y − x ∧ y
or x ∧ y + x ∨ y ≤ x + y. On the other hand, from y ≤ x ∨ y we see that
x+y−x∨y ≤ x, and similarly x+y−x∨y ≤ y. Thus, x+y−x∨y ≤ x∧y
so that x + y ≤ x ∧ y + x ∨ y, and the desired identity follows.

(3) Clearly, x + y ≤ x + y ∨ z and x + z ≤ x + y ∨ z, and therefore
(x+y)∨ (x+z) ≤ x+y∨z. On the other hand, we have y = −x+(x+y) ≤
−x + (x + y) ∨ (x + z), and likewise z ≤ −x + (x + y) ∨ (x + z), and so
y ∨ z ≤ −x + (x + y) ∨ (x + z). Therefore, x + y ∨ z ≤ (x + y) ∨ (x + z)
also holds, and thus x + y ∨ z = (x + y)∨ (x + z). The other identity can be
proven in a similar manner.

(4) Fix α > 0. Clearly, (αx) ∨ (αy) ≤ α(x ∨ y). If αx ≤ z and αy ≤ z
are both true, then x ≤ 1

αz and y ≤ 1
αz also are true, and so x ∨ y ≤ 1

αz.
This implies α(x ∨ y) ≤ z, and this shows that α(x ∨ y) is the supremum of
the set {αx, αy}. Therefore, (αx)∨ (αy) = α(x∨ y). The other identity can
be proven similarly.

The reader can establish in a similar manner the following general ver-
sions of the preceding formulas in (1), (3), and (4). If A is a nonempty
subset of a Riesz space for which sup A exists, then:

(a) The infimum of the set −A := {−a : a ∈ A} exists and

inf(−A) = − sup A .
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(b) For each vector x the supremum of the set x+A := {x+a : a ∈ A}
exists and

sup(x + A) = x + supA .

(c) For each α ≥ 0 the supremum of the set αA := {αa : a ∈ A} exists
and

sup(αA) = α sup A .

We have also the following useful inequality between positive vectors.

Lemma 1.4. If x, x1, x2, . . . , xn are positive elements in a Riesz space, then

x ∧ (x1 + x2 + · · · + xn) ≤ x ∧ x1 + x ∧ x2 + · · · + x ∧ xn .

Proof. Assume that x and x1, x2 are all positive vectors. For simplicity, let
y = x ∧ (x1 + x2). Then y ≤ x1 + x2 and so y − x1 ≤ x2. Also we have
y−x1 ≤ y ≤ x. Consequently y−x1 ≤ x∧x2. This implies y−x∧x2 ≤ x1 and
since y−x∧x2 ≤ y ≤ x, we infer that y−x∧x2 ≤ x∧x1 or y ≤ x∧x1+x∧x2.
The proof now can be completed by induction.

For any vector x in a Riesz space define

x+ := x ∨ 0 , x− := (−x) ∨ 0 , and |x| := x ∨ (−x) .

The element x+ is called the positive part, x− is called the negative
part, and |x| is called the absolute value of x. The vectors x+, x−, and
|x| satisfy the following important identities.

Theorem 1.5. If x is an arbitrary vector in a Riesz space E, then:

(1) x = x+ − x−.

(2) |x| = x+ + x−.

(3) x+ ∧ x− = 0.

Moreover, the decomposition in (1) satisfies the following minimality and
uniqueness properties.

(a) If x = y − z with y, z ∈ E+, then y ≥ x+ and z ≥ x−.

(b) If x = y − z with y ∧ z = 0, then y = x+ and z = x−.

Proof. (1) From Theorem 1.3 we see that

x = x + 0 = x ∨ 0 + x ∧ 0 = x ∨ 0 − (−x) ∨ 0 = x+ − x− .

(2) Using Theorem 1.3 and (1), we get

|x| = x ∨ (−x) = (2x) ∨ 0 − x = 2(x ∨ 0) − x

= 2x+ − x = 2x+ − (x+ − x−) = x+ + x− .
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(3) Note that

x+ ∧ x− = (x+ − x−) ∧ 0 + x− = x ∧ 0 + x−

= −[(−x) ∨ 0] + x− = −x− + x− = 0 .

(a) Assume that x = y − z with y ≥ 0 and z ≥ 0. From x = x+ − x−,
we get x+ = x− + y − z ≤ x− + y, and so from Lemma 1.4 we get

x+ = x+ ∧ x+ ≤ x+ ∧ (x− + y) ≤ x+ ∧ x− + x+ ∧ y = x+ ∧ y ≤ y .

Similarly, x− ≤ z.

(b) Let x = y − z with y ∧ z = 0. Then, using Theorem 1.3, we see that
x+ = (y− z)∨ 0 = y ∨ z − z = (y + z − y ∧ z)− z = y. Similarly, x− = z.

We also have the following useful inequality regarding positive operators.

Lemma 1.6. If T : E → F is a positive operator between two Riesz spaces,
then for each x ∈ E we have

|Tx| ≤ T |x| .

Proof. If x ∈ E, then ±x ≤ |x| and the positivity of T yields ±Tx ≤ T |x|,
which is equivalent to |Tx| ≤ T |x|.

A few more useful lattice identities are included in the next result.

Theorem 1.7. If x and y are elements in a Riesz space, then we have:

(1) x = (x − y)+ + x ∧ y.

(2) x ∨ y = 1
2

(
x + y + |x − y|

)
and x ∧ y = 1

2

(
x + y − |x − y|

)
.

(3) |x − y| = x ∨ y − x ∧ y.

(4) |x| ∨ |y| = 1
2

(
|x + y| + |x − y|

)
.

(5) |x| ∧ |y| = 1
2

∣∣|x + y| − |x − y|
∣∣.

(6) |x + y| ∧ |x − y| =
∣∣|x| − |y|

∣∣.
(7) |x + y| ∨ |x − y| = |x| + |y|.

Proof. (1) Using Theorem 1.3 we see that

x = x ∨ y − y + x ∧ y = (x − y) ∨ (y − y) + x ∧ y

= (x − y) ∨ 0 + x ∧ y = (x − y)+ + x ∧ y .

(2) For the first identity note that

x + y + |x − y| = x + y + (x − y) ∨ (y − x)

=
[
(x + y) + (x − y)

]
∨
[
(x + y) + (y − x)

]
= (2x) ∨ (2y) = 2(x ∨ y) .
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(3) Subtract the two identities in (2).

(4) Using (2) above, we see that

|x + y| + |x − y| = (x + y) ∨ (−x − y) + |x − y|
=
(
x + y + |x − y|

)
∨
(
−x − y + |x − y|

)
= 2
(
[x ∨ y] ∨ [(−x) ∨ (−y)]

)
= 2
(
[x ∨ (−x)] ∨ [y ∨ (−y)]

)
= 2
(
|x| ∨ |y|

)
.

(5) Using (2) and (4) above we get
∣∣|x + y| − |x − y|

∣∣ = 2
(
|x + y| ∨ |x − y|

)
−
(
|x + y| + |x − y|

)
= 2
(
|x| + |y|

)
− 2
(
|x| ∨ |y|

)
= 2
(
|x| ∧ |y|

)
.

(6) Notice that

|x + y| ∧ |x − y|
=
[
(x + y) ∨ (−x − y)

]
∧
[
(x − y) ∨ (y − x)

]
=
{[

(x + y) ∨ (−x − y)
]
∧ (x − y)

}
∨
{[

(x + y) ∨ (−x − y)
]
∧ (y − x)

}
=
[
(x+ y) ∧ (x− y)

]
∨
[
(−x− y) ∧ (x− y)

]
∨ · · ·

· · · ∨
[
(x+ y) ∧ (y−x)

]
∨
[
(−x− y) ∧ (y−x)

]
=
[
x+ y ∧ (− y)

]
∨
[
− y + (−x) ∧ x

]
∨ · · ·

· · · ∨
[
y +x ∧ (−x)

]
∨
[
−x+ (− y) ∧ y

]
=
{[

x + y ∧ (−y)
]
∨
[
−x + y ∧ (−y)

]}
∨ · · ·

· · · ∨
{[

−y + (−x) ∧ x
]
∨
[
y + x ∧ (−x)

]}

=
[
x ∨ (−x) + y ∧ (−y)

]
∨
[
(−y) ∨ y + x ∧ (−x)

]
=
[
|x| − |y|

]
∨
[
|y| − |x|

]
=
∣∣|x| − |y|

∣∣ .

(7) Using (3) and (5) we get

|x + y| ∨ |x − y| =
∣∣|x + y| − |x − y|

∣∣+ |x + y| ∧ |x − y|
= 2
(
|x| ∧ |y|

)
+
∣∣|x| − |y|

∣∣
= 2
(
|x| ∧ |y|

)
+
(
|x| ∨ |y| − |x| ∧ |y|

)
= |x| ∧ |y| + |x| ∨ |y| = |x| + |y| ,

and the proof is finished.
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It should be noted that the identities in (2) above show that an ordered
vector space is a Riesz space if and only if the absolute value |x| = x∨ (−x)
exists for each vector x.

In a Riesz space, two elements x and y are said to be disjoint (in
symbols x ⊥ y) whenever |x|∧|y| = 0 holds. Note that according to part (5)
of Theorem 1.7 we have x ⊥ y if and only if |x+y| = |x−y|. Two subsets A
and B of a Riesz space are called disjoint (denoted A ⊥ B) if a ⊥ b holds
for all a ∈ A and all b ∈ B.

If A is a nonempty subset of a Riesz space E, then its disjoint com-
plement Ad is defined by

Ad :=
{
x ∈ E : x ⊥ y for all y ∈ A

}
.

We write Add for (Ad)d. Note that A ∩ Ad = {0}.
If A and B are subsets of a Riesz space, then we shall employ in this

book the following self-explanatory notation:

|A| :=
{
|a| : a ∈ A

}
A+ :=

{
a+ : a ∈ A

}
A− :=

{
a− : a ∈ A

}
A ∨ B :=

{
a ∨ b : a ∈ A and b ∈ B

}
A ∧ B :=

{
a ∧ b : a ∈ A and b ∈ B

}
x ∨ A :=

{
x ∨ a : a ∈ A

}
x ∧ A :=

{
x ∧ a : a ∈ A

}

The next theorem tells us that every Riesz space satisfies the infinite
distributive law.

Theorem 1.8 (The Infinite Distributive Law). Let A be a nonempty subset
of a Riesz space. If sup A exists, then for each vector x the supremum of
the set x ∧ A exists and

sup(x ∧ A) = x ∧ sup A .

Similarly, if inf A exists, then inf(x ∨ A) exists for each vector x and

inf(x ∨ A) = x ∨ inf A .

Proof. Assume that sup A exists. Let y = sup A and fix some vector x.
Clearly, for each a ∈ A we have x ∧ a ≤ x ∧ y, i.e., x ∧ y is an upper bound
of the set x ∧ A. To see that x ∧ y is the least upper bound of the set
x ∧A, assume that some vector z satisfies x ∧ a ≤ z for all a ∈ A. Since for
each a ∈ A we have a = x ∧ a + x ∨ a − x ≤ z + x ∨ y − x, it follows that
y ≤ z + x ∨ y − x. This implies x ∧ y = x + y − x ∨ y ≤ z, and from this we
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see that sup(x∧A) exists and that sup(x∧A) = x∧ sup A holds. The other
formula can be proven in a similar manner.

The next result includes most of the major inequalities that are used
extensively in estimations.

Theorem 1.9. For arbitrary elements x, y, and z in a Riesz space we have
the following inequalities.

(1)
∣∣|x| − |y|

∣∣ ≤ |x + y| ≤ |x| + |y| (the triangle inequality).

(2) |x ∨ z − y ∨ z| ≤ |x − y| and |x ∧ z − y ∧ z| ≤ |x − y| (Birkhoff’s
inequalities).

Proof. (1) Clearly, x+y ≤ |x|+ |y| and −x−y ≤ |x|+ |y| both hold. Thus,
|x + y| = (x + y) ∨ (−x − y) ≤ |x| + |y|.

Now observe that the inequality |x| =
∣∣(x+y)−y

∣∣ ≤ |x+y|+ |y| implies
|x|− |y| ≤ |x+y|. Similarly, |y|− |x| ≤ |x+y|, and hence

∣∣|x|− |y|
∣∣ ≤ |x+y|

is also true.

(2) Note that

x ∨ z − y ∨ z =
[
(x − z) ∨ 0 + z

]
−
[
(y − z) ∨ 0 + z

]
= (x − z)+ − (y − z)+

=
[
(x − y) + (y − z)

]+ − (y − z)+

≤
[
(x − y)+ + (y − z)+

]
− (y − z)+

= (x − y)+ ≤ |x − y| .

Similarly, y ∨ z − x∨ z ≤ |x− y|, and so |x∨ z − y ∨ z| ≤ |x− y|. The other
inequality can be proven in a similar manner.

In particular, note that in any Riesz space we have
∣∣x+ − y+

∣∣ ≤ |x − y| and
∣∣x− − y−

∣∣ ≤ |x − y| .

These inequalities will be employed quite often in our discussions.
A net {xα} in a Riesz space is said to be decreasing (in symbols xα ↓)

whenever α � β implies xα ≤ xβ. The notation xα ↓ x means that xα ↓ and
inf{xα} = x both hold. The meanings of xα ↑ and xα ↑ x are analogous.

The Archimedean property states that for each real number x > 0 the
sequence {nx} is unbounded above in R. This is, of course, equivalent to
saying that 1

nx ↓ 0 holds in R for each x > 0. Motivated by this property,
a Riesz space (and in general an ordered vector space) E is called Archi-
medean whenever 1

nx ↓ 0 holds in E for each x ∈ E+. All classical spaces
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of functional analysis (notably the function spaces and Lp-spaces) are Ar-
chimedean. For this reason, the focus of our work will be on the study of
positive operators between Archimedean Riesz spaces. Accordingly:

• Unless otherwise stated, throughout this book all Riesz spaces will
be assumed to be Archimedean.

The starting point in the theory of positive operators is a fundamental
extension theorem of L. V. Kantorovich [91]. The importance of the result
lies in the fact that in order for a mapping T : E+ → F+ to be the restriction
of a (unique) positive operator from E to F it is necessary and sufficient to
be additive on E+. The details follow.

Theorem 1.10 (Kantorovich). Suppose that E and F are two Riesz spaces
with F Archimedean. Assume also that T : E+ → F+ is an additive map-
ping, that is, T (x + y) = T (x) + T (y) holds for all x, y ∈ E+. Then T
has a unique extension to a positive operator from E to F . Moreover, the
extension (denoted by T again) is given by

T (x) = T (x+) − T (x−)

for all x ∈ E.

Proof. Let T : E+ → F+ be an additive mapping. Consider the mapping
S : E → F defined by

S(x) = T (x+) − T (x−) .

Clearly, S(x) = T (x) for each x ∈ E+. So, the mapping S extends T to
all of E. Since x = x+ − x− for each x ∈ E, it follows that S is the only
possible linear extension of T to all of E. Therefore, in order to complete
the proof, we must show that S is linear. That is, we must prove that S is
additive and homogeneous.

For the additivity of S start by observing that if any vector x ∈ E
can be written as a difference of two positive vectors, say x = x1 − x2

with x1, x2 ∈ E+, then S(x) = T (x1) − T (x2) holds. To see this, fix any
x ∈ E and assume that x = x+ − x− = x1 − x2, where x1, x2 ∈ E+. Then
x+ + x2 = x1 + x−, and so the additivity of T on E+ yields

T (x+) + T (x2) = T (x+ + x2) = T (x1 + x−) = T (x1) + T (x−)
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or S(x) = T (x+) − T (x−) = T (x1) − T (x2). From this property, we can
easily establish that S is additive. Indeed, if x, y ∈ E, then note that

S(x + y) = S
(
x+ + y+ − (x− + y−)

)
= T (x+ + y+) − T (x− + y−)

= T (x+) + T (y+) − T (x−) − T (y−)

=
[
T (x+) − T (x−)

]
+
[
T (y+) − T (y−)

]
= S(x) + S(y) .

In particular, the additivity of S implies that S(rx) = rS(x) holds for all
x ∈ E and all rational numbers r.

It remains to show that S is homogeneous. For this, we need to prove
first that S is monotone. That is, x ≥ y in E implies S(x) ≥ S(y) in F .
Indeed, if x ≥ y, then x − y ∈ E+, and so by the additivity of S we get

S(x) = S
(
(x − y) + y

)
= S(x − y) + S(y) = T (x − y) + S(y) ≥ S(y) .

Now fix x ∈ E+ and let λ ≥ 0. Pick two sequences of non-negative rational
numbers {rn} and {tn} such that rn ↑ λ and tn ↓ λ. The inequalities
rnx ≤ λx ≤ tnx and the monotonicity of S imply

rnS(x) = S(rnx) ≤ S(λx) ≤ S(tnx) = tnS(x)

for each n. Using that F is Archimedean, we easily get λS(x) = S(λx).
Finally, if λ ∈ R and x ∈ E, then

S(λx) = S(λx+ + (−λ)x−) = S
(
λx+
)

+ S
(
(−λ)x−)

= λS(x+) − λS(x−) = λ
[
T (x+) − T (x−)

]
= λS(x) .

So, S is also homogeneous, and the proof is finished.

The preceding lemma is not true if F is not Archimedean.

Example 1.11. Let φ : R → R be an additive function that is not linear, i.e.,
not of the form φ(x) = cx, and let F be the lexicographic plane. Consider
the mapping T : R

+ → F+ defined by T (x) =
(
x, φ(x)

)
for each x in R

+.
Note that T is additive and that if T could be extended to an operator from
R to F , then φ should be linear.

Thus, a mapping T : E+ → F+ extends to a (unique) positive operator
from E to F if and only if T is additive on E+. In other words, a positive
operator is determined completely by its action on the positive cone of its
domain. In the sequel, the expression “the mapping T : E+ → F+ defines
a positive operator” will simply mean that T is additive on E+ (and hence
extendable by Theorem 1.10 to a unique positive operator).

The (real) vector space of all operators from E to F will be denoted by
L(E, F ). It is not difficult to see that L(E, F ) under the ordering T ≥ S
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whenever T −S is a positive operator (i.e., whenever T (x) ≥ S(x) holds for
all x ∈ E+) is an ordered vector space.

Definition 1.12. For an operator T : E → F between two Riesz spaces
we shall say that its modulus |T | exists (or that T possesses a modulus)
whenever

|T | := T ∨ (−T )
exists—in the sense that |T | is the supremum of the set {−T, T} in L(E, F ).

In order to study the elementary properties of the modulus, we need a
decomposition property of Riesz spaces.

Theorem 1.13 (The Decomposition Property). If |x| ≤ |y1+· · ·+yn| holds
in a Riesz space, then there exist x1, . . . , xn satisfying x = x1 + · · ·+xn and
|xi| ≤ |yi| for each i = 1, . . . , n. Moreover, if x is positive, then the xi also
can be chosen to be positive.

Proof. By using induction it is enough to establish the result when n = 2.
So, let |x| ≤ |y1 + y2|.

Put x1 =
[
x ∨ (−|y1|)

]
∧ |y1|, and observe that |x1| ≤ |y1| (and that

0 ≤ x1 ≤ x holds if x is positive). Now put x2 = x − x1 and observe that

x2 = x −
[
x ∨ (−|y1|)

]
∧ |y1| =

[
0 ∧ (x + |y1|)

]
∨ (x − |y1|) .

On the other hand, |x| ≤ |y1|+ |y2| implies −|y1|− |y2| ≤ x ≤ |y1|+ |y2|,
from which it follows that

−|y2| = (−|y2|) ∧ 0 ≤
(
x + |y1|

)
∧ 0 ≤ x2 ≤ 0 ∨

(
x − |y1|

)
≤ |y2| .

Thus, |x2| ≤ |y2| also holds, and the proof is finished.

An important case for the modulus to exist is described next.

Theorem 1.14. Let T : E → F be an operator between two Riesz spaces
such that sup

{
|Ty| : |y| ≤ x

}
exists in F for each x ∈ E+. Then the

modulus of T exists and

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
holds for all x ∈ E+.

Proof. Define S : E+ → F+ by S(x) = sup
{
|Ty| : |y| ≤ x

}
for each x in

E+. Since |y| ≤ x implies | ± y| = |y| ≤ x, it easily follows that we have
S(x) = sup

{
Ty : |y| ≤ x

}
for each x ∈ E+. We claim that S is additive.

To see this, let u, v ∈ E+. If |y| ≤ u and |z| ≤ v, then |y + z| ≤
|y| + |z| ≤ u + v, and so it follows from T (y) + T (z) = T (y + z) ≤ S(u + v)
that S(u) + S(v) ≤ S(u + v). On the other hand, if |y| ≤ u + v, then by
Theorem 1.13 there exist y1 and y2 with |y1| ≤ u, |y2| ≤ v, and y = y1 + y2.
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Then T (y) = T (y1) + T (y2) ≤ S(u) + S(v) holds, from which it follows that
S(u + v) ≤ S(u) + S(v). Therefore, S(u + v) = S(u) + S(v) holds. By
Theorem 1.10 the mapping S defines a positive operator from E to F .

To see that S is the supremum of {−T, T}, note first that T ≤ S
and −T ≤ S hold trivially in L(E, F ). Now assume that ±T ≤ R in
L(E, F ). Clearly, R is a positive operator. Fix x ∈ E+. If |y| ≤ x, then
note that

Ty = Ty+ − Ty− ≤ Ry+ + Ry− = R|y| ≤ Rx .

Therefore, S(x) ≤ R(x) holds for each x ∈ E+, and so S = T ∨ (−T ) holds
in L(E, F ).

It is easy to check, but important to observe, that if the modulus of an
operator T : E → F exists, then∣∣T (x)

∣∣ ≤ |T |
(
|x|
)

holds for all x ∈ E.
If x and y are two vectors in a Riesz space E with x ≤ y, then the order

interval [x, y] is the subset of E defined by

[x, y] :=
{
z ∈ E : x ≤ z ≤ y

}
.

A subset A of a Riesz space is said to be bounded above whenever there
exists some x satisfying y ≤ x for all y ∈ A. Similarly, a set A of a Riesz
space is bounded below whenever there exists some x satisfying y ≥ x for
all y ∈ A. Finally, a subset in a Riesz space is called order bounded if
it is bounded both above and below (or, equivalently, if it is included in an
order interval).

Besides L(E, F ), a number of other important vector subspaces of
L(E, F ) will be considered. The vector subspace Lb(E, F ) of all order
bounded operators from E to F will be of fundamental importance.

Definition 1.15. An operator T : E → F between two Riesz spaces is said
to be order bounded if it maps order bounded subsets of E to order bounded
subsets of F .

The vector space of all order bounded operators from E to F will be
denoted Lb(E, F ).

An operator T : E → F between two Riesz spaces is said to be regular
if it can be written as a difference of two positive operators. Of course,
this is equivalent to saying that there exists a positive operator S : E → F
satisfying T ≤ S.

Every positive operator is order bounded. Therefore, every regular oper-
ator is likewise order bounded. Thus, if Lr(E, F ) denotes the vector space of
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all regular operators (which is the same as the vector subspace generated by
the positive operators), then the following vector subspace inclusions hold:

Lr(E, F ) ⊆ Lb(E, F ) ⊆ L(E, F ) .

Of course, Lr(E, F ) and Lb(E, F ) with the ordering inherited from L(E, F )
are both ordered vector spaces. For brevity L(E, E), Lb(E, E), and Lr(E, E)
will be denoted by L(E), Lb(E) and Lr(E), respectively.

The inclusion Lr(E, F ) ⊆ Lb(E, F ) can be proper, as the next example
of H. P. Lotz (oral communication) shows.

Example 1.16 (Lotz). Consider the operator T : C[−1, 1] → C[−1, 1] de-
fined for each f ∈ C[−1, 1] by

Tf(t) = f
(
sin 1

t

)
− f
(
sin
(
t + 1

t

))
if 0 < |t| ≤ 1 and Tf(0) = 0. Note that the uniform continuity of f , coupled
with the inequality

∣∣sin(1
t ) − sin(t + 1

t )
∣∣ ≤ |t|, shows that Tf is indeed

continuous at zero, and so indeed Tf ∈ C[−1, 1] for each f ∈ C[−1, 1].
Next, observe that T [−1,1] ⊆ 2[−1,1] holds, where 1 denotes the con-

stant function one on [−1, 1]. Since for every f ∈ C[−1, 1] there exists some
λ > 0 with |f | ≤ λ1, it easily follows that T is an order bounded operator.

However, we claim that T is not a regular operator. To see this, assume
by way of contradiction that some positive operator S : C[−1, 1] → C[−1, 1]
satisfies T ≤ S. We claim that for each 0 ≤ f ∈ C[−1, 1] we have

[Sf ](0) ≥ f(t) for all t ∈ [−1, 1] . (�)

To establish this, fix 0 < f ∈ C[−1, 1], and let 0 < c < 2π. Also, for each
n ∈ N let tn = 1

c+2nπ and note that tn → 0. Next pick some gn ∈ C[−1, 1]
with 0 ≤ gn ≤ f such that gn(sin c) = f(sin c) and gn

(
sin(c + tn)

)
= 0.

Therefore,
[Sf ](tn) ≥ [Sgn](tn) ≥ [Tgn](tn) = f(sin c)

for all n, and so [Sf ](0) ≥ f(sin c) for all 0 < c < 2π, i.e., [Sf ](0) ≥ f(t) for
all t ∈ [−1, 1].

Now for each n, let Pn = {a0, a1, . . . , an} be a partition of [−1, 1] into
n subintervals. For each 1 ≤ i ≤ n pick some fi ∈ C[−1, 1] such that
0 ≤ fi ≤ 1, fi is zero outside the interval (ai−1, ai) and fi

(ai−1+ai

2

)
= 1.

Taking into account that
∑n

i=1 fi ≤ 1, it follows from (�) that

[S1](0) ≥
[
S
( n∑

i=1

fi

)]
(0) =

n∑
i=1

[Sfi](0) ≥ n

holds for each n, which is impossible. Thus, T is not a regular operator.
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Not every regular operator has a modulus. The next example of S. Ka-
plan [94] clarifies the situation.

Example 1.17 (Kaplan). Let c be the Riesz space of all convergent (real)
sequences, i.e., c =

{
(x1, x2, . . .) : limxn exists in R

}
. Consider the two

positive operators S, T : c → c defined by

S(x1, x2, . . .) =
(
x2, x1, x4, x3, x6, x5, . . .

)
and

T (x1, x2, . . .) =
(
x1, x1, x3, x3, x5, x5, . . .

)
.

We claim the modulus of the regular operator R = S − T does not exist.
To this end, assume by way of contradiction that the modulus |R| exists.

Let Pn : c → c be the positive operator defined by

Pn(x1, . . . , xn−1, xn, xn+1, . . .) = (x1, . . . , xn−1, 0, xn+1, . . .) .

Then ±R ≤ |R|P2n ≤ |R| holds, and so |R|P2n = |R| holds for each n. This
means that the image under |R| of every element of c has its even components
zero. On the other hand, if en is the sequence whose nth component is one
and every other zero and e = (1, 1, 1, . . .), then it follows from the inequalities

−R(en) ≤ |R|en ≤ |R|e
that the odd components of |R|e are greater than or equal to one, and hence
|R|e /∈ c. Therefore, |R| does not exist, as claimed.

A Riesz space is called Dedekind complete whenever every nonempty
bounded above subset has a supremum (or, equivalently, whenever every
nonempty bounded below subset has an infimum). A Riesz space E is De-
dekind complete if and only if 0 ≤ xα ↑≤ x implies the existence of sup{xα}.
Similarly, a Riesz space is said to be Dedekind σ-complete if every count-
able subset that is bounded above has a supremum (or, equivalently, when-
ever 0 ≤ xn ↑≤ x implies the existence of sup{xn}. The Lp-spaces are
examples of Dedekind complete Riesz spaces.

When F is Dedekind complete, the ordered vector space Lb(E, F ) has
the structure of a Riesz space. This important result was established first by
F. Riesz [166] for the special case F = R, and later L. V. Kantorovich [90,
91] extended it to the general setting.

Theorem 1.18 (F. Riesz–Kantorovich). If E and F are Riesz spaces with
F Dedekind complete, then the ordered vector space Lb(E, F ) is a Dedekind
complete Riesz space. Its lattice operations satisfy

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
,

[S ∨ T ](x) = sup
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
, and

[S ∧ T ](x) = inf
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
for all S, T ∈ Lb(E, F ) and x ∈ E+.
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In addition, Tα ↓ 0 in Lb(E, F ) if and only if Tα(x) ↓ 0 in F for each
x ∈ E+.

Proof. Fix T ∈ Lb(E, F ). Since T is order bounded,

sup
{
|Ty| : |y| ≤ x

}
= sup

{
Ty : |y| ≤ x

}
= sup T [−x, x]

exists in F for each x ∈ E+, and so by Theorem 1.14 the modulus of T
exists, and moreover

|T |(x) = sup
{
Ty : |y| ≤ x

}
.

From Theorem 1.7 we see that Lb(E, F ) is a Riesz space.
Now let S, T ∈ Lb(E, F ) and x ∈ E+. By observing that y, z ∈ E+

satisfy y + z = x if and only if there exists some |u| ≤ x with y = 1
2(x + u)

and z = 1
2(x − u), it follows from Theorem 1.7 that

[S ∨ T ](x) = 1
2

(
Sx + Tx + |S − T |x)

= 1
2

(
Sx + Tx + sup{(S − T )u : |u| ≤ x}

)
= 1

2 sup
{
Sx + Su + Tx − Tu : |u| ≤ x

}
= sup

{
S
(

1
2(x + u)

)
+ T
(

1
2(x − u)

)
: |u| ≤ x

}
= sup

{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
.

The formula for S ∧ T can be proven in a similar manner.
Finally, we establish that Lb(E, F ) is Dedekind complete. To this end,

assume that 0 ≤ Tα ↑≤ T holds in Lb(E, F ). For each x ∈ E+ let S(x) =
sup{Tα(x)} and note that Tα(x) ↑ S(x). From Tα(x+y) = Tα(x)+Tα(y), it
follows (by taking order limits) that the mapping S : E+ → F+ is additive,
and so S defines a positive operator from E to F . Clearly, Tα ↑ S holds in
Lb(E, F ), proving that Lb(E, F ) is a Dedekind complete Riesz space.

From the preceding discussion it follows that when E and F are Riesz
spaces with F Dedekind complete, then each order bounded operator
T : E → F satisfies

T+(x) = sup
{
Ty : 0 ≤ y ≤ x

}
, and

T−(x) = sup
{
−Ty : 0 ≤ y ≤ x

}
for each x ∈ E+. From T = T+ − T−, it follows that Lb(E, F ) coincides
with the vector subspace generated by the positive operators in L(E, F ). In
other words, when F is Dedekind complete we have Lr(E, F ) = Lb(E, F ).

Recall that a subset D of a Riesz space is said to be directed upward
(in symbols D ↑) whenever for each pair x, y ∈ D there exists some z ∈ D
with x ≤ z and y ≤ z. The symbol D ↑ x means that D is directed upward
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and x = sup D holds. The meanings of D↓ and D ↓ x are analogous. Also,
the symbol D ≤ x means that y ≤ x holds for all y ∈ D.

The existence of the supremum of an upward directed subset of Lb(E, F )
is characterized as follows.

Theorem 1.19. Let E and F be two Riesz spaces with F Dedekind complete,
and let D be a nonempty subset of Lb(E, F ) satisfying D ↑ . Then sup D
exists in Lb(E, F ) if and only if the set {T (x) : T ∈ D} is bounded above
in F for each x ∈ E+. In this case,

[supD](x) = sup
{
T (x) : T ∈ D

}
holds for all x ∈ E+.

Proof. the “only if” part is trivial. The “if” part needs proof. So, assume
that D ↑ holds in Lb(E, F ) and that the set {T (x) : T ∈ D} is bounded
above in F for each x ∈ E+. It is easy to see that without loss of generality
we can assume that D ⊆ L+

b (E, F ). Define S : E+ → F+ by

S(x) = sup
{
T (x) : T ∈ D

}
,

and we claim that S is additive. To see this, let x, y ∈ E+. Since for
each T ∈ D we have T (x + y) = T (x) + T (y) ≤ S(x) + S(y), we see that
S(x + y) ≤ S(x) + S(y) holds. On the other hand, if T1, T2 ∈ D, then pick
T3 ∈ D satisfying T1 ≤ T3 and T2 ≤ T3, and note that

T1(x) + T2(y) ≤ T3(x) + T3(y) = T3(x + y) ≤ S(x + y)

implies S(x) + S(y) ≤ S(x + y). Therefore, S(x + y) = S(x) + S(y) holds,
and so S is additive. By Theorem 1.10 the mapping S defines a positive
operator from E to F , and a routine argument shows that S = sup D holds
in Lb(E, F ).

Our next objective is to describe the lattice operations of Lb(E, F ) in
terms of directed sets. To do this, we need a result from the theory of
Riesz spaces known as the Riesz Decomposition Property; it is due to
F. Riesz [167].

Theorem 1.20 (The Riesz Decomposition Property). Let x1, . . . , xn and
y1, . . . , ym be positive vectors in a Riesz space. If

n∑
i=1

xi =
m∑

j=1

yj

holds, then there exists a finite subset {zij : i = 1, . . . , n; j = 1, . . . , m} of
positive vectors such that

xi =
m∑

j=1

zij , for each i = 1, . . . , n ,
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and

yj =
n∑

i=1

zij , for each j = 1, . . . , m .

Proof. We shall use induction on m. For m = 1 the desired conclusion
follows from Theorem 1.13. Thus, assume the result to be true for some m
and all n = 1, 2, . . . . Let

n∑
i=1

xi =
m+1∑
j=1

yj ,

where the vectors xi and the yj are all positive. Since
∑m

j=1 yj ≤
∑n

i=1 xi

holds, it follows from Theorem 1.13 that there exist vectors u1, . . . , un sat-
isfying 0 ≤ ui ≤ xi for each i = 1, . . . , n and

∑n
i=1 ui =

∑m
j=1 yj . There-

fore, from our induction hypothesis, there exists a set of positive vectors
{zij : i = 1, . . . , n; j = 1, . . . , m} such that:

ui =
m∑

j=1

zij for i = 1, . . . , n and yj =
n∑

i=1

zij for j = 1, . . . , m .

For each i = 1, . . . , n put zi,m+1 = xi − ui ≥ 0 and note that the collection
of positive vectors

{
zij : i = 1, . . . , n; j = 1, . . . , m + 1

}
satisfies

xi =
m+1∑
j=1

zij for i = 1, . . . , n and yj =
n∑

i=1

zij for j = 1, . . . , m + 1 .

Thus, the conclusion is valid for m + 1 and all n = 1, 2, . . ., and the proof is
finished.

We are now in a position to express the lattice operations of Lb(E, F )
in terms of directed sets.

Theorem 1.21. If E and F are two Riesz spaces with F Dedekind complete,
then for all S, T ∈ Lb(E, F ) and each x ∈ E+ we have:

(1)
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∈ E+ and
n∑

i=1

xi = x
}

↑ [S ∨ T ](x) .

(2)
{ n∑

i=1

S(xi) ∧ T (xi) : xi ∈ E+ and
n∑

i=1

xi = x
}

↓ [S ∧ T ](x) .

(3)
{ n∑

i=1

|T (xi)| : xi ∈ E+ and
n∑

i=1

xi = x
}

↑ |T |(x) .
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Proof. (1) Consider the set

D =
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∈ E+ for each i and
n∑

i=1

xi = x
}

.

Since
∑n

i=1 xi = x with each xi ∈ E+ implies

n∑
i=1

S(xi) ∨ T (xi) ≤
n∑

i=1

[
(S ∨ T )xi

]
∨
[
(S ∨ T )xi

]
= [S ∨ T ](x) ,

we see that D ≤ [S ∨ T ](x). On the other hand, if D ≤ u holds, then for
each y, z ∈ E+ with y + z = x we have

S(y) + T (z) ≤ S(y) ∨ T (y) + S(z) ∨ T (z) ≤ u ,

and consequently

[S ∨ T ](x) = sup
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
≤ u .

Thus, sup D = [S ∨ T ](x), and it remains to be shown that D is directed
upward.

To this end, let x =
∑n

i=1 xi =
∑m

j=1 yj with all the xi and yj in E+. By
Theorem 1.20 there exists a finite collection {zij : i = 1, . . . , n; j = 1, . . . , m}
of positive vectors such that

xi =
m∑

j=1

zij , for each i = 1, . . . , n ,

and

yj =
n∑

i=1

zij , for each j = 1, . . . , m .
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In particular, we have
∑n

i=1

∑m
j=1 zij = x. On the other hand, using the

lattice identity x ∨ y = 1
2(x + y + |x − y|), we see that

n∑
i=1

S(xi) ∨ T (xi)

= 1
2

n∑
i=1

[
S(xi) + T (xi) + |S(xi) − T (xi)|

]

= 1
2

n∑
i=1

[ m∑
j=1

S(zij) +
m∑

j=1

T (zij) +
∣∣∣

m∑
j=1

{
S(zij) − T (zij)

}∣∣∣
]

≤ 1
2

n∑
i=1

[ m∑
j=1

{
S(zij) + T (zij) + |S(zij) − T (zij)|

}]

=
n∑

i=1

m∑
j=1

S(zij) ∨ T (zij) .

Similarly,
m∑

j=1

S(yj) ∨ T (yj) ≤
n∑

i=1

m∑
j=1

S(zij) ∨ T (zij)

holds, and so D is directed upward.
(2) Use (1) in conjunction with the identity T ∧ S = −

[
(−S) ∨ (−T )

]
.

(3) Use (1) and the identity |T | = T ∨ (−T ).

The next result presents an interesting local approximation property of
positive operators.

Theorem 1.22. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind σ-complete. Then for each x ∈ E+ there exists a
positive operator S : E → F such that:

(1) 0 ≤ S ≤ T .

(2) S(x) = T (x).

(3) S(y) = 0 for all y ⊥ x.

Proof. Let x ∈ E+ be fixed and define S : E+ → F+ by

S(y) = sup
{
T (y ∧ nx) : n = 1, 2, . . .

}
.

(The supremum exists since F is Dedekind σ-complete and the sequence
{T (y ∧ nx)} is bounded above in F by Ty.) We claim that S is additive.

To see this, let y, z ∈ E+. From (y + z) ∧ nx ≤ y ∧ nx + z ∧ nx we get

T
(
(y + z) ∧ nx

)
≤ T (y ∧ nx) + T (z ∧ nx) ≤ S(y) + S(z) ,
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and so S(y + z) ≤ S(y) + S(z). On the other hand, for each m and n we
have y ∧ nx + z ∧ mx ≤ (y + z) ∧ (n + m)x, and thus

T (y ∧ nx) + T (z ∧ mx) ≤ T
(
y + z) ∧ (n + m)x

)
≤ S(y + z)

holds for all n and m. This implies S(y) + S(z) ≤ S(y + z), and hence
S(y + z) = S(y) + S(z), so that S is additive.

By Theorem 1.10 the mapping S extends uniquely to all of E as a positive
operator. Now it is a routine matter to verify that the operator S satisfies
the desired properties.

As an application of the preceding result let us derive some formulas that
are in some sense the “dual” formulas to those stated after Theorem 1.18.

Theorem 1.23. If T : E → F is a positive operator between two Riesz
spaces with F Dedekind σ-complete, then for each x ∈ E we have:

T (x+) = max
{
S(x) : S ∈ L(E, F ) and 0 ≤ S ≤ T

}
.

T (x−) = max
{
−S(x) : S ∈ L(E, F ) and 0 ≤ S ≤ T

}
.

T (|x|) = max
{
S(x) : S ∈ L(E, F ) and − T ≤ S ≤ T

}
.

Proof. (1) Let x ∈ E be fixed. By Theorem 1.22 there exists a positive
operator R : E → F such that 0 ≤ R ≤ T , R(x+) = T (x+), and R(x−) = 0.
Therefore, T (x+) = R(x). On the other hand, if S ∈ L(E, F ) satisfies
0 ≤ S ≤ T , then we have S(x) ≤ S(x+) ≤ T (x+), and the conclusion
follows.

(2) Apply (1) to the identity x− = (−x)+.

(3) If the operator S : E → F satisfies −T ≤ S ≤ T , then

S(x) = S(x+) − S(x−) ≤ T (x+) + T (x−) = T (|x|)
holds. On the other hand, according to Theorem 1.22, there exist two posi-
tive operators R1, R2 : E → F bounded by T such that:

(a) R1(x+) = T (x+) and R1(x−) = 0.

(b) R2(x−) = T (x−) and R2(x+) = 0.

Then the operator S = R1 − R2 satisfies −T ≤ S ≤ T and T (|x|) = S(x),
and the desired conclusion follows.

Now let {Ei : i ∈ I} be a family of Riesz spaces. Then it is not difficult
to check that the Cartesian product ΠEi, under the ordering {xi} ≥ {yi}
whenever xi ≥ yi holds in Ei for each i ∈ I, is a Riesz space. Clearly, if
x = {xi} and y = {yi} are vectors of ΠEi, then

x ∨ y = {xi ∨ yi} and x ∧ y = {xi ∧ yi} .
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The direct sum Σ⊕Ei (or more formally Σi∈I ⊕Ei) is the vector subspace
of ΠEi consisting of all vectors x = {xi} for which xi = 0 holds for all
but a finite number of indices i. With the pointwise algebraic and lattice
operations Σ ⊕ Ei is a Riesz subspace of ΠEi (and hence a Riesz space in
its own right). Note that if, in addition, each Ei is Dedekind complete, then
ΠEi and Σ ⊕ Ei are likewise both Dedekind complete Riesz spaces.

It is not difficult to see that every operator T : Σ⊕Ei → Σ⊕Fj between
two direct sums of families of Riesz spaces can be represented by a matrix
T = [Tji], where Tji : Ei → Fj are operators defined appropriately. Some-
times it pays to know that the algebraic and lattice operations represented
by matrices are the pointwise ones. The next result (whose easy proof is left
for the reader) clarifies the situation.

Theorem 1.24. Let {Ei : i ∈ I} and {Fj : j ∈ J} be two families of Riesz
spaces with each Fj Dedekind complete. If S = [Sji] and T = [Tji] are order
bounded operators from Σ ⊕ Ei to Σ ⊕ Fj, then

(1) S + T = [Sji + Tji] and λS = [λSji], and

(2) S ∨ T = [Sji ∨ Tji] and S ∧ T = [Sji ∧ Tji]

hold in Lb(Σ ⊕ Ei, Σ ⊕ Fj).

Exercises

1. Let E be an Archimedean Riesz space and let A ⊆ R be nonempty and
bounded above. Show that for each x ∈ E+ the supremum of the set
Ax := {αx : α ∈ A} exists and sup(Ax) = (sup A)x.

2. Show that in a Riesz space x ⊥ y implies
(a) αx ⊥ βy for all α, β ∈ R, and
(b) |x + y| = |x| + |y|.

Use the conclusion in (b) to establish that if in a Riesz space the
nonzero vectors x1, . . . , xn are pairwise disjoint, then x1, . . . , xn are lin-
early independent. [Hint : If |x| ∧ |y| = 0, then

|x + y| ≥
∣∣|x| − |y|

∣∣ = |x| ∨ |y| − |x| ∧ |y|
= |x| ∨ |y| + |x| ∧ |y| = |x| + |y| ≥ |x + y| .]

3. In this exercise we ask you to complete the missing details in Exam-
ple 1.11. Let G be the lexicographic plane. (That is, we con-
sider G = R

2 as a Riesz space under the lexicographic ordering
(x1, x2) ≥ (y1, y2) whenever either x1 > y1 or else x1 = y1 and x2 ≥ y2.)
Also, let φ : R → R be an additive function that is not linear (i.e., not of
the form φ(x) = cx).

Show that the mapping T : R
+ → G+ defined by

T (x) = (x, φ(x))
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is additive but that it cannot be extended to a positive operator from R

to G. Why does this not contradict Theorem 1.10?

4. Let E and F be two Riesz spaces with F Dedekind complete, and let A
be a nonempty subset of Lb(E,F ). Show that supA exists in Lb(E,F )
if and only if for each x ∈ E+ the set

{
(
∨n

i=1 Ti)x : T1, . . . , Tn ∈ A
}

is
bounded above in F .

5. Consider the positive operators S, T : L1[0, 1] → L1[0, 1] defined by

S(f) = f and T (f) =
[∫ 1

0

f(x) dx
]
· 1 ,

where 1 is the constant function one. Show that S ∧ T = 0.

6. Let E and F be two Riesz spaces with F Dedekind complete. Then for
each T ∈ Lb(E,F ) and each x ∈ E+ show that:

T+(x) = sup
{
(Ty)+ : 0 ≤ y ≤ x

}
.

T−(x) = sup
{
(Ty)− : 0 ≤ y ≤ x

}
.

7. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. If x, y ∈ E, then show that:
(a) T (x ∨ y) = max

{
Rx + Sy : R,S ∈ L+

b (E,F ) and R + S = T
}

.
(b) T (x ∧ y) = min

{
Rx + Sy : R,S ∈ L+

b (E,F ) and R + S = T
}

.

8. If 0 < p < 1, then show that the only positive operator from Lp[0, 1] to
C[0, 1] is the zero operator.

9. Consider the continuous function g : [0, 1] → [0, 1] defined by g(x) = x
if 0 ≤ x ≤ 1

2 and g(x) = 1
2 if 1

2 < x ≤ 1. Now define the operator
T : C[0, 1] → C[0, 1] by [Tf ](x) = f

(
g(x)
)
− f
(

1
2

)
.

Show that T is a regular operator whose modulus does not exist.

10. Let T : C[0, 1] → C[0, 1] be the regular operator defined by

[Tf ](x) = f(sin x) − f(cos x) .

Show that T+ and T− both exist and that

[T+f ](x) = f(sin x) and [T−f ](x) = f(cos x) .

11. For each n ≥ 2 fix a continuous function en : [0, 1] → [0, 1] such that:
(a) 0 ≤ en ≤ 1.
(b) en = 0 outside

[
1
2 + 1

n+1 , 1
2 + 1

n

]
.

(c) en(x) = 1 for some x ∈
[
1
2 + 1

n+1 , 1
2 + 1

n

]
.

Now define the operator T : C[0, 1] → C[0, 1] by

Tf =
∞∑

n=2

[∫ 1

0

f(x) sin(nπx) dx
]
en .

Show that T is indeed an operator from C[0, 1] to C[0, 1], that T is a
regular operator, and that its modulus does not exist.

12. Prove Theorem 1.24.
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1.2. Extensions of Positive Operators

In this section we shall gather some basic extension theorems for operators,
and, in particular, for positive operators.

A function p : G → F , where G is a (real) vector space and F is an
ordered vector space, is called sublinear whenever

(a) p(x + y) ≤ p(x) + p(y) for all x, y ∈ G, and
(b) p(λx) = λp(x) for all x ∈ G and all λ ≥ 0.

The next result is the most general version of the classical Hahn–Banach
extension theorem. This theorem plays a fundamental role in modern analy-
sis and without any doubt it will be of great importance to us here. It is
due to H. Hahn [74] and S. Banach [30].

Theorem 1.25 (Hahn–Banach). Let G be a (real) vector space, F a Dede-
kind complete Riesz space, and let p : G → F be a sublinear function. If H is
a vector subspace of G and S : H → F is an operator satisfying S(x) ≤ p(x)
for all x ∈ H, then there exists some operator T : G → F such that:

(1) T = S on H, i.e., T is a linear extension of S to all of G.
(2) T (x) ≤ p(x) holds for all x ∈ G.

Proof. The critical step is to show that S has a linear extension satisfying
(2) on an arbitrary vector subspace generated by H and one extra vector. If
this is done, then an application of Zorn’s lemma guarantees the existence
of an extension of S to all of G with the desired properties.

To this end, let x /∈ H, and let V =
{
y + λx : y ∈ H and λ ∈ R

}
. If

T : V → F is a linear extension of S, then

T (y + λx) = S(y) + λT (x)

must hold true for all y ∈ H and all λ ∈ R. Put z = T (x). To complete the
proof, we must establish the existence of some z ∈ F such that

S(y) + λz ≤ p(y + λx) (�)

holds for all y ∈ H and λ ∈ R. For λ > 0, (�) is equivalent to

S(y) + z ≤ p(y + x)

for all y ∈ H, while for λ < 0 the inequality (�) is equivalent to

S(y) − z ≤ p(y − x)

for all y ∈ H. The last two inequalities certainly will be satisfied by a choice
of z for which

S(y) − p(y − x) ≤ z ≤ p(u + x) − S(u) (��)

holds for all y, u ∈ H.
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To see that there exists some z ∈ F satisfying (��), start by observing
that for each y, u ∈ H we have

S(y) + S(u) = S(y + u) ≤ p(y + u) = p
(
y − x + (u + x)

)
≤ p(y − x) + p(u + x) ,

and so
S(y) − p(y − x) ≤ p(u + x) − S(u)

holds for all y, u ∈ H. This inequality in conjunction with the Dedekind
completeness of F guarantees that both suprema

s = sup
{
S(y)− p(y−x) : y ∈ H

}
and t = inf

{
p(u + x)−S(u) : u ∈ H

}
exist in F , and satisfy s ≤ t. Now any z ∈ F satisfying s ≤ z ≤ t (for
instance z = s) satisfies (��), and hence (�). This complete the proof of the
theorem.

Recall that a vector subspace G of a Riesz space E is said to be a Riesz
subspace (or a vector sublattice) whenever G is closed under the lattice
operations of E, i.e., whenever for each pair x, y ∈ G the vector x∨y (taken
in E) belongs to G.

As a first application of the Hahn–Banach extension theorem we present
the following useful extension property of positive operators.

Theorem 1.26. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind complete. Assume also that G is a Riesz subspace
of E and that S : G → F is an operator satisfying 0 ≤ Sx ≤ Tx for all
x ∈ G+. Then S can be extended to a positive operator from E to F such
that 0 ≤ S ≤ T holds in L(E, F ).

Proof. Define p : E → F by p(x) = T (x+), and note that p is sublinear
and satisfies S(x) ≤ p(x) for all x ∈ G. By Theorem 1.25 there exists a
linear extension of S to all of E (which we denote by S again) satisfying
S(x) ≤ p(x) for all x ∈ E. Now if x ∈ E+, then

−S(x) = S(−x) ≤ p(−x) = T
(
(−x)+

)
= T (0) = 0 ,

and so 0 ≤ S(x) ≤ p(x) = T (x) holds, as desired.

The rest of the section is devoted to extension properties of positive
operators. The first result of this kind informs us that a positive operator
whose domain is a Riesz subspace extends to a positive operator if and only
if it is dominated by a monotone sublinear mapping. As usual, a mapping
f : E → F between two ordered vector spaces is called monotone whenever
x ≤ y in E implies f(x) ≤ f(y) in F .
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Theorem 1.27. Let E and F be Riesz spaces with F Dedekind complete.
If G is a Riesz subspace of E and T : G → F is a positive operator, then the
following statements are equivalent.

(1) T extends to a positive operator from E to F .
(2) T extends to an order bounded operator from E to F .
(3) There exists a monotone sublinear mapping p : E → F satisfying

T (x) ≤ p(x) for all x ∈ G.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let S ∈ Lb(E, F ) satisfy S(x) = T (x) for all x ∈ G. Then
the mapping p : E → F defined by p(x) = |S|(x+) is monotone, sublinear
and satisfies

T (x) ≤ T (x+) = S(x+) ≤ |S|(x+) = p(x)
for all x ∈ G.

(3) =⇒ (1) Let p : E → F be a monotone sublinear mapping satisfying
T (x) ≤ p(x) for all x ∈ G. Then the formula q(x) = p(x+) defines a
sublinear mapping from E to F such that

T (x) ≤ T (x+) ≤ p(x+) = q(x)

holds for all x ∈ G. Thus, by the Hahn–Banach Extension Theorem 1.25
there exists an extension R ∈ L(E, F ) of T satisfying R(x) ≤ q(x) for all
x ∈ E. In particular, if x ∈ E+, then the relation

−R(x) = R(−x) ≤ q(−x) = p
(
(−x)+

)
= p(0) = 0

implies R(x) ≥ 0. That is, R is a positive linear extension of T to all of E,
and the proof is finished.

A subset A of a Riesz space is called solid whenever |x| ≤ |y| and y ∈ A
imply x ∈ A. A solid vector subspace of a Riesz space is referred to as
an ideal. From the lattice identity x ∨ y = 1

2(x + y + |x − y|), it follows
immediately that every ideal is a Riesz subspace.

The next result deals with restrictions of positive operators to ideals.

Theorem 1.28. If T : E → F is a positive operator between two Riesz
spaces with F Dedekind complete, then for every ideal A of E the formula

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
, x ∈ E+ ,

defines a positive operator from E to F . Moreover, we have:

(a) 0 ≤ TA ≤ T .
(b) TA = T on A and TA = 0 on Ad.
(c) If B is another ideal with A ⊆ B, then TA ≤ TB holds.
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Proof. Note first that

TA(x) = sup
{
T (x ∧ y) : y ∈ A+

}
holds for all x ∈ E+. According to Theorem 1.10 it suffices to show that TA

is additive on E+.
To this end, let x, y ∈ E+. If z ∈ A+, then the inequality

(x + y) ∧ z ≤ x ∧ z + y ∧ z

implies that T
(
(x + y) ∧ z

)
≤ T (x ∧ z) + T (y ∧ z) ≤ TA(x) + TA(y), and

hence
TA(x + y) ≤ TA(x) + TA(y) .

On the other hand, the inequality x ∧ u + y ∧ v ≤ (x + y) ∧ (u + v) implies

TA(x) + TA(y) ≤ TA(x + y) .

Therefore, TA(x + y) = TA(x) + TA(y) holds, so that TA is additive on E+.
Properties (1)–(3) are now easy consequences of the formula defining the

operator TA.

As mentioned before, if G is a vector subspace of an ordered vector space
and F is another ordered vector space, then it is standard to call an operator
T : G → F positive whenever 0 ≤ x ∈ G implies 0 ≤ T (x) ∈ F .

Now consider a positive operator T : G → F , where G is a vector sub-
space of an ordered vector space E and F is a Dedekind complete Riesz
space. We shall denote by E(T ) the collection of all positive extensions of T
to all of E. That is,

E(T ) :=
{
S ∈ L(E, F ) : S ≥ 0 and S = T on G

}
.

The set E(T ) is always a convex subset of L(E, F ), i.e. λS+(1−λ)R ∈ E(T )
holds for all S, R ∈ E(T ) and all 0 ≤ λ ≤ 1. The set E(T ) might happen to
be empty. The next example presents such a case.

Example 1.29. Let E = Lp[0, 1] with 0 < p < 1 and let G = L1[0, 1].
Clearly, G ⊆ E and G is an ideal of E. (Here f ≥ g means that f(x) ≥ g(x)
holds for almost all x with respect to the Lebesgue measure.)

Now consider the operator T : G → R defined by

T (f) =
∫ 1

0
f(x) dx .

We claim that T does not have a positive linear extension to all of E. To
see this, assume by way of contradiction that T is extendable to a positive
operator from E to R. In particular, this implies that if f ∈ E is defined by
f(x) = 1

x , then the set of real numbers

D =
{
T (g) : g ∈ G and 0 ≤ g ≤ f

}
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is bounded. on the other hand, if gn = fχ( 1
n

,1), then T (gn) = lnn ∈ D holds
for each n. Therefore, D must be unbounded, a contradiction. Consequently,
in this case we have E(T ) = �©.

A positive operator T : G → F (where G is a vector subspace of an
ordered vector space E) is said to have a smallest extension whenever
there exists some S ∈ E(T ) satisfying S ≤ R for all R ∈ E(T ), in which case
S is called the smallest extension of T . In other words, T has a smallest
extension if and only if min E(T ) exists in L(E, F ).

It turns out that an extendable positive operator whose domain is an
ideal always has a smallest extension.

Theorem 1.30. Let E and F be two Riesz spaces with F Dedekind complete,
let A be an ideal of E, and let T : A → F be a positive operator. If E(T ) �= �©,
then T has a smallest extension. Moreover, if in this case S = min E(T ),
then

S(x) = sup
{
Ty : y ∈ A and 0 ≤ y ≤ x

}
holds for all x ∈ E+.

Proof. Since T has (at least) one positive extension, the formula

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
, x ∈ E+ ,

defines a positive operator from E to F satisfying TA = T on A, and so
TA ∈ E(T ). (See the proof of Theorem 1.28.)

Now if S ∈ E(T ), then S = T holds on A, and hence TA = SA ≤ S.
Therefore, TA = min E(T ) holds, as desired.

For a positive operator T : E → F with F Dedekind complete, Theo-
rem 1.30 implies that for each ideal A of E the positive operator TA is the
smallest extension of the restriction of T to A.

Among the important points of a convex set are its extreme points.
Recall that a vector e of a convex set C is said to be an extreme point of
C whenever the expression e = λx + (1 − λ)y with x, y ∈ C and 0 < λ < 1
implies x = y = e.

The extreme points of the convex set E(T ) have been characterized by
Z. Lipecki, D. Plachky, and W. Thomsen [116] as follows.

Theorem 1.31 (Lipecki–Plachky–Thomsen). Let E and F be two Riesz
spaces with F a Dedekind complete. If G is a vector subspace of E and
T : G → F is a positive operator, then for an operator S ∈ E(T ) the following
statements are equivalent:

(1) S is an extreme point of E(T ).
(2) For each x ∈ E we have inf

{
S(|x − y|) : y ∈ G

}
= 0.
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Proof. (1) =⇒ (2) Let S be an extreme point of E(T ). Define the mapping
p : E → F for each x ∈ E by

p(x) = inf
{
S(|x − y|) : y ∈ G

}
.

Clearly, p is a sublinear mapping that satisfies 0 ≤ p(x) = p(−x) ≤ S|x| for
all x ∈ E, and p(y) = 0 for each y ∈ G.

Next, we claim that p(x) = 0 holds for all x ∈ E. To see this, assume by
way of contradiction that p(x) > 0 holds for some x ∈ E. Define the operator
R : {λx : λ ∈ R} → F by R(λx) = λp(x), and note that R(λx) ≤ p(λx)
holds. So, by the Hahn–Banach Extension Theorem 1.25, the operator R
has a linear extension to all of E (which we shall denote by R again) such
that R(z) ≤ p(z) holds for all z ∈ E; clearly, R �= 0. It is easy to see that
|R(z)| ≤ p(z) for all z ∈ E, and so R(y) = 0 for all y ∈ G. Since for each
z ≥ 0 we have R(z) ≤ p(z) ≤ S(|z|) = S(z) and

−R(z) = R(−z) ≤ p(−z) ≤ S(| − z|) = S(z) ,

it easily follows that S −R ≥ 0 and S + R ≥ 0 both hold. Thus, S −R and
S + R both belong to E(T ). Now the identity

S = 1
2(S − R) + 1

2(S + R) ,

in conjunction with S − R �= S and S + R �= S, shows that S is not an
extreme point of E(T ), a contradiction. Thus, p(x) = 0 holds for each
x ∈ E, as desired.

(2) =⇒ (1) Let S satisfy (2) and assume that S = λQ + (1 − λ)R with
Q, R ∈ E(T ) and 0 < λ < 1. Then for each x, y ∈ E we have∣∣Q(x) − Q(y)

∣∣ ≤ Q|x − y| =
(

1
λS − 1−λ

λ R
)
|x − y| ≤ 1

λS|x − y| .

In particular, if x ∈ E and y ∈ G, then from S(y) = Q(y) = T (y) it follows
that∣∣S(x) − Q(x)

∣∣ ≤ ∣∣S(x) − S(y)
∣∣+ ∣∣Q(y) − Q(x)

∣∣ ≤ (1 + 1
λ

)
S|x − y| .

Taking into account our hypothesis, the last inequality yields S(x) = Q(x)
for each x ∈ E, and this shows that S is an extreme point of E(T ).

Let us say that a vector subspace G of an ordered vector space E is
majorizing E whenever for each x ∈ E there exists some y ∈ G with x ≤ y
(or, equivalently, if for each x ∈ E there exists some y ∈ G with y ≤ x).

It is important to know that every positive operator whose domain is
a majorizing vector subspace and whose values are in a Dedekind complete
Riesz space always has a positive extension. This is a classical result due to
L. V. Kantorovich [90].
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Theorem 1.32 (Kantorovich). Let E and F be two ordered vector spaces
with F a Dedekind complete Riesz space. If G is a majorizing vector subspace
of E and T : G → F is a positive operator, then T has a positive linear
extension to all of E.

Proof. Fix x ∈ E and let y ∈ G satisfy x ≤ y. Since G is majorizing there
exists a vector u ∈ G with u ≤ x. Hence, u ≤ y and the positivity of T
implies T (u) ≤ T (y) for all y ∈ G with x ≤ y. In particular, it follows that
inf
{
T (y) : y ∈ G and x ≤ y

}
exists in F for each x ∈ E. Thus, a mapping

p : E → F can be defined via the formula

p(x) = inf
{
T (y) : y ∈ G and x ≤ y

}
.

Clearly, T (x) = p(x) holds for each x ∈ G and an easy argument shows that
p is also sublinear.

Now, by the Hahn–Banach Extension Theorem 1.25, the operator T has
a linear extension S to all of E satisfying S(z) ≤ p(z) for each z ∈ E. If
z ∈ E+, then −z ≤ 0, and so from

−S(z) = S(−z) ≤ p(−z) ≤ T (0) = 0 ,

we see that S(z) ≥ 0. This shows that S is a positive linear extension of T
to all of E.

It is a remarkable fact that in case the domain of a positive operator T
is a majorizing vector subspace, then the convex set E(T ) is not merely non-
empty but it also has extreme points. This result is due to Z. Lipecki [115].

Theorem 1.33 (Lipecki). Let E and F be two Riesz spaces with F Dedekind
complete. If G is a majorizing vector subspace of E and T : G → F is a
positive operator, then the nonempty convex set E(T ) has an extreme point.

Proof. According to Theorem 1.31 we must establish the existence of some
S ∈ E(T ) satisfying

inf
{
S
(
|x − y|

)
: y ∈ G

}
= 0

for all x ∈ E.
Start by considering pairs (H, S) where H is a vector subspace majoriz-

ing E and S : H → F is a positive operator. For every such pair (H, S)
define pH,S : E → F by

pH,S (x) = inf
{
S(y) : y ∈ H and x ≤ y

}
.

It should be clear that pH,S is a sublinear mapping satisfying pH,S (y) = S(y)
for every y ∈ H. In addition, if (H1, S1) and (H2, S2) satisfy H1 ⊆ H2 and
S2 = S1 on H1, then pH2,S2

(x) ≤ pH1,S1
(x) holds for all x ∈ E.

Now let C be the collection of all pairs (H, S) such that:



30 1. The Order Structure of Positive Operators

(1) H is a vector subspace of E with G ⊆ H (and so H majorizes E).

(2) S : H → F is a positive operator with S = T on G.

(3) inf
{
pH,S

(
|x − y|

)
: y ∈ G

}
= 0 holds in F for all x ∈ H.

In view of (G, T ) ∈ C, the set C is nonempty. Moreover, if we define a
binary relation ≥ on C by letting (H2, S2) ≥ (H1, S1) whenever H2 ⊇ H1

and S2 = S1 on H1, then ≥ is an order relation on C. By a routine argument
we can verify that every chain of C has an upper bound in C. Therefore,
by Zorn’s lemma the collection C has a maximal element, say (M, R). The
rest of the proof is devoted to proving that M = E. (If this is done, then
R = pM,R must be the case, which by Theorem 1.31 shows that R must be
an extreme point of E(T ).)

To this end, assume by way of contradiction that there exists some vector
x that does not belong to M . Consider H = {u + λx : u ∈ M and λ ∈ R},
and then define S : H → F by S(u + λx) = R(u) + λpM,R(x). Clearly,
M is a proper subspace of H, S = R holds on M , and S : H → F is a
positive operator. (For the positivity of S let u + λx ≥ 0 with u ∈ M . For
λ > 0 the inequality x ≤ −u

λ implies pM,R(x) ≥ −R
(

u
λ

)
, and consequently

S(u + λx) = R(u) + λpM,R(x) ≥ 0. The case λ < 0 is similar, while the case
λ = 0 is trivial.) Finally, we verify that (H, S) satisfies (3). First, observe
that by the sublinearity of pH,S the set

V =
{
y ∈ E| inf

{
pH,S

(
|y − z|

)
: z ∈ M

}
= 0
}

is a vector subspace of E satisfying M ⊆ V . Also, from

0 ≤ inf
{
pH,S

(
|x − z|

)
: z ∈ M

}
≤ inf

{
pH,S (z − x) : z ∈ M and x ≤ z

}
= inf

{
R(z) − pM,R(x) : z ∈ M and x ≤ z

}
= inf

{
R(z) : z ∈ M and x ≤ z

}
− pM,R(x) = 0 ,

we see that x ∈ V , and hence H ⊆ V . Now for arbitrary u ∈ H, z ∈ M ,
and v ∈ G we have

pH,S

(
|u − v|

)
≤ pH,S

(
|u − z|

)
+ pH,S

(
|v − z|

)
≤ pH,S

(
|u − z|

)
+ pM,R

(
|v − z|

)
,

and so from (M, R) ∈ C and u ∈ H ⊆ V , it follows that

inf
{
pH,S

(
|u − v|

)
: v ∈ G

}
= 0

holds for all u ∈ H.
Thus, (H, S) ∈ C. However, (H, S) ≥ (M, R) and (H, S) �= (M, R)

contradict the maximality of (M, R). Therefore, M = E must be true, as
required.
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Exercises

1. Let E and F be two Riesz spaces with F Dedekind complete, and let A
be an ideal of E. For each T ∈ Lb(E,F ) let R(T ) denote the restriction
of T to A. Show that the positive operator R : Lb(E,F ) → Lb(A,F )
satisfies

R(S ∨ T ) = R(S) ∨R(T ) and R(S ∧ T ) = R(S) ∧R(T )

for all S, T ∈ Lb(E,F ). 1

2. For two arbitrary solid sets A and B of a Riesz space show that:
(a) A + B is a solid set.
(b) If 0 ≤ c ∈ A + B holds, then there exist 0 ≤ a ∈ A and 0 ≤ b ∈ B

with c = a + b.
3. Let T : E → F be a positive operator between two Riesz spaces with F

Dedekind complete. If two ideals A and B of E satisfy A ⊥ B, then show
that:
(a) TA ∧ TB = 0.
(b) The ideal A + B satisfies TA+B = TA + TB = TA ∨ TB .

4. As usual, �∞ denotes the Riesz space of all bounded real sequence, and
c the Riesz subspace of �∞ consisting of all convergent sequences. If
φ : c → R is the positive operator defined by

φ(x1, x2, . . .) = lim
n→∞

xn ,

then show that φ has a positive linear extension to all of �∞.

1.3. Order Projections

In this section we shall study a special class of positive operators known as
order (or band) projections. Before starting our discussion, let us review a
few properties of order dense Riesz subspaces. Recall that a Riesz subspace
G of a Riesz space E is said to be order dense in E whenever for each
0 < x ∈ E (i.e., 0 ≤ x and x �= 0) there exists some y ∈ G with 0 < y ≤ x.

The following characterization of order dense Riesz subspaces in Archi-
medean Riesz spaces will be used freely in this book.

Theorem 1.34. A Riesz subspace G of an Archimedean Riesz space E is
order dense in E if and only if for each x ∈ E+ we have{

y ∈ G : 0 ≤ y ≤ x
}
↑ x .

Proof. If sup
{
y ∈ G : 0 ≤ y ≤ x

}
= x holds in E for each x ∈ E+, then G

is clearly order dense in E. For the converse, assume that G is order dense

1An operator between spaces of operators is referred to as a transformer. So,
the operator R is an example of a transformer.
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in E, and let x ∈ E+. Assume by way of contradiction that some z ∈ E
satisfies z < x and y ≤ z for each y ∈ G with 0 ≤ y ≤ x. Then, by the order
denseness of G in E, there exists some u ∈ G with 0 < u ≤ x − z. From
0 ≤ u ≤ x we see that u ≤ z, and therefore 0 < 2u = u+u ≤ (x−z)+z = x.
By induction, 0 < nu ≤ x holds for each n, contradicting the Archimedean
property of E. Thus, {y ∈ G : 0 ≤ y ≤ x

}
↑ x holds in E, and the proof is

finished.

Consider an order dense Riesz subspace G of a Riesz space E. It is
useful to know that the embedding of G into E preserves arbitrary suprema
and infima. The result (whose straightforward proof is left for the reader)
is stated next.

Theorem 1.35. Let G be either an ideal or an order dense Riesz subspace
of a Riesz space E, and let D ⊆ G+ satisfy D↓ . Then D ↓ 0 holds in G if
and only if D ↓ 0 holds in E.

Recall that a subset A of a Riesz space is called solid whenever |x| ≤ |y|
and y ∈ A imply x ∈ A. A solid vector subspace is called an ideal. From
Theorem 1.13 it readily follows that if A and B are solid subsets of a Riesz
space, then their algebraic sum

A + B :=
{
a + b : a ∈ A and b ∈ B

}

is likewise a solid set. In particular, the algebraic sum of two ideals also is
an ideal.

The next theorem describes the basic properties of order dense ideals.
Keep in mind that the disjoint complement of an arbitrary nonempty set of
a Riesz space is always an ideal.

Theorem 1.36. For an ideal A of a Riesz space E we have the following.

(1) The ideal A is order dense in E if and only if Ad = {0}.
(2) The ideal A ⊕ Ad is order dense in E.

(3) The ideal A is order dense in Add.

Proof. (1) Let A be order dense in E and let x ∈ Ad. If x �= 0 holds, then
there exists some y ∈ A with 0 < y ≤ |x|. This implies y ∈ A ∩ Ad = {0}, a
contradiction. Thus, Ad = {0} holds.

For the converse, assume that Ad = {0} holds and let 0 < x ∈ E. If
y ∧ x = 0 holds for all y ∈ A+, then x ∈ Ad = {0} also must be the case.
Thus, y ∧ x > 0 must be true for some y ∈ A+. But then y ∧ x ∈ A and
0 < y ∧ x ≤ x show that A is order dense in E.
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(2) If x ⊥ A ⊕ Ad, then x ⊥ A and x ⊥ Ad both hold. Therefore,
x ∈ Ad ∩ Add = {0}. This shows that (A ⊕ Ad)d = {0}. By part (1) the
ideal A ⊕ Ad is order dense in E.

(3) This follows immediately from part (1).

A net {xα} of a Riesz space is said to be order convergent to a vector x
(in symbols xα−→o x) whenever there exists another net {yα} with the same
index set satisfying yα ↓ 0 and |xα−x| ≤ yα for all indices α (abbreviated as
|xα − x| ≤ yα ↓ 0). A subset A of a Riesz space is said to be order closed
whenever {xα} ⊆ A and xα−→o x imply x ∈ A.

Lemma 1.37. A solid subset A of a Riesz space is order closed if and only
if {xα} ⊆ A and 0 ≤ xα ↑ x imply x ∈ A.

Proof. Assume that a solid set A of a Riesz space has the stated property
and let a net {xα} ⊆ A satisfy xα−→o x. Pick a net {yα} with the same
index net satisfying yα ↓ 0 and |xα − x| ≤ yα for each α. Now note that we
have (|x| − yα)+ ≤ |xα| for each α and 0 ≤ (|x| − yα)+ ↑ |x|, and from this
it follows that x ∈ A. That is, A is order closed.

An order closed ideal is referred to as a band. Thus, according to
Lemma 1.37 an ideal A is a band if and only if {xα} ⊆ A and 0 ≤ xα ↑ x
imply x ∈ A (or, equivalently, if and only if D ⊆ A+ and D ↑ x imply
x ∈ A). In the early developments of Riesz spaces a band was called a
normal subspace (G. Birkhoff [36], S. Bochner and R. S. Phillips [39]),
while F. Riesz was calling a band a famille complète.

Let A be a nonempty subset of a Riesz space E. Then the ideal gen-
erated by A is the smallest (with respect to inclusion) ideal that includes
A. A moment’s thought reveals that this ideal is

EA =
{

x ∈ E : ∃ x1, . . . , xn ∈ A and λ ∈ R
+ with |x| ≤ λ

n∑
i=1

|xi|
}

.

The ideal generated by a vector x ∈ E will be denoted by Ex. By the
preceding discussion we have

Ex =
{
y ∈ E : ∃λ > 0 with |y| ≤ λ|x|

}
.

Every ideal of the form Ex is referred to as a principal ideal.
Similarly, the band generated by a set A is the smallest band that

includes the set A. Such a band always exists (since it is the intersection
of the family of all bands that include A, and E is one of them.) Clearly,
the band generated by A coincides with the band generated by the ideal
generated by A. The band generated by a vector x is called the principal
band generated by x and is denoted by Bx.
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The band generated by an ideal is described as follows.

Theorem 1.38. If A is an ideal of a Riesz space E, then the band generated
by A is precisely the vector subspace:{

x ∈ E : ∃ {xα} ⊆ A+ with 0 ≤ xα ↑ |x|
}

.

In particular, every ideal is order dense in the band it generates.
Moreover, the principal band Bx generated by a vector x is given by

Bx =
{
y ∈ E : |y| ∧ n|x| ↑ |y|

}
.

Proof. Let B =
{
x ∈ E : ∃ {xα} ⊆ A+ with 0 ≤ xα ↑ |x|

}
. Clearly, every

band containing A must include B. Thus, in order to establish our result it
is enough to show that B is a band.

To this end, let x, y ∈ B. Pick two nets {xα} ⊆ A+ and {yβ} ⊆ A+ with
0 ≤ xα ↑ |x| and 0 ≤ yβ ↑ |y|. From

|x + y| ∧ (xα + yβ) ↑
(α,β)

|x + y| ∧ (|x| + |y|) = |x + y|

and
|λ|xα ↑ |λx| ,

we see that B is a vector subspace. Also, if |z| ≤ |x| holds, then from{
|z| ∧ xα

}
⊆ A and 0 ≤ |z| ∧ xα ↑ |z| ∧ |x| = |z|, it follows that z ∈ B.

Hence, B is an ideal. Finally, to see that B is a band, let {xα} ⊆ B satisfy
0 ≤ xα ↑ x. Put D = {y ∈ A : ∃α with 0 ≤ y ≤ xα}. Then D ⊆ A+ and
D ↑ x hold. Therefore, x ∈ B and so B is a band.

To establish the identity for Bx, let y ∈ Bx. By the above, there exists
a net {xα} ⊆ Ex with 0 ≤ xα ↑ |y|. Now given an index α there exists some
n with xα ≤ n|x|, and so xα ≤ |y| ∧ n|x| ≤ |y| holds. This easily implies
|y| ∧ n|x| ↑ |y|, and our conclusion follows.

From Theorem 1.8 it follows that Ad is always a band. It is important
to know that the band generated by a set A is precisely Add.

Theorem 1.39. The band generated by a nonempty subset A of an Archi-
medean Riesz space is precisely Add (and hence if A is a band, then A = Add

holds).

Proof. We mentioned before that the band generated by A is the same as
the band generated by the ideal generated by A. Therefore, we can assume
that A is an ideal. By part (3) of Theorem 1.36 we know that A is order
dense in Add, and hence (by Theorem 1.34) for each x ∈ Add there exists a
net {xα} ⊆ A with 0 ≤ xα ↑ |x|. This easily implies that Add is the smallest
band including A.
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A useful condition under which an ideal is necessarily a band is presented
next.

Theorem 1.40. Let A and B be two ideals in a Riesz space E such that
E = A ⊕ B. Then A and B are both bands satisfying A = Bd and B = Ad

(and hence A = Add and B = Bdd both hold).

Proof. Note first that for each a ∈ A and b ∈ B we have

|a| ∧ |b| ∈ A ∩ B = {0} ,

and so A ⊥ B. In particular, A ⊆ Bd.
On the other hand, if x ∈ Bd, then write x = a+b with a ∈ A and b ∈ B,

and note that b = x− a ∈ B ∩Bd = {0} implies x = a ∈ A. Thus, Bd ⊆ A,
and so A = Bd holds. This shows that A is a band. By the symmetry of
the situation B = Ad also holds.

A band B in a Riesz space E that satisfies E = B ⊕ Bd is referred to
as a projection band. The next result characterizes the ideals that are
projection bands.

Theorem 1.41. For an ideal B in a Riesz space E the following statements
are equivalent.

(1) B is a projection band, i.e., E = B ⊕ Bd holds.
(2) For each x ∈ E+ the supremum of the set B+ ∩ [0, x] exists in E

and belongs to B.
(3) There exists an ideal A of E such that E = B ⊕ A holds.

Proof. (1) =⇒ (2) Let x ∈ E+. Choose the (unique) vectors 0 ≤ y ∈ B
and 0 ≤ z ∈ Bd such that x = y + z. If u ∈ B+ satisfies u ≤ x = y + z, then
it follows from 0 ≤ (u − y)+ ≤ z ∈ Bd and (u − y)+ ∈ B that (u − y)+ = 0.
Thus, u ≤ y, and so y is an upper bound of the set B+ ∩ [0, x]. Since
y ∈ B ∩ [0, x], we see that y = sup

{
u ∈ B+ : u ≤ x

}
= sup B ∩ [0, x] in E.

(2) =⇒ (3) Fix some x ∈ E+, and let u = supB ∩ [0, x]. Clearly, u
belongs to B. Put y = x − u ≥ 0. If 0 ≤ w ∈ B, then 0 ≤ y ∧ w ∈ B, and
moreover from 0 ≤ u + y ∧ w ∈ B and

u + y ∧ w = (u + y) ∧ (u + w) = x ∧ (u + w) ≤ x ,

it follows that u + y ∧w ≤ u. Hence, y ∧w = 0 holds, and so y ∈ Bd. From
x = u + y we see that E = B ⊕ Bd, and therefore (3) holds with A = Bd.

(3) =⇒ (1) This follows from Theorem 1.40.

Not every band is a projection band, and a Riesz space in which every
band is a projection band is referred to as a Riesz space with the projection
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property. From the preceding theorem it should be clear that in a Dedekind
complete Riesz space every band is a projection band. This was proven
by F. Riesz [166] is one of his early fundamental papers on Riesz spaces.
Because it guarantees an abundance of order projections, we state it next
as a separate theorem.

Theorem 1.42 (F. Riesz). If B is a band in a Dedekind complete Riesz
space E, then E = B ⊕ Bd holds.

As usual, an operator P : V → V on a vector space is called a projection
if P 2 = P . If a projection P is defined on a Riesz space and P is also a
positive operator, then P will be referred to as a positive projection.

Now let B be a projection band in a Riesz space E. Thus, E = B ⊕Bd

holds, and so every vector x ∈ E has a unique decomposition x = x1 + x2,
where x1 ∈ B and x2 ∈ Bd. Then it is easy to see that a projection
PB : E → E is defined via the formula

PB(x) := x1 .

Clearly, PB is a positive projection. Any projection of the form PB is called
an order projection (or a band projection). Thus, the order projections
are associated with the projection bands in a one-to-one fashion.

Theorem 1.43. If B is a projection band of a Riesz space E, then

PB(x) = sup
{
y ∈ B : 0 ≤ y ≤ x

}
= sup B ∩ [0, x]

holds for all x ∈ E+.

Proof. Let x ∈ E+. Then (by Theorem 1.41) u = sup
{
y ∈ B : 0 ≤ y ≤ x

}
exists and belongs to B. We claim that u = PB(x).

To see this, write x = x1 + x2 with 0 ≤ x1 ∈ B and 0 ≤ x2 ∈ Bd, and
note that 0 ≤ x1 ≤ x implies 0 ≤ x1 ≤ u. Thus, 0 ≤ u − x1 ≤ x − x1 = x2,
and hence u − x1 ∈ Bd, Since u − x1 ∈ B and B ∩ Bd = {0}, we see that
u = x1, as claimed.

Among projections the order projections are characterized as follows.

Theorem 1.44. For an operator T : E → E on a Riesz space the following
statements are equivalent.

(1) T is an order projection.

(2) T is a projection satisfying 0 ≤ T ≤ I (where, of course, I is the
identity operator on E).

(3) T and I − T have disjoint ranges, i.e., Tx ⊥ y − Ty holds for all
x, y ∈ E.
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Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let x, y ∈ E+. Put z = Tx ∧ (I − T )y. From the inequality
0 ≤ z ≤ (I − T )y it follows that 0 ≤ Tz ≤ T (I − T )y = (T − T 2)y = 0, and
so Tz = 0. Similarly, (I − T )z = 0, and hence z = (I − T )z + Tz = 0 holds.
This shows that T and I − T have disjoint ranges.

(3) =⇒ (1) Let A and B be the ideals generated by the ranges of T and
I − T , respectively. By our hypothesis it follows that A ⊥ B, and from
x = Tx+(I −T )x we see that E = A⊕B. But then, by Theorem 1.40 both
A and B are projection bands of E. Now the identity

PAx − Tx = PAx − PATx = PA(x − Tx) = 0

shows that T = PA holds. Thus, T is an order projection, and the proof is
finished.

A positive projection need not be an order projection. For instance,
consider the operator T : L1[0, 1] → L1[0, 1] defined by

T (f) =
[∫ 1

0
f(x) dx

]
· 1 ,

where 1 denotes the constant function one. Clearly, 0 ≤ T = T 2 holds, and
its is not difficult to see that T is not an order projection.

The basic properties of order projections are summarized in the next
theorem.

Theorem 1.45. If A and B are projection bands in a Riesz space E, then
Ad, A ∩ B, and A + B are likewise projection bands. Moreover, we have:

(1) PAd = I − PA.

(2) PA∩B = PAPB = PBPA.

(3) PA+B = PA + PB − PAPB.

Proof. (1) From E = A ⊕ Ad it follows that Add = A holds (see Theo-
rem 1.40), and so Ad is a projection band. The identity PAd = I − PA

should be obvious.

(2) To see that A ∩ B is a projection band note first that the identity
B ∩ [0, x] = [0, PBx] implies A ∩ B ∩ [0, x] = A ∩ [0, PBx] for each x ∈ E+.
Consequently,

PAPBx = sup A ∩ [0, PBx] = supA ∩ B ∩ [0, x]

holds for each x ∈ E+, which (by Theorem 1.41) shows that A ∩ B is a
projection band and that PAPB = PA∩B holds. Similarly, PBPA = PA∩B.
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(3) Assume at the beginning that the two projection bands A and B
satisfy A ⊥ B. Let x ∈ E+. If 0 ≤ a + b ∈ A + B satisfies a + b ≤ x, then
clearly a ∈ A ∩ [0, x] and b ∈ B ∩ [0, x], and so a + b ≤ PAx + PBx ∈ A + B
holds. This shows that

sup(A + B) ∩ [0, x] = PAx + PBx ∈ A + B ,

and hence by Theorem 1.41 the ideal A + B is a projection band. Also,
PA+B = PA + PB holds.

For the general case observe that A + B = (A ∩ Bd) ⊕ B. Now using
the preceding case, we get

PA+B = P(A∩Bd)⊕B = PA∩Bd + PB = PAPBd + PB

= PA(I − PB) + PB = PA − PAPB + PB

= PA + PB − PA∩B ,

and the proof is finished.

An immediate consequence of statement (2) of the preceding theorem is
that two arbitrary order projections mutually commute.

A useful comparison property of order projections is described next.

Theorem 1.46. If A and B are projection bands in a Riesz space, then the
following statements are equivalent.

(1) A ⊆ B.

(2) PAPB = PBPA = PA.

(3) PA ≤ PB.

Proof. (1) =⇒ (2) Let A ⊆ B. Then from Theorem 1.45 it follows that

PAPB = PBPA = PA∩B = PA .

(2) =⇒ (3) For each 0 ≤ x we have PAx = PBPAx ≤ PBx, and so
PA ≤ PB holds.

(3) =⇒ (1) If 0 ≤ x ∈ A, then it follows from 0 ≤ x = PAx ≤ PBx ∈ B
that x ∈ B. Therefore, A ⊆ B holds, as required.

A vector x in a Riesz space E is said to be a projection vector whenever
the principal band Bx generated by x (i.e., Bx =

{
y ∈ E : |y| ∧ n|x| ↑ |y|

}
)

is a projection band. If every vector in a Riesz space is a projection vector,
then the Riesz space is said to have the principal projection property.
For a projection vector x we shall write Px for the order projection onto the
band Bx.
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Theorem 1.47. A vector x in a Riesz space is a projection vector if and
only if sup

{
y ∧ n|x| : n ∈ N

}
exists for each y ≥ 0. In this case

Px(y) = sup
{
y ∧ n|x| : n ∈ N

}
holds for all y ≥ 0.

Proof. Let y ≥ 0. We claim that the sets Bx∩ [0, y] and
{
y∧n|x| : n ∈ N

}
have the same upper bounds. To see this, note first that{

y ∧ n|x| : n ∈ N
}
⊆ Bx ∩ [0, y]

holds. Now let y∧n|x| ≤ u for all n. If z ∈ Bx∩ [0, y], then by Theorem 1.38
we have z ∧ n|x| ↑ z. In view of z ∧ n|x| ≤ y ∧ n|x| ≤ u, we see that z ≤ u,
and so the two sets have the same upper bounds. Now to finish the proof
invoke Theorems 1.41 and 1.43.

From the preceding theorem it follows immediately that in a Dedekind
σ-complete Riesz space every principal band is a projection band. Ifx,y≥0
are projection vectors in a Riesz space, then note that the formulas of The-
orem 1.45 take the form

Px∧y = PxPy = PyPx and Px+y = Px + Py − Px∧y .

A vector e > 0 in a Riesz space E is said to be a weak order unit
whenever the band generated by e satisfies Be = E (or, equivalently, when-
ever for each x ∈ E+ we have x ∧ ne ↑ x). Clearly, every vector 0 < x ∈ E
is a weak order unit in the band it generates. Also, note that a vector e > 0
in an Archimedean Riesz space is a weak order unit if and only if x ⊥ e
implies x = 0.

Projection vectors satisfy the following useful properties.

Theorem 1.48. In a Riesz space E the following statements hold:

(1) If u, v, and w are projection vectors satisfying 0 ≤ w ≤ v ≤ u, then
for each x ∈ E we have (Pu − Pv)x ⊥ (Pv − Pw)x.

(2) If 0 ≤ uα ↑ u holds in E with u and all the uα projection vectors,
then Puα(x) ↑ Pu(x) holds for each x ∈ E+.

Proof. (1) By Theorem 1.46 we have Pw ≤ Pv ≤ Pu and so if x ∈ E, then

0 ≤
∣∣(Pu − Pv)x

∣∣ ∧ ∣∣(Pv − Pw)x
∣∣

≤ (Pu − Pv)|x| ∧ (Pv − Pw)|x|
≤
[
Pu|x| − Pv(Pu|x|)

]
∧ Pv(Pu|x|) = 0 .

(2) Let x ∈ E+. Clearly, Puα(x) ↑≤ Pu(x). Thus, Pu(x) is an upper
bound for the net {Puα(x)}, and we claim it is the least upper bound.
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To see this, assume Puα(x) ≤ y for all α. Hence, x ∧ nuα ≤ y holds for
all α and n. Consequently, uα ↑ u implies x∧nu ≤ y for all n, and therefore
Pu(x) = sup

{
x ∧ nu : n ∈ N

}
≤ y. Hence, Pu(x) is the least upper bound

of {Puα(x)}, and thus Puα(x) ↑ Pu(x).

Let e be a positive vector of a Riesz space E. A vector x ∈ E+ is said
to be a component of e whenever x ∧ (e − x) = 0. The collection of all
components of e will be denoted by Ce, i.e.,

Ce :=
{
x ∈ E+ : x ∧ (e − x) = 0

}
.

Clearly, x ∈ Ce implies e − x ∈ Ce. Also, PBe ∈ Ce for each projection
band B.

Under the partial ordering induced by E, the set of components Ce is
a Boolean algebra,2 consisting precisely of the extreme points of the order
interval [0, e]. The details follow.

Theorem 1.49. For a positive vector e in a Riesz space E we have:

(1) If x, y ∈ Ce and x ≤ y holds, then y − x ∈ Ce.
(2) If x1, x2, y1, y2 ∈ Ce satisfy the inequalities x1 ≤ x2 ≤ y1 ≤ y2,

then x2 −x1 ⊥ y2 − y1.
(3) If x, y ∈ Ce, then x∨ y and x∧ y both belong to Ce (and so Ce is a

Boolean algebra with smallest element 0 and largest element e).
(4) If E is Dedekind complete, then for every non-empty subset C of

Ce the elements sup C and inf C both belong to Ce (and so in this
case Ce is a Dedekind complete Boolean algebra).

(5) The set of components Ce of e is precisely the set of all extreme
points of the convex set [0, e]. 3

Proof. (1) It follows immediately from the inequalities

0 ≤ (y − x) ∧
[
e − (y − x)

]
= (y − x) ∧

[
(e − y) + x

]
≤ (y − x) ∧ (e − y) + (y − x) ∧ x

≤ y ∧ (e − y) + (e − x) ∧ x = 0 + 0 = 0 .

(2) Note that 0 ≤ (x2 − x1) ∧ (y2 − y1) ≤ y1 ∧ (e − y1) = 0.

2Recall that a Boolean algebra B is a distributive lattice with smallest and
largest elements that is complemented. That is, B is a partially ordered set that
is a distributive lattice with a smallest element 0 and a largest element e such
that for each a ∈ B there exists a (necessarily unique) element a′ ∈ B (called the
complement of a) satisfying a ∧ a′ = 0 and a ∨ a′ = e. A Boolean algebra B is
Dedekind complete if every nonempty subset of B has a supremum.

3Recall that a vector u in a convex set C is said to be an extreme point of C
if it follows from u = λv + (1−λ)w with v, w ∈ C and 0 < λ < 1 that v = w = u.



1.3. Order Projections 41

(3) Let x, y ∈ Ce. Then, using the distributive laws, we see that

(x ∨ y) ∧ (e − x ∨ y) = (x ∨ y) ∧
[
(e − x) ∧ (e − y)

]
=
[
x ∧ (e − x) ∧ (e − y)

]
∨
[
y ∧ (e − x) ∧ (e − y)

]
= 0 ∨ 0 = 0 ,

and

(x ∧ y) ∧ (e − x ∧ y) = (x ∧ y) ∧
[
(e − x) ∨ (e − y)

]
=
[
x ∧ y ∧ (e − x)

]
∨
[
x ∧ y ∧ (e − y)

]
= 0 ∨ 0 = 0 .

(4) Now assume that E is Dedekind complete and let C be a nonempty
set of components of e. Put u = sup C and v = inf C. Then, using the
infinite distributive laws, we get

0 ≤ u ∧ (e − u) = [supC] ∧ (e − u) = sup
{
c ∧ (e − u) : c ∈ C

}
≤ sup

{
c ∧ (e − c) : c ∈ C

}
= 0 .

Similarly, we have

0 ≤ v ∧ (e − v) = = v ∧
(
e − inf C

)
= v ∧ sup

{
e − c : c ∈ C

}
= sup

{
v ∧ (e − c) : c ∈ C

}
≤ sup

{
c ∧ (e − c) : c ∈ C

}
= 0 .

(5) Assume first that an element x ∈ [0, e] is an extreme point of [0, e].
Let y = x ∧ (e − x) ≥ 0. We must show that y = 0. Clearly, 0 ≤ x − y ≤ e
and 0 ≤ x+y ≤ e, and from the convex combination x = 1

2(x−y)+ 1
2(x+y)

we get x − y = x. So y = 0, as desired.
For the converse, assume that v ∈ Ce and let v = λx + (1 − λ)y, where

x, y ∈ [0, e] and 0 < λ < 1. From v∧(e−v) = 0, it follows that x∧(e−v) = 0,
and so from part (1) of Lemma 1.4 we get

x = x ∧ e = x ∧ [(v + (e − v)] ≤ x ∧ v + x ∧ (e − v) = x ∧ v ≤ v .

Similarly, y ≤ v. Now if either x < v or y < v were true, then

v = λx + (1 − λ)y < λv + (1 − λ)v = v

also would be true, which is impossible. Hence x = y = v holds, and so v
is an extreme point of [0, e]. This completes the proof of the theorem.

When E has the principal projection property, Y. A. Abramovich [1]
has described the lattice operations of Lb(E, F ) in terms of components as
follows.
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Theorem 1.50 (Abramovich). If a Riesz space E has the principal projec-
tion property and F is a Dedekind complete Riesz space, then for each pair
S, T ∈ Lb(E, F ) and each x ∈ E+ we have:[

S ∨ T
]
(x) = sup

{
S(y) + T (z) : y ∧ z = 0 and y + z = x

}
.[

S ∧ T
]
(x) = inf

{
S(y) + T (z) : y ∧ z = 0 and y + z = x

}
.

Proof. Notice that the first formula follows from the second by using the
identity S∨T = −

[
(−S)∧ (−T )

]
. Also, if the second formula is true for the

special case S ∧ T = 0, then it is true in general. This claim follows easily
from the identity (S −S ∧ T ) ∧ (T −S ∧ T ) = 0. To complete the proof,
assume that S ∧ T = 0 in Lb(E, F ). Fix x ∈ L+ and put

u = inf
{
S(y) + T (x− y) : y ∧ (x− y) = 0

}
.

We must show that u = 0.
To this end, fix any 0 ≤ y ∈ E+ satisfy 0 ≤ y ≤ x. Let P denote

the order projection of E onto the band generated by (2y−x)+ and put
z = P (x). From x ≤ 2y + (x− 2y)+ and (x− 2y)+ ∧ (2y−x)+ = 0, it
follows that P (x) ≤ 2P (y) + P

(
(x− 2y)+

)
= 2P (y) ≤ 2y. Therefore,

z ≤ 2y . (�)

Also, from (2y−x)+ ≤ (2x−x)+ = x we see that

2y−x ≤ (2y−x)+ = P
(
(2y−x)+

)
≤ P (x) = z ,

and consequently
x− z ≤ 2(x− y) . (��)

Now combining (�) and (��), we get

0 ≤ u ≤ S(z) + T (x− z) ≤ 2
[
S(y) + T (x− y)

]
, (� � �)

for all elements y ∈ E+ with 0 ≤ y ≤ x. Taking into consideration that
(according to Theorem 1.18) we have inf

{
S(y)+T (x− y) : 0 ≤ y ≤ x

}
= 0,

it follows from (� � �) that u = 0, and the proof is finished.

It should be noted that Theorem 1.50 is false without assuming that E
has the principal projection property. For instance, let E = C[0, 1], F = R,
and let S, T : E → F be defined by S(f) = f(0) and T (f) = f(1). Then
S ∧ T = 0 holds, while

inf
{
S(f) + T (g) : f ∧ g = 0 and f + g = 1

}
= inf

{
S(f) + T (1 − f) : f = 0 or f = 1

}
= 1 .

When E has the principal projection property, the lattice operations of
Lb(E, F ) also can be expressed in terms of directed sets involving compo-
nents as follows.
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Theorem 1.51. Assume that E has the principal projection property and
that F is Dedekind complete. Then for all S, T ∈ Lb(E, F ) and x ∈ E+ we
have:

(1)
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↑ [S ∨ T ](x).

(2)
{ n∑

i=1

S(xi) ∧ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↓ [S ∧ T ](x).

(3)
{ n∑

i=1

|T (xi)| : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↑ |T |(x).

Proof. Since (2) and (3) follow from (1) by using the usual lattice identities
S∧T = −[(−S)∨(−T )] and |T | = T ∨(−T ), we prove only the first formula.
Put

D =
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}

,

where x ∈ E+ is fixed, and note that supD ≤ [S∨T ](x) holds in F . On the
other hand, if y, z ∈ E+ satisfy y ∧ z = 0 and y + z = x, then the relation

S(y) + T (z) ≤ S(y) ∨ T (y) + S(z) ∨ T (z) ∈ D ,

in conjunction with Theorem 1.50, shows that supD = [S ∨ T ](x) holds.
Therefore, what remains to be shown is that D is directed upward.

To this end, let {x1, . . . , xn} and {y1, . . . , ym} be two subsets of E+ each
of which is pairwise disjoint such that

∑n
i=1 xi =

∑m
j=1 yj = x. Then note

that the finite set {xi ∧ yj : i = 1, . . . , n; j = 1, . . . , m} is pairwise disjoint
and

n∑
i=1

m∑
j=1

xi ∧ yj =
n∑

i=1

xi ∧
[ m∑

j=1

yj

]
=

n∑
i=1

xi ∧ x =
n∑

i=1

xi = x .

In addition, we have

n∑
i=1

S(xi) ∨ T (xi) =
n∑

i=1

S
(
xi ∧

n∑
j=1

yj

)
∨ T
(
xi ∧

m∑
j=1

yj

)

=
n∑

i=1

[ n∑
j=1

S(xi ∧ yj)
]
∨
[ m∑

j=1

T (xi ∧ yj)
]

≤
n∑

i=1

m∑
j=1

S(xi ∧ yj) ∨ T (xi ∧ yj) ,
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and, similarly,
m∑

j=1

S(yj) ∨ T (yj) ≤
n∑

i=1

m∑
j=1

S(xi ∧ yj) ∨ T (xi ∧ yj) .

Therefore, D ↑ [S ∨ T ](x) holds.

The final result of this section deals with retracts of Riesz spaces. Let
us say that a Riesz subspace G of a Riesz space E is a retract (or that E is
retractable on G) whenever there exists a positive projection P : E → E
whose range is G.

Theorem 1.52. For a Riesz subspace G of a Riesz space E we have the
following:

(1) If G is a retract of E and E is Dedekind complete, then G is a
Dedekind complete Riesz space in its own right.

(2) If G is Dedekind complete in its own right and G majorizes E, then
G is a retract of E.

Proof. (1) Let P : E → E be a positive projection whose range is the Riesz
subspace G, and let 0 ≤ xα ↑≤ x in G. Then there exists some y ∈ E with
0 ≤ xα ↑ y ≤ x in E, and so 0 ≤ xα = Pxα ≤ Py holds in G for each α. On
the other hand, if for some z ∈ G we have 0 ≤ xα ≤ z for all α, then y ≤ z,
and hence Py ≤ Pz = z. In other words, 0 ≤ xα ↑ Py holds in G, which
proves that G is a Dedekind complete Riesz space.

(2) Apply Theorem 1.32 to the identity operator I : G → G.

Exercises

1. For two nets {xα} and {yβ} in a Riesz space satisfying xα−→o x and
yβ−→o y establish the following properties.
(a) If xα−→o u, then u = x (and so the order limits whenever they exist

are uniquely determined).
(b) λxα + µyβ−→o λx + µy for all λ, µ ∈ R.
(c) |xα|−→o |x|.
(d) xα ∨ yβ−→o x ∨ y and xα ∧ yβ−→o x ∧ y.
(e) (xα − yβ)+−→o (x − y)+.
(f) If xα ≤ z holds for all α � α0, then x ≤ z.

2. Show that the intersection of two order dense ideals is also an order dense
ideal.

3. Let 0 ≤ y ≤ x ≤ e hold in a Riesz space. If y is a component of x and x
is a component of e, then show that y is a component of e.
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4. If 1 denotes the constant function one on [0, 1], then compute C1 in:

(a) C[0, 1] ; (b) L1[0, 1] ; (c) �∞[0, 1] .

5. Show that in an Archimedean Riesz space a vector e > 0 is a weak order
unit if and only if x ⊥ e implies x = 0.

6. If E has the principal projection property, then show that Px+(x) = x+

holds for all x ∈ E.

7. Let E be a Riesz space satisfying the principal projection property, let
0 ≤ y ≤ x, and let ε ∈ R. If P denotes the order projection onto the band
generated by (y − εx)+, then show that εP (x) ≤ y holds.

8. If A and B are two projection bands in a Riesz space E, then show that:
(a) PA∩B(x) = PA(x) ∧ PB(x) holds for all x ∈ E+.
(b) PA+B(x) = PA(x) ∨ PB(x) holds for all x ∈ E+.
(c) PA+B = PA + PB holds if and only if A ⊥ B.

9. If P and Q are order projections on a Riesz space E, then show that

P (x) ∧ Q(y) = PQ(x ∧ y)

for all x, y ∈ E+.

10. For an order projection P on a Riesz space E establish the following:
(a) |Px| = P (|x|) holds for all x ∈ E.
(b) If D is a nonempty subset of E for which supD exists in E, then

supP (D) exists in E and supP (D) = P (supD).

11. Let E and F be two Riesz spaces with F Dedekind complete. Show that:
(a) If P is an order projection on E and Q is an order projection on F ,

then the operator (transformer) T �→ QTP is an order projection
on Lb(E,F ).

(b) If P1, P2 are order projections on E and Q1, Q2 are order projections
on F , then

(Q1TP1) ∧ (Q2SP2) = Q1Q2(T ∧ S)P1P2

holds in Lb(E,F ) for all S, T ∈ L+
b (E,F ).

12. Let E and F be two Riesz spaces with F Dedekind complete. Show that:
(a) If P is an order projection on E, then |TP | = |T |P holds for all

T ∈ Lb(E,F ).
(b) If Q is an order projection on F , then |QT | = Q|T | holds for all

T ∈ Lb(E,F ).

1.4. Order Continuous Operators

In this section the basic properties of order continuous operators will be
studied. Our discussion starts with their definition introduced by T. Oga-
sawara around 1940; see the work of M. Nakamura [146]. Recall that a
net {xα} in a Riesz space is order convergent to some vector x, denoted
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xα−→o x, whenever there exists another net {yα} with the same index set
satisfying |xα − x| ≤ yα ↓ 0.

Definition 1.53. An operator T : E → F between two Riesz spaces is said
to be:

(a) Order continuous, if xα−→o 0 in E implies Txα−→o 0 in F .
(b) σ-order continuous, if xn−→o 0 in E implies Txn−→o 0 in F .

It is useful to note that a positive operator T : E → F between two
Riesz spaces is order continuous if and only if xα ↓ 0 in E implies Txα ↓ 0
in F (and also if and only if 0 ≤ xα ↑ x in E implies Txα ↑ Tx in F .) In
the terminology of directed sets a positive operator T : E → F is, of course,
order continuous if and only if D ↓ 0 in E implies T (D) ↓ 0 in F . Similar
observations hold true for positive σ-order continuous operators.

Lemma 1.54. Every order continuous operator is order bounded.

Proof. Let T : E → F be an order continuous operator and let x ∈ E+. If
we consider the order interval [0, x] as a net {xα}, where xα = α for each
α ∈ [0, x], then xα ↓ 0. So, by the order continuity of T , there exists a net
{yα} of F with the same index [0, x] such that |Txα| ≤ yα ↓ 0. Consequently,
if α ∈ [0, x], then we have |Tα| = |Txα| ≤ yα ≤ yx, and this shows that
T [0, x] is an order bounded subset of F .

A σ-order continuous operator need not be order continuous, as the next
example shows.

Example 1.55. Let E be the vector space of all Lebesgue integrable real-
valued functions defined on [0, 1]. Note that two functions that differ at
one point are considered to be different. Under the pointwise ordering (i.e.,
f ≥ g means f(x) ≥ g(x) for all x ∈ [0, 1]), E is a Riesz space—in fact, it is
a function space. Also, note that fα ↑ f holds in E if and only if fα(x) ↑ f(x)
holds in R for all x ∈ [0, 1].

Now define the operator T : E → R by

T (f) =
∫ 1

0
f(x) dx .

Clearly, T is a positive operator, and from the Lebesgue dominated conver-
gence theorem it easily follows that T is σ-order continuous. However, T is
not order continuous.

To see this, note first that if F denotes the collection of all finite subsets
of [0, 1], then the net {χα : α ∈ F} ⊆ E (where χα is the characteristic
function of α) satisfies χα ↑ 1 (= the constant function one). On the other
hand, observe that T (χα) = 0 �→ T (1) = 1.
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The order continuous operators have a number of nice characterizations.

Theorem 1.56. For an order bounded operator T : E → F between two
Riesz spaces with F Dedekind complete, the following statements are equiv-
alent.

(1) T is order continuous.

(2) If xα ↓ 0 holds in E, then Txα−→o 0 holds in F .

(3) If xα ↓ 0 holds in E, then inf
{
|Txα|

}
= 0 in F .

(4) T+ and T− are both order continuous.

(5) |T | is order continuous.

Proof. (1) =⇒ (2) and (2) =⇒ (3) are obvious.

(3) =⇒ (4) It is enough to show that T+ is order continuous. To this
end, let xα ↓ 0 in E. Let T+xα ↓ z ≥ 0 in F . We have to show that z = 0.
Fix some index β and put x = xβ .

Now for each 0 ≤ y ≤ x and each α � β we have

0 ≤ y − y ∧ xα = y ∧ x − y ∧ xα ≤ x − xα ,

and consequently

T (y) − T (y ∧ xα) = T (y − y ∧ xα) ≤ T+(x − xα) = T+x − T+xα ,

from which it follows that

0 ≤ z ≤ T+xα ≤ T+x +
∣∣T (y ∧ xα)

∣∣− Ty (�)

holds for all α � β and all 0 ≤ y ≤ x. Now since for each fixed vector
0 ≤ y ≤ x we have y ∧ xα ↓

α�β
0, it then follows from our hypothesis that

infα�β

{
|T (y ∧xα)|

}
= 0, and hence from (�) we see that 0 ≤ z ≤ T+x−Ty

holds for all 0 ≤ y ≤ x. In view of T+x = sup
{
Ty : 0 ≤ y ≤ x

}
, the latter

inequality yields z = 0, as desired.

(4) =⇒ (5) The implication follows from the identity |T | = T+ + T−.

(5) =⇒ (1) The implication follows easily from the lattice inequality
|Tx| ≤ |T |(|x|).

The reader can formulate by himself the analogue of Theorem 1.56 for
σ-order continuous operators.

The collection of all order continuous operators of Lb(E, F ) will be de-
noted by Ln(E, F ); the subscript n is justified by the fact that the order
continuous operators are also known as normal operators. That is,

Ln(E, F ) :=
{
T ∈ Lb(E, F ) : T is order continuous

}
.
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Similarly, Lc(E, F ) will denote the collection of all order bounded operators
from E to F that are σ-order continuous. That is,

Lc(E, F ) :=
{
T ∈ Lb(E, F ) : T is σ-order continuous

}
.

Clearly, Ln(E, F ) and Lc(E, F ) are both vector subspaces of Lb(E, F ),
and moreover Ln(E, F ) ⊆ Lc(E, F ) holds. When F is Dedekind complete
T. Ogasawara [156] has shown that both Ln(E, F ) and Lc(E, F ) are bands
of Lb(E, F ). The details follow.

Theorem 1.57 (Ogasawara). If E and F are Riesz spaces with F Dedekind
complete, then Ln(E, F ) and Lc(E, F ) are both bands of Lb(E, F ).

Proof. We shall establish that Ln(E, F ) is a band of Lb(E, F ). That
Lc(E, F ) is a band can be proven in a similar manner.

Note first that if |S| ≤ |T | holds in Lb(E, F ) with T ∈ Ln(E, F ), then
from Theorem 1.56 it follows that S ∈ Ln(E, F ). That is, Ln(E, F ) is an
ideal of Lb(E, F ).

To see that the ideal Ln(E, F ) is a band, let 0 ≤ Tλ ↑ T in Lb(E, F )
with {Tλ} ⊆ Ln(E, F ), and let 0 ≤ xα ↑ x in E. Then for each fixed index
λ we have

0 ≤ T (x − xα) ≤ (T − Tλ)(x) + Tλ(x − xα) ,

and x − xα ↓ 0 , in conjunction with Tλ ∈ Ln(E, F ), implies

0 ≤ inf
α

{
T (x − xα)

}
≤ (T − Tλ)(x)

for all λ. From T − Tλ ↓ 0 we see that infα
{
T (x − xα)

}
= 0, and hence

T (xα) ↑ T (x). Thus, T ∈ Ln(E, F ), and the proof is finished.

Now consider two Riesz spaces E and F with F Dedekind complete. The
band of all operators in Lb(E, F ) that are disjoint from Lc(E, F ) will be
denoted by Ls(E, F ), i.e., Ls(E, F ) := Ld

c (E, F ), and its nonzero members
will be referred to as singular operators. Since Lb(E, F ) is a Dedekind
complete Riesz space (see Theorem 1.18), it follows from Theorem 1.42 that
Lc(E, F ) is a projection band, and so

Lb(E, F ) = Lc(E, F ) ⊕ Ls(E, F )

holds. In particular, each operator T ∈ Lb(E, F ) has a unique decomposi-
tion T = Tc + Ts, where Tc ∈ Lc(E, F ) and Ts ∈ Ls(E, F ). The operator Tc

is called the σ-order continuous component of T , and Ts is called the
singular component of T . Similarly,

Lb(E, F ) = Ln(E, F ) ⊕ Lσ(E, F ) ,
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where Lσ(E, F ) := Ld
n(E, F ). Thus, every operator T ∈ Lb(E, F ) also has a

unique decomposition T = Tn+Tσ, where Tn ∈ Ln(E, F ) and Tσ ∈ Lσ(E, F ).
The operator Tn is called the order continuous component of T .

The next examples shows that Lc(E, F ) = {0} is possible.

Example 1.58. For each 1 < p < ∞ we have

Lc(C[0, 1], Lp[0, 1]) = {0} .

That is, the zero operator is the only σ-order continuous positive operator
from C[0, 1] to Lp[0, 1].

To establish this, we need to show first that the only positive σ-order
continuous operator from C[0, 1] to R is the zero operator. To this end, let
φ : C[0, 1] → R be a positive σ-order continuous operator.

Let {r1, r2, . . .} be an enumeration of all rational numbers of [0, 1]. For
each pair m, n ∈ N choose some xm,n ∈ C[0, 1] such that:

(a) 0 ≤ xm,n(t) ≤ 1 for all t ∈ [0, 1].

(b) xm,n(rn) = 1.

(c) xm,n(t) = 0 for all t ∈ [0, 1] with |t − rn| > 1
2n+m .

Put ym,n =
∨n

i=1 xm,i, and note that for each fixed m we have ym,n ↑n in
C[0, 1]. In view of ym,n(rn) = 1, it follows that ym,n ↑n 1 (= the constant
function one). Since φ is a positive σ-order continuous operator, we see that
φ(ym,n) ↑n φ(1) holds in R for each fixed m.

Put ε > 0. For each m choose some nm ∈ N with φ(1)−φ(ym,nm) < 1
2m ε,

and then put zn =
∧n

m=1 ym,nm . Clearly, zn ↓ holds in C[0, 1], and since
each set

{
t ∈ [0, 1] : ym,n(t) > 0

}
has Lebesgue measure less that 1

2m , it
follows that zn ↓ 0. Now the inequalities

0 ≤ φ(1) − φ(zn) = φ(1 − zn) = φ
( n∨

m=1

(
1 − ym,nm

))

≤ φ
( n∑

m=1

(
1 − ym,nm

))
=

n∑
m=1

φ
(
1 − ym,nm

)
< ε ,

in conjunction with φ(zn) ↓ 0, imply 0 ≤ φ(1) ≤ ε for all ε > 0. Therefore,
φ(1) = 0, and from this we see that φ = 0.

Now let T : C[0, 1] → Lp[0, 1] be a positive σ-order continuous operator.
Then for each fixed 0 ≤ g ∈ Lq[0, 1], where 1

p + 1
q = 1, the positive operator

ψ : C[0, 1] → R defined by

ψ(f) =
∫ 1

0
g(t)
[
Tf(t)] dt
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is σ-order continuous. Hence, by the previous case
∫ 1
0 g(t)[Tf(t)] dt = 0 for

all g ∈ Lq[0, 1] and all f ∈ C[0, 1]. The latter easily implies T = 0, as
claimed.

If x and y are vectors in a Riesz space and ε is any real number, then
from the identity x − y = (1 − ε)x + (εx − y) we see that

x − y ≤ (1 − ε)x + (εx − y)+ .

This simple inequality is useful in many contexts and was introduced by
T. Andô [125, Note XIV]. In the sequel it will be referred to as Andô’s
inequality.

The σ-order continuous and order continuous components of a positive
operator are described by formulas as follows.

Theorem 1.59. Let E and F be two Riesz spaces with F Dedekind complete.
If T : E → F is a positive operator, then

(1) Tc(x) = inf
{
sup T (xn) : 0 ≤ xn ↑ x

}
, and

(2) Tn(x) = inf
{
supT (xα) : 0 ≤ xα ↑ x

}
hold for each x ∈ E+.4

Proof. We prove the formula for Tn and leave the identical arguments for
Tc to the reader.

For each positive operator S : E → F define S� : E+ → F+ by

S�(x) = inf
{
sup S(xα) : 0 ≤ xα ↑ x

}
, x ∈ E+ .

Clearly, 0 ≤ S�(x) ≤ S(x) holds for all x ∈ E+, and S�(x) = S(x) whenever
S ∈ Ln(E, F ). Moreover, it is not difficult to see that S� is additive on E+,
and hence (by Theorem 1.10), S� extends to a positive operator from E to
F . On the other hand, it is easy to see that S �→ S�, from L+

b (E, F ) to
L+

b (E, F ), is likewise additive, i.e., (S1 + S2)� = S�
1 + S�

2 holds, and hence
S �→ S� defines a positive operator from Lb(E, F ) to Lb(E, F ). From the
inequality 0 ≤ S� ≤ S we also see that S �→ S� is order continuous, i.e.,
Sα ↓ 0 in Lb(E, F ) implies S�

α ↓ 0.

4These formulas have an interesting history. When F = R , the formula for
Tc is due to W. A. J. Luxemburg and A. C. Zaanen [130, Note VI, Theorem 20.4,
p. 663], and for the same case, the formula for Tn is due to W. A. J. Luxem-
burg [125]. When Ln(F, R) separates the points of F , the formulas were established
by C. D. Aliprantis [6]. In 1975 A. R. Schep announced the validity of the formulas
in the general setting and later published his proof in [176]. An elementary proof
for the Tc formula also was obtained by P. van Eldik in [59]. The proof presented
here is due to the authors [12].
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Now let T : E → F be a fixed positive operator. It is enough to show
that T � is order continuous. If this is done, then the inequality T � ≤ T
implies T � = (T �)n ≤ Tn, and since Tn ≤ T � is trivially true, we see that
Tn = T �. To this end, let 0 ≤ yλ ↑ y in E. We must show that T �(y−yλ) ↓ 0.

Fix 0 < ε < 1, and let Tλ denote the operator defined in Theorem 1.28
that agrees with T on the ideal generated by (εy − yλ)+ and vanishes on
(εy − yλ)−. Clearly, T ≥ Tλ ↓≥ 0, and Tλ(yλ − εy)+ = 0 holds for all λ. Let
Tλ ↓ R in Lb(E, F ). From 0 ≤ (yλ − εy)+ ↑ (1 − ε)y and R(yλ − εy)+ = 0
for each λ, we see that R�(y) = 0. From Andô’s inequality

0 ≤ y − yλ ≤ (1 − ε) + (ε − yλ)+ ,

it follows that

0 ≤ T �(y − yλ) ≤ (1 − ε)T �(y) + T �(εy − yλ)+ . (†)

Now since 0 ≤ x ≤ (εy − yλ)+ implies T (x) = Tλ(x), we see that

T �(εy − yλ)+ = inf
{
sup T (xα) : 0 ≤ xα ↑ (εy − yλ)+

}
= inf

{
sup Tλ(xα) : 0 ≤ xα ↑ (εy − yλ)+

}
= T �

λ (εy − yλ)+ ≤ T �
λ (y) ,

and so, substituting into (†), we obtain

0 ≤ T �(y − yλ) ≤ (1 − ε)T �(y) + T �
λ (y) . (††)

From Tλ ↓ R and the order continuity of S �→ S�, it follows that T �
λ ↓ R�.

In particular, T �
λ (y)↓ R�(y) = 0, and so from (††) we see that

0 ≤ inf
λ

{
T �(y − yλ)

}
≤ (1 − ε)T �(y)

holds for all 0 < ε < 1. Hence, T �(y − yλ) ↓ 0, as desired.

Consider an order bounded operator T : E → F between two Riesz
spaces with F Dedekind complete. Then the null ideal NT of T is de-
fined by

NT :=
{
x ∈ E : |T |(|x|) = 0

}
.

Note that NT is indeed an ideal of E. The disjoint complement of NT is
referred to as the carrier of T and is denoted by CT . That is,

CT := Nd
T =
{
x ∈ E : x ⊥ NT

}
.

Clearly, |T | is strictly positive on CT , i.e., 0 < x ∈ CT implies 0 < |T |(x).
When an order bounded operator is, in addition, order continuous, then

it is easy to see that its null ideal is a band. However, the converse is false.
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Example 1.60. Consider an infinite set X, and let X∞ = X ∪ {∞} be
the one-point compactification of X considered equipped with the discrete
topology. Thus, a function f : X → R belongs to C(X∞) if and only if there
exists some constant c (depending upon f) such that for each ε > 0 we have∣∣f(x) − c

∣∣ < ε for all but a finite number of x, in which case c = f(∞).
Now fix a countable subset {x1, x2, . . .} of X, and then define the oper-

ator T : C(X∞) → R by

T (f) = f(∞) +
∞∑

n=1

2−nf(xn) .

Clearly, T is a positive operator, and

NT =
{
f ∈ C(X∞) : f(xn) = 0 for n = 1, 2, . . .

}
.

Since fα ↑ f holds in C(X∞) if and only if fα(x) ↑ f(x) holds in R for all
x ∈ X (why?), it follows that NT is a band of C(X∞). On the other hand,
we claim that T is not order continuous.

To see this, consider the net {χα} ⊆ C(X∞), where α runs over the
collection of all finite subsets of X. Then 0 ≤ χα ↑ 1 holds in C(X∞), while
T (χα) �→ T (1). Also, it is interesting to observe that if X is countable, then
T is necessarily σ-order continuous!

In terms of null ideals the order and σ-order continuous operators are
characterized as follows. (Recall that an ideal A of a Riesz space is said to
be a σ-ideal whenever {xn} ⊆ A and 0 ≤ xn ↑ x imply x ∈ A.)

Theorem 1.61. For an order bounded operator T : E → F between two
Riesz spaces with F Dedekind complete we have the following.

(1) T is order continuous if and only if the null ideal NS is a band for
every operator S in the ideal AT generated by T is Lb(E, F ).

(2) T is σ-order continuous if and only if the null ideal NS is a σ-ideal
for each S ∈ AT .

Proof. We shall only prove (1) since the proof of (2) is similar. The “only
if” part follows immediately from Theorem 1.56. For the “if” part (in view
of Theorem 1.56) we can assume that T ≥ 0. Let 0 ≤ xα ↑ x in E, and let
0 ≤ Txα ↑ y ≤ Tx in F . We must show that y = Tx holds.

To this end, let 0 < ε < 1. For each α, let Tα be the operator given
by Theorem 1.28 that agrees with T on the ideal generated by (εx − xα)+

and vanishes on (εx − xα)−. Clearly, T ≥ Tα ↓≥ 0, and Tα(εx − xα)− = 0
for each α. Let Tα ↓ S ≥ 0 in Lb(E, F ), and note that S ∈ AT . Also,
S(εx − xα)− = 0 holds for each α, and so

{
(εx − xα)−

}
⊆ NS . On the
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other hand, 0 ≤ (εx − xα)− ↑ (1 − ε)x holds in E, and hence, since by our
hypothesis NS is a band, x ∈ NS . Therefore, Sx = 0. Now the relation

0 ≤ T (εx − xα)+ = Tα(εx − xα)+ ≤ Tα(x) ,

in conjunction with Andô’s inequality 0 ≤ x − xα ≤ (1 − ε)x + (εx − xα)+,
yields

0 ≤ Tx − y ≤ T (x − xα) ≤ (1 − ε)Tx + T (εx − xα)+ ≤ (1 − ε)Tx + Tα(x) .

Taking into consideration that Tα(x) ↓ S(x) = 0, the preceding inequality
yields 0 ≤ Tx − y ≤ (1 − ε)Tx for all 0 < ε < 1. Hence, y = Tx holds, as
required.

To illustrate the previous theorem, consider the operator T : C(X∞)→R
of Example 1.60 defined by

T (f) = f(∞) +
∞∑

n=1

2−nf(xn) .

As we have seen before, NT =
{
f ∈ C(X∞) : f(xn) = 0 for n = 1, 2, . . .

}
,

and this shows that NT is a band of C(X∞). On the other hand, if
S : C(X∞) → R is defined by

S(f) = f(∞) ,

then S is a positive operator satisfying 0 ≤ S ≤ T . Clearly, the null ideal of
S is given by NS =

{
f ∈ C(X∞) : f(∞) = 0

}
. Now note that the net {χα}

of all characteristic functions of the finite subsets of X satisfies {χα} ⊆ NS

and χα ↑ 1. Since 1 /∈ NS , we see that NS is not a band of C(X∞), in
accordance with part (1) of Theorem 1.61.

Consider two Riesz spaces E and F with F Dedekind complete. An
operator T ∈ Lb(E, F )is said to have zero carrier whenever CT = {0} (or,
equivalently, whenever NT is order dense in E). It is easy to check that the
zero operator is the only order continuous operator with zero carrier. On
the other hand, If T ∈ Lb(E, F ) has a zero carrier, then T ⊥ Ln(E, F ),
that is, T ∈ Lσ(E, F ). (To see this, write T = Tn + Tσ, and note that
|T | = |Tn| + |Tσ|; see Exercise 2 of Section 1.1. Therefore, NT ⊆ NTn holds,
and so by the order denseness of NT we see that NTn = E. That is, Tn = 0
and so T = Tσ ∈ Lσ(E, F ).) From |T + S| ≤ |T | + |S|, it follows that
NT ∩ NS ⊆ NT+S , and using the fact that the intersection of two order
dense ideals is an order dense ideal (why?), we see that the operators of
Lb(E, F ) with zero carriers form an ideal. The next theorem tells us that
this ideal is always order dense in Lσ(E, F ).

Theorem 1.62. Let E and F be two Riesz spaces with F Dedekind complete.
Then the ideal {

T ∈ Lb(E, F ) : CT = {0}
}
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is order dense in Lσ(E, F ).

Proof. We have mentioned before that the set
{
T ∈ Lb(E, F ) : CT = {0}

}
is an ideal that is included in Lσ(E, F ). For the order denseness assume
that 0 < T ∈ Lσ(E, F ).

Since T is not order continuous, there exists (by Theorem 1.61) an op-
erator 0 < S ≤ T such that NS is not a band. Denote by B the band
generated by NS . Let R be the operator determined by Theorem 1.28 such
that R = S on B and R = 0 on Bd. Clearly, NS ⊆ NR and 0 < R ≤ S.
On the other hand, since R = 0 holds on Bd = Nd

S = CS , we see that
NS ⊕ CS ⊆ NR, and this (in view of Theorem 1.36) shows that NR is order
dense in E. Thus, R has zero carrier. Now to complete the proof note that
0 < R ≤ T holds.

The preceding theorem shows that Lσ(E, F ) = {0} holds (or, equiva-
lently, Lb(E, F ) = Ln(E, F )) if and only if every nonzero operator from E
to F has a nonzero carrier. Thus, in view of Theorem 1.61 we see that the
following theorem of the authors [12] holds.

Theorem 1.63 (Aliprantis–Burkinshaw). For a pair of Riesz spaces E and
F with F Dedekind complete, the following statements are equivalent.

(1) Every order bounded operator from E to F is order continuous, i.e.,
Lb(E, F ) = Ln(E, F ).

(2) Every nonzero order bounded operator from E to F has a nonzero
carrier.

(3) The null ideal of every order bounded operator from E to F is a
band.

The next result tells us when a positive operator is order continuous on
a given ideal.

Theorem 1.64. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind complete, and let A be an ideal of E. Then the
operator T is order (resp. σ-order) continuous on A if and only if TA is an
order (resp. σ-order) continuous operator.

Proof. We establish the result for the “order continuous” case; the “σ-order
continuous” case can be proven in a similar fashion. Recall that for each
x ∈ E+ the operator TA is given (according to Theorem 1.28) by

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
.

Since TA = T holds on A, it should be obvious that if TA is an order
continuous operator, then T must be order continuous on A. For the con-
verse, assume that T is order continuous on A, and let 0 ≤ xα ↑ x in E. Let
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TA(xα) ↑ z ≤ TA(x). Now fix y ∈ A∩ [0, x]. Then 0 ≤ y ∧ xα ↑ y holds in A,
and so T (y ∧ xα) ↑ T (y) holds in F . From

T (y ∧ xα) = TA(y ∧ xα) ≤ z ≤ TA(x) ,

it follows that T (y) ≤ z ≤ TA(x) holds for all y ∈ A ∩ [0, x]. Hence,

TA(x) = supT (A ∩ [0, x]) ≤ z ≤ TA(x) ,

and so z = TA(x), proving that TA is an order continuous operator.

The final result of this section is an extension theorem for positive order
continuous operators and is due to A. I. Veksler [188].

Theorem 1.65 (Veksler). Let G be an order dense majorizing Riesz sub-
space of a Riesz space E, and let F be Dedekind complete. If T : G → F is
a positive order continuous operator, then the formula

T (x) = sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
, x ∈ E+,

defines a unique order continuous linear extension of T to all of E.

Proof. Since G majorizes E, it is easy to see that

S(x) = sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
exists in F for each x ∈ E+. Also, note that if {xα} ⊆ G satisfies 0 ≤ xα ↑ x,
then T (xα) ↑ S(x) holds. Indeed, if 0 ≤ y ∈ G satisfies 0 ≤ y ≤ x, then
0 ≤ xα ∧ y ↑ y holds in G, and so by the order continuity of T : G → F we
see that

T (y) = sup
{
T (xα ∧ y)

}
≤ sup

{
T (xα)

}
≤ S(x) .

This easily implies that T (xα) ↑ S(x).
Now let x, y ∈ E+. Pick two nets {xα} and {yβ} of G+ with 0 ≤ xα ↑ x

and 0 ≤ yβ ↑ y (see Theorem 1.34). Then 0 ≤ xα + yβ ↑ x + y holds, and so
by the above discussion

T (xα) + T (yβ) = T (xα + yβ) ↑ S(x + y) .

From T (xα) ↑ S(x) and T (yβ) ↑ S(y), we get S(x + y) = S(x) + S(y). That
is, S : E+ → F+ is additive, and thus by Theorem 1.10 it extends uniquely
to a positive operator from E to F . Clearly, S is an extension of T .

Finally, it remains to be shown that S is order continuous. To this end,
let 0 ≤ xα ↑ x in E. Put

D =
{
y ∈ G+ : there exists some α with y ≤ xα

}
,

and note that supT (D) ≤ sup
{
S(xα)

}
≤ S(x) holds in F . Since G is order

dense in E, it is easy to see that D ↑ x holds. Thus, by the above discussion
sup T (D) = S(x), and so S(xα) ↑ S(x), proving that S is order continuous.
The proof of the theorem is now complete.
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Exercises

1. A Riesz space is said to have the countable sup property, if whenever
an arbitrary subset D has a supremum, then there exists an at most
countable subset C of D with supC = supD.
(a) Show that if F is an Archimedean Riesz space with the countable sup

property and T : E → F is a strictly positive operator (i.e., x > 0
implies Tx > 0), then E likewise has the countable sup property.

(b) Let T : E → F be a positive operator between two Riesz spaces with
E having the countable sup property. Then show that T is order
continuous if and only if T is σ-order continuous.

2. Let E be Dedekind σ-complete, and let F be super Dedekind complete
(i.e., let F be Dedekind complete with the countable sup property), and
let T : E → F be a positive σ-order continuous operator. Show that:
(a) CT is a super Dedekind complete Riesz space and that T restricted

to CT is strictly positive and order continuous.
(b) CT is a projection band.
(c) T is order continuous if and only if NT is a band.

3. Let E and F be two Riesz spaces with F Dedekind complete. Consider
the band Lcσ(E,F ) := Lc(E,F ) ∩ Lσ(E,F ), and note that

Lb(E,F ) = Ln(E,F ) ⊕ Lcσ(E,F ) ⊕ Ls(E,F ) .

Thus, every operator T ∈ Lb(E,F ) has a unique decomposition of the
form T = Tn + Tcσ + Ts, where Tn ∈ Ln(E,F ), Tcσ ∈ Lcσ(E,F ), and
Ts ∈ Ls(E,F ). Clearly, Tc = Tn + Tcσ and Tσ = Tcσ + Ts hold.

If F is super Dedekind complete and T ∈ Lc(E,F ), then prove the
following statements.
(a) T ∈ Lcσ(E,F ) if and only if CT = {0} (or, equivalently, if and only

if NT is order dense in E).
(b) NT ⊕ CT ⊆ NTcσ

.
(c) The largest ideal of E on which T is order continuous is the order

dense ideal NTcσ
.

4. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. Then show that:
(a) In the formula

Tn(x) = inf
{
supT (xα) : 0 ≤ xα ↑ x

}
,

the greatest lower bound is attained for each x ∈ E+ if and only if
NTσ

is order dense in E.
(b) In the formula

Tc(x) = inf
{
supT (xn) : 0 ≤ xn ↑ x

}
,

the greatest lower bound is attained for each x ∈ E+ if and only if
NTs is super order dense in E. (Recall that an ideal A in a Riesz
space E is said to be super order dense whenever for each x ∈ E+

there exists a sequence {xn} ⊆ A such that 0 ≤ xn ↑ x.)
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5. Let E and F be two Riesz spaces with F Dedekind complete. Show that
for each T ∈ Lb(E,F ) the ideal NTσ

(resp. NTs
) is the largest ideal of E

on which T is order (resp. σ-order) continuous.

6. Consider the operator T of Example 1.60. Show that T is σ-order con-
tinuous if and only if X is an uncountable set.

7. For a pair of Riesz spaces E and F with F Dedekind complete show that
the following statements are equivalent.
(a) Every order bounded operator from E to F is σ-order continuous.
(b) The null ideal of every order bounded operator from E to F is a

σ-ideal.

8. Let T : E → E be an order continuous positive operator on a Riesz space,
and let {Tα} be a net of positive order continuous operators from E to E
satisfying Tα(x) ↑ T (x) in E for each x ∈ E+. Show that:
(a) If 0 ≤ xλ ↑ x in E, then Tα(xλ) ↑

α,λ
T (x) holds in E.

(b) If x ∈ E+, then T k
α(x) ↑ T k(x) holds in E for each k.

Also, establish the sequential analogues of the above statements.

9. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. Then show that the components Tσ and Ts of T for
each x ∈ E+ are given by the formulas

Tσ(x) = sup
{
inf T (xα) : x ≥ xα ↓ 0

}
and

Ts(x) = sup
{
inf T (xn) : x ≥ xn ↓ 0

}
.

10. Show that an order bounded operator T : E → F between two Riesz
spaces with F Dedekind complete is order continuous if and only if T ⊥ S
holds for each operator S ∈ Lb(E,F ) with CS = {0}.

11. As usual, if {xα} is an order bounded net in a Dedekind complete Riesz
space, then we define

lim sup xα :=
∧
α

∨
β	α

xβ and lim inf xα :=
∨
α

∧
β	α

xβ .

(a) Show that in a Dedekind complete Riesz space an order bounded net
{xα} satisfies xα−→o x if and only if x = lim sup xα = lim inf xα.

(b) If T : E → F is a positive operator between two Riesz spaces with
F Dedekind complete, then show that

Tc(x) = inf
{
lim inf T (xn) : 0 ≤ xn ≤ x and xn−→o x

}
and

Tn(x) = inf
{
lim inf T (xα) : 0 ≤ xα ≤ x and xα−→o x

}
hold for each x ∈ E+.

12. For two Riesz spaces E and F with F Dedekind complete establish the
following:
(a) If A is an ideal of E, then its annihilator

Ao :=
{
T ∈ Lb(E,F ) : T = 0 on A

}
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is a band of Lb(E,F ).
(b) If A is an ideal of Lb(E,F ), then its inverse annihilator

oA :=
{
x ∈ E : T (x) = 0 for each T ∈ A

}
is an ideal of E.

(c) Every order bounded operator from E to F is order continuous (i.e.,
Lb(E,F ) = Ln(E,F ) holds) if and only if for every order dense ideal
A of E we have Ao = {0}.

13. Consider two Riesz spaces E and F with F Dedekind complete. As usual,
we say that Lb(E,F ) separates the points of E whenever for each x �= 0
in E there exists some T ∈ Lb(E,F ) with T (x) �= 0.

Show that if Lb(E,F ) separates the points of E and (oB)o = B holds
for each band B of Lb(E,F ) (for notation see the preceding exercise), then
every order bounded operator from E to F is order continuous.

1.5. Positive Linear Functionals

Let E be a Riesz space. A linear functional f : E → R is said to be positive
whenever f(x) ≥ 0 holds for each x ∈ E+. Also, a linear functional f is
called order bounded if f maps order bounded subsets of E to bounded
subsets of R. The vector space E∼ of all order bounded linear functionals
on E is called the order dual of E, i.e., E∼ = Lb(E, R). Since R is a
Dedekind complete Riesz space, it follows at once from Theorem 1.18 that
E∼ is precisely the vector space generated by the positive linear functionals.
Moreover, E∼ is a Dedekind complete Riesz space. Recall that f ≥ g in E∼

means f(x) ≥ g(x) for all x ∈ E+. Also, note that if f, g ∈ E∼ and x ∈ E+,
then according to Theorem 1.18 we have:

(1) f+(x) = sup
{
f(y) : 0 ≤ y ≤ x

}
.

(2) f−(x) = sup
{
−f(y) : 0 ≤ y ≤ x

}
.

(3) |f |(x) = sup
{
|f(y)| : |y| ≤ x

}
.

(4) [f ∨ g](x) = sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
.

(5) [f ∧ g](x) = inf
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
.

Observe that from formula (5) the following important characterization
of disjointness in E∼ holds: For f, g ∈ E∼ we have f ⊥ g if and only if
for each ε > 0 and each x ∈ E+ there exist y, z ∈ E+ with y + z = x and
|f |(y) < ε and |g|(z) < ε.

The order dual E∼ may happen to be trivial. For instance, if 0 < p < 1,
then it has been shown by M. M. Day that the Riesz space E = Lp[0, 1]
satisfies E∼ = {0}; see our book [7, Theorem 5.24, p. 128]. In this book,
Riesz spaces with trivial order dual will be of little interest. As a matter of
fact, we are interested in Riesz spaces whose order duals separate the points
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of the spaces. Recall that the expression E∼ separates the points of E
means that for each x �= 0 there exists some f ∈ E∼ with f(x) �= 0. Since
E is a Riesz space, it is easy to see that E∼ separates the points of E if and
only if for each 0 < x ∈ E there exists some 0 < f ∈ E∼ with f(x) �= 0.

Theorem 1.66. If E∼ separates the points of the Riesz space E, then a
vector x ∈ E satisfies x ≥ 0 if and only if f(x) ≥ 0 holds for all 0 ≤ f ∈ E∼.

Proof. Clearly, if x ≥ 0 holds, then f(x) ≥ 0 likewise holds for every
0 ≤ f ∈ E∼.

For the converse, assume that some vector x ∈ E satisfies f(x) ≥ 0 for
all 0 ≤ f ∈ E∼. If 0 ≤ f ∈ E∼ is fixed, then by Theorem 1.23 there exists
some 0 ≤ g ≤ f with f(x−) = −g(x). Since by our hypothesis g(x) ≥ 0
holds, it follows that 0 ≤ f(x−) = −g(x) ≤ 0, and so f(x−) = 0 holds for
all 0 ≤ f ∈ E∼. Since E∼ separates the points of E, we see that x− = 0.
Consequently, x = x+ − x− = x+ ≥ 0 holds, and the proof is finished.

Besides the order dual of a Riesz space, we shall need to consider the
bands of order continuous and σ-order continuous linear functionals.

Let E be a Riesz space. The vector space Ln(E, R) of all order continuous
linear functionals on E will be denoted by E∼

n . Similarly, the vector space
Lc(E, R) of all σ-order continuous linear functionals on E will be denoted
by E∼

c . That is,

E∼
n := Ln(E, R) and E∼

c := Lc(E, R) .

Note that a positive linear functional f on E is order continuous if and only
if xα ↓ 0 in E implies f(xα) ↓ 0 in R. Likewise, f is σ-order continuous if
and only if for every sequence {xn} with xn ↓ 0 we have f(xn) ↓ 0 in R.
Clearly, we have

E∼
n ⊆ E∼

c ⊆ E∼ .

By Theorem 1.57 both E∼
c and E∼

n are bands of E∼. The band E∼
n will be

referred to as the order continuous dual of E, and the band E∼
c as the

σ-order continuous dual of E.
Here are two examples of Riesz spaces and their duals. (For a justifica-

tion of their duals see Section 4.1.)

(1) Let 1 ≤ p < ∞ and 1
p + 1

q = 1.
(a) If E = �p, then E∼ = E∼

c = E∼
n = �q; and

(b) if E = Lp[0, 1], then E∼ = E∼
c = E∼

n = Lq[0, 1].
(2) Consider E = C[0, 1]. Then E∼

c = E∼
n = {0}, and E∼ is the Riesz

space of all regular Borel measures on [0, 1].

Recall that the null ideal of an arbitrary linear functional f ∈ E∼ is the
ideal Nf :=

{
x ∈ E : |f |(|x|) = 0

}
, and its carrier is the band Cf := Nd

f .
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H. Nakano [150, Theorem 20.1, p. 74] has shown that two linear function-
als in E∼

n are disjoint if and only if their carriers are disjoint sets. This
remarkable result is stated next.

Theorem 1.67 (Nakano). If E is Archimedean, then for a pair f, g ∈ E∼
n

the following statements are equivalent.

(1) f ⊥ g.

(2) Cf ⊆ Ng.

(3) Cg ⊆ Nf .

(4) Cf ⊥ Cg.

Proof. Without loss of generality we can assume that 0 ≤ f, g ∈ E∼
n .

(1) =⇒ (2) Let 0 ≤ x ∈ Cf = Nd
f , and let ε > 0. In view of f ∧ g = 0,

there exists a sequence {xn} ⊆ E+ satisfying

0 ≤ xn ≤ x and f(xn) + g(x − xn) < 2−nε for all n .

Put yn =
∧n

i=1 xi, and note that yn ↓ 0 in E. Indeed, if 0 ≤ y ≤ yn holds for
all n, then 0 ≤ f(y) ≤ f(yn) < 2−nε also holds for all n, and consequently
f(y) = 0. Thus, y ∈ Cf ∩ Nf = {0}, and so y = 0.

Now since 0 ≤ g ∈ E∼
n , we see that g(x−yn) ↑ g(x). On the other hand,

from

0 ≤ g(x − yn) = g
( n∨

i=1

(x − xi)
)
≤

n∑
i=1

g(x − xi) < ε ,

it follows that 0 ≤ g(x) ≤ ε holds for all ε > 0. Thus, g(x) = 0, so that
Cf ⊆ Ng holds.

(2) =⇒ (3) Since Nf is a band, it follows from Cf = Nd
f ⊆ Ng and

Theorem 1.39 that
Cg = Nd

g ⊆ Ndd
f = Nf .

(3) =⇒ (4) Since Cg ⊆ Nf is true by our hypothesis and Nf ⊥ Cf , we see
that Cg ⊥ Cf holds.

(4) =⇒ (1) From Cf ⊥ Cg it follows that Cg ⊆ Cd
f = Ndd

f = Nf . Now if
0 ≤ x = y + z ∈ Ng ⊕ Cg, then

0 ≤ [f ∧ g](x) = [f ∧ g](y) + [f ∧ g](z) ≤ g(y) + f(z) = 0 ,

and thus f∧g = 0 holds on the order dense ideal Ng⊕Cg (see Theorem 1.36).
Since f ∧ g ∈ E∼

n , it follows that [f ∧ g](x) = 0 holds for all x ∈ E, and the
proof is finished.

It should be noted that the above proof of the implication (4) =⇒ (1)
shows that the following general result is true.
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• If two positive order continuous operators S and T satisfy CS ⊥ CT ,
then S ⊥ T .

However, as the next example shows, the converse is not true.

Example 1.68. Let A =
[
0, 1

2

]
and B =

[
1
2 , 1
]
and consider the two positive

operators S, T : L1[0, 1] → L1[0, 1] defined by

S(f) =
[ ∫ 1

0
f(x) dx

]
χA and T (f) =

[ ∫ 1

0
f(x) dx

]
χB .

The Lebesgue dominated convergence theorem shows that S and T are both
order continuous operators. On the other hand, note that if 0 ≤ f ∈ L1[0, 1],
then we have

0 ≤ [S ∧ T ](f) ≤ S(f) ∧ T (f) =
[ ∫ 1

0
f(x) dx

]
· χA ∧ χB = 0 ,

and so S ∧ T = 0 holds in Lb(L1[0, 1]).
Finally, note that NS = NT = {0}, and so CS = CT = L1[0, 1], proving

that CS and CT are not disjoint sets.

If E is a Riesz space, then its order dual E∼ is again a Riesz space. Thus,
we can consider the Riesz space of all order bounded linear functionals on
E∼. The second order dual E∼∼ of E is the order dual of E∼, that is,
E∼∼ := (E∼)∼. For each x ∈ E an order bounded linear functional x̂ can
be defined on E∼ via the formula

x̂(f) := f(x) , f ∈ E∼ .

Clearly, x ≥ 0 implies x̂ ≥ 0. Also, since fα ↓ 0 in E∼ holds if and only if
x̂(fα) = fα(x) ↓ 0 for all x ∈ E+, it easily follows that each x ∈ E defines an
order continuous linear functional on E∼. Thus, a positive operator x �→ x̂
can be defined from E to E∼∼. This operator is called the canonical
embedding of E into E∼∼. The canonical embedding always preserves
finite suprema and infima, and when E∼ separates the points of E, it is also
one-to-one. The details follow.

Theorem 1.69. Let E be a Riesz space. Then the canonical embedding
x �→ x̂ is a lattice preserving operator (from E to E∼∼).

In particular, if E∼ separates the points of E, then x �→ x̂ is also one-
to-one (and hence, in this case E, identified with its canonical image in
E∼∼, can be considered as a Riesz subspace of E∼∼).

Proof. Only the preservation of the lattice operations needs verification.
To this end, let x ∈ E and 0 ≤ f ∈ E∼. Applying Theorems 1.18 and 1.23
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consecutively, we see that

(x̂)+(f) = sup
{
x̂(g) : g ∈ E∼ and 0 ≤ g ≤ f

}
= sup

{
g(x) : g ∈ E∼ and 0 ≤ g ≤ f

}
= f(x+) = (̂x+)(f) .

That is, (x̂)+ = (̂x+) holds. Now by using the lattice identity

x ∨ y = (x − y)+ + y = −
[
(−x) ∧ (−y)

]
,

we see that the canonical embedding x �→ x̂ preserves finite suprema and
infima.

It should be noted that the canonical embedding of E into E∼∼ does
not necessarily preserve infinite suprema and infima; see Exercise 10 at the
end of this section. In the sequel the vectors of a Riesz space E will play a
double role. Besides being the vectors of E, they also will be considered (by
identifying x with x̂) as order bounded linear functionals on E∼.

Now let E be a Riesz space, and let A be an ideal of E∼. Then it is
easy to see that for each x ∈ E, the restriction of x̂ to A defines an order
continuous linear functional (and hence order bounded) on A. Therefore,
there exists a natural embedding x �→ x̂ of E into A∼

n defined by

x̂(f) := f(x) , f ∈ A .

As in Theorem 1.69 we can see that the natural embedding x �→ x̂, from
E into A∼

n , is lattice preserving and is one-to-one if and only if the ideal A
separates the points of E.

When A consists of order continuous linear functionals, H. Nakano [150,
Theorem 22.6, p. 83] has shown (among other things) that x �→ x̂ preserves
arbitrary suprema and infima. The details are included in the next theorem.

Theorem 1.70 (Nakano). Let E be an Archimedean Riesz space, and let
A be an ideal of E∼

n . Then the embedding x �→ x̂ is an order continuous
lattice preserving operator from E to A∼

n whose range is an order dense Riesz
subspace of A∼

n .

Proof. To see that x �→ x̂ is order continuous, note that if xα ↓ 0 holds in
E, then x̂α(f) = f(xα) ↓ 0 holds for each 0 ≤ f ∈ A, and so x̂α ↓ 0 holds in
A∼

n . That is, x �→ x̂ is an order continuous operator.
Now let us establish that the range of x �→ x̂ is an order dense Riesz

subspace of A∼
n . To this end, let 0 < φ ∈ A∼

n . Pick some 0 < f ∈ Cφ,
and then choose 0 < x ∈ Cf . Clearly, f(x) > 0. If x̂ ∧ φ = 0 holds,
then by Theorem 1.67 we have x̂(Cφ) = {0}, and so x̂(f) = f(x) = 0, a
contradiction. Thus, x̂ ∧ φ > 0 holds, and hence, by replacing φ with x̂ ∧ φ,
we can assume that 0 < φ ≤ x̂ holds in A∼

n for some x ∈ E. Next fix some
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0 < ε < 1 with ψ = (φ − εx)+ > 0. Choose some 0 < g ∈ Cψ, and then
select some 0 < y ∈ Cg. We claim that the vector z = y ∧ εx ∈ E satisfies
0 < ẑ ≤ φ in A∼

n .
To see that ẑ > 0 holds, note that if ẑ = ŷ ∧ εx̂ = 0, then ŷ ∧ x̂ = 0, and

so in view of 0 ≤ ψ ≤ x̂, we see that ŷ ∧ ψ = 0. By Theorem 1.67 we have
ŷ(Cψ) = {0}, and hence ŷ(f) = f(y) = 0, a contradiction. Thus, ẑ > 0.

Finally, let us establish that ẑ ≤ φ holds. To this end, assume by way
of contradiction that ω = (ẑ − φ)+ > 0. Choose 0 < h ∈ Cω, and note
that, in view of 0 < ω ≤ (εx̂ − φ)+ = (φ − εx̂)−, we have ω ⊥ ψ and so by
Theorem 1.67 we get Cω ⊥ Cψ. In particular, h ⊥ g holds, and by applying
Theorem 1.67 once more, we get h(Cg) = {0}. Therefore,

0 < ω(h) = (ẑ − φ)+(h) ≤ ẑ(h) ≤ ŷ(h) = h(y) = 0

holds, which is impossible. Hence, ẑ ≤ φ, and the proof is complete.

As an application of Theorem 1.70, we shall characterize the perfect
Riesz spaces. A Riesz space E is said to be perfect whenever the natural
embedding x �→ x̂ from E to (E∼

n )∼n is one-to-one and onto. Clearly, every
perfect Riesz space must be Dedekind complete. H. Nakano [150, Section 24]
has characterized the perfect Riesz spaces as follows.

Theorem 1.71 (Nakano). A Riesz space E is a perfect Riesz space if and
only if the following two conditions hold:

(1) E∼
n separates the points of E.

(2) Whenever a net {xα} ⊆ E satisfies 0 ≤ xα ↑ and sup
{
f(xα)

}
< ∞

for each 0 ≤ f ∈ E∼
n , then there exists some x ∈ E satisfying

0 ≤ xα ↑ x in E.

Proof. Assume that E is a perfect Riesz space, i.e., assume that x �→ x̂
from E to (E∼

n )∼n is one-to-one and onto. Then, clearly, E∼
n separates the

points of E. On the other hand, if a net {xα} ⊆ E+ satisfies 0 ≤ xα ↑ and
φ(f) = sup

{
f(xα)

}
< ∞ for each 0 ≤ f ∈ E∼

n , then it easily follows that
the mapping φ : (E∼

n )+ → R
+ is additive, and hence φ defines a positive

linear functional on E∼
n . In view of x̂α ↑ φ in (E∼

n )∼, it follows (from
Theorem 1.57) that φ ∈ (E∼

n )∼n . Pick some x ∈ E with φ = x̂, and note that
0 ≤ xα ↑ x holds in E.

For the converse assume that E satisfies the two conditions. Then, by
Theorem 1.70, the operator x �→ x̂ from E to (E∼

n )∼n is order continuous,
one-to-one, and lattice preserving whose range is order dense in (E∼

n )∼n . Now
let 0 ≤ φ ∈ (E∼

n )∼n . Pick a net {xα} ⊆ E+ with 0 ≤ x̂α ↑ φ in (E∼
n )∼n . Then

{xα} satisfies condition (2), and so there exists some x ∈ E with 0 ≤ xα ↑ x
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in E. It follows that 0 ≤ x̂α ↑ x̂ holds in (E∼
n )∼n , and thus φ = x̂, proving

that x �→ x̂ is also onto.

The (order bounded) finite rank operators will be of great importance.
If f ∈ E∼ and u ∈ F , then the symbol f ⊗u will denote the order bounded
operator of Lb(E, F ) defined by

[f ⊗ u](x) := f(x)u

for each x ∈ E. Every operator of the form f ⊗ u is referred to as a rank
one operator. Note that if f ∈ E∼

n (resp. f ∈ E∼
c ), then f ⊗ u is an order

(resp. σ-order) continuous operator. Every operator T : E → F of the form
T =
∑n

i=1fi⊗ui, where fi ∈ E∼ and ui ∈ F (i = 1, . . . , n), is called a finite
rank operator. In general, if G is a vector subspace of E∼, then we define

G⊗F :=
{
T ∈L(E, F ) : ∃n, fi ∈ G, ui ∈ F (1 ≤ i ≤ n) with T =

n∑
i=1

fi⊗ui

}
.

Clearly, G ⊗ F is a vector subspace of Lb(E, F ).
The next theorem describes some basic lattice properties of the rank one

operators.

Theorem 1.72. For a pair of Riesz spaces E and F we have the following:

(1) If 0 ≤ f ∈ E∼ and u, v ∈ F , then (f⊗u)∨(f⊗v) and (f⊗u)∧(f⊗v)
both exist in L(E, F ) and

(f ⊗ u) ∨ (f ⊗ v) = f ⊗ (u ∨ v)

and
(f ⊗ u) ∧ (f ⊗ v) = f ⊗ (u ∧ v) .

(2) If 0 ≤ u ∈ F and f, g ∈ E∼, then (f⊗u)∨(g⊗u) and (f⊗u)∧(g⊗u)
both exist in L(E, F ) and

(f ⊗ u) ∨ (g ⊗ u) = (f ∨ g) ⊗ u

and
(f ⊗ u) ∧ (g ⊗ u) = (f ∧ g) ⊗ u .

(3) If f ∈ E∼ and u ∈ F , then the modulus of f ⊗u exists in L(E, F )
and ∣∣f ⊗ u

∣∣ = |f | ⊗ |u| .

Proof. (1) Let 0 ≤ f ∈ E∼, and let u, v ∈ F . Clearly, f ⊗ u ≤ f ⊗ (u ∨ v)
and f ⊗ v ≤ f ⊗ (u∨ v) both hold. On the other hand, if some T ∈ L(E, F )
satisfies f ⊗ u ≤ T and f ⊗ v ≤ T , then for each x ∈ E+ we have[

f ⊗ (u ∨ v)
]
(x) = f(x)(u ∨ v) =

[
f(x)u

]
∨
[
f(x)v

]
≤ T (x) ∨ T (x) = T (x) .
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That is, f ⊗ (u ∨ v) ≤ T holds in Lb(E, F ), and so f ⊗ (u ∨ v) is the least
upper bound of f ⊗u and f ⊗ v in L(E, F ), as required. The other case can
be proven in a similar manner.

(2) Fix u ∈ F+ and f, g ∈ E∼. Clearly, f ⊗ u ≤ (f ∨ g) ⊗ u and
g ⊗ u ≤ (f ∨ g)⊗ u. Now let T ∈ L(E, F ) satisfy f ⊗ u ≤ T and g ⊗ u ≤ T .
Observe that if y, z ∈ E+ satisfy y + z = x, then

[f ⊗ u](y) + [g ⊗ u](z) ≤ T (y) + T (z) = T (x)

holds. Thus, for each x ∈ E+ we have[
(f ∨ g) ⊗ u

]
(x) =

[
(f ∨ g)(x)

]
· u

=
[
sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}]
· u

= sup
{
f(y)u + g(z)u : y, z ∈ E+ and y + z = x

}
= sup

{
[f ⊗ u](y)+[g ⊗ u](z) : y, z ∈ E+ and y+z=x

}
≤ T (x) .

Therefore, (f ∨g)⊗u is the least upper bound of f ⊗u and g⊗u in L(E, F ).
The other formula can be proven in a similar fashion.

(3) For each x ∈ E+ we have

±
[
f ⊗ u

]
(x) = ±[f(x) · u] ≤

∣∣f(x)u
∣∣ = ∣∣f(x)

∣∣ · |u|
≤ |f |(x) · |u| =

[
|f | ⊗ |u|

]
(x) ,

and so ±[f ⊗ u] ≤ |f | ⊗ |u|. Now assume that some T ∈ L(E, F ) satisfies

f ⊗ u ≤ T and − [f ⊗ u] ≤ T .

Let x ∈ E+. If f(x) < 0, then [f ⊗ |u|](x) ≤ T (x) holds trivially. On the
other, if f(x) ≥ 0, then we have

[f ⊗ |u|](x) = f(x)|u| =
[
f(x)u

]
∨
[
−f(x)u

]
≤ T (x) .

Therefore, f ⊗ |u| ≤ T holds. By the symmetry of the situation we have
(−f) ⊗ |u| ≤ T . Thus, by part (2) we see that

|f | ⊗ |u| =
[
f ⊗ |u|

]
∨
[
(−f) ⊗ |u|

]
≤ T .

Consequently, |f | ⊗ |u| is the least upper bound of f ⊗ u and −f ⊗ u. That
is, |f ⊗ u| = |f | ⊗ |u| holds in L(E, F ).

Recall that the algebraic dual V ∗ of a vector space V is the vector space
consisting of all linear functionals on V . For an operator T : V → W between
two vector spaces its algebraic adjoint (or transpose) T ∗ : W ∗ → V ∗ is
the operator defined by

[T ∗f ](v) = f(Tv)
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for all f ∈ W ∗ and v ∈ V . In standard duality notation this identity is
written as

〈T ∗f, v〉 = 〈f, Tv〉 .

Clearly, if S : V → W is another operator and α ∈ R, then

(S + T )∗ = S∗ + T ∗ and (αT )∗ = αT ∗ .

When T : E → F is an order bounded operator between two Riesz
spaces, then T ∗ carries F∼ into E∼. Indeed, if A is an order bounded
subset of E and f ∈ F∼, then it follows from [T ∗f ](A) = f

(
T (A)

)
that

[T ∗f ](A) is a bounded subset of R, and so T ∗f ∈ E∼. The restriction of T ∗

to F∼ is called the (order) adjoint of T and will be denoted by T ′. That
is, T ′ : F∼ → E∼ satisfies

〈T ′f, x〉 = 〈f, Tx〉
for all f ∈ F∼ and x ∈ E. Note that if T is a positive operator, then its
adjoint T ′ is likewise a positive operator.

The adjoint of an order bounded operator between two Riesz spaces is
always order bounded and order continuous. The details follow.

Theorem 1.73. If T : E → F is an order bounded operator between two
Riesz spaces, then its (order) adjoint T ′ : F∼ → E∼ is order bounded and
order continuous.

Proof. Assume that T : E → F is an order bounded operator. We shall
first establish that T ′ : F∼ → E∼ is order bounded.

To this end, let 0 ≤ f ∈ F∼. Consider the set

D =
{ n∑

i=1

|T ′fi| : fi ≥ 0 for each i and
n∑

i=1

fi = f
}

.

We claim that D ↑ holds in E∼. To see this, let f1, . . . , fn ∈ F∼
+ and

g1, . . . , gm ∈ F∼
+ satisfy

∑n
i=1 fi =

∑m
j=1 gj = f . By Theorem 1.20 there

exist linear functionals hij ∈ F∼
+ (i = 1, . . . , n; j = 1, . . . , m) such that

fi =
m∑

j=1

hij for i = 1, . . . , n and gj =
n∑

i=1

hij for j = 1, . . . , m .

Clearly,
∑n

i=1

∑m
j=1 hij = f . On the other hand, we have
n∑

i=1

|T ′fi| =
n∑

i=1

∣∣∣
m∑

j=1

T ′hij

∣∣∣ ≤
n∑

i=1

m∑
j=1

|T ′hij | ,

and similarly
m∑

j=1

|T ′gj | ≤
n∑

i=1

m∑
j=1

|T ′hij | .
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The above show that D ↑ holds in E∼.
Now let x ∈ E+. Since T is order bounded, there exists some u ∈ F+

satisfying |Ty| ≤ u for all |y| ≤ x. Consequently, if f1, . . . , fn ∈ F∼
+ satisfy∑n

i=1 fi = f , then we have
〈 n∑

i=1

|T ′fi|, x
〉

=
n∑

i=1

sup
{
〈T ′fi, y〉 : |y| ≤ x

}

=
n∑

i=1

sup
{
〈fi, Ty〉 : |y| ≤ x

}

≤
n∑

i=1

〈fi, u〉 = f(u) , (�)

which shows that the set
{
φ(x) : φ ∈ D

}
is bounded above in R for each

x ∈ E+. By Theorem 1.19 the supremum h = supD exists in E∼. Now if
0 ≤ g ≤ f , then |T ′g| ≤ |T ′g| + |T ′(f − g)| ≤ h holds in E∼, which shows
that T ′[0, f ] ⊆ [−h, h]. Therefore, T ′ : F∼ → E∼ is order bounded.

Finally, we show that T ′ is order continuous. To this end, let fα ↓ 0
in F∼, and let x ∈ E+ be fixed. Pick some u ∈ F+ with |Ty| ≤ u for all
|y| ≤ x. From (�) and part (3) of Theorem 1.21 we see that

[
|T ′|f
]
(x) ≤ f(u)

holds for all 0 ≤ f ∈ F∼. In particular, we have
[
|T ′|fα

]
(x) ≤ fα(u) ↓ 0,

and so
[
|T ′|fα

]
(x) ↓ 0 holds for each x ∈ E+, i.e., |T ′|fα ↓ 0 holds in E∼.

Therefore, |T ′| is order continuous, and so T ′ is likewise order continuous.
The proof of the theorem is now complete.

It is interesting to know that the converse of the preceding theorem is
false. That is, there are operators T : E → F between Riesz spaces that
are not order bounded, while their algebraic adjoints carry F∼ into E∼

and are order bounded and order continuous. For instance, the operator
T : L1[0, 1] → c0 defined by

T (f) =
(∫ 1

0
f(x) sin x dx,

∫ 1

0
f(x) sin 2x dx, . . .

)
,

is not order bounded, while

T ′ : c∼0 = �1 → L∼
1 [0, 1] = L∞[0, 1]

(where 〈T ′(x1, x2, . . .), f〉 =
∑∞

n=1 xn

∫ 1
0 f(x) sin nx dx) is order bounded and

order continuous. For details see Exercise 10 of Section 5.1.
Consider an order bounded operator T : E → F between two Riesz

spaces. By Theorem 1.73 we know that T ′ : F∼ → E∼ is likewise order
bounded, and so (since E∼ is Dedekind complete) the modulus of T ′ exists.
On the other hand, if the modulus of T also exists, then it follows from
±T ≤ |T | that ±T ′ ≤ |T |′. That is, whenever the modulus of T exists, then
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|T ′| ≤ |T |′ holds. The strict inequality |T ′| < |T |′ may very well happen, as
the next example shows.

Example 1.74. Consider the operator T : �1 → �∞ defined by

T (x1, x2, . . .) = (x1 − x2, x2 − x3, x3 − x4, . . .) .

Clearly, T is a regular operator, and an easy argument shows that

|T |(x1, x2, . . .) = sup
{
T (y1, y2, . . .) : |(y1, y2, . . .)| ≤ (x1, x2, . . .)

}
= (x1 + x2, x2 + x3, x3 + x4, . . .)

holds for all 0 ≤ (x1, x2, . . .) ∈ �1.
Next consider the Riesz subspace c of �∞ consisting of all convergent

sequences. Clearly, c majorizes �∞, and moreover the formula

φ(x1, x2, . . .) = lim
n→∞

xn , (x1, x2, . . .) ∈ c ,

defines a positive linear functional on c. By Theorem 1.32 the positive linear
functional φ has a positive linear extension to all of �∞, which we denote by
φ again. Put e = (1, 1, . . .), and note that〈

|T |′φ, e
〉

=
〈
φ, |T |e

〉
= φ(2, 2, . . .) = 2 .

Now let ψ ∈ �∼∞ satisfy |ψ| ≤ φ. Note that if (x1, x2, . . .) ∈ �∞ satisfies
limn→∞ xn = 0, then the relation∣∣ψ(x)

∣∣ ≤ |ψ|(|x|) ≤ φ(|x|) = lim
n→∞

|xn| = 0 ,

implies ψ(x) = 0. Therefore, [T ′ψ](x) = ψ(Tx) = 0 holds for all x ∈ �1. In
other words, T ′ψ = 0 holds for all |ψ| ≤ φ, and so by Theorem 1.14 we see
that

|T ′|φ = sup
{
|T ′ψ| : |ψ| ≤ φ

}
= 0 .

Thus, 0 =
〈
|T ′|φ, e

〉
�=
〈
|T |′φ, e

〉
= 2, and consequently the operator T

satisfies |T ′| < |T |′.

To continue our discussion we need a simple lemma.

Lemma 1.75. If T : E → F is an order bounded operator between two Riesz
spaces, then for each 0 ≤ f ∈ F∼ and each x ∈ E+ we have〈

f, |Tx|
〉
≤
〈
|T ′|f, x

〉
.

Proof. Fix 0 ≤ f ∈ F∼ and x ∈ E+. Then by Theorem 1.23 there exists
some g ∈ F∼ with |g| ≤ f and

〈
f, |Tx|

〉
=
〈
g, Tx

〉
. Thus,〈

f, |Tx|
〉

=
〈
g, Tx

〉
=
〈
T ′g, x

〉
≤
〈
|T ′||g|, x

〉
≤
〈
|T ′|f, x

〉
,

as desired.
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Although |T ′| and |T |′ need not be equal, they do agree on the order con-
tinuous linear functionals. This important result is due to U. Krengel [105]
and J. Synnatzschke [181] and is stated next.

Theorem 1.76 (Krengel–Synnatzschke). If T : E → F is an order bounded
operator between two Riesz spaces with F Dedekind complete, then∣∣T ′∣∣f = |T |′f
holds for all f ∈ F∼

n .

Proof. Let 0 ≤ f ∈ F∼
n be fixed. We already know that

∣∣T ′∣∣f ≤ |T |′f holds.
On the other hand, if 0 ≤ x ∈ E, then from Theorem 1.21 and Lemma 1.75
we see that〈

|T |′f, x
〉

=
〈
f, |T |x

〉

=
〈
f, sup

{ n∑
i=1

|Txi| : xi ∈ E+ and
n∑

i=1

xi = x
}〉

= sup
{ n∑

i=1

〈
f, |Txi|

〉
: xi ∈ E+ and

n∑
i=1

xi = x
}

≤
{ n∑

i=1

〈
|T ′|f, xi

〉
: xi ∈ E+ and

n∑
i=1

xi = x
}

=
〈∣∣T ′∣∣f, x

〉
,

and so |T |′f ≤
∣∣T ′∣∣f . Therefore,

∣∣T ′∣∣f = |T |′f holds for all f ∈ F∼
n .

When is every order bounded linear functional on a Riesz space σ-order
continuous?

As we shall see, this question is closely related to the following question
regarding a σ-order continuity property of the map T �→ T 2, from Lb(E) to
Lb(E). When does 0 ≤ Tn ↑ T in Lb(E) imply T 2

n ↑ T 2 ?
In general, 0 ≤ Tn ↑ T does not imply T 2

n ↑ T 2, even if T and all the
Tn are rank one operators.

Example 1.77. Let E = �∞, the Dedekind complete Riesz space of all
bounded real-valued sequences, and consider the Riesz subspace c of E con-
sisting of all convergent sequences. Clearly, c majorizes E and the formula
f(x) = limxn defines a positive linear functional on c. By Theorem 1.32 the
positive linear functional has a positive linear extension to all of E (which
we denote by f again.)

Now let un = (1, 1, . . . , 1n , 0, 0, . . .) and e = (1, 1, . . .). Put Tn = f ⊗ un,
T = f ⊗ e, and note that 0 ≤ Tn ↑ T holds in Lb(E). On the other hand, it
is not difficult to see that T 2

n = 0 for each n and T 2 = T . So, T 2
n � ↑ T 2.
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In contrast to the preceding example, observe that Tn ↓ 0 in Lb(E)
implies T 2

n ↓ 0. (To see this, note that 0 ≤ T 2
n(x) ≤ Tn(T1x) for all x ∈ E+.)

Example 1.77 can be used to establish the existence of a Dedekind com-
plete Riesz space E with the property that for each k, there exists a se-
quence {Tn} of positive operators on E such that 0 ≤ T i

n ↑n T i holds for
each i = 1, . . . , k and T k+1

n � ↑ T k+1. The next example is taken from [18].

Example 1.78. Let f , un, and e be as they were defined in Example 1.77,
and let E = (�∞)N (= the Dedekind complete Riesz space of all �∞-valued
sequences).

Now let k be fixed, and define the positive operators

Tn(x1, x2, . . .) =
(
f(xk)un, x1, . . . , xk−1, 0, 0, . . .

)
,

and

T (x1, x2, . . .) =
(
f(xk)e, x1, . . . , xk−1, 0, 0, . . .

)
.

Then it is a routine matter to verify that

0 ≤ T i
n ↑ T i for each i = 1, . . . , k and T k+1

n � ↑ T k+1

hold in Lb(E).

The next result of C. D. Aliprantis, O. Burkinshaw and P. Kranz [18]
characterizes the Riesz spaces on which every positive linear functional is
σ-order continuous.

Theorem 1.79 (Aliprantis–Burkinshaw–Kranz). For a Riesz space E whose
order dual separates the points of E the following statements are equiva-
lent:

(a) E∼
c = E∼, i.e., every positive linear functional on E is σ-order

continuous.

(b) Whenever T : E → E is a positive operator and a sequence {Tn} of
positive operators from E to E satisfies Tn(x) ↑ T (x) in E for each
x ∈ E+, then T 2

n(x) ↑ T 2(x) likewise holds in E for each x ∈ E+.

Proof. (1) =⇒ (2) Let 0 ≤ Tn(x) ↑ T (x) for each x ∈ E+, and let y ∈ E+

be fixed. Clearly, 0 ≤ T 2
n(y) ↑≤ T 2(y) holds in E. To see that T 2(y) is the

least upper bound of the sequence
{
T 2

n(y)
}
, let T 2

n(y) ≤ z hold in E for all
n. Then for each 0 ≤ f ∈ E∼ we have f

(
T 2

n(y)
)
≤ f(z) for all n.

On the other hand, it follows that for each 0 ≤ f ∈ E∼ the sequence
{f ◦ Tn} ⊆ E∼ = E∼

c satisfies 0 ≤ f ◦ Tn ↑ f ◦ T in E∼. Thus,

f
(
T 2

n(y)
)

= [f ◦ Tn](Tny) ↑ [f ◦ T ](Ty) = f
(
T 2(y)

)
,
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and so f
(
T 2(y)

)
≤ f(z) holds for all 0 ≤ f ∈ E∼. Since E∼ separates

the points of E, it follows from Theorem 1.66 that T 2(y) ≤ z. Therefore,
T 2

n(y) ↑ T 2(y) holds in E for each y ∈ E+.

(2) =⇒ (1) Fix 0 ≤ f ∈ E∼, and let 0 ≤ xn ↑ x in E. Then we have
0 ≤ [f ⊗ xn](y) ↑ [f ⊗ x](y) for all y ∈ E+, and so by our hypothesis

[f ⊗ xn]2(y) = f(xn)
[
f(y)xn

]
↑ [f ⊗ x]2(y) = f(x)

[
f(y)x

]
also holds for all y ∈ E+. Now an easy argument shows that f(xn) ↑ f(x),
and hence f is σ-order continuous. Therefore, E∼

c = E∼ holds.

Since E∼ is Dedekind complete, every band of E∼ is a projection band
(see Theorem 1.42). The rest of the section is devoted to deriving formulas
for the order projections of E∼.

Theorem 1.80. Let E be a Riesz space and let φ ∈ E∼. If Pφ denotes the
order projection of E∼ onto the band generated by φ, then for each x ∈ E+

and each 0 ≤ f ∈ E∼ we have

[Pφf ](x) = sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and |φ|(x − y) < ε

}
.

Proof. We can assume that 0 ≤ φ ∈ E∼. Fix x ∈ E+ and 0 ≤ f ∈ E∼, and
put

r = sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and |φ|(x − y) < ε

}
.

Fix ε > 0. Since f ∧ nφ ↑ Pφf (Theorem 1.47), there exists some k with
(Pφf − f ∧ kφ)(x) < ε. Now let 0 < δ < ε, and let 0 ≤ y ≤ x satisfy
φ(x − y) < δ. Then we have

[Pφf ](x) = (Pφf − f ∧ kφ)(x) + (f ∧ kφ)(x) < ε + (f ∧ kφ)(x)

≤ ε + kφ(x − y) + f(y) < ε + kδ + f(y) ,

and consequently

[Pφf ](x) ≤ ε + kδ + inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < δ

}
≤ ε + kδ + r

holds for all 0 < δ < ε. Thus, [Pφf ](x) ≤ ε + r holds for all ε > 0, and
therefore [Pφf ](x) ≤ r.

For the reverse inequality, let ε > 0. Since (f − Pφf) ∧ φ = 0, for each
0 < δ < ε there exists some 0 ≤ z ≤ x with

(
f − Pφf

)
(z) + φ(x − z) < δ.

This implies f(z) < δ − φ(x − z) + [Pφf ](z) < δ + [Pφf ](x). In particular,
we have

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
≤ f(z) < δ + [Pφf ](x)

for all ε > 0. This implies that r ≤ [Pφf ](x), and hence [Pφf ](x) = r.
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The next theorem presents a formula for Pφ in terms of increasing se-
quences and is due to W. A. J. Luxemburg [125, Note XV].

Theorem 1.81 (Luxemburg). Let E be a Riesz space and let φ ∈ E∼. Then
for each x ∈ E+ and 0 ≤ f ∈ E∼ we have

[Pφf ](x) = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and |φ|(x − xn) ↓ 0

}
.

Proof. We can assume that 0 ≤ φ ∈ E∼. Fix x ∈ E+ and 0 ≤ f ∈ E∼ and
put

r = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and |φ|(x − xn) ↓ 0

}
.

Let 0 ≤ xn ↑≤ x satisfy φ(x − xn) ↓ 0. Then for each n and k we have

[Pφf ](x) − f(xn) ≤ [Pφf ](x − xn)

≤ (Pφf − f ∧ kφ)(x) + (f ∧ kφ)(x − xn)

≤ (Pφf − f ∧ kφ)(x) + kφ(x − xn) ,

and so, taking limits with respect to n, we get

[Pφf ](x) − sup f(xn) ≤ (Pφf − f ∧ kφ)(x)

for all k. Since f ∧ kφ ↑ Pφf , it follows that [Pφf ](x) ≤ sup f(xn), and from
this we see that [Pφf ](x) ≤ r.

Now let ε > 0. Since (f−Pφf)∧φ = 0 holds, for each n there exists some
0 ≤ yn ≤ x with (f − Pφf)(yn) + φ(x − yn) < ε2−n. Put xn =

∨n
i=1 yi, and

note that 0 ≤ xn ↑≤ x. From 0 ≤ φ(x − xn) ≤ φ(x − yn) → 0, we see that
φ(x − xn) ↓ 0. Also, note that 0 ≤ (f − Pφf)(xn) ≤

∑n
i=1(f − Pφf)(yi) < ε

holds. Therefore,

r ≤ sup f(xn) ≤ sup(f − Pφf)(xn) + sup[Pφf ](xn) ≤ ε + [Pφf ](x)

holds for all ε > 0, and so r ≤ [Pφf ](x). Consequently, [Pφf ](x) = r holds,
and the proof is finished.

A formula, due to the authors [16], describing the order projection onto
an arbitrary band of E∼ is presented next.

Theorem 1.82 (Aliprantis–Burkinshaw). Let E be a Riesz space and let B
be a band of E∼. If PB denotes the order projection of E∼ onto B, then for
each x ∈ E+ and 0 ≤ f ∈ E∼ we have

[PBf ](x) = sup
ε>0
φ∈B+

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
.

Proof. Fix x ∈ E+ and 0 ≤ f ∈ E∼, and put

r = sup
ε>0
φ∈B+

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
.
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Note that for each φ ∈ B+ we have Pφ ≤ PB. Thus from Theorem 1.80
it easily follows that r ≤ [PBf ](x). Now let ψ = PBf . Then ψ ∈ B+, and
so by Theorem 1.80 we have

[PBf ](x) = [Pψψ](x) ≤ [Pψf ](x)

= sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and ψ(x − y) < ε

}
≤ r .

Thus, [PBf ](x) = r holds, as desired.

In view of Theorem 1.81, it might be expected that the following formula
also holds:

[PBf ](x) = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and φ(x − xn) ↓ 0 ∀φ ∈ B+

}
.

Unfortunately, such formula is not true. For an example, let E be the
Riesz space of all Lebesgue integrable (real-valued) functions on [0, 1] with
the pointwise ordering. (Note that two functions differing at one point
are considered to be different.) Since xα ↓ 0 in E implies xα(t) ↓ 0 for
each t ∈ [0, 1], it follows that the point evaluations x �→ x(t) are all order
continuous positive linear functionals on E. This implies that E∼

n separates
the points of E. Now consider the positive linear functional f : E → R

defined by

f(x) =
∫ 1

0
x(t) dt .

According to Example 1.55, the linear functional f is σ-order continuous
but not order continuous. If B = E∼

n , then

inf
{
sup f(xn) : 0 ≤ xn ↑≤ 1 and φ(1 − xn) ↓ 0 for all φ ∈ B+

}
= inf

{
sup f(xn) : 0 ≤ xn ↑ 1

}
= f(1) = 1 .

On the other hand, it is not difficult to see that [PBf ](1) < 1 must hold.
Finally, we close this section by presenting necessary and sufficient con-

ditions for a linear functional to belong to a principal band of E∼.

Theorem 1.83. Let E be a Riesz space and let f ∈ E∼. Then for an order
bounded linear functional g ∈ E∼ the following statements are equivalent.

(1) g belongs to the principal band generated by f in E∼.

(2) For each x ∈ E+ and ε > 0 there exists some δ > 0 such that
whenever |y| ≤ x satisfies |f |(|y|) < δ, then |g|(|y|) < ε holds.

(3) If an order bounded sequence {xn} of E satisfies lim |f |(|xn|) = 0,
then lim g(xn) = 0.

(4) If 0 ≤ xn ↑≤ x and lim |f |(x − xn) = 0, then lim g(x − xn) = 0.
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Proof. (1) =⇒ (2) Let x ∈ E+ and ε > 0. Since |g| ∧ k|f | ↑ |g| holds in E∼

(Theorem 1.47), there exists some k with (|g| − |g| ∧ k|f |)(x) < ε. If |y| ≤ x
satisfies |f |(|y|) ≤ ε

k , then we have

|g|(|y|) =
(
|g| − |g| ∧ k|f |

)
(|y|) +

(
|g| ∧ k|f |

)
(|y|)

≤
(
|g| − |g| ∧ k|f |

)
(x) + k|f |(|y|) < ε + ε = 2ε .

(2) =⇒ (3) and (3) =⇒ (4) are obvious.

(4) =⇒ (1) Write g = φ + ψ, with φ ∈ Bf and ψ ⊥ f . Fix x ∈ E+

and ε > 0. Now let 0 ≤ y ≤ x. Since ψ ⊥ f holds, for each n there exists
some 0 ≤ yn ≤ y with |ψ|(yn) + |f |(y − yn) < 2−nε. Then xn =

∨n
i=1 yi

satisfies 0 ≤ xn ↑≤ y and |ψ|(xn) ≤
∑n

i=1 |ψ|(yi) < ε. On the other hand,
the inequalities |f |(y − xn) ≤ |f |(y − yn) ≤ 2−nε imply |f |(y − xn) ↓ 0.
Hence, by our hypothesis lim g(y − xn) = 0. In particular, note that

g(y) = lim
n→∞

g(xn) = lim
n→∞

[
φ(xn) + ψ(xn)

]
≤ lim sup

n→∞

[
|φ|(x) + |ψ|(xn)

]
≤ |φ|(x) + ε .

Since ε > 0 is arbitrary, we see that g(y) ≤ |φ|(x) holds for all 0 ≤ y ≤ x.
Therefore,

g+(x) = sup
{
g(y) : 0 ≤ y ≤ x

}
≤ |φ|(x)

holds for all x ∈ E+. Hence, g+ ∈ Bf . Similarly, g− ∈ Bf , and therefore
g = g+ − g− ∈ Bf , and the proof is finished.

Exercises

1. Show that if f : E → R is a σ-order continuous linear functional on an
Archimedean Riesz space, then f is order bounded.

2. Consider an Archimedean Riesz space E. If f ∈ E∼
n and g ∈ E∼, then

show that the following statements are equivalent.
(a) f ⊥ g.
(b) Cg ⊆ Nf .
(c) Cg ⊥ Cf .

3. Establish the following properties of perfect Riesz spaces.
(a) Every band of a perfect Riesz space is a perfect Riesz space in its

own right.
(b) If F is a perfect Riesz space, then Lb(E,F ) is likewise a perfect

Riesz space for each Riesz space E. (In particular, the order dual of
every Riesz space is a perfect Riesz space.)

(c) If E is a perfect Riesz space, then E∼∼ is retractable on E.

4. Let E and F be two Riesz spaces such that E∼
n = E∼ and F∼ separates

the points of F . Then show that every positive operator from E to F


