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TOPOLOGICAL ASPECTS OF ORDER IN C(X)

M. KANDIĆ AND A. VAVPETIČ

Abstract. In this paper we consider the relationship between or-

der and topology in the vector lattice Cb(X) of all bounded contin-

uous functions on a Hausdorff space X . We prove that the restric-

tion of f ∈ Cb(X) to a closed set A induces an order continuous

operator iff A = IntA. This result enables us to easily characterize

bands and projection bands in C0(X) and Cb(X) through the one-

point compactification and the Stone-Čech compactification of X ,

respectively. With these characterizations we describe order com-

plete C0(X) and Cb(X)-spaces in terms of extremally disconnected

spaces. Our results serve us to solve an open question on lifting

un-convergence in the case of C0(X) and Cb(X).

1. Introduction

The interaction between order and topology on spaces of continuous

functions have been studied extensively in the past. Although closed

ideals, bands and projection bands in C(X) where X is compact and

Hausdorff have nice characterizations through closed sets of X , the

lattice C(X) is very rarely order complete. Order completeness of the

lattice C(X) is equivalent to the fact that X is extremally disconnected

[MN91].

In Section 3 we consider the operator ΦA : C(X) → C(A) which

maps continuous functions on X to their restrictions on A ⊆ X . Al-

though this operator is a contraction between Cb(X) and Cb(A), in
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general it is not order continuous. We prove that whenever X ∈ T3 1

2

order continuity of ΦA is equivalent to A ⊆ IntA (see 3.3).

Although order properties of C(X) where X is a compact Hausdorff

space can be found in the main textbooks on vector and Banach lat-

tices, results for Cb(X) where X is “just” Hausdorff seem to be left

out of the main literature. Our second goal is to provide an elemen-

tary characterization of closed ideals, bands and projection bands of

Banach lattices Cb(X) and C0(X) through closed sets of X where X

is Hausdorff and locally compact, respectively. Main tools we use are

order continuity of the restriction operator ΦA and the embeddings of

X into X+ or βX when X is locally compact Hausdorff space or T3 1

2

,

respectively. There is also a way how to study Cb(X) where X is just

Hausdorff. If X is T3 1

2

, then bands and projection bands have desired

characterizations, and when X is only Hausdorff, desired characteri-

zations can be obtained only for projection bands (see 5.6). Certain

results of Section 4 and Section 5 are applied in Section 6 to charac-

terize order complete vector lattices C0(X) and Cb(X). We prove that

C0(X) or Cb(X), when X is locally compact Hausdorff or T3 1

2

, respec-

tively, is order complete iff X is extremally disconnected. This enables

us to provide a vector lattice argument that X ∈ T3 1

2

is extremally

disconnected iff its Stone-Čech compactification βX is.

In Section 7 we consider the so-called problem of “lifting un-convergence”

[KMT, Question 4.7]. An application of results from Section 4 and Sec-

tion 5 provides a positive answer in the special case of Banach lattices

C0(X) and Cb(X).

2. Preliminaries

Let E be a vector lattice. A vector subspace Y of E is an ideal or an

order ideal whenever 0 ≤ |x| ≤ |y| and y ∈ Y imply x ∈ Y . A band

B is an ideal with the property that whenever 0 ≤ xα ր x and xα ∈ B

for each α imply x ∈ B. Here, the notation xα ր x means that the net

(xα) is increasing towards its supremum x. In the literature bands are

sometimes referred to as order closed ideals . For a given set A ⊆ E

by Ad we denote the set {x ∈ E : |x| ∧ |a| = 0 for all a ∈ A}. The set

Ad is called the disjoint complement of A in E. It turns out that
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Ad is always a band in E. If a band B satisfies E = B ⊕ Bd, then B

is called a projection band . If every band in E is a projection band,

then E is said to have the projection property . A vector lattice is

said to be order complete whenever nonempty bounded by above

sets have suprema. It is well-known that order complete vector lattices

have the projection property. The spaces Lp(µ) (0 ≤ p ≤ ∞) are order

complete whenever µ is a σ-finite measure. When p 6= 0 or ∞, then

Lp(µ) is always order complete. On the other hand, the lattice C(X)

is rarely order complete. If (fα) is an increasing net in C(X) that is

bounded by above, then f = supα fα exists in the vector lattice of all

functions on X . If f is continuous, then fα ր f in C(X). A sublattice

Y of a vector lattice E is said to be regular if for every subset A

of Y , inf A is the same in E and in Y whenever inf A exists in Y . It

is well-known (see e.g. [AB03]) that every ideal is a regular sublattice.

The following result characterizes regular sublattices (see e.g. [AB03,

Theorem 1.20]).

Lemma 2.1. For a sublattice Y of E the following statements are

equivalent.

(a) Y is regular.

(b) If supA exists in Y then supA exists in E and the two suprema

are equal.

The following proposition directly follows from Lemma 2.1.

Proposition 2.2. Let Y be an ideal in a vector lattice E. If B ⊆ Y is

a band in E, then B is a band in Y .

Proof. Since every band is an ideal, B is an ideal in E, and hence

B = B ∩ Y is an ideal in Y . Suppose now that a net (xα) satisfies

0 ≤ xα ր x in Y . By Lemma 2.1 we have xα ր x in E. That x ∈ B

follows from the fact that B is a band in E. Hence, B is a band in

Y . �

In this paper we are concerned with algebras/lattices of continuous

functions on a topological space X . For a set A of X we will denote by

IntX A and ClX A the interior and the closure of A in X , respectively.

If there is no confusion in which space the interior and the closure are
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taken, we will simply write IntA and A instead of IntAX and ClX A,

respectively. If A is an open subset of X and B is a subset of A,

then IntAB = IntX B. A topological space is said to be completely

regular for every closed set F in X and x ∈ X \ F there exists a

continuous function f : X → [0, 1] such that f(x) = 1 and f |F ≡ 0.

If X is completely regular and Hausdorff, we say that X is T3 1

2

and

we write X ∈ T3 1

2

for short. It is well-known that locally compact

Hausdorff spaces are T3 1

2

. A space X is said to be regular whenever a

point and a closed set which does not contain the point can be separated

by disjoint neighborhoods. If disjoint closed sets of X can be separated

by disjoint neighborhoods, then X is said to be normal .

If not otherwise stated all functions are assumed to be continuous.

Since real function rings (resp. algebras) C(X), Cb(X) and C0(X) are

also lattices, we introduce the following notation to distinguish between

algebraic and lattice notions of ideals. A ring (resp. algebra) ideal is

called an r-ideal (resp. an a-ideal ) and an order ideal is called an

o-ideal . Since all constant functions on X are in Cb(X) (resp. C(X))

the class of r-ideals in Cb(X) (resp. C(X)) coincides with the class of

a-ideals. The ideal J in C(X) is called fixed whenever all functions

from J vanish on a nonempty set. The ideals that are not fixed are

called free. Fixed ideals play an important role in the characterization

of compact Hausdorff spaces among T3 1

2

-spaces. For the proof of the

following Theorem see [GJ76, Theorem 4.11].

Theorem 2.3. For X ∈ T3 1

2

the following assertions are equivalent.

(a) X is compact.

(b) Every r-ideal in Cb(X) is fixed.

(c) Every maximal r-ideal in Cb(X) is fixed.

Special examples of fixed ideals are the ideals of the form

JF (X) := {f ∈ C(X) : f |F ≡ 0}

for some subset F of X . Obviously JF (X) is an a-ideal and an o-ideal

which is closed in C(X) in the topology of pointwise convergence. It

should be obvious that we always have JF (X) = JF (X). For F ⊆ X

we denote the set {f ∈ C0(X) : f |F ≡ 0} by J0
F (X).
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If X is a compact Hausdorff space there exists a characterisation of

closed ideals, bands and projective bands in C(X). We start with a

characterization of closed ideals (see e.g. [MN91, Proposition 2.1.9]).

Theorem 2.4. For every closed subspace J of C(X) where X is a

compact Hausdorff space the following assertions are equivalent.

(a) J is an r-ideal.

(b) J is an o-ideal.

(c) J = JF (X) for some closed set F ⊆ X.

Bands and projection bands are characterized as follows (see e.g.

[MN91, Corollary 2.1.10]).

Theorem 2.5. For a subspace B of C(X) where X is a compact Haus-

dorff space the following assertions hold.

(a) B is a band iff B = JF (X) for some set F ⊆ X which is a

closure of some open set.

(b) B is a projection band iff B = JF (X) for some clopen set F ⊆

X.

Corollary 2.6. If X is a locally compact noncompact Hausdorff space,

then C0(X) is not a band in C(X+).

A closed set which is a closure of some open set is the closure of its

interior. Indeed, if F = U where U is an open set, then U ⊆ IntF , so

that F = U ⊆ IntF ⊆ F . Thus, a closed ideal J in C(X) where X is

a compact Hausdorff space is a band iff J = JF (X) for some closed set

F in X with F = IntF .

For unexplained facts about vector lattices and operators acting on

them we refer the reader to [LZ71].

3. Order density and completely regular spaces

Complete regularity of the space basically means that we can sepa-

rate points from closed sets by continuous functions. If we can sep-

arate only points by continuous functions, i.e., for different points

x, y ∈ X there is a continuous function f : X → [0, 1] with f(x) = 0

and f(y) = 1, then X is called functionally Hausdorff .
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IfX is not functionally Hausdorff, then there exist x, y ∈ X such that

f(x) = f(y) for all f ∈ C(X). In this case we have J{x}(X) = J{y}(X),

so that the mapping x 7→ J{x}(X) is not one-to-one. If X ∈ T3 1

2

, then

for closed sets F and G in X we have JF (X) = JG(X) iff F = G.

Indeed, if F 6= G, then there exists x ∈ X such that x ∈ F \ G or

x ∈ G \ F . Without any loss of generality we can assume that the

former happens. Then one can find f : X → [0, 1] with f(x) = 1 and

f ≡ 0 on G. Then f ∈ JG(X) = JF (X) implies f(x) = 0 which is a

contradiction.

Also, when F is a closed set in X ∈ T3 1

2

, the disjoint complement

of JF (X) satisfies JF (X)d = JX\F (X). Indeed, if f ∈ JX\F (X), then

f ≡ 0 on X \ F , so that |f | ∧ |g| = 0 for all g ∈ JF (X). Hence

f ∈ JF (X)d. If f /∈ JX\F (X), there is x ∈ X \ F such that f(x) 6= 0.

Take any g ∈ Cb(X) with g(x) = 1 and g ≡ 0 on F . Then g ∈ JF (X)

and |f | ∧ |g| 6= 0, i.e., f /∈ JF (X)d.

In this section we are interested in the so-called “restriction operator”

defined as follows. If A is a subset of X , then the restriction f |A of

f ∈ C(X) is continuous on A. The mapping ΦA(f) = f |A is called the

restriction operator . Also, if f ∈ Cb(X), then f |A ∈ Cb(A) and the

restriction operator is a contractive lattice homomorphism with respect

to the ‖ · ‖∞ norms on Cb(X) and Cb(A).

If X is normal and A is closed in X , then the restriction operator is

always surjective. The details follow.

Theorem 3.1. The following assertions are equivalent.

(a) X is normal.

(b) For any closed subset A in X the restriction operator ΦA : Cb(X) →

Cb(A) is surjective.

(c) For any disjoint closed sets A and B in X there is f ∈ Cb(X)

such that f |A ≡ 1 and f |B ≡ 0.

It should be noted that (b) and (c) are precisely the statements of

Tietze extension theorem and Urysohn’s lemma, respectively.

If fα ր f in C(X), then for each set A ⊆ X we have fα|A ր

and fα|A ≤ f |A for each α. Pick λ ∈ R. If fα|A ≡ λ for each α, then

f |A ≡ λ. In general we cannot expect fα|A ր f |A, since ΦA is not order
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continuous. We will prove that for a closed set A ⊆ X the operator

ΦA : C(X) → C(A) is order continuous iff A = IntA (see 3.3). To

prove this result we first need the following lemma which deals with a

special case.

Proposition 3.2. Let X ∈ T3 1

2

and A ⊆ X open subset.

(a) If fα ր f in C(X), then fα|A ր f |A in C(A).

(b) If fα ր f in Cb(X), then fα|A ր f |A in Cb(A).

Proof. (a) Let fα ր f in C(X). Suppose there exists g : A → R

such that fα|A ≤ g < f |A for all α. There exists x0 ∈ A such that

g(x0) < f(x0) and because f and g are continuous and X is regular,

there exists an open set U ⊆ ClX(U) ⊆ A such that g(x) < f(x) for all

x ∈ U . Because X ∈ T3 1

2

there exists λ : X → [0, 1] such that λ(x0) = 1

and λ(X \ U) = 0. We define a function λg : X → R as

(λg)(x) =

{
λ(x)g(x) : x ∈ A

0 : x ∈ X \ ClX U
.

Since {A,X \ ClX(U)} is an open cover of X and λ ≡ 0 on X \ ClX U

we conclude that λg is continuous on X . Then h : X → R defined by

h(x) = (λg)(x) + (1 − λ(x))f(x) is continuous and fα ≤ h < f for all

α. This is a contradiction as fα ր f .

(b) Suppose fα ր f in Cb(X). Since Cb(X) is an ideal in C(X),

Lemma 2.1 implies fα ր f in C(X), so that by (a) we have fα|A ր f |A
in C(X). If fα|A ≤ g ≤ f |A for some g ∈ Cb(A), then fα|A ր f |A in

C(X) implies g = f |A, and since f |A ∈ Cb(A) we have fα|A ր f |A in

Cb(A). �

In 5.7 we will see that there is an example of a functionally Hausdorff

space X such that for every open set A in X the restriction operator

ΦA : C(X) → C(A) is order continuous.

Theorem 3.3. Let X ∈ T3 1

2

and A ⊆ X a closed set. The following is

equivalent:

(a) A = IntA.

(b) If fα ր f in C(X), then fα|A ր f |A in C(A).

(c) If fα ր f in Cb(X), then fα|A ր f |A in Cb(A).
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Proof. (a) ⇒ (b) Suppose A = IntA and let fα ր f in C(X). Let

g : A → R be such that fα|A ≤ g ≤ f |A for all α. By 3.2, fα|IntA ր

f |IntA in C(IntA), hence g|IntA = f |IntA. Because of continuity of f

and g (on A) and A = IntA we get g = f |A.

(b) ⇒ (a) Suppose A * IntA. There exists x0 ∈ A \ IntA. Because

X ∈ T3 1

2

there exists ψ̃ : X → [−1, 1] such that ψ̃(x0) = −1 and

ψ̃(IntA) = 1. Let ψ : X → [0, 1] be defined as ψ = max{ψ̃, 0}. Then

U = ψ̃−1([−1, 0)) ∩A is an open set in A. Because A is closed, U ⊆ A

and U ⊆ ψ̃−1([−1, 0]), hence x0 ∈ U ⊆ U ⊆ A \ IntA. Let M =

{f : X → R : f |U ≡ 0, f |IntA ≡ 1}. By the construction we have

ψ ∈ M, so that M is nonempty.

Claim 1: If f ≤ g for all f ∈ M then g(x) ≥ 1 for all x ∈ X \ U .

Indeed, pick x 6∈ U . Because X ∈ T3 1

2

there exists ϕ : X → [0, 1] such

that ϕ ≡ 0 on U and ϕ(x) = 1. Then f := min{ϕ + ψ, 1} ∈ M and

f(x) = 1, which implies g(x) ≥ f(x) = 1.

Claim 2: The set X \ U is dense in X . Indeed, otherwise there

exists an open set V ⊆ X such that V ∩ (X \ U) = ∅. Then V ⊆ U ⊆

A\IntA. This is a contradiction, since from V ⊆ A and V open follows

V ⊆ IntA.

Let us show that (f)f∈M ր 1 in C(X). Suppose some function

g : X → R satisfies f ≤ g ≤ 1 for all f ∈ M. Claim 1 yields that g ≥ 1

on X \U , so that together with g ≤ 1 we conclude g|X\U ≡ 1. Since by

Claim 2 the set X \ U is dense in X , we have g ≡ 1 on X . Therefore,

(f)f∈M ր 1 in C(X).

Let us show that (f |A)f∈M does not converge in order to 1 in C(A).

If (f |A)f∈M ր 1, by 3.2 (f |U)f∈M ր 1. But f |U ≡ 0 for all f ∈ M.

(b) ⇒ (c) Suppose fα ր f in Cb(X). Then fα ր f in C(X), so

that fα|A ր f |A in C(A). Since f |A is bounded, we have fα|A ր f |A
in Cb(A).

(c) ⇒ (b) Since for each g ∈ C(X) we have g ∧ n1րn g and since

for each n ∈ N we have fα|A ∧ n1րα f |A ∧ n1, we conclude

f |A = sup
n∈N

(f |A ∧ n1) = sup
n∈N

sup
α

(fα|A ∧ n1)

= sup
α

sup
n∈N

(fα|A ∧ n1) = sup
n∈N

fα|A.
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�

Corollary 3.4. Let A be a closed set in X ∈ T3 1

2

. Then the restriction

operator ΦA is order continuous iff A = IntA.

Suppose now that X is compact and Hausdorff; hence normal and

so X ∈ T3 1

2

. If A is closed in X , then the kernel of ΦA : C(X) → C(A)

is precisely the fixed ideal JA(X). In this special case, by 2.5 and 3.4

the restriction operator ΦA is order continuous iff JA(X) is a band in

C(X).

WhenX is merely normal, the restriction operator ΦA is surjective by

3.1. By [LZ71, Theorem 18.13] ΦA : Cb(X) → Cb(A) is order continuous

iff ker ΦA = JA(X) is a band in Cb(X). In 5.3 we will prove that for

X ∈ T3 1

2

bands in Cb(X) are precisely closed ideals in Cb(X) of the

form JA(X) where A is a closed set satisfying A = IntA.

If we only assume X ∈ T3 1

2

, by 3.1 the restriction operator ΦA is

not surjective in general. When A = IntA, then 5.3 implies JA(X) is

a band in Cb(X) and ΦA : Cb(X) → RanΦA ⊆ Cb(A) is an order con-

tinuous lattice homomorphism by [LZ71, Theorem 18.13]. Therefore,

if fα ր f in Cb(X), then fα|A ր f |A in the sublattice RanΦA. Since

RanΦA is order dense in Cb(A) (see 3.5 below), then it is also a regular

sublattice of Cb(A) and hence by Lemma 2.1 we have fα|A ր f |A in

Cb(A).

Proposition 3.5. Let X ∈ T3 1

2

, A ⊆ X, and ΦA : Cb(X) → Cb(A) the

restriction operator. Then RanΦA is order dense in Cb(A).

Proof. Pick a nonzero nonnegative function f ∈ C(A). Let a ∈ A be

such that f(a) > 0. Because f is continuous there exists an open set U

in A such that f(x) > f(a)
2

for all x ∈ U . Let V be open in X such that

V ∩ A = U . Because X ∈ T3 1

2

there exists g : X → [0, f(a)
2
] such that

g(a) = f(a)
2

and g ≡ 0 on V C . For x ∈ U we have f(x) > f(a)
2

≥ g(x)

and for x ∈ A \ U we have f(x) ≥ 0 = g(x). Hence 0 ≤ g|A ≤ f . �

4. Bands in C0(X)

In this section we are interested in closed ideals of the Banach lattice

algebra C0(X) where X is a locally compact Hausdorff space. We
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characterize closed ideals, bands and projection bands of C0(X) (see

4.1 and 4.2). The characterizations are pretty much the same as the

characterization of closed ideals, bands and projection bands of the

algebra of all continuous functions on a given compact Hausdorff space

(see 2.4 and 2.5). Our arguments presented in this section are based

on the embedding of X into its one-point compactification X+. Before

we proceed to our results of this section we briefly recall basic facts

about the topology on X+.

Let X be a locally compact Hausdorff space and pick any object ∞

which is not in X . It is well-known that the family τ of all open sets in

X together with the sets in X+ containing ∞ whose complements are

compact in X is a topology on X+ and the space (X+, τ) is a compact

Hausdorff space. The space X+ is called the one-point compact-

ification of X . By [Dug66, 8.3 p.245] the embedding X →֒ X+ is

an open mapping; in particular, X is an open subset of X+. If X is

noncompact, then X is dense in X+, and if X is compact, then X is

clopen in X+ and ∞ is isolated in X+.

Suppose now that X is not compact and f ∈ C0(X). Then f has

the unique extension f̃ ∈ C(X+) on X+ given by

f̃(x) =

{
f(x) : x ∈ X

0 : x = ∞
.

The mapping f 7→ f̃ is an algebra and lattice isometric isomorphism be-

tween C0(X) and the closed maximal lattice and algebra ideal J{∞}(X
+)

in C(X+). For brevity purposes we will write J{∞} instead of J{∞}(X
+).

The closed lattice (resp. algebra) ideals of C0(X) are therefore in bi-

jective correspondence with the closed lattice (resp. algebra) ideals of

C(X+) that consist of functions that vanish at infinity.

As was already mentioned closed ideals are characterized similarly

as the closed ideals in C(K)-spaces.

Theorem 4.1. Let X be a locally compact Hausdorff space and J a

closed subspace in C0(X). The following assertions are equivalent:

(a) J is an a-ideal in C0(X).

(b) J is an o-ideal in C0(X).
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(c) J = J0
F (X) for some closed set F in X.

Proof. When X is compact the conclusion follows from 2.4, so that we

may assume X is not compact. By [Kan09, Theorem 1.4.6] (a) and (c)

are equivalent. It is trivial that (c) implies (b).

To finish the proof we prove that (b) implies (a). Since C0(X) is

isometrically lattice isomorphic to J{∞}, J is isometrically lattice iso-

morphic to some closed lattice ideal J ′ = JF ′(X+) of C(X+) for some

closed subset F ′ ⊆ X+ which contains the point ∞. By 2.4 J ′ is also

an a-ideal, from where it follows that J = {f |X : f ∈ J ′} is an a-ideal

in C0(X). �

We proceed by a characterization of bands and projection bands in

C0(X). Our proofs presented here rely on the embedding X →֒ X+.

Theorem 4.2. Let X be a locally compact Hausdorff space and J a

closed ideal in C0(X).

(a) J is a band iff J = J0
F (X) for some closed set F in X with

F = IntF .

(b) J is a projection band iff J = J0
F (X) for some clopen set F in

X.

Proof. (a) Let F = ClX(IntF ) and let 0 ≤ fα ր f , where fα ∈ J0
F (X)

and f ∈ C0(X). Denote by f̃α : X
+ → R the extension of fα on

X+. Then 0 ≤ f̃α ր f̃ in J{∞}, so that by Lemma 2.1 f̃α ր f̃

in C(X+). If ClX+(IntF ) = F , then JF (X
+) is a band in C(X+),

hence f̃ ∈ JF (X
+) and f ∈ J0

F (X). If ClX+(IntF ) = F ∪ {∞}, then

ClX+(Int(F∪{∞})) = F∪{∞}, hence JF∪{∞}(X
+) is a band in C(X+),

f̃ ∈ JF∪{∞}(X
+), and f ∈ J0

F (X).

If ClX(IntF ) ( F , then there exists x ∈ F \ ClX(IntF ). Let U

be an open set such that ∞ ∈ U ⊆ U ⊆ {x}C . We claim that x ∈

F ∪ U \ ClX+(Int(F ∪ U)). Since x /∈ ClX(IntF ) there exists an open

neighborhood W1 of x such that W1 ∩ IntF = ∅. For W2 := X+ \ U
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we have x ∈ W2 and

W1 ∩W2 ∩ Int(F ∪ U) ⊆W1 ∩W2 ∩ (F ∪ U)

= (W1 ∩W2 ∩ F ) ∪ (W1 ∩W2 ∩ U)

= W1 ∩W2 ∩ F.

Since the set W1 ∩W2 ∩ Int(F ∪ U) is open, we have

W1 ∩W2 ∩ Int(F ∪ U) ⊆ Int(W1 ∩W2 ∩ F ) =W1 ∩W2 ∩ IntF

= (W1 ∩ IntF ) ∩W2 = ∅.

Therefore, W1 ∩W2 is an open neighborhood of x which does not in-

tersect Int(F ∪ U), hence x /∈ ClX+ Int(F ∪ U).

Because F ∪ U is closed in X+ and F ∪ U 6= ClX+(Int(F ∪ U)),

there exists a net (fα)α∈Λ ⊆ JF∪U(X
+) such that fα ր f ∈ C(X+) \

JF∪U(X
+). Then fα|X ∈ J0

F (X) and fα|X ր f |X ∈ C0(X). Since

fα|U ≡ 0, 3.2 implies f |U ≡ 0, so that by continuity of f we have

f |U ≡ 0. Now it follows that f |F 6≡ 0, hence J0
F (X) is not a band in

C0(X).

(b) If F is clopen, then X \ F is clopen as well, so that the char-

acteristic functions χF and χX\F are continuous on X . Then f1 :=

fχX\F ∈ J0
F (X), f2 := fχF ∈ J0

F (X)d and f = f1 + f2 imply C0(X) =

J0
F (X)⊕ J0

F (X)d.

Suppose now that J is a projection band in C0(X). By (a) we have

J = J0
F (X) for some closed set F in X . We claim X \F is closed in X .

Otherwise there is x0 ∈ F ∩X \ F. Pick any function f ∈ C0(X) with

f(x0) = 1. Since J is a projection band, we have C0(X) = J0
F (X) ⊕

J0
X\F

(X). Hence, f = f1 + f2 for some f1 ∈ J0
F (X) and f2 ∈ J0

X\F
(X),

so that f(x0) = 0. This contradiction shows X \ F is closed. Hence F

is clopen and the proof is finished. �

Closed ideals in C0(X) which are projection bands in C(X+) are

more interesting. Not only that the set F which defines a given closed

ideal is clopen, its complement in X is compact.

Corollary 4.3. Let X be a locally compact Hausdorff space and J0
F (X)

a closed ideal in C0(X). Then J0
F (X) is a projection band in C(X+)

iff F is closed in X and X \ F is compact.
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Proof. Suppose first that J0
F (X) is a projection band in C(X+). Then

F ∪ {∞} is clopen in X+, from where it follows that F is clopen in X .

Since

X \ F = X+ \ (F ∪ {∞})

is also closed in X+, the set X \ F is compact.

Suppose now that F is closed in X and X \ F is compact. Since F

is closed in X it follows that F ∪ {∞} is closed in X+. Since X \ F is

compact, F ∪ {∞} is also open in X+. Therefore, F ∪ {∞} is clopen

in X+, so that J0
F (X) ∼= JF∪{∞}(X

+) is a projection band in C(X+)

by 2.5(b). �

Suppose J is an ideal in C0(X). If J is a band in C(X+), then J is a

band in C0(X) by 2.2. This fact can be also proved directly with results

of this section without referring to general result on vector lattices.

Indeed, if J0
F (X) in C0(X) is band in C(X+), then 2.5 implies that

F ∪ {∞} = ClX+(Int(F ∪ {∞})). Since we have IntX F = IntX+ F =

IntX+(F ∪ {∞}), we have

ClX IntX F = X ∩ ClX+ IntX F = X ∩ ClX+ IntX+(F ∪ {∞})

= X ∩ (F ∪ {∞}) = F.

By 4.2 J0
F (X) is a band in C0(X).

5. Bands in Cb(X)

In this section we are interested in extending 2.4 and 2.5 to the

case of the algebra Cb(X) where X is a Hausdorff space. To have a nice

characterization of closed ideals of Cb(X) in terms of closed sets from

X is too optimistic even when X ∈ T3 1

2

. If for some X ∈ T3 1

2

every

closed ideal in Cb(X) is of the form JF (X) for some closed set F in X ,

then every closed ideal in Cb(X) is fixed, so that by 2.3 X is compact.

Hence, if X is a noncompact space, then there exist closed ideals in

Cb(X) which are not of the form JF (X) for some closed set F in X .

However, if X ∈ T3 1

2

then bands and projection bands in Cb(X) have

similar characterizations as bands in C(K)-spaces (see 5.3). If X is

merely Hausdorff, then only projection bands in Cb(X) have a similar

characterization as those in C(K)-spaces (see 5.5). Unfortunately, 5.6
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shows that there exists a functionally Hausdorff space X and a band

JF (X) in Cb(X) with IntF 6= F .

The following topological facts are critical in our study of bands and

projection bands in Cb(X).

• For every space X ∈ T3 1

2

there exists a compact Hausdorff space

βX with the property that the inclusion △ : X →֒ βX is an

embedding and βX contains X as a dense subset. Furthermore,

every function f ∈ Cb(X) can be uniquely extended to the

continuous function fβ ∈ C(βX).

• For every Hausdorff space X there exists X/∼ ∈ T3 1

2

and a con-

tinuous surjective mapping τ : X → X/∼ such that the mapping

Φτ : Cb(X/∼) → Cb(X) defined as Φτ (f̃) = f̃ ◦ τ is an isomet-

ric isomorphism between Banach lattice algebras Cb(X/∼) and

Cb(X). We will recall the construction later in this section.

It is well-known that the compact Hausdorff space βX is called the

Stone-Čech compactification of X . By [ABo06, Theorem 3.70]

the inclusion △ : X →֒ βX is an open mapping whenever X is locally

compact and Hausdorff; in particular, in this case X is open in βX .

The mapping β : Cb(X) → C(βX) defined as β(f) = fβ is an iso-

metric isomorphism of Banach algebras. By [GJ76, Theorem 1.6] the

mapping β is also a lattice isomorphism. Therefore, J is a closed or-

der/algebra ideal (resp. band, projection band) in Cb(X) iff β(J) is a

closed ideal (resp. band, projection band) in C(βX). Similarly, given a

Hausdorff space X , the aforementioned space X/∼ is T3 1

2

, and the iso-

morphism between Banach algebras Cb(X) and Cb(X/∼) is also a lattice

isomorphism, again by [GJ76, Theorem 1.6]. Therefore, starting with a

subspace J of Cb(X) where X is Hausdorff we deduce that J is a closed

order/algebra ideal in Cb(X) iff Φ−1
τ (J) is a closed order/algebra ideal

in Cb(X/∼) iff (β ◦ Φ−1
τ )(J) is a closed order/algebra ideal in C(βX).

Similar statements hold for bands and projection bands.

Therefore, for any closed ideal J in Cb(X) whereX ∈ T3 1

2

there exists

a closed subset F in βX such that J = {f |X : f ∈ JF (βX)}. Although

this description is sufficient to have some information on closed ideals
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of Cb(X), it is not the best one since F is a subset of βX and not of

X .

The following two results are needed in the proof of 5.3. Although

the proof of the first one is quite trivial we include it for the sake of

completeness.

Lemma 5.1. Let F be a closed set in X ∈ T3 1

2

. Then β(JF (X)) =

JF (βX) where F denotes the closure of F in βX.

Proof. If f ∈ JF (X), then f ≡ 0 on F , and hence by continuity fβ ≡ 0

on F . For the opposite inclusion, pick fβ ∈ JF (βX). Then f ≡ 0 on

F , so that fβ ∈ β(JF (X)). �

Proposition 5.2. Let X be a dense subset of a topological space Y . If

a closed set F ⊆ Y satisfies F = ClY IntY F , then the closed set F ∩X

in X satisfies F ∩X = ClX IntX(F ∩X).

Proof. Suppose F = ClY IntY F . Since F ∩X is closed in X , we obvi-

ously have ClX IntX(F ∩X) ⊆ F ∩X . To prove the opposite inclusion

pick any x ∈ F∩X . We will prove that an arbitrary open neighborhood

in X of x intersects IntX(F ∩X).

Let U be an arbitrary open neighborhood in X of x. There exists

an open neighborhood V in Y of x such that U = V ∩ X . From

F = ClY IntY F it follows V ∩ IntY F 6= ∅, so that from the density of

X in Y we conclude V ∩ IntY F ∩X 6= ∅. Since V ∩ IntY F ∩X is open

in X and is obviously contained in F ∩X , we have

∅ 6= U ∩ IntY F = V ∩ IntY F ∩X ⊆ IntX(F ∩X).

In particular, U intersects IntX(F ∩X) and the proof is finished. �

5.2 can be applied in two interesting situations when X is locally

compact Hausdorff space and Y = X+ or X ∈ T3 1

2

and Y = βX . We

will use 5.2 for the latter situation in the proof of 5.3.

Theorem 5.3. Let X ∈ T3 1

2

and let B be a closed ideal in Cb(X)

(a) B is a band in Cb(X) iff B = JF (X) for some closed set F in

X with F = IntF.

(b) B is a projection band iff B = JF (X) for some clopen subset F

of X.



16 M. KANDIĆ AND A. VAVPETIČ

Proof. (a) Suppose B is a band in Cb(X). By 4.2 there exists a closed

set F ⊆ βX such that F = ClβX IntβX F and β(B) = JF (βX).

We claim that B = JF∩X(X) and that F ∩ X = ClX IntX(F ∩X).

Let us denote B′ = JF∩X(X). Then β(B′) = JClβX(F∩X)(βX). If we

prove ClβX(F ∩ X) = F , then β(B′) = β(B), so that B′ = B, and

hence B = JF∩X(X) as claimed.

Since F is closed in βX , we have ClβX(F ∩X) ⊆ F . If F 6= ClβX(F ∩

X), pick x ∈ F \ ClβX(F ∩X). There exists an open neighborhood U

of x such that U ∩ (F ∩X) = ∅. Since x ∈ F = ClβX IntβX F , the set

U ∩ IntβX F is nonempty and open in βX . Density of X in βX implies

U∩IntβX F ∩X 6= ∅ which is in contradiction with U∩F ∩X = ∅. This

shows F = ClβX(F ∩X). To finish the proof of the forward implication

we apply 5.2 for Y = βX to obtain F ∩X = ClX IntX(F ∩X).

Suppose now that B = JF (X) and F is the closure of its interior

in X . If 0 ≤ fα ր f in Cb(X) and fα ∈ JF (X) for each α, then

fα|IntF ր f |IntF , by 3.2. Since fα ≡ 0 on IntF , we have f ≡ 0 on

IntF , so that by continuity of f we conclude f ≡ 0 on IntF = F.

Hence, f ∈ JF (X) and B = JF (X) is a band in Cb(X).

(b) If B is a projection band in Cb(X), by 2.5 there exists a clopen

subset F ⊆ βX such that β(B) = JF (βX). By the proof of (a) we

know that B = JF∩X(X). Since F is clopen in βX , the definition of

the relative topology on X yields that F ∩X is clopen in X .

If B = JF (X) for some clopen subset F of X , one can repeat the

arguments of the proof of 4.2(b) for the appropriately chosen nonneg-

ative function f ∈ Cb(X) to see that B is a projection band. �

The most important ingredient of the proof of 5.3(a) is that the set

F has an extremely large interior. If we start with a closed ideal J that

is not a band in Cb(X), then again we conclude β(J) = JF (βX) for

some closed subset F of βX . However, the set F can have a very small

interior in βX . In the worst case F ∩X can be empty and in this case

we obviously cannot have J = JF∩X(X) unless J = Cb(X).

The critical step for investigating bands and projection bands in

Cb(X) where X ∈ T3 1

2

was the construction of βX and the isomorphism

between Cb(X) and C(βX). As we already mentioned, for a Hausdorff
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space X there is a way how to construct a space X/∼ ∈ T3 1

2

such that

Cb(X) ∼= Cb(X/∼) and that the isomorphism in question is induced by

a continuous surjective function between τ : X → X/∼. Since in this

section X/∼ and τ will be needed in details, we recall the construction.

On a Hausdorff space X we define an equivalence relation ∼ as fol-

lows: x ∼ y iff f(x) = f(y) for all continuous function f : X → R. By

τ : X → X/∼ we denote the mapping which maps x into its equiva-

lence class [x] ∈ X/∼. Then for each f ∈ C(X) there exists the unique

function f̃ : X/∼ → R such that the following diagram commutes.

X R

X/∼

f

τ f̃

Indeed, we define f̃ as f̃([x]) := f(x). If [x] = [x′], then x ∼ x′, so that

f(x) = f(x′) as f is continuous. This proves that f̃ is well-defined and

that f = f̃ ◦ τ. Let C ′ be the family {f̃ : f ∈ C(X)}. By endowing

X/∼ by the weak topology induced by C ′, [GJ76, Theorem 3.7] implies

X/∼ ∈ T3 1

2

and that τ : X → X/∼ is continuous. If X /∈ T3 1

2

is

functionally Hausdorff, then τ is just the identity mapping and the

topology on X/∼ is strictly weaker than the topology of X .

The mapping τ : X → X/∼ induces the isomorphism Φτ : C(X/∼) →

C(X) defined by f 7→ f ◦τ. By [GJ76, Theorem 1.6] Φτ is also a lattice

isomorphism. By applying [GJ76, Theorem 1.9] the restriction of Φτ

to Cb(X/∼) induces the isomorphism (which we denote again by Φτ )

Φτ : Cb(X/∼) → Cb(X).

The following lemma explains how ideals of the form JF (X) are

transformed by Φτ and its inverse.

Lemma 5.4. Let X be a Hausdorff space and X/∼ as before. Then

(a) For F ⊆ X we have Φ−1
τ (JF (X)) = Jτ(F )(X/∼).

(b) For F ⊆ X/∼ we have Φτ (JF (X/∼)) = Jτ−1(F )(X).

Proof. (a) Take a function f ∈ JF (X). Then f̃ ◦ τ = f implies that

f̃ ≡ 0 on τ(F ). By continuity we conclude f̃ ≡ 0 on τ(F ), so that
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Φ−1
τ (f) = f̃ ∈ Jτ(F )(X/∼). Conversely, if f̃ ∈ Jτ(F )(X/∼), then f =

f̃ ◦ τ ≡ 0 on F .

(b) If f ∈ Φτ (JF (X/∼)), then f = f̃ ◦ τ for some f̃ ∈ JF (X/∼).

Pick x ∈ τ−1(F ). Then τ(x) ∈ F and f(x) = f̃(τ(x)) = 0; hence

f ∈ Jτ−1(F )(X). Conversely, choose f ∈ Jτ−1(F )(X). Then f = f̃ ◦ τ =

Φτ (f̃). Since f |τ−1(F ) ≡ 0 and τ(τ−1(F )) = F we have f̃ ≡ 0 on F ,

and therefore f ∈ Φτ (JF (X/∼)). �

Theorem 5.5. Let X be a Hausdorff space. A closed ideal J ⊆ Cb(X)

is a projection band iff J = JF (X) for some clopen set F ⊆ X.

Proof. Obviously, J is a projection band in Cb(X) iff Φ−1
τ (J) is a pro-

jection band in Cb(X/∼). Therefore, by 5.3 J is a projection band

in Cb(X) iff there exists a clopen set F ⊆ X/∼ such that Φ−1
τ (J) =

JF (X/∼). Therefore J is a projection band iff it is of the form

J = Φτ (JF (X/∼)) = Jτ−1(F )(X)

for some clopen set F in X/∼. Since τ is continuous, τ−1(F ) is clopen

and the proof is finished. �

The natural question that arises here is whether bands in Cb(X)

where X is Hausdorff are of the form JF (X) where F = IntF. In

general, the answer is no.

Example 5.6. Let τe be the Euclidean topology on R. Let X = R be

equipped with topology τ generated by B = τe ∪ {U \ N : U ∈ τe},

where N =
⋃∞

n=1[
1
2n
, 1
2n−1

]. The topology τ is stronger than τe and

since R is a functionally Hausdorff space, X is functionally Hausdorff

as well. Therefore, we have X/∼ = R as sets.

• The topology on X/∼ is stronger than the Euclidean topology.

Indeed, let F ⊆ R be closed (in the Euclidean topology). Then for

every x 6∈ F there exists a continuous function ϕ : R → R such that

ϕ(x) = 1 and ϕ(F ) = 0. Since ϕ : X → R is continuous and x ∈ {y ∈

X : |ϕ(x) − ϕ(y)| < 1} ⊆ X \ F , X \ F is open, and hence F is a

closed subset of X/∼.

• The space X is not T3.
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Indeed, by definition the set N is closed inX and 0 6∈ N . Let U, V ⊆ X

be open sets such that 0 ∈ U and F ⊆ V . For every n ∈ N, 1
2n

∈ V

hence ( 1
2n

− rn,
1
2n

+ rn) ⊆ V for some rn > 0. So there exists xn ∈

( 1
2n+1

, 1
2n
) ∩ V . The sequence (xn) lies in R \ N and inf xn = 0, hence

∅ 6= U ∩ {xn : n ∈ N} ⊂ U ∩ V . Therefore we can not separate the

point 0 from the closed set N . We actually proved 0 ∈ ClX/∼ N and

similarly, one can prove 0 ∈ ClX/∼(
⋃∞

n=1(
1
2n
, 1
2n−1

)).

Because R \ {0} and X \ {0} are homeomorphic they are also home-

omorphic to X/∼ \ {0}. Hence ClRA, ClX A and ClX/∼ A may differ

only for the point 0. The same is true for interiors of the given set.

• ClX/∼ IntX/∼ F = F where F = N ∪ {0}.

Since F is closed in R and since topologies on X and X/∼ are stronger

than the Euclidean topology, F is also closed in both X and X/∼.

Therefore we have ClX/∼ IntX/∼ F ⊆ F. Due to the above remark and

the fact that IntR F =
⋃∞

n=1(
1
2n
, 1
2n−1

), we have IntX F = IntX/∼ F =⋃∞
n=1(

1
2n
, 1
2n−1

) from where it follows that

F \ {0} = N =
∞⋃

n=1

[ 1
2n
, 1
2n−1

] ⊆ ClX/∼ IntX/∼ F.

Because R \ N is open in X and (R \ N) ∩ IntX F = ∅, we have

0 /∈ ClX IntX F , and hence

ClX IntX F = F \ {0} ⊆ ClX/∼ IntX/∼ F ⊆ ClR IntR F = F.

Since 0 ∈ ClX/∼ IntX∼
F , we finally conclude ClX/∼ IntX/∼ F = F .

• JF (X) is a band in Cb(X/∼); yet ClX IntX F = F \ {0}.

The set F is closed in X and X/∼. The mapping τ is the identity

mapping as X is functionally Hausdorff. Since the closed ideal JF (X)

satisfies

Φ−1
τ (JF (X)) = Jτ(F )(X/∼) = JF (X/∼)

and since ClX/∼ IntX/∼ F = F , we conclude that JF (X/∼) is a band

in Cb(X/∼). Therefore, JF (X) is band in Cb(X), yet ClX IntX F =

F \ {0}.
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The topological space constructed in 5.6 shows us that there are

examples of spaces which satisfy weaker separation axioms than T3 1

2

and at the same time conclusions of 3.2 still hold.

Example 5.7. Let τe be the Euclidean topology on R. Let X = R

be equipped with topology τ generated by B = τe ∪ {U \ N : U ∈

τe}, where N =
⋃∞

n=1[
1
2n
, 1
2n−1

]. By 5.6 we already know that X is

functionally Hausdorff while it is not T3 1

2

. Take an arbitrary open set

A in X and assume 0 ≤ fα ր f in C(X). We claim that fα|A ր f |A
in C(A). Suppose there is g : A→ R such that fα|A ≤ g and g < f |A.

Suppose first that there is 0 6= x ∈ A with g(x) < f(x). Then there

exists r > 0 such that (x − r, x + r) ⊆ A and g(y) < f(y) for each

y ∈ (x− r, x+ r). Take any function ϕ : R → [0, 1] which is continuous

with respect to the Euclidean topology τe and satisfies ϕ(x) = 1 and

ϕ ≡ 0 on R \ (x − r, x + r). Since τ is stronger than τe, the function

ϕ : X → [0, 1] is also continuous. Then g ≤ f |A − ϕ|A(f |A − g) and

fα ≤ f − ϕ(f − g) < f for each α where ϕ(f − g) is defined as

ϕ(f − g)(x) =

{
ϕ(x)(f(x)− g(x)) : x ∈ A

0 : x ∈ X \ [x− r
2
, x+ r

2
]
.

This is in contradiction with fα ր f .

If 0 ∈ A and g(0) < f(0), then g(y) < f(y) on some open neighbor-

hood U of 0 ∈ X , so that g(y) < f(y) on some open neighborhood of

y0 ∈ A\ {0} as well. By the previous paragraph this is impossible, and

hence fα|A ր f |A.

Question 5.8. Is there an example of a functionally Hausdorff space

X , an open set A in X and a net (fα) in C(X) such that fα ր f in

C(X) but fα|A ր f |A does not hold in C(A)?

If X ∈ T3 1

2

, the mapping F 7→ JF (X) is a one-to-one mapping on

the set of all closed subsets of X . If X is merely a Hausdorff space,

then it is possible that different closed sets induce the same fixed ideal.

However, for a set F ⊆ X there is the largest closed set F ′ such that

JF (X) = JF ′(X).

Theorem 5.9. Let X be a Hausdorff space and F a subset of X.

Then τ−1(τ(F )) is the largest closed set F ′ with the property JF (X) =
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JF ′(X). Furthermore, we have

JF (X) = Jτ−1(τ(F ))(X) = Jτ−1(τ(F ))(X).

Proof. From Jτ(F )(X/∼) = Jτ(F )(X/∼) and Lemma 5.4 we conclude

Jτ−1(τ(F ))(X) = Jτ−1(τ(F ))(X) = Jτ−1(τ(F ))(X).

We claim JF (X) = Jτ−1(τ(F ))(X). Note first that Jτ−1(τ(F ))(X) ⊆

JF (X) follows from the fact F ⊆ τ−1(τ(F )). For the opposite inclusion,

take f ∈ JF (X) and x ∈ τ−1(τ(F )). Then τ(x) ∈ τ(F ), so that there

is y ∈ F with [x] = [y]. By definition of ∼ we have f(x) = f(y) = 0.

This gives f ≡ 0 on τ−1(τ(F )) which proves the claim.

The only thing that remains to be proved is that τ−1(τ(F )) is the

largest closed set G with the property JF (X) = JG(X). In order to

prove this, let G be an arbitrary closed set with JG(X) = JF (X). Then

Jτ(G)(X/∼) = Jτ(F )(X/∼). Pick x ∈ G and assume τ(x) /∈ τ(F ). Since

X/∼ ∈ T3 1

2

, there is f̃ ∈ Cb(X/∼) such that f̃(τ(x)) = 1 and f̃ ≡ 0 on

τ(F ). By Lemma 5.4 we have f = Φτ (f̃) ∈ Jτ−1(τ(F ))(X) = JF (X) =

JG(X). Since x ∈ G we have f(x) = 0 which is a contradiction. �

Corollary 5.10. A Hausdorff space X is T3 1

2

iff JF (X) = JG(X) for

closed subsets F and G implies F = G.

Proof. If X ∈ T3 1

2

, then the conclusion follows from the second para-

graph of Section 3.

Suppose now that X /∈ T3 1

2

. If X is functionally Hausdorff, then

X/∼ = X as sets and τ is the identity mapping. Since topology of X/∼
is strictly weaker than the topology of X , τ is not a closed mapping.

Hence, there exists a closed set F in X which is not closed in X/∼.

Since τ(F ) is not closed in X/∼, F is a proper subset of τ−1(τ(F )). By

the assumption we have JF (X) 6= Jτ−1(τ(F ))(X) which contradicts 5.9.

If X is not functionally Hausdorff, there are two different points

x and x′ which cannot be separated by continuous functions. Then

J{x}(X) = J{x′}(X). On the other hand, the assumption on the unique-

ness implies x = x′. Again a contradiction. �

We already mentioned that order complete vector lattices posses the

projection property. It is well-known that the converse statement does
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not hold. Indeed, the set E of all real bounded functions on [0, 1]

assuming only finitely many different values becomes a vector lattice

when ordered pointwise. This vector lattice is not order complete, yet it

has the projection property (see e.g. [Zaa96, Exercise 12.6.(ii)]). Order

complete vector lattices are also uniformly complete (see e.g. [AB03]).

Although neither projection property nor uniform completeness imply

order completeness of a given vector lattice, together they do [AB03,

Theorem 1.59]. Since by [MN91, Proposition 1.1.8] Banach lattices are

uniformly complete, a given Banach lattice has the projection property

iff it is order complete. If we assume that in a given Banach lattice every

closed ideal is a band, then the norm on is order continuous. Actually,

there is an equivalence between the last two statements (see e.g. [Zaa96,

Theorem 17.17]). In the following result we determine when Cb(X) is

order continuous. It turns out that whenever X is Hausdorff then

Cb(X) is order continuous iff Cb(X) is finite-dimensional.

Corollary 5.11. Let X be a Hausdorff space with the property that

every closed ideal in Cb(X) is a band. Then the following assertions

hold.

(a) X is functionally Hausdorff iff X is finite.

(b) Cb(X) is finite-dimensional.

Proof. (a) By the assumption and 5.3 every maximal ideal in Cb(X/∼)

is of the form JF (X/∼) for some closed subset F of X/∼. Hence, X/∼

is compact by 2.3. Also, for each x ∈ X/∼ the closed ideal J{x}(X/∼)

is a band, so that {x} is open in X/∼, again by 5.3. Thus, X/∼ is

discrete and since it is also compact, it is finite. Since X = X/∼ as

sets, X is finite. The converse statement obviously holds.

(b) By (a) we conclude X/∼ is finite and since Cb(X) ∼= Cb(X/∼) it

follows that Cb(X) is finite-dimensional. �

6. Extremally disconnected spaces and order

completeness

Although the function spaces Lp(µ) are order complete whenever

0 < p < ∞, the Banach lattice of continuous functions on a compact

Hausdorff space is very rarely order complete. This happens only in
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the case when the underlying topological space is extremally dis-

connected , i.e., the closure of every open set is again open. In regular

extremally disconnected spaces every point has a basis consisting of

clopen sets.

In this section, as an application of 4.2 and 5.3 among locally

compact Hausdorff spaces and T3 1

2

-spaces, respectively, we character-

ize order complete C0(X) and Cb(X) spaces, respectively. The char-

acterization is the same as in the case of compact Hausdorff spaces.

Before we proceed to results, we recall the following characterization

from [MN91, Proposition 2.1.4].

Theorem 6.1. For a compact Hausdorff space X the following state-

ments are equivalent.

(a) C(X) is order complete.

(b) C(X) has the projection property.

(c) X is extremally disconnected.

The following theorem is the analog of 6.1 for C0(X). Among the

already mentioned 4.2 and 5.3 we also require the fact that order

complete vector lattices are precisely those that are uniformly complete

and have the projection property.

Theorem 6.2. For a locally compact Hausdorff space X the following

statements are equivalent.

(a) C0(X) is order complete.

(b) C0(X) has the projection property.

(c) X is extremally disconnected.

Proof. (a) ⇒ (b) is obvious and (b) ⇒ (a) follows from the fact that

C0(X) is a Banach lattice.

(b) ⇒ (c) Let U be an arbitrary open set in X and let us denote by

F the closure of U . Then J0
F (X) is a band in C0(X) by 4.2. By the

assumption J0
F (X) is a projection band, so that by 4.2 there exists a

clopen subset G of X such that J0
F (X) = J0

G(X). As an application of

Urysohn’s lemma for locally compact Hausdorff spaces, one can prove

F = G. Hence, F is open and X is extremally disconnected.
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(c) ⇒ (b) Suppose now that X is extremally disconnected and take

an arbitrary band J in C0(X). Then there exists a closed set F which

is the closure of its interior and J = J0
F (X). Since X is extremally

disconnected, F is clopen, so that J0
F (X) is a projection band by 4.2.

Therefore, C0(X) has the projection property. �

Subspaces of extremally disconnected spaces are not necessary ex-

tremally disconnected as the following example shows.

Example 6.3. Let (X, τ) be any topological space that is not ex-

tremally disconnected and ∞ an object that is not in X . Define

Y = X ∪ {∞} and

τ1 = {U ∪ {∞} : U ∈ τ} ∪ {∅}.

It is easy to see that τ1 is a topology on Y , and that closed sets in

Y are precisely the closed sets of X and whole Y . It should be noted

that the space (Y, τ1) ∈ T0 while (Y, τ1) /∈ T1. It is also clear that the

(X, τ) →֒ (Y, τ1) is continuous and that X is not dense in Y .

We claim that Y is extremally disconnected. Indeed, pick an open

set U in Y . If U = ∅, then its closure is still empty which is open in

Y . Otherwise U = V ∪ {∞} for some open set V in X . Since ∞ ∈ U ,

the closure of U is Y which is open in Y . This proves the claim.

Although 6.3 shows that a subspace of an extremally disconnected

space is not necessary extremally disconnected, there are positive re-

sults [AP74]. Due to the importance of the following proposition we

include its short proof for the sake of completeness.

Proposition 6.4. Let X be a subspace of an extremally disconnected

space Y . Then X is extremally disconnected in either of the following

cases.

(a) X is open in Y .

(b) X is dense in Y .

Proof. (a) Take an arbitrary open subset U ⊆ X . Then U is also open

in Y , so that ClY (U) is open in Y. Then by the definition of the relative

topology we have ClX(U) = ClY (U) ∩X ; hence the closure of U in X

is open.
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(b) Take any open set U in X . Then there exists an open set V in

Y such that U = V ∩X . The set ClY V is open in Y . If ClX(V ∩X) =

ClY V ∩X , then ClX U = ClX(V ∩X) is open in X and X is extremally

disconnected.

To prove ClX(V ∩ X) = ClY V ∩ X observe that ClX(V ∩ X) ⊆

ClY V ∩X follows from the fact that the set ClY V ∩X is closed in X

and contains V ∩X. For the opposite inclusion, pick x ∈ ClY V ∩X and

any open neighborhoodW of x in X . Then there exists an open setW ′

in Y such that W = W ′ ∩X . Since x ∈ ClY V , we have W ′ ∩ V 6= ∅,

and since X dense in Y the set W ∩(V ∩X) =W ′∩V ∩X is nonempty

as well. This proves x ∈ ClX(V ∩X). �

We apply 6.4 in the following two cases:

• If X+ is extremally disconnected, the dense subspace X of X+

is extremally disconnected.

• If X ∈ T3 1

2

and βX is extremally disconnected, the dense sub-

space X of βX is extremally disconnected.

The following result now follows immediately from 6.1 and 6.2.

Corollary 6.5. Let X be a locally compact Hausdorff space. If C(X+)

is order complete, then C0(X) is order complete.

The preceding corollary can be proved directly without involving ex-

tremally disconnected spaces and their connection to order complete-

ness. This follows immediately from C0(X) ∼= J{∞}(X
+) and from the

fact that every order ideal in an order complete vector lattice is order

complete on its own (see e.g. [AB03, Theorem 1.62]).

The following diagram shows the connection between order complete-

ness and extreme disconnectedness for the locally compact Hausdorff

space and its one-point compactification.

C(X+) is order complete ⇔ X+ is extremally disconnected

⇓ ⇓

C0(X) is order complete ⇔ X is extremally disconnected

None of the arrows above cannot be reversed as the following example

shows.
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Example 6.6. Take X = N. If we endow X with a discrete topol-

ogy, it becomes a locally compact noncompact Hausdorff space. The

space C0(X) is precisely the order complete Banach lattice c0, however

C(X+) is isometrically lattice isomorphic to the Banach lattice c of all

convergent sequences which is not order complete.

We continue this section with the variant of 6.2 for the Banach

lattice Cb(X) where X ∈ T3 1

2

. Since the proof is basically the same as

the proof of 6.2 we omit it. We should mention that instead of 4.2

one should use 5.3.

Theorem 6.7. For X ∈ T3 1

2

the following statements are equivalent.

(a) Cb(X) is order complete.

(b) Cb(X) has the projection property.

(c) X is extremally disconnected.

The following diagram reveals the connection between order com-

pleteness and extreme disconnectedness for X ∈ T3 1

2

and its Stone-

Čech compactification βX . Since the algebras C(βX) and Cb(X) are

isometrically lattice and algebra isomorphic all the arrows here are also

reversible in contrast with the arrows in the diagram involving C0(X)

and C(X+).

C(βX) is order complete ⇔ βX is extremally disconnected

m m

Cb(X) is order complete ⇔ X is extremally disconnected

If X ∈ T3 1

2

then X is extremally disconnected iff βX is. The fol-

lowing example shows that such equivalence does not hold for a locally

compact space and its one-point compactification.

Example 6.8. The one-point compactification N+ of N is homeomor-

phic to the totally disconnected compact space X = { 1
n
: n ∈ N}∪{0}

which is not extremally disconnected. To see this, let us denote sets

{ 1
2n

: n ∈ N} and { 1
2n−1

: n ∈ N} by A and B, respectively. Then

both A and B are open and neither of them is closed. The closure A

of A is A ∪ {0} = X \B which is not open.
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In 6.10 we prove that X+ is never extremally disconnected when X

is a σ-compact locally compact noncompact Hausdorff space. Before

we state and prove the aforementioned result we need the following

lemma.

Lemma 6.9. A locally compact Hausdorff space X is σ-compact iff the

point ∞ in X+ has a countable basis of open sets.

Proof. Suppose first that X is σ-compact. Then by [Dug66, Theorem

XI.7.2] there exist relatively compact open sets Un in X with X =⋃∞
n=1Un and Un ⊆ Un+1 for each n ∈ N. If V is an open neighborhood

of ∞, then X \ V is compact in X . Since the countable family of

open sets (Un) is increasing and covers X there exists n ∈ N such that

X \ V ⊆ Un. Then Vn := X+ \ Un ⊆ V , and hence the family (Vn) is a

countable basis for the point ∞ in X+.

For the converse let (Vn) be a countable basis for∞ inX+. Obviously

we can assume that Vn ⊆ Vm whenever m ≤ n. The sets Fn :=

X \ Vn are compact in X and Fm ⊆ Fn whenever m ≤ n. Since X+ is

Hausdorff,
⋂∞

n=1 Vn = {∞}, so that

∞⋃

n=1

Fn =
∞⋃

n=1

(X \ Vn) = X \
∞⋂

n=1

Vn = X.

This proves that X is σ-compact. �

Theorem 6.10. Let X be a σ-compact locally compact Hausdorff space.

If X+ is extremally disconnected, then X is compact.

Proof. Suppose X is not compact. Since X is σ-compact, there exist

relatively compact open sets (Un) in X that cover X and Un ⊆ Un+1.

Then the family (X+\Un) is a countable basis of∞. For each n ∈ N we

choose xn ∈ Un \Un−1. Since each basis neighborhood X+ \Un contains

all except finitely many terms of the sequence (xn) we have xn → ∞

in X+.

Since X+ is Hausdorff no subnet of (xn)n≥k converges in X for each

k ∈ N. This implies that for each k ∈ N the set Fk := {xn : n ≥ k} is

closed in X+ and so in X .

We claim that for each n ∈ N there exists a clopen neighborhoodWn

of xn in X such that Wn ∩Wm = ∅ whenever n 6= m and Wn ∩Fm = ∅
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whenever n < m. We construct the desired sets inductively. Since the

set X \F2 is open and x1 ∈ X \F2, there is a clopen neighborhood W1

of x1 that is contained in X \ F2. Obviously W1 ∩ Fm = ∅ for m > 1.

Suppose now that the sets W1, . . . ,Wn with the required properties are

already constructed. Since the set (X \W1∪· · ·∪Wn)\Fn+2 is an open

neighborhood of xn+1 in X , it contains a clopen neighborhood Wn+1 of

xn+1 in X . By construction Wn+1 does not contain xk for k 6= n+ 1.

The set W =
⋃∞

n=1W2n is open in X . Since X is locally compact, X

is open in X+, so that W is open in X+ as well. Because x2n → ∞ we

have ∞ ∈ W . From x2n−1 → ∞ we conclude that every neighborhood

U of ∞ contains infinitely many elements x2n−1. On the other hand

W2n−1 ∩W = ∅ implies x2n−1 6∈ W for each n ∈ N. Therefore, for an

arbitrary neighborhood U of ∞ we have U 6⊆W , so thatW is not open

in X+. This is in contradiction that X+ is extremally disconnected.

Hence, X is compact. �

Corollary 6.11. Let X be a locally compact σ-compact Hausdorff

space. If C(X+) is order complete, then X is compact and C(X) is

a projection band of codimension one in C(X+).

Proof. If C(X+) is order complete then X+ is extremally disconnected

by 2.5, so that by 6.10 X is compact. Therefore C(X) = C0(X) and

∞ is isolated in X+. This means that {∞} is clopen in X+ and 2.5

implies that C(X) = J{∞}(X
+) is a projection band in C(X+). That

the codimension of C(X) in C(X+) is one is obvious. �

There is no hope that 6.10 can be applied to X and its Stone-Čech

compactification βX . The reason behind it is that the space βX is just

too big and the sequential nature of the construction in the proof of

6.10 simply fails.

Example 6.12. The set of all positive integers N endowed with a

discrete topology is a σ-compact locally compact discrete space. As a

discrete space it is definitely extremally disconnected. Since N ∈ T3 1

2

,

βN is extremally disconnected; yet N is not compact.
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7. Lifting un-convergence

In this section we apply our results to the so-called problem of “lifting

un-convergence”. We first recall some basic facts needed throughout

this section.

If E is a Banach lattice, then a net (xα) is said to un-converge to

a vector x ∈ E whenever for each y ∈ E+ we have |xα − x| ∧ y → 0

in norm. We write xα
un
−→ x whenever the net (xα) un-converges to

x. This mode of convergence was introduced by V.G. Troitsky [Tro04]

under the name of d-convergence. In [Tro04, Example 20] it was

proved that un-convergence in C0(X) coincides with the uniform con-

vergence on compacta of X whenever X is normal. In particular,

when X is a compact Hausdorff space, then un-convergence coincides

with the uniform convergence. In the case of Lp(µ)-spaces with µ fi-

nite he proved that un-convergence coincides with convergence in mea-

sure [Tro04, Example 23]. It is a standard fact from measure theory

that a sequence (fn) converging in measure to f always has a subse-

quence converging to f almost everywhere (see e.g. [Fol99, Theorem

2.30]). In [GTX, Proposition 3.1] the authors proved that a sequence

(fn) in L0(µ) converges almost everywhere to f ∈ L0(µ) whenever

|fn−f |∧g → 0 in order of L0(µ). The latter mode of convergence goes

back to [Nak48, DeM64, Kap97]. Kaplan referred to this convergence

as unbounded order convergence or uo-convergence for short. Un-

til very recently unbounded order convergence was not studied actively

and was left out from the active area of research. The systematic study

of this mode of convergence and its properties started with papers of

Gao, Troitsky and Xanthos [Gao14, GX14, GTX] and others. The

systematic study and properties of un-convergence started in [DOT].

Among other things, authors proved that un-convergence is topologi-

cal. On the other hand, uo-convergence is not (see e.g. [Ord66]). In

[KMT] the authors initiated the study of un-topology, i.e., the topology

given by un-convergence. They posed the following question.

Question 7.1. Let B be a band in a Banach lattice E. Suppose that

every net in B which is un-null in B is also un-null in E. Does this

imply that B is a projection band?
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When the norm of E is order continuous, every band is a projection

band. In this case it was proved in [KMT] that a net (xα) which is

un-null in a sublattice of E it is also un-null in E. [KMT, Example

4.2] shows that there exists a band B in C[−1, 1] and a un-null net

(xα) in B which is not un-null in C[−1, 1].

The following theorem provides a positive answer to 7.1 for a Banach

lattice Cb(X) of all bounded continuous functions on a Hausdorff space.

Theorem 7.2. Let X be a Hausdorff space and J a closed ideal in

Cb(X). Suppose that every un-null net (fα) in J is also un-null in

Cb(X). Then J is a projection band in Cb(X).

Proof. We first consider the case whenX is compact. Since J is a closed

ideal in C(X), by 2.4 there exists a closed set F such that J = JF (X).

If F is not open, there exists x ∈ F \ IntF. Let Bx = {Wλ}λ∈Λ be the

set of all open neighborhoods of the point x. Since X is Hausdorff,

[Dug66, VII.I.2] implies

{x} =
⋂

λ∈Λ

Wλ.

If Λ is finite, {x} is open, so that x ∈ IntF which is a contradiction.

Therefore Λ is infinite.

Since x ∈ F \ IntF , for each λ ∈ Λ the set Wλ \ F is nonempty.

Pick any xλ ∈ Wλ \ F. Also, let Vλ be an arbitrary open neighborhood

of xλ in (X \ F ) ∩ Wλ. By Urysohn’s lemma for each λ ∈ Λ there

exists a nonnegative continuous function fλ such that fλ(xλ) = 1 and

f |X\Vλ
≡ 0. We define an ordering on the set Λ by λ ≤ µ iff Wµ ≤Wλ.

With this ordering Λ becomes a directed set.

We claim that fλ
un
−→ 0 in J . Pick an arbitrary function g ∈ J . Then

g(x) = 0. Continuity of g implies that for every ǫ > 0 there exists an

open neighborhood U of x such that |g(y)| < ǫ for each y ∈ U. There

exists λ0 ∈ Λ such thatWλ0
⊆ U . If λ ≥ λ0, then Vλ ⊆ Wλ ⊆Wλ0

⊆ U .

If y ∈ X\Vλ, then fλ(y) = 0 and if y ∈ Vλ, then |g(y)| < ǫ.We conclude

fλ ∧ |g| < ǫ for all λ ≥ λ0. Therefore, fλ
un
−→ 0 in J .

Now we claim that the net (xλ) converges to x. Indeed, let W be an

arbitrary neighborhood of x. Then there exists λ0 such that Wλ0
⊆ W .

If λ ≥ λ0, then xλ ∈ Wλ ⊆Wλ0
⊆ W which proves the claim.
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The assumption fλ
un
−→ 0 in J implies that fλ → 0 in C(X) which

contradicts the fact that fλ(xλ) = 1 for each λ ∈ Λ. Therefore F =

IntF is clopen; hence J is a projection band by 2.5.

The general case follows from the first part of the proof and that

whenever X is “just” Hausdorff, then Cb(X) and C(βX/∼) are isomet-

rically algebra and lattice isomorphic. �

The following corollary follows immediately from 7.2 and 5.5.

Corollary 7.3. Let X be a Hausdorff space and x ∈ X such that

fα
un
−→ 0 in J{x}(X) implies fα

un
−→ 0 in Cb(X). Then x is isolated in

X.

We proceed with an application of 5.11 and 7.2.

Corollary 7.4. Let X be a topological space with the property that for

every maximal ideal J in Cb(X) fα
un
−→ 0 in J implies fα

un
−→ 0 in

Cb(X).

(a) If X is functionally Hausdorff, then X is finite.

(b) If X is Hausdorff, then Cb(X) is finite-dimensional.

Proof. Since every point in X is isolated by 7.3, X is discrete. Discrete

compact spaces are obviously finite. �

We conclude this paper with C0(X)-analogs of results of this section.

Since the proofs are basically the same as in the Cb(X)-case, we omit

them.

Theorem 7.5. Let X be a locally compact Hausdorff space.

(a) Let J be a closed ideal in C0(X). If every un-null net (fα) in J

is also un-null in C0(X), then J is a projection band in C0(X).

(b) Pick x ∈ X. If fα
un
−→ 0 in J0

{x}(X) implies fα
un
−→ 0 in C0(X),

then x is isolated in X.

(c) If for every maximal ideal J in C0(X) fα
un
−→ 0 in J implies

fα
un
−→ 0 in C0(X), then X is discrete.
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