

B A C H E L O R A R B E I T

C(X) as dual space of a Banach space

ausgeführt am

Institut für Analysis und Scientific Computing TU Wien

unter der Anleitung von

Ao.Univ.-Prof. Dr. Harald Woracek

durch

Simon Ellmeyer Matrikelnummer: 01526374

Contents

Introduction

The famous *Riesz-Markov representation* theorem gives us a special characterization of the dual space of $C_0(X)$.

Definition 0.0.1. Let *X* be a non-empty locally compact Hausdorff space. $C_0(X)$ denotes the subset of all functions $f \in C(X)$, for which the set $\{x \in X \mid |f(x)| \geq \epsilon\}$ is compact for all $\epsilon > 0$. If we endow this space with the supremum norm

$$
||f||_X = \sup_{x \in X} |f(x)|,
$$

it is a Banach space.

Definition 0.0.2. Let X be a non-empty, locally compact space. Then we denote by $M(X)$ the space of complex-valued, regular Borel measures on *X* and we set

$$
\|\mu\| = |\mu|(X).
$$

With respect to this norm, called the *total variational norm*, it is a Banach space.

Theorem 0.0.3 (Riesz-Markov)**.** *Let X be a locally compact Hausdorff space. Then every bounded linear functional* Φ *on* $C_0(X)$ *is represented by a unique regular complex Borel measure µ, as*

$$
\Phi(\mu)f = \int\limits_X f \ d\mu,
$$

for every $f \in C_0(X)$ *. More precisely,* Φ *is an isometric isomorphism from* $C_0(X)'$ *to* $M(X)$ *.*

A proof of this theorem can be found in, e.g., [\[5,](#page-27-0) Theorem 6.19, p.130].

In this bachelor thesis we deal with the following question:

When is $C_0(X)$ (isometrically) isomorphic to a dual space and if a predual exists, how does it look like?

The thesis is mainly based on [\[2\]](#page-27-1).

Existence of a predual of a Banach space is not always guaranteed.

Example 0.0.4. Let *Z* be a Banach space with $Ext(B_1^Z(0)) = \emptyset$, where $Ext(B_1^Z(0))$ denotes the set of extreme points in $B_1^Z(0) = \{z \in Z \mid ||z|| \leq 1\}$, then there is no Banach space *Y* with $Y' \cong Z$.

To show this, assume that *Z* is isometrical isomorphic to the dual of a space *Y* . If we endow Z with the weak^{*}-topology $(Z, \sigma(Z, Y))$, then, by the *Banach-Alaoglu* theorem the unit ball is weak^{*}-compact. So $B_1^Z(0)$ is a non-empty, compact and convex subset of a locally convex space. By *Krein-Milman*, $Ext(B_1^Z(0)) \neq \emptyset$, a contradiction.

Proposition 0.0.5. For a non-empty, locally compact space $X, f \in Ext(B_1^{C_0(X)})$ $j_1^{\text{C}_0(A)}(0)$ *if and only if* $|f(x)| = 1$ *for* $x \in X$ *.*

Proof. Take $f \in B_1^{C_0(X)}$ $\binom{C_0(X)}{1}(0)$ and suppose that there exists $x_0 \in X$ such that $|f(x_0)| < 1$. Set $\epsilon = \frac{1 - |f(x_0)|}{2}$ $\frac{P(x_0)}{2}$. Then there exists a neighbourhood *U* of x_0 with $|f(x_0)| < 1 - \epsilon$, for $x \in U$. Take $g \in C_{\mathbb{R}}(X)$ such that $0 \le g \le 1$ *U* and $g(x_0) = 1$. Then $f \pm \epsilon g \in B_1^{C_0(X)}$ $I_1^{\text{C}_0(A)}(0)$ and

$$
f = \frac{1}{2}(f + \epsilon g) + \frac{1}{2}(f - \epsilon g),
$$

and so $f \notin Ext(B_1^{C_0(X)})$ $\binom{C_0(X)}{1}(0)$. On the other hand, if we have $|f(x)| = 1$ for all $x \in X$ and $1 \neq |g|$, |h| with $g, h \in B_1^{C_0(X)}$ $\binom{\mathcal{C}_0(\lambda)}{1}(0)$, then there is x_0 with $|h(x_0)| < 1$. We get

$$
1 = |f(x_0)| = |(1-t)g(x_0) + th(x_0)| \le (1-t) |g(x_0)| + t |h(x_0)| < 1-t+t = 1,
$$

a contradiction.

Corollary 0.0.6. *Let X be a non-empty, locally compact space, that is not compact. Then* $Ext(B_1^{C_0(X)}$ $\binom{C_0(X)}{1}(0) = \emptyset$. Hence, $C_0(X)$ *is not isometrically isomorphic to a Banach space.*

Proof. By *Proposition* 0.0.[5,](#page-2-1) it is $|f(x)| = 1$ for all $x \in X$, for $f \in Ext(B_1^{C_0(X)}$ $I_1^{\text{C}_0(A)}(0)$. Since X is not compact, $f \notin C_0(X)$ and with *Example* 0.0.[4,](#page-2-2) $C_0(X)$ cannot be isometrically isomorphic to a dual space.

In view of *Corollary* [0](#page-3-0)*.*0*.*6 we may restrict our attention to compact spaces *X*. Moreover, we will always assume *X* to be Hausdorff.

Let us note that any predual of a space $C(X)$ is isometrically isomorphic to a closed subspace of $M(X)$. This is the consequence of the following theorems that are part of almost every basic functional analysis course. These proofs can be found in [\[7,](#page-27-2) Lemma 5.5.2, p.86; Theorem 5.3.3, p.79].

Theorem 0.0.7. *Let Z be a vector space and let Y be a seperating linear subspace of the algebraic dual* Z^* *. Then* $(Z, \sigma(Z, Y))' = Y$ *.*

Theorem 0.0.8. *Let* $(X, \|\cdot\|)$ *be a normed space and let <i>ι be the map*

$$
\iota: \begin{cases} X \to (X')^* \\ x \mapsto (f \mapsto f(x)). \end{cases}
$$

Then ι maps into the topological bidual space $(X', \|\cdot\|_{X'})'$, *is linear, and is isometric if we endow* X'' *with the operator norm* $\Vert . \Vert_{X''}.$

By means of *Theorem* [0](#page-3-1).0.7 and *Theorem* 0.0.[8,](#page-3-2) we can indeed identify a predual *Y* of $C(X)$ with a subspace of $M(X)$:

$$
Y \cong \iota(Y) \subseteq Y'' \cong C(X)' \cong M(X) \tag{0.1}
$$

$$
(C(X), \sigma(C(X), \iota(Y)))' = \iota(Y) \subseteq M(X). \tag{0.2}
$$

In the end we will even get some sort of uniqueness of this predual space. We have to distinguish between types of preduals.

Definition 0.0.9. Let *Z* be a Banach space. *Y* is an *isomorphic predual* of *Z* if *Z* is isomorphic to *Y* 0 (linear homeomorphic) and a Banach space *Y* is an *isometric predual* of *Z* if *Z* is isometrically isomorphic to Y' , we will write $Y' \cong Z$.

There are examples of spaces with isomorphic dual spaces, that are not isometrically isomorphic. We will need the following proposition.

Proposition 0.0.10. *Let Z and E be Banach spaces and let T be an isometric isomorphism. Then* $T(Ext(B_1^Z(0))) = Ext(B_1^E(0)).$

Proof. T is a bijective linear map. Now for $z \in Ext(B_1^Z(0))$ the following holds:

$$
T(z) = tT(a) + (1 - t)T(b) = T(ta + (1 - t)b) \Rightarrow z = ta + (1 - t)b \Rightarrow z = a = b.
$$

Hence *z* is an extreme point whenever $T(z)$ is and vice versa.

Example 0.0.11. Let *c* be the set of convergent sequences in \mathbb{R} and c_0 the subspace consisting of the sequences with limit 0. We know that $c'_0 \cong \ell^1 \cong c'$. It is easy to see that $B_1^c(0)$ has extreme points (e.g. the sequence $(1,1,1,\dots)$), but the unit ball of $B_1^{c_0}(0)$ has no extreme points. Let $x = (x_n)_{n \in \mathbb{N}} \in B_1^{c_0}(0)$. Since *x* converges to 0 there is an index $N > 0$ for which $|x_N| < \frac{1}{2}$ $\frac{1}{2}$. Now define $y_{\pm} \in B_1^{c_0}(0)$ as

$$
y_{n_{\pm}} = \begin{cases} x_n & n \neq N \\ x_N \pm \frac{1}{4} & n = N. \end{cases}
$$

So we can write $x=\frac{1}{2}$ $\frac{1}{2}(y_+ + y_-)$. So by *Proposition* 0.0.[10](#page-3-3) there can't be an isometric isomorphism between c_0 and c .

To see that these spaces are isomorphic, set

$$
T(x) = (2x_{\infty}, x_1 - x_{\infty}, x_2 - x_{\infty}, \dots)
$$

for $x = (x_n)_{n \in \mathbb{N}} \in c$ with $\lim_{n \to \infty} x_n = x_\infty$. Then $T : c \to c_0$ is a linear map. Further, we know that

 $T(x) = (0, 0, 0, \dots) \Rightarrow x = 0$

since $\lim_{n\to\infty} x_n = 0$ and for every sequence $y \in c_0$ we take

$$
x = \left(y_2 + \frac{y_1}{2}, y_3 + \frac{y_1}{2}, \dots\right) \to \frac{y_1}{2}
$$
 and $T(x) = y$.

Obviously, $||T|| = 2$. And as one can see

$$
\frac{2}{3} ||x|| \le ||T(x)||.
$$

It follows that $||T^{-1}|| \leq \frac{3}{2}$ $\frac{3}{2}$, and so *c* is isomorphic to *c*₀.

$$
\blacksquare
$$

1 Stonean spaces and normal measures

1.1 Normal measures

As we have to deal with a subspace of $M(X)$, we should take a closer a look at it.

Definition 1.1.1. Let (X, \mathcal{T}) be a topological space. Then the *Borel sets* in X are the members of the σ -algebra $\sigma(\mathcal{T})$ generated by the family $\mathcal T$ of open subsets of X; we set $\mathfrak{B}_X = \sigma(\mathcal{T})$.

Identifying $M(X)$ as the dual space of $C(X)$, we define

$$
\langle f, \mu \rangle = \int\limits_X f \, d\mu \quad f \in C(X), \ \mu \in M(X).
$$

For real-valued measures $\mu, \nu \in M_{\mathbb{R}}(X)$, we define

$$
(\mu \vee \nu)(B) = \sup_{\substack{A \in \mathfrak{B}_X \\ A \subseteq B}} \mu(A) + \nu(B \setminus A)
$$

$$
(\mu \wedge \nu)(B) = \inf_{\substack{A \in \mathfrak{B}_X \\ A \subseteq B}} \mu(A) + \nu(B \setminus A).
$$

and further $\mu^+ = \mu \vee 0$ and $\mu^- = \mu \wedge 0$. It is obvious that $|\mu| = \mu^+ + \mu^-$. The set of positive measures in $M(X)$ is denoted by $M(X)^+$.

In the following $C(X)^+ \subseteq C(X)$ denotes the space of real-valued, continuous and positive functions with pointwise order. Since the norm on $C(X)$ is compatible with the lattice structure, the following definition is appropriate.

Definition 1.1.2. Let $(Z, \|.\|)$ be a Banach space and (Z, \leq) an ordered linear space. The norm is a *lattice norm* if $||y|| \le ||z||$ whenever $|y| \le |z|$, with $|z| = \sup\{z, -z\}$ in the lattice. The space *Z* is then called a *Banach lattice*.

To find a more concrete characterization of the space *ι*(*Y*) in *Equation* [\(0.1\)](#page-3-4), we define the space of normal measures:

Definition 1.1.3. Let *X* be a non-empty, compact space, and let $\mu \in M(X)$. Then μ is *normal* if $\langle f_i, \mu \rangle$ → 0 for each net $(f_i)_{i \in I}$ in $C(X)^+$ with $f_i \searrow 0$. We write $f_i \searrow 0$ if $(f_i)_{i \in I}$ is decreasing and $\inf_{i \in I} f_i = 0$ in the lattice. We denote the subspace of normal measures in $M(X)$ by $N(X)$.

Remark 1.1.4. We want $N(X)$ to be a Banach space, so we have to check if it is a closed linear space with respect to the total variation norm. It is obviously a linear space as we have

$$
\langle f_i, \mu + \nu \rangle = \int_X f_i \ d(\mu + \nu) = \int_X f_i \ d\mu + \int_X f_i \ d\nu = \langle f_i, \mu \rangle + \langle f_i, \nu \rangle \to 0
$$

and similar with scalar multiplication. To see that $N(X)$ is closed, we again take a net $(f_i)_{i\in I}$ with $f_i \searrow 0$, $\epsilon > 0$ and a sequence $(\mu_n)_{n \in \mathbb{N}}$ with $\mu_n \to \mu$. Then

$$
|\langle f_i, \mu \rangle| = |\langle f_i, \mu - \mu_n \rangle + \langle f_i, \mu_n \rangle| \leq |\langle f_i, \mu - \mu_n \rangle| + |\langle f_i, \mu_n \rangle|.
$$

Choose i_1 and take n_0 with $\|\mu - \mu_{n_0}\| \leq \frac{\epsilon}{2||f_{i_1}||_X}$. For this n_0 we get i_0 with $|\langle f_i, \mu_{n_0} \rangle| \leq \frac{\epsilon}{2}$ for $i \geq i_0$ and because f_i is decreasing, $||f_i||_X \leq ||f_j||_X$ for $j \leq i$. This leads to

$$
|\langle f_i, \mu - \mu_{n_0} \rangle| \le ||f_i||_X \, \|\mu - \mu_{n_0}\| \le \frac{\epsilon}{2} \quad , i \ge i_1
$$

and to sum up $|\langle f_i, \mu \rangle| \le \epsilon$, for $i \ge i_1, i_0$. Since ϵ was arbitrary, we get $\langle f_i, \mu \rangle \to 0$. $\|\mu\|$

Subsequently we will need some basic properties of normal measures:

Theorem 1.1.5. *Let X be a non-empty, compact space. Then:*

- *(i)* $\mu \in M(X)$ *is normal if and only if* $\Re(\mu)$ *and* $\Im(\mu)$ *are normal;*
- *(ii)* μ ∈ $M_{\mathbb{R}}(X)$ *is normal if and only if* $|\mu|$ *is normal if and only if* μ ⁺ *and* μ ⁻ *are normal*;
- *(iii) µ* ∈ *M*(*X*) *is normal if and only if* |*µ*| *is normal*

To proof this theorem we need a corollary of *Urysohn's lemma* [\[5,](#page-27-0) Theorem 2.12, p.39]:

Corollary 1.1.6. *Let X be a non-empty, compact space. Suppose that C is compact and U is open in X* such that $C \subseteq U$. Then there exists $f \in C(X)^+$ with $1_C \le f \le 1_U$.

Proof. Since *X* is compact and Hausdorff, *X* is a normal space and hence, we can apply Urysohn's lemma to the closed subsets C and U^c . It gives us a function

$$
f: X \to [0,1] \text{ with } f(C) \subseteq \{1\} \text{ and } f(U^c) \subseteq \{0\}. \tag{1.1}
$$

 \blacksquare

Proof of Theorem [1.1.5.](#page-6-0)

[\(](#page-6-1)*i*) This is trivial.

(*[ii](#page-6-2)*) Suppose that $\mu^+, \mu^- \in N(X)$. Then certainly $\mu, |\mu| \in N(X)$. Suppose that $|\mu| \in N(X)$ and that $\nu \in N(X)$ with $|\nu| \leq |\mu|$. Then

$$
0 \le \left| \int\limits_X f_i \, d\nu \right| \le \int\limits_X f_i \, d\left| \mu \right| \to 0
$$

when $f_i \searrow 0 \in C(X)^+$, and so $\nu \in N(X)$. In particular, μ, μ^+ and μ^- are normal whenever $|\mu|$ is normal.

Suppose that $\mu \in M_{\mathbb{R}}(X)$ is normal and that $f_i \searrow 0$ in $B_1^{C(X)^+}$ $_{1}^{(C(A))}(0)$. Let $\{P,N\}$ be a *Hahn decomposition* of *X* with respect to μ , and take $\epsilon > 0$. Since μ is regular, there exist a compact set *C* and an open set *U* in *X* with $C \subseteq P \subseteq U$ and $|\mu|(U \setminus C) < \epsilon$. Now there exists $g \in C(X)^+$ with $1_C \leq q \leq 1_U$. Then

$$
\int\limits_X f_i \ d\mu^+ = \int\limits_P f_i \ d\mu \le \int\limits_C gf_i \ d\mu + \int\limits_{U \setminus C} gf_i \ d\mu + 2\epsilon = \int\limits_X gf_i \ d\mu + 2\epsilon.
$$

Since $gf_i \searrow 0$ and μ is normal, $\lim_{i \in I}$ *X* $gf_i d\mu = 0$, and so

$$
\limsup_{i \in I} \int\limits_X f_i \, d\mu^+ \leq 2\epsilon.
$$

This holds true for each $\epsilon > 0$, and so

$$
\lim_{i \in I} \int\limits_X f_i \ d\mu^+ = 0.
$$

Thus, μ^+ is normal.

[\(](#page-6-1)*[iii](#page-6-3)*) Suppose that $\mu \in N(X)$. Then $|\Re(\mu)| + |\Im(\mu)| \in N(X)$ from (*i*) and (*[ii](#page-6-2)*). However, $|\mu| \leq |\Re(\mu)| + |\Im(\mu)|$, and so $|\mu| \in N(X)$. For another characterization of normal measures we will need the following theorem of Dini.

Theorem 1.1.7 (Dini's theorem)**.** *Let X be a non-empty, compact space, and suppose that* $(f_i)_{i\in I}$ is a net in $C_{\mathbb{R}}(X)$ such that $f_i(x) \searrow g(x)$, for each $x \in X$, where $g \in C_{\mathbb{R}}(X)$. Then, *for each* $\epsilon > 0$ *, there exists* $i_0 \in I$ *such that* $||f_i - g||_X < \epsilon$ *,* $i \geq i_0$ *.*

Proof. Fix $\epsilon > 0$ and $i_1 \in I$, and then take the compact subset *C* of *X* such that $f_{i_1}(x) < \epsilon$ for $x \in X \setminus C$. Set

$$
X_i = \{ x \in X \mid |f_i(x) - g(x)| \ge \epsilon \}
$$

and $C_i = X_i \cap C$ for $i \in I$, so that each C_i is a compact subset of *C*. Assume towards a contradiction that each set C_i is non-empty. The family $(C_i)_{i \in I}$ has the finite intersection property: for $n \in \mathbb{N}$ there is an index *j* with $i_1, \ldots, i_n \leq j$. Since the net is decreasing, we have $f_{i_1}, \ldots, f_{i_n} \geq f_j$ and this leads to

$$
\epsilon \leq f_j(x) - g(x) \leq f_{i_k}(x) - g(x), \quad k \in \{1, \ldots, n\} \Rightarrow x \in \bigcap_{k=1}^n C_{i_k}.
$$

It follows that $\bigcap_{i\in I} C_i \neq \emptyset$, a contradiction of the fact that $f_i(x) \searrow g(x)$. We get $X_i = \emptyset$, for $i \geq i_0$.

The following is a well-known theorem in measure theory. A proof can be found, e.g., in [\[5,](#page-27-0) Theorem 2.24, p. 55. We will need it to prove the next important characterization.

Theorem 1.1.8 (Lusin's theorem). Let X be a non-empty, compact space, and take $\mu \in$ $M_{\mathbb{R}}(X)$. For each Borel function f on X and each $\epsilon > 0$, there is a compact subset C of *X* such that $|\mu|(X \setminus C) < \epsilon$ and $f|_C$ is continuous.

Theorem 1.1.9. Let *X* be a non-empty, compact space. Then a measure $\mu \in M(X)$ is normal *if and only if* $\mu(C) = 0$ *for* $C \in \mathcal{K}_X$ *, where* \mathcal{K}_X *denotes the family of compact subsets* C *of* X *such that* $C^{\circ} = \emptyset$ *.*

Proof.

"⇒" Suppose that $\mu \in N(X)$. We may suppose that $\mu \in N(X)^+$. Now take $C \in \mathscr{K}_X$, and consider the non-empty set

$$
\mathscr{F} = \{ f \in C_{\mathbb{R}}(X) \mid f \geq \mathbb{1}_C \}.
$$

Suppose that $g = \inf \mathcal{F}$ in $C_{\mathbb{R}}(X)$. Then $g(x) = 0$ for $x \in X \setminus C$. If there was $x_0 \in X \setminus C$ with $g(x_0) > 0$, we can apply Urysohn's lemma to the closed sets *C* and x_0 . So we get a function $f \in \mathscr{F}$, with $f(x_0) \leq g(x_0)$, so $g(x_0) = 0$ and since

$$
\overline{X \setminus C} = X \setminus C^{\circ} = X,
$$

 $g(x) = 0$ for a dense subset. It follows inf $\mathscr{F} = 0$. Now (\mathscr{F}, \leq) is a directed set and the net $(f)_{f \in \mathscr{F}}$ is decreasing. Since

$$
\mu(C) = \int\limits_X \mathbb{1}_C \, d\mu = \lim\limits_{f \in \mathscr{F}} \int\limits_X f \, d\mu = \inf\limits_{f \in \mathscr{F}} \int\limits_X f \, d\mu,
$$

we have $\mu(C) = 0$.

" \Leftarrow " Conversely, suppose that $\mu \in M(X)$ and $\mu(C) = 0$ for $C \in \mathscr{K}_X$. It suffices to suppose that $\mu \in M(X)^+$. Take $(f_i)_{i \in I}$ in $C(X)^+$ with $f_i \searrow 0$. We may suppose that $f_i \leq 1$ for each *i*. Set

$$
g(x) = \inf_{i \in I} f_i(x) \quad x \in X.
$$

Then *g* is a Borel function, since

$$
g(x) < c \Leftrightarrow \exists i_0 : f_{i_0} < c \Rightarrow g^{-1}(-\infty, c) = \bigcup_{i \in I} f_i^{-1}(-\infty, c) \tag{1.2}
$$

the right hand side of *Equation* [\(1.2\)](#page-8-0) is open as a union of open sets and so it is a Borel set. For $n \in \mathbb{N}$, set $B_n = \{x \in X \mid g(x) > \frac{1}{n}\}$ $\frac{1}{n}$, so that $B_n \in \mathfrak{B}_X$. For each compact subset *C* of B_n , we have $C^{\circ} = \emptyset$. To see this observe that $C^{\circ} \supseteq B_n^{\circ}$. If we can show that B_n° is dense the claim follows. Since $B_n^{\mathsf{c}} = \left\{ x \in X \mid g(x) \leq \frac{1}{n} \right\}$ $\frac{1}{n}$, we have to show that for every open set *U* ⊆ *X* there is $x_0 \in U$ with $g(x_0) \leq \frac{1}{n}$ $\frac{1}{n}$. If there was no such x_0 , then for all $i \in I$, $f_i(x) > \frac{1}{n}$ $\frac{1}{n}$ for all $x \in U$. Now Urysohn's lemma applies to show that there is a continuous function f_U with $f_U(x) \leq \frac{1}{n}$ *n* for $x \in U$ and $f_U(U^c) = 0$. Now we have

$$
f_U \le f_i, \ \ \forall i \in I,
$$

a contradiction to $f_i \searrow 0$. So C^c is dense and $C^{\circ} = \emptyset$. According to our condition $\mu(C) = 0$. Thus, since μ is regular, $\mu(B_n) = 0$, and so

$$
\mu\left(\left\{x \in X \,|\, g(x) > 0\right\}\right) = \mu\left(\bigcup_{n \in \mathbb{N}} B_n\right) = 0,
$$

whence $\int_X g \ d\mu = 0$. Hence, it suffices to show that

$$
\lim_{i \in I} \int\limits_X f_i \, d\mu = \int\limits_X g \, d\mu. \tag{1.3}
$$

Take $\epsilon > 0$. By Lusin's theorem, *Theorem* 1.1.[8,](#page-7-0) there is a compact subset K of X with $\mu(X \setminus K) < \epsilon$ and such that $g|_K \in C(K)$. By Dini's theorem, *Theorem* 1.1.[7,](#page-7-1) we know that $\lim_{i \in I} ||f_i|_K - g|_K||_K = 0$, and so there exists i_0 with $||f_i|_K - g|_K||_K < \epsilon$ for $i \ge i_0$. It follows that

$$
\left| \int\limits_X f_i - g \ d\mu \right| \leq \int\limits_K |f_i - g| \ d\mu + 2\epsilon < (\|\mu\| + 2)\epsilon, \quad i \geq i_0
$$

giving *Equation* [\(1.3\)](#page-8-1).

Corollary 1.1.10. Let *X* be a non-empty compact space, and suppose that $\mu \in M(X)$. Then *the following are equivalent:*

- (i) $\mu \in N(X)$.
- *(ii)* $|\mu|(\overline{B} \setminus B^{\circ}) = 0$ *for each* $B \in \mathfrak{B}_X$ *.*
- *(iii)* $\mu(B_1) = \mu(B_2)$ *for each* $B_1, B_2 \in \mathcal{B}_X$ *with* $B_1 \triangle B_2$ *meagre.*

Proof. We may suppose that $\mu \in M(X)^+$. " $(i) \Rightarrow (ii)$ $(i) \Rightarrow (ii)$ $(i) \Rightarrow (ii)$ " Take $B \in \mathfrak{B}_X$. For each $\epsilon > 0$, there exists an open set *U* in *X* with $B \subseteq U$ and $\mu(U \setminus B) < \epsilon$. Since $\overline{U} \setminus U \in \mathscr{K}_X$, we have $\mu(\overline{U} \setminus U) = 0$. Thus

$$
\mu(B) \le \mu(\overline{B}) \le \mu(\overline{U}) = \mu(U) \le \mu(B) + \epsilon,
$$

and so $\mu(\overline{B}) = \mu(B)$. By taking complements, it follows that $\mu(B^{\circ}) = \mu(B)$. Hence, $\mu(\overline{B} \setminus B^{\circ}) =$ 0.

" $(i) \Rightarrow (iii)$ $(i) \Rightarrow (iii)$ $(i) \Rightarrow (iii)$ " We know that $\mu(B) = 0$ for each nowhere dense set *B* in \mathfrak{B}_X , and so $\mu(B) = 0$ for each meagre set *B* in \mathfrak{B}_X . Thus, $\mu(B_1) = \mu(B_2)$ whenever $B_1, B_2 \in \mathfrak{B}_X$ with $B_1 \triangle B_2$ meagre. $"$ (*[ii](#page-8-3)*), (*[iii](#page-8-4)*) \Rightarrow (*i*[\)"](#page-8-2) These are immediate from *Theorem* 1.1.[9.](#page-7-2)

There is a connection between measures in *M*(*X*).

Definition 1.1.11. Let *X* be a non-empty, compact space and suppose that $\mu, \nu \in M(X)$. Then we write $\mu \perp \nu$ if μ and ν are *mutually singular*, in the sense that there exists $B \in \mathfrak{B}_X$ with $|\mu|(B) = 0$ and $|\nu|(X \setminus B) = 0$, and $\mu \ll \nu$ if $|\mu|$ is *absolutely continuous* with respect to |*ν*|, in the sense that $|\mu|(B) = 0$ whenever $B \in \mathfrak{B}_X$ and $|\nu|(B) = 0$.

A family $\mathscr F$ of measures in $M(X)^+$ is *singular* if $\mu \perp \nu$ whenever $\mu, \nu \in \mathscr F$ and $\mu \neq \nu$.

Remark 1.1.12. The collection of singular families in $M(X)^+$ is ordered by inclusion. With *Zorn's lemma* we see that the collection of singular families of a non-empty subspace $\mathscr F$ of $M(X)^+$ has a maximal member that contains any specific singular family in \mathscr{F} , a *maximal singular family* in ^F. 

Definition 1.1.13. Let *X* be a compact space. A measure $\mu \in M(X)$ is *supported* on a Borel subset *B* of *X* if $|\mu|(X \setminus B) = 0$. The support is denoted by supp μ .

As supp μ is the complement of the union of open sets *U* in *X* such that $|\mu|(U) = 0$, it is a closed subset of *X*.

1.2 Stonean spaces

Since our main interest is the space $C(X)$, the topology on X will play an important rule. We will make use of a certain seperation property.

Definition 1.2.1. A topological space *X* is *extremely disconnected* if the closure of every open set is itself open.

Remark 1.2.2*.* Equivalently, extremely disconnected means if pairs of disjoint open subsets of *X* have disjoint closure. To see this let $U \in \mathcal{T}$, then *U* and \overline{U}^c are disjoint open sets. Since every two disjoint open sets have disjoint closures we get

$$
\overline{U} \cap \overline{X \setminus \overline{U}} = \emptyset \Rightarrow \overline{X \setminus \overline{U}} \subseteq X \setminus \overline{U},
$$

which shows that \overline{U}^c is closed and \overline{U} is open. Conversely take disjoint open sets *U* and *V*. Since \overline{V} is open for any $x \in \overline{V}$, it is an open neighbourhood of *x* disjoint from *U* and so $x \notin \overline{U}$. It follows that $\overline{U} \cap \overline{V} = \emptyset$.

Definition 1.2.3. A compact, extremely disconnected space is a *Stonean space*.

The definition of a Stonean space seems artificial but there are natural examples of topological spaces which do have this seperation property.

Example 1.2.4*.* Let *B* be a complete Boolean algebra. The *Stone space* is the family of ultrafilters on *B*, denoted by $St(B)$. We define a topology on $St(B)$ by taking the sets

$$
S_b = \{ p \in St(B) \mid b \in p \}, \ b \in B
$$

as a base of the topology. With this topology the Stone space is a Hausdorff, compact and extremely disconnected topological space with clopen basis sets *Sb*.

To see this take $p \neq q \in St(B)$. Now there is $x \in p$ with $x \notin q$. By definition of S_x , we get $q \in St(B) \setminus S_x$, and since these are ultrafilters, there exists $y \in q$ with $x \wedge y = 0$, and so $q \in S_y \subseteq St(B) \setminus S_x$. These are disjoint open neighbourhoods of *p* respectively *q* and since S_x is open and its complement is a neighbourhood of every element, *S^x* is clopen.

For a Boolean algebra we have $St(B) = S_1$. Taking $\Gamma \subseteq B$ such that $\{S_a | a \in \Gamma\}$ is a cover of S_1

with basic sets, we may suppose that Γ is closed under finite union. We claim that necessarily $1 \in \Gamma$. For otherwise, $a' \neq 0$ for each $a \in \Gamma$. Since

$$
\bigwedge_{i=1}^{n} a'_{i} = \left(\bigvee_{i=1}^{n} a_{i}\right)' \neq 0, \quad n \in \mathbb{N}
$$

the family is contained in some $p \in S_1$. But $p \notin \bigcup_{a \in \Gamma} S_a$, a contradiction. So $1 \in \Gamma$ and S_1 is compact.

Finally, we have to check the seperation property from *Def inition* 1*.*2*.*[1.](#page-9-1) Take an open set *U*. Since S_x for $x \in B$ form a base of the open set, we get $U = \bigcup_{b \in \Gamma} S_b$ for a subset Γ of *B*. Since *B* is complete, $a = \bigvee_{b \in \Gamma} b$ exists. We claim that $U = S_a$. Now take $p \in S_a$. For each $c \in p$, we have $c \wedge a \neq 0$, and hence $c \wedge b \neq 0$ for some $b \in \Gamma$, for otherwise we would have $b \leq c'$ for $b \in \Gamma$, and hence $a \leq c'$. Thus $S_c \cap U \neq \emptyset$. This shows that $S_a \subseteq \overline{U}$. The reverse inclusion is immideate and since S_a is open, \overline{U} is open and $St(B)$ is extremely disconnected.

Definition 1.2.5. A subset *U* of a topological space *X* is *regular-open* if $U = (\overline{U})^{\circ}$.

Proposition 1.2.6. *Let X be a Stonean space. Then every regular-open set in X is clopen, and, for every* $B \in \mathcal{B}_X$ *, there is a unique set* $C \in \mathfrak{C}_X$ *with* $B \triangle C$ *is meagre, where* \mathfrak{C}_X *denotes the family of open and compact subsets of X.*

Proof. Let *U* be a regular-open set. We have

$$
U\in\mathcal{T}\Rightarrow\overline{U}\in\mathcal{T}\Rightarrow\overline{U}=\left(\overline{U}\right)^{\circ}=U.
$$

For the second part, let $\mathscr F$ be the family of subsets of X that differ from a clopen set by a meagre set and since *X* is compact these sets are compact and open. If $B \in \mathcal{F}$ and *C* is a clopen set such that $C \triangle B$ is meagre, then B^c and C^c differ by this same set. As C^c is clopen, $C^c \in \mathscr{F}$. Each open set *U* lies in \mathscr{F} , since \overline{U} is clopen and $\overline{U} \setminus U$ is nowhere dense. If $B_n \in \mathscr{F}$ for $n \in \mathbb{N}$ and C_n is a clopen set such that $B_n \Delta C_n$ is meagre, then

$$
\left(\bigcup_{n=1}^{\infty} B_n\right) \triangle \left(\bigcup_{n=1}^{\infty} C_n\right) \subseteq \bigcup_{n=1}^{\infty} \left(B_n \triangle C_n\right).
$$

As $\bigcup_{n=1}^{\infty} (B_n \triangle C_n)$ is meagre and $\bigcup_{n=1}^{\infty} C_n$ is open, $\bigcup_{n=1}^{\infty} B_n \in \mathscr{F}$. Hence $\mathfrak{B}_X \subseteq \mathscr{F}$ and \mathscr{F} contains the Borel subsets of *X*.

The second part of the proof of *P roposition* [1](#page-10-0)*.*2*.*6 is taken from [\[4,](#page-27-3) Lemma 5.2.10, p.322].

Definition 1.2.7. A set *U* is *regular-closed* if its complement is regular-open.

Remark 1.2.8*.* Equivalently the equality $U = \overline{U^{\circ}}$ holds:

$$
\left(\overline{U^{\circ}}\right)^{\mathsf{c}} = \left(\overline{\left(\overline{U^{\mathsf{c}}}\right)^{\mathsf{c}}}\right)^{\mathsf{c}} = \left(\overline{U^{\mathsf{c}}}\right)^{\circ} = U^{\mathsf{c}}.
$$

It is sometimes easier to work with this property. 

The properties of the topological space *X* have also effect on the measures on this space:

Proposition 1.2.9. *Let X be a non-empty, compact space and suppose that* $\mu \in N(X)$ *. Then supp µ is a regular-closed set.*

Proof. Since supp μ = supp $|\mu|$, we may suppose that $\mu \in N(X)^+$. Set $A = \text{supp }\mu$, a closed set, and set $U = A^{\circ}$, so that $\overline{U} \subseteq A$. Since $A \setminus \overline{U}$ is nowhere dense, $\mu(A \setminus \overline{U}) = 0$. Thus $\mu(X \setminus \overline{U}) = 0$, and so, by the definition of supp μ , we have $X \setminus \overline{U} \subseteq X \setminus A$. Hence $\overline{U} = A$, and *A* is regular-closed.

Corollary 1.2.10. *Let X be a Stonean space, and suppose that* $\mu \in N(X)^+ \setminus \{0\}$ *. Then:*

- *(i) The space supp µ is clopen in X, and hence Stonean.*
- *(ii) For each* $B \in \mathfrak{B}_{X}$ *, there is a unique set* $C \in \mathfrak{C}_{X}$ *with* $C \subseteq supp \mu$ *and* $\mu(B \triangle C) = 0$ *.*

Proof.

[\(](#page-11-0)*i*) In a Stonean space, every regular-closed set is clopen. Since the closure of a set in the subspace topology is just

$$
\overline{U}^{\mathcal{T}|_{\text{supp }\mu}} = \overline{U}^{\mathcal{T}} \cap \text{supp }\mu
$$

and an open set is obtained in the same way, $\overline{U}^{\mathcal{T}|_{\text{supp }\mu}}$ is open in supp μ .

[\(](#page-11-0)*[ii](#page-11-1)*) By (*i*) supp μ is a clopen subset of X and $\mu(X \setminus \text{supp }\mu) = 0$, and so we may suppose that $X = \text{supp }\mu$. Take $B \in \mathfrak{B}_X$. By *Proposition* 1.2.[6,](#page-10-0) there is a unique $C \in \mathfrak{C}_X$ with $B \triangle C$ meagre, and then $\mu(B \triangle C) = 0$. Suppose that $C_1, C_2 \in \mathfrak{C}_X$ are such that $\mu(B \triangle C_1) = \mu(B \triangle C_2) = 0$. Then $C_1 \triangle C_2 \subseteq (B \triangle C_1) \cup (B \triangle C_2)$, so that $\mu(C_1 \triangle C_2) = 0$. Since $C_1 \triangle C_2$ is an open set in $X = \text{supp } \mu \text{ and } \mu(U) > 0 \text{ for all non-empty open subsets } U \text{ of } X, \text{ it follows that } C_1 \triangle C_2 = \emptyset,$ i.e., $C_1 = C_2$.

Proposition 1.2.11. Let *X* be a Stonean space, and suppose that $u, v \in N(X)$. Then:

 (i) *supp* $\nu \subset supp$ *u if and only if* $\nu \ll \mu$.

(ii) $\mu \perp \nu$ *if and only if supp* $\mu \cap supp \nu = \emptyset$.

Proof.

[\(i\)](#page-11-2) Always supp $\nu \subseteq \text{supp } \mu$ when $\nu \ll \mu$. For the converse, we may suppose that $\mu, \nu \in N(X)^+$. By *Proposition* 1.2.[6,](#page-10-0) for each $B \in \mathfrak{B}_X$, there exists $C \in \mathfrak{C}_X$ with $B \triangle C$ meagre. Now suppose that *B* is a μ -nullset. Then by *Corollary* 1.2.[10,](#page-11-3) *C* is also a μ -nullset, and so *C* ∩ supp $\nu = \emptyset$, whence $\nu(B) = \nu(C) = 0$. This shows that $\nu \ll \mu$.

[\(ii\)](#page-11-4) Clearly $\mu \perp \nu$ when supp $\mu \cap$ supp $\nu = \emptyset$. Next suppose that $\mu \perp \nu$, and set $U =$ supp $\mu \cap \text{supp } \nu$, so that *U* is an open set. Then $\nu|_U \perp \mu$ and $\nu|_U \ll \mu$. Thus $\nu|_U = 0$, and hence $U = \emptyset$.

Definition 1.2.12. A lattice is *Dedekind complete* if every non-empty subset which is bounded above has a supremum and every non-empty subset which is bounded below has an infimum.

If the space $C(X)$ satisfies this completeness property, we can infer that the space X has our required seperation property.

Theorem 1.2.13. *Let X be a non-empty, compact space. Then X is Stonean if and only if C* (*X*) *is Dedekind complete.*

Proof.

" \Rightarrow " Suppose that $C_{\mathbb{R}}(X)$ is Dedekind complete, and let *U* be an open set in *X*. Take \mathscr{F} to be the family of functions $f \in C_{\mathbb{R}}(X)$ such that

$$
\mathscr{F} = \{ f \in C_{\mathbb{R}}(X) \mid f(x) = 0 \text{ for } x \in X \setminus U, 0 \le f \le 1 \}.
$$

Then since $C(X)$ is Dedekind complete, $\mathscr F$ has a supremum, say $f_0 \in C_{\mathbb R}(X)$. To determine this supremum we make use of Urysohn's lemma. We claim that $f_0(x) = 1$ for $x \in U$ and $f_0(x) = 0$ for $x \in X \setminus U$. To see this take the closed sets $\{x\}$ and U^c . Then there is $f_x \in C(X)$ with $f_x(x) = 1$, $f_x(X \setminus U) = 0$ and $0 \le f_x \le 1$. Now $f_x \in \mathcal{F}$ and $f_x \le f_0$. Next take $x \in X \setminus \overline{U}$. Again with Urysohn's lemma we get $g \in C(X)$ with $g({x}) = 0$ and $g(\overline{U}) = 1$. This leads to

$$
f\in\mathscr{F}\Rightarrow f=fg\leq g
$$

and sup $\mathscr{F} \leq g$. Hence we get $f_0 = 1_{\overline{U}}$. As $X \setminus \overline{U}$ is closed as the preimage of $\{0\}$ under the continuous function f_0 , it follows that \overline{U} is open and *X* is Stonean.

" \Leftarrow " Conversely, suppose that *X* is Stonean, and let $\mathscr F$ be a family in $C(X)^+$ which is bounded above, say by 1. For $r \in [0, 1]$, define

$$
U_r = \bigcup_{f \in \mathscr{F}} \{ x \in X \mid f(x) > r \}.
$$

Then U_r is open in *X*, and so $V_r := \overline{U_r}$ is also open in *X*. Clearly $V_1 = \emptyset$. Define

$$
g(x) = \sup_{x \in U_r} r.
$$

If $g(x) \in (r, s)$, then $x \in V_r \setminus V_s$, and, if $x \in V_r \setminus V_s$, then $g(x) \in [r, s]$. Take $x_0 \in X$, and take a neighbourhood *V* of $g(x_0)$. Then there exist $r, s \in \mathbb{R}$ with $g(x_0) \in (r, s) \subseteq [r, s] \subseteq V$. Since $V_r \setminus V_s$ is an open set and

$$
x_0 \in V_r \setminus V_s \subseteq g^{-1}([r, s]) \subseteq g^{-1}(V),
$$

we see that *g* is continuous at x_0 . Thus $g \in C_{\mathbb{R}}(X)$.

Now take $h \in C_{\mathbb{R}}(X)$ with $h \geq f$ for $f \in \mathcal{F}$. Assume that there exists $x_0 \in X$ with $h(x_0)$ *g*(*x*₀). Then $h(x_0) < r$ for some *r* with $x_0 \in V_r$. Let *W* be a neighbourhood of x_0 with $h(x) < r$ for $x \in W$. Then there exists $x \in W$ with $f(x) > r$ for some $f \in \mathscr{F}$, a contradiction. Thus $h \geq g$, and so $g = \sup \mathscr{F}$. We have shown that $C_{\mathbb{R}}(X)$ is Dedekind complete.

We will make use of *T heorem* 1*.*2*.*[13](#page-11-5) in the following:

Example 1.2.14*.* A *character* on an Banach algebra *Z* is a homomorphism from *Z* to C. The set of all characters on *Z* is denoted by Φ_Z , this is the *character space* of *Z*.

For a locally compact space Γ and a measure $\mu \in P(\Gamma)$, the character space of the C^* -algebra $L^{\infty}(\Gamma,\mu)$ is denoted by Φ_{μ} . Since $L^{\infty}(\Gamma,\mu)$ is commutative the *Gelfand transform*

$$
\Psi:\begin{cases}L^\infty(\Gamma,\mu)\to C\left(\Phi_\mu\right)\\ f\mapsto\hat{f}\end{cases}
$$

is an isomorphism and moreover, a lattice isometry. Since $L^{\infty}(\Gamma,\mu)$ is Dedekind complete, it follows that $C(\Phi_{\mu})$ is also Dedekind complete. Now *Theorem* 1.2.[13](#page-11-5) applies to show that Φ_{μ} is a Stonean space. \mathcal{U}

Theorem 1.2.15 (Baire's theorem)**.** *If X is a compact Hausdorff space then the intersection of every countable collection of dense open subsets of X is dense in X.*

Proof. Suppose $(V_n)_{n\in\mathbb{N}}$ are dense open subsets of X. Let U_0 be an arbitrary non-empty open set in *X*. If $n \geq 1$ and an open non-empty U_{n-1} has been chosen, then there exists an open non-empty U_n since V_n is dense with

$$
\overline{U_n} \subseteq V_n \cap U_{n-1}.
$$

Since $(\overline{U_n})_{n\in\mathbb{N}}$ has the finite intersection property, the set

$$
K = \bigcap_{n=1}^{\infty} \overline{U_n}
$$

is non-empty and we have $K \subseteq U_0$ and $K \subseteq V_n$ for each *n*. Hence U_0 intersects $\bigcap_{i=1}^{\infty}$ $\bigcap_{n=1}^{\infty} V_n$.

Theorem 1.2.16. *Let X be a Stonean space, and let U be dense a or open subspace of X. Take a* compact space *L* and $f \in C(U, L)$ *. Then there exists* $F \in C(\overline{U}, L)$ *such that* $F|_U = f$ *.*

Proof. Take $x \in \overline{U}$, and let $(x_i)_{i \in I}$ and $(y_i)_{i \in J}$ be nets in U with $\lim_{i \in I} x_i = \lim_{i \in J} y_i = x$. Then the nets $(f(x_i))_{i\in I}$ and $(f(y_i))_{i\in J}$ have accumulation points, say x_1 and x_2 , respectively, in *L*. Assume towards a contradiction that $x_1 \neq x_2$, and take open neighbourhoods N_{x_1} and N_{x_2} of x_1 and x_2 , respectively, such that $N_{x_1} \cap N_{x_2} = \emptyset$. Then the sets

$$
\{y \in U \mid f(y) \in N_{x_1}\} \quad \text{and} \quad \{y \in U \mid f(y) \in N_{x_2}\}\
$$

are disjoint, relatively open subsets of *U*, and so they have the form $U \cap V$ and $U \cap W$, respectively, for some open subsets *V* and *W* in *X*. Since $\overline{U} = X$, we have $V \cap W = \emptyset$, and since *X* is Stonean $\overline{V} \cap \overline{W} = \emptyset$. In the case where *U* is open, $\overline{U \cap V} \cap \overline{U \cap W} = \emptyset$. However $x \in \overline{U \cap V} \cap \overline{U \cap W}$. Thus $x_1 = x_2$. It follows that $(f(x_i))_{i \in I}$ converges to a unique limit $F(x)$, in *L*, and that the limit is independent of the net $(x_i)_{i \in I}$. Now *F* is the required extension of *f*.

Corollary 1.2.17. *The complement of a meagre set M is dense in X.*

Proof. M can be written as the countable union of nowhere dense sets $(M_n)_{n\in\mathbb{N}}$. Taking complements we get

$$
\overline{M^c} = \overline{\left(\bigcup_{n=1}^{\infty} M_n\right)^c} \supseteq \overline{\left(\bigcup_{n=1}^{\infty} \overline{M_n}\right)^c} = \left(\left(\bigcup_{n=1}^{\infty} \overline{M_n}\right)^c\right)^c.
$$

And since the union of sets with empty interior has empty interior, M^c is dense.

Remark 1.2.18*.* Let *X* be a non-empty, compact space, and define

$$
M_X := \{ f \in B^b(X) \, | \, \{ x \in X \, | \, f(x) \neq 0 \} \text{ is meagre} \}.
$$

Then M_X is a closed ideal in the C^* -algebra $B^b(X)$: Set

$$
m_f := \{ x \in X : f(x) \neq 0 \} = f^{-1}(\{0\})^c.
$$

Take $g \in B^b(X)$ and $f \in M_X$, we have to show that the set m_{fg} is meagre. Now since every subset of a meagre set is meagre and

$$
m_f^c = f^{-1}(\{0\}) \subseteq fg^{-1}(\{0\}) = m_{fg}^c,
$$

it follows that $m_{fq} \subseteq m_f$. So $fg \in M_X$.

Secondly we have to show that the sum of two functions $f, g \in M_X$ is again in M_X . This follows because $m_{f+g} \subseteq m_f \cup m_g$ and the union of meagre sets is meagre.

At last we have to show that M_X is closed. Let $f_n \to f$ with $f_n \in M_X$. We have to show that *m_f* is meagre. Take $x \in m_f$, then $|f(x)| = \alpha > 0$. Now let n_0 be sufficiently large so that $|f(x) - f_{n_0}(x)| < \frac{\alpha}{2}$ $\frac{\alpha}{2}$. Then $x \in m_{f_n}$ for $n \geq n_0$ and

$$
m_f \subseteq \bigcup_{n \in \mathbb{N}} m_{f_n}.
$$

The countable union of meagre sets is again meagre and so m_f is meagre.

Definition 1.2.19. Let *X* be a non-empty, compact space. Then

$$
D(X) = B^b(X)/M_X
$$

is the *Dixmier algebra* of *X*.

Theorem 1.2.20. Let *X* be a non-empty, Stonean space. Then $D(X)$ and $C(X)$ are C^* *isomorphic.*

Proof. First consider a simple bounded Borel function *f* of the form $f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{B_i}$, where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ and $B_1, \ldots, B_n \in \mathfrak{B}_X$ are pairwise disjoint. As we already know, there exist $C_1, \ldots, C_n \in \mathfrak{C}_X$ such that $B_i \triangle C_i$ is meagre. Clearly, the sets C_1, \ldots, C_n are pairwise disjoint. We define

$$
g = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{C_i}.
$$

We have $q \in C(X)$ since

$$
C_i \in \mathfrak{C}_X \Rightarrow \exists g_i \in C(X) : g_i(C_i) \subseteq \{1\}, g_i(C_i^c) \subseteq \{0\} \Rightarrow g_i \equiv \mathbb{1}_{C_i}
$$

and so the set $\{x \in X \mid f(x) \neq g(x)\}\)$ is meagre.

Now consider a general function $f \in B^b(X)$. There is a sequence $(f_n)_{n \in \mathbb{N}}$ of simple, bounded Borel functions that converges uniformly to *f* on *X*. For each $n \in \mathbb{N}$, choose $g_n \in C(X)$ such that $M_n := \{x \in X \mid f(x) \neq g_n(x)\}$ is a meagre subset of *X*. The set

$$
M:=\bigcup_{n\in\mathbb{N}}M_n
$$

is also meagre in *X*, and $g_n(x) = f_n(x)$ for all $n \in \mathbb{N}$ and $x \in X \setminus M$, and so $(g_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $(C(X \setminus M), \|\cdot\|_{X \setminus M})$. The sequence converges uniformly to a function, say *g*, in $C(X \setminus M)$. Now by *Theorem* 1.2.[15,](#page-12-0) $X \setminus M$ is dense in *X* and by *Theorem* 1.2.[16,](#page-13-0) \overline{g} has an extension in $C(X)$.

For each $f \in B^b(X)$, take $\pi(f)$ to be the unique $\overline{g} \in C(X)$ and consider the map

$$
\pi: B^{b}(X) \to C(X).
$$

Clearly the restriction of π to the simple functions is a $*$ -homomorphism; since the simple functions are dense in $B^b(X)$ and $\pi(f) = f, f \in C(X)$, the map π is a C^* -homomorphism that is a bounded projection from $B^b(X)$ to $C(X)$. Clearly ker $\pi = M_X$, and so the map

$$
\overline{\pi}: D(X) = B^{b}(X)/M_X \to C(X).
$$

is a *C* ∗ -isomorphism.

Corollary 1.2.21. Let *X* be a Stonean space, and suppose that $\mu \in N(X) \cap P(X)$ is a strictly *positive measure. Then every equivalence class in* $L^\infty(X,\mu)$ *contains a continuous function, the* C^* -algebras $(L^\infty(X, \mu), \|.\|_\infty)$ and $(C(X), \|.\|_X)$ are C^* -isomorphic.

Proof. By *Theorem* 1.2.[20,](#page-14-0) there is a C^* -isomorphism $\overline{\pi}: D(X) \to C(X)$. However $\mu(B) = 0$ for each meagre set $B \in \mathfrak{B}_X$ by *Corollary* 1.1.[10](#page-8-5) and so ker $\overline{\pi}$ is exactly the kernel of the projection of $B^b(X)$ onto $L^\infty(X,\mu)$.

1.3 The complexification of $C_{\mathbb{R}}(X)$

Remark 1.3.1*.* Often it is easier to work with real Banach spaces. Since we are interested in the complex Banach space $C(X)$, we want to infer from the real to the complex case.

We give a sketch of how the complexification transfers to the dual space: Let $(Z, \|\cdot\|)$ be a real Banach lattice with dual Z' and $Z_{\mathbb{C}} = Z \oplus iZ$ its complexification. If we want to endow this complexification with a fitting norm that respects the order, for $z = x + iy$, define

$$
|z| = |x + iy| = \sup_{0 \le \theta \le 2\pi} x \cos \theta + y \sin \theta.
$$

Then the norm

$$
||z|| = |||z||||
$$

makes $Z_{\mathbb{C}}$ to a Banach space. At first we can identify Z' as a real-linear subspace of $Z'_{\mathbb{C}}$ if we define $\lambda(x+iy) = \lambda(x) + i\lambda(y)$ for $\lambda \in Z', x, y \in Z$. And for each $\lambda \in Z'_{\mathbb{C}}$, there exist λ_1 and λ_2 in *Z'* such that $\lambda(x) = \lambda_1(x) + i\lambda_2(x)$ for $x \in Z$ and so $Z'_\mathbb{C}$ is isomorphic as a complex Banach space to the complexification $Z' \oplus iZ'$. 

In the following section we will deal with this complexification. We want to show that $C(X)$ is a dual space of a Banach space if and only if $C_{\mathbb{R}}(X)$ is a dual space.

Lemma 1.3.2. Let *X* be a compact space, and let $\mu \in M(X)^+$. Take $f, g \in L^1_{\mathbb{R}}(\mu)$ and $\epsilon > 0$. *Suppose that* $||f + ig||_1 = 1$ *and that* $1 - \epsilon < ||f||_1 \le 1$ *. Then* $||g||_1 \le \sqrt{2\epsilon}$ *.*

Proof. Take *a, b >* 0. Since

$$
\sqrt{1+t}\leq 1+\frac{t}{2},\quad t\geq 0,
$$

we have

$$
a^{2} + b^{2} \ge a^{2} \sqrt{1 + \frac{b^{2}}{a^{2}}} + \frac{b^{2}}{2} = a \sqrt{a^{2} + b^{2}} + \frac{b^{2}}{2} \Leftrightarrow \sqrt{a^{2} + b^{2}} \ge a + \frac{b^{2}}{2\sqrt{a^{2} + b^{2}}}.
$$

Set $h = \frac{g^2}{\sqrt{f^2 + g^2}}$. It follows that

$$
1 = \int_{X} \sqrt{f^2 + g^2} \, d\mu \ge \int_{X} |f| \, d\mu + \frac{1}{2} \int_{X} h \, d\mu,
$$

and so \int *X* $h \, d\mu < 2\epsilon$. We then have

$$
\int_{X} |g| \ d\mu = \int_{X} \frac{|g| (f^2 + g^2)^{\frac{1}{4}}}{(f^2 + g^2)^{\frac{1}{4}}} \ d\mu \le \left(\int_{X} h \ d\mu \right)^{\frac{1}{2}} \left(\int_{X} \sqrt{f^2 + g^2} \ d\mu \right)^{\frac{1}{2}}
$$

and so $||g||_1 \leq$ $\overline{2\epsilon}$.

Corollary 1.3.3. Let *X* be a compact space, and let $\mu, \nu \in M_{\mathbb{R}}(X)$. Take $\epsilon > 0$, and suppose *that* $\| \mu + i\nu \| = 1$ *and that* $1 - \epsilon < ||\mu|| \leq 1$. Then $|| \nu || \leq \sqrt{2\epsilon}$.

Proof. Consider the measure

$$
\lambda = |\mu| + |\nu| \in M(X)^+.
$$

Then $\mu = f d\lambda$ and $\nu = g d\lambda$ for some $f, g \in L^1_{\mathbb{R}}(\lambda)$ such that $\|\mu\| = \|f\|_1$ and $\|\nu\| = \|g\|_1$ and the claim follows from *Lemma* 1*.*3*.*[2.](#page-15-1)

Proposition 1.3.4. *Let* Z *be a Banach space. Then* $\iota(Z)$ *is weak*^{*}-dense in Z'' .

Proof. Since Z'' is endowed with the weak^{*}-topology we have $(Z'', \sigma(Z'', \iota'(Z')))' = \iota'(Z')$. We know from a corollary of the *Hahn-Banach* theorem [\[7,](#page-27-2) Corollary 5.2.6, p.79] that

$$
\overline{\iota(Z)} = \bigcap_{\substack{f \in \iota'(Z') \\ \iota(Z) \subseteq \ker f}} \ker f.
$$

We have to show that 0 is the only element with $\iota(Z) \subseteq \text{ker } f$.

$$
\iota'(f)[\iota(z)]=\iota(z)[f]=f(z)=0, \; \forall z\in Z
$$

Hence $f \equiv 0$.

Proposition 1.3.5. Let *X* be a non-empty, compact space. Then the Banach space $C(X)$ *is isometrically the dual of a Banach space if and only if the real Banach space* $C_{\mathbb{R}}(X)$ *is isometrically the dual of a real Banach space.*

Proof.

" \Leftarrow " Suppose $C_{\mathbb{R}}(X)$ is isometrically isomorphic to Y' for a real Banach space Y, and regard *Y* as a closed subspace of $C_{\mathbb{R}}(X)'$. Now set

$$
Y_{\mathbb C}=Y\oplus iY
$$

so that $Y_{\mathbb{C}}$ is a closed subspace of $C(X)'$ and we have

$$
C(X)' \cong Y'' \oplus iY'' = Y''_{\mathbb{C}}
$$

and *Y*_C is a Banach space. It must yet be shown that $Y'_C \cong C(X)$: Take $f \in C(X)$ and set

$$
\lambda(y) = \langle f, y \rangle, \ y \in Y_{\mathbb{C}}.
$$

Then $\lambda \in Y'_{\mathbb{C}}$ with $\|\lambda\| \leq \|f\|$, and the map

$$
S: \begin{cases} C(X) \to Y'_{\mathbb{C}} \\ f \mapsto \lambda \end{cases}
$$

is a linear contraction. Take $\lambda \in Y'_\mathbb{C}$, and set

$$
\lambda_1 = \Re(\lambda)|_Y, \ \lambda_2 = \Im(\lambda)|_Y
$$

so that λ_1 and λ_2 are bounded real-linear functionals on *Y* with $\lambda = \lambda_1 + i\lambda_2$. Thus there exist unique elements x and z in $C_{\mathbb{R}}(X)$ such that

$$
\lambda_1(g) = \langle x, g \rangle, \lambda_2(g) = \langle z, g \rangle
$$

for $g \in Y$. Set $h = x + iz \in C(X)$. Then for each $g_1, g_2 \in Y$, we have

$$
\lambda(g_1 + ig_2) = (\lambda_1 + i\lambda_2)(g_1 + ig_2) = \langle x, g_1 \rangle - \langle z, g_2 \rangle + i(\langle z, g_1 \rangle + \langle x, g_2 \rangle)
$$

= $\langle x + iz, g_1 + ig_2 \rangle = \langle h, g_1 + ig_2 \rangle$

and so $\lambda = S(h)$. Thus *S* is a surejection.

Now fix $\epsilon > 0$. By *Proposition* [1](#page-15-2).3.4 we see, that $Y_{\mathbb{C}}$ is weak^{*}-dense in $Y''_{\mathbb{C}}$ and there exists $k \in Y_{\mathbb{C}}$ with $||k|| = 1$ and $|\langle f, k \rangle| > ||f|| - \epsilon$, and hence $||\lambda|| > ||f|| - \epsilon$. This holds for each $\epsilon > 0$,

and so $\|\lambda\| \geq \|f\|$. So *S* is an isometric isomorphism.

" \Rightarrow " Now suppose $C(X) \cong Y'$ where *Y* is a Banach space. We regard *Y* as a closed subspace of $Y'' = M(X)$. Define

$$
Y_{\mathbb{R}} = \{ \Re(\mu) \in M_{\mathbb{R}}(X) \, | \, \mu \in Y \}.
$$

Then $Y_{\mathbb{R}}$ is a real-linear subspace of $M_{\mathbb{R}}(X)$, and $\Re(\mu), \Im(\mu) \in Y_{\mathbb{R}}$ whenever $\mu \in Y$, so that $Y = Y_{\mathbb{R}} \oplus iY_{\mathbb{R}}$. For each $\lambda \in Y_{\mathbb{R}}'$, define

$$
\overline{\lambda}(\mu + i\nu) = \lambda(\mu) + i\lambda(\nu), \ \mu, \nu \in Y_{\mathbb{R}}.
$$

Then $\overline{\lambda}$ is a continuous, complex-linear functional on *Y* with

$$
\|\lambda\| \le \left\|\overline{\lambda}\right\| \le \sqrt{2} \left\|\lambda\right\|.
$$

Thus there exist unique elements $f, g \in C_{\mathbb{R}}(X)$ with

$$
\lambda(\mu + i\nu) = \langle f + ig, \mu + i\nu \rangle, \ \ \mu + i\nu \in Y.
$$

It follows that

$$
\lambda(\mu) = \langle f, \mu \rangle - \langle g, \nu \rangle \text{ and } \lambda(\nu) = \langle f, \nu \rangle + \langle g, \mu \rangle.
$$

Define

$$
T: \begin{cases} Y'_{\mathbb{R}} \to C_{\mathbb{R}}(X) \\ \lambda \mapsto f. \end{cases}
$$

Then *T* is a continuous, real-linear map such that

$$
||T(\lambda)||_X \ge ||\lambda||. \tag{1.4}
$$

Take $f \in C_{\mathbb{R}}(X)$ and define

$$
\lambda(\mu) = \langle f, \mu \rangle \,, \quad \mu \in Y_{\mathbb{R}}.
$$

Then $\lambda \in Y_{\mathbb{R}}'$ is such that $\|\lambda\| \leq \|f\|_X$ and $T(\lambda) = f$. This shows *T* is a surjection. To show injectivity we take $\lambda \in Y_{\mathbb{R}}'$ with $T(\lambda) = 0$, and assume towards a contradiction that $\lambda \neq 0$. Then $\overline{\lambda} \neq 0$, and so we may suppose that $\left\| \overline{\lambda} \right\| = 1$. Now there exists $g \in C_{\mathbb{R}}(X)$ with $\|g\|_X = 1$ such that

$$
\lambda(\mu) = -\langle g, \nu \rangle
$$
 and $\lambda(\nu) = \langle g, \mu \rangle$, $\mu + i\nu \in Y$.

Choose $x \in X$ with $|g(x)| = 1$, without loss of generality $g(x) = 1$. Since the closed unit ball $B_1^Y(0)$ is weak^{*}-dense in $B_1^{M(X)}$ $\mu_1^{M(X)}(0)$, and so for each $\epsilon > 0$, there exists $\mu_0 + i\nu_0 \in B_1^Y(0)$ with $|\langle g, \delta_x - \mu_0 + i\nu_0 \rangle| < \epsilon$. Thus,

$$
|1 - \langle g, \mu_0 \rangle| \le |1 - \langle g, \mu_0 + i\nu_0 \rangle| < \epsilon.
$$

Since

$$
1-\epsilon<\|\mu_0\|\leq 1,
$$

it follows from *Corollary* [1](#page-15-3)*.*3*.*3 that

$$
1 - \epsilon \le |\langle g, \mu_0 \rangle| = |\lambda(\nu_0)| \le ||\nu_0|| \le \sqrt{2\epsilon},
$$

a contradiction for some $\epsilon > 0$. Thus $\lambda = 0$ and T is injective. Finally we have to show that T is an isometry and since *T heorem* 0*.*0*.*[8,](#page-3-2) it remains to show that

$$
||T(\lambda)||_X \le ||\lambda|| \ , \ \ \lambda \in Y_{\mathbb R}'.
$$

Take $f \in C_{\mathbb{R}}(X)$. Since X is compact there is $x_0 \in X$ with $|f(x_0)| = ||f||_X$. For each $\epsilon > 0$, there exists $\mu + i\nu \in B_1^Y(0)$ with

$$
|f(x_0) - \langle f, \mu + i\nu \rangle| < \epsilon.
$$

We have $\mu \in Y_{\mathbb{R}}$ with $\|\mu\| \leq 1$. Take the unique λ with $T(\lambda) = f$, so that, as above, $\lambda(\mu) =$ $\langle f, \mu \rangle$. Then

$$
||\lambda|| \ge |\langle f, \mu \rangle| > |f(x_0)| - \epsilon = ||f||_X - \epsilon = ||T(\lambda)||_X - \epsilon,
$$

and so $||T(\lambda)||_X \le ||\lambda|| + \epsilon$. This holds true for each $\epsilon > 0$, and so $||T(\lambda)||_X \le ||\lambda||$ and so *T* is an isometry.

1.4 Hyper-Stonean spaces

Definition 1.4.1. Let *X* be a non-empty, compact space. Then

$$
W_X := \bigcup_{\mu \in N(X)} supp \ \mu.
$$

The space *X* is *hyper-Stonean* if *X* is Stonean and *W^X* is dense in *X*.

Since the restriction of a normal measure to a Borel set is a normal measure, for each non-empty, open subset *U* of *X*, there exists $\mu \in N(X) \cap P(X)$ with supp $\mu \subseteq U$.

The following theorem will characterize Hyper-Stonean spaces by a certain measure:

Definition 1.4.2. A positive measure μ on the Borel sets of a Stonean space X is a *category measure* if

- (i) μ is regular on closed subsets of finite measure;
- (ii) every non-empty, clopen set in *X* contains a clopen set *U* with $0 < \mu(U) < \infty$;
- (iii) every nowhere dense Borel set has measure zero.

Proposition 1.4.3. *Let X be a Stonean space. Then X is hyper-Stonean if and only if there exists a category measure on X.*

Proof.

" \Rightarrow " Suppose that *X* is hyper-Stonean. Consider a maximal family $(\mu_i)_{i \in I}$ of measures in $N(X)^+$ with pairwise-disjoint supports, and set

$$
\mu = \sum_{i \in I} \mu_i,
$$

so that μ is a positive measure on \mathfrak{B}_X . Take C to be a clopen subset of X. Then

$$
C_0 := C \cap \text{supp } \mu_{i_0} \neq \emptyset
$$

for some i_0 because of the maximality of the family $(\mu_i)_{i \in I}$ and the assumption that X is hyper-Stonean. Since *X* is Stonean, supp μ_{i_0} is clopen, and so C_0 is a clopen subset of *C* with

$$
0 < \mu(C_0) = \mu_{i_0}(C_0) < \infty.
$$

Clearly $\mu(B) = 0$ for each nowhere dense Borel set *B* because $\mu_i(B) = 0$ for each such *B* and each i . Thus, μ is a category measure.

" \Leftarrow " Conversely, suppose that μ is a category measure on *X*. For an arbitrary clopen set *C* in *X*, take some clopen $C_0 \subseteq C$ with $0 < \mu(C_0) < \infty$, and set

$$
\mu_C = \mu|_{C_0}.
$$

By our characterization of normal measures, we have $\mu_C \in N(X)^+$ and supp $\mu_C \subseteq C$. Since *C* was arbitrary, *X* is hyper-Stonean.

Remark 1.4.4*.* As we have seen in *Example* 1*.*2*.*[14,](#page-12-1) the character space of a *C* ∗ -algebra is an interesting tool. To describe the character space of $C(X)$, let us remark that the kernel of a character is a maximal modular ideal and on the other hand every maximal modular ideal is the kernel of a character. Now in this case there is an easy description of those sets. Define

$$
\epsilon_x : \begin{cases} C\left(X\right) \to \mathbb{C} \\ f \mapsto f(x) \end{cases}
$$

called the *evaluation character* at *x*, and

$$
M_x := \{ f \in C(X) | f(x) = 0 \} = \ker \epsilon_x.
$$

It can be shown that these are all characters. Finally we can identify the character space of $C(X)$ with X :

$$
\Phi_{C(X)} = X.
$$

So if *X* is Stonean and we take a normal measure μ , we get by *Corollary* 1.2.[21,](#page-14-1) that $\Phi_{\mu} = \Phi_{C(X)}$ is homeomorphic to *^X*. 

Definition 1.4.5. Let $(Z_i, \|\cdot\|_i)_{i \in I}$ be a family of Banach spaces, defined for each *i* in a nonempty index set *I*. Then set

$$
\bigoplus_{i \in I} Z_i = \{(z_i)_{i \in I} \mid ||(z_i)_{i \in I}|| = \sup_{i \in I} ||z_i||_i < \infty\}
$$

and

$$
\bigoplus_{p} Z_{i} = \{(z_{i})_{i \in I} \mid ||(z_{i})_{i \in I}|| = \left(\sum_{i \in I} ||z_{i}||_{i}^{p}\right)^{\frac{1}{p}} < \infty\}.
$$

These are Banach spaces.

Remark 1.4.6. Let q be the conjugate index to p , then similar to the L^p -spaces the duality

$$
\left(\bigoplus_p Z_i\right)'=\bigoplus_q Z'_i,
$$

 \mathbb{A} holds. *Remark* 1.4.7*.* As a preparation for *T heorem* [2](#page-21-2)*.*1*.*1 we want to sum up: Let *X* be a Stonean space such that $N(X) \neq \{0\}$, and take $(\mu_i)_{i \in I}$ to be a maximal singular family in $N(X) \cap P(X)$, where the measures μ_i are distinct. For each $i \in I$, set S_i = supp μ_i , so that, each S_i is Stonean, and hence by *Corollary* 1.2.[21,](#page-14-1) $\Phi_{\mu_i} = \Phi_{C(S_i)}$ is homeomorphic to S_i . $(S_i)_{i \in I}$ is a pairwise-disjoint family of clopen subsets of *X*. We set

$$
U_{\mathscr{F}} = \bigcup_{i \in I} \text{supp } \mu_i.
$$

Then $U_{\mathscr{F}}$ is an open subset of X. In the case where X is hyper-Stonean, $U_{\mathscr{F}}$ is dense in X. For the family of compact spaces $(S_i)_{i \in I}$ set

$$
\mathscr{A} = \bigoplus_{\infty} C(S_i).
$$

Take $j \in I$, and write δ_j for the element $(f_i)_{i \in I}$ in $\mathscr A$ such that $f_j = 1 \, S_j$ and $f_i = 0$ for $j \neq i$. Take $j \in I$ and $x \in S_j$. Then the map

$$
\phi_x : \begin{cases} \mathscr{A} \to \mathbb{C} \\ (f_i)_{i \in I} \mapsto f_j(x) \end{cases}
$$

is a character on $\mathscr A$, and the map

$$
\psi : \begin{cases} S_i \to \Phi_{\mathscr{A}} \\ x \mapsto \phi_x \end{cases}
$$

is a homeomorphism onto a compact subspace of $\Phi_{\mathscr{A}}$, which we identify with S_i . Clearly $S_i \cap S_j = \emptyset$ when $i, j \in I$ with $i \neq j$. For each $i \in I$, we have $S_i = \{ \phi \in \Phi_{\mathscr{A}} \mid \phi(\delta_i) = 1 \}$, and so S_i is clopen in $\Phi_{\mathscr{A}}$. Further, $U_{\Phi_{\mathscr{A}}} = \bigcup_{i \in I} S_i$ and $U_{\Phi_{\mathscr{A}}}$ is a dense, open subspace of $\Phi_{\mathscr{A}}$.

We have to consider a generalization of σ -finite measures:

Definition 1.4.8. A measure space $(\Gamma, \mathfrak{B}, \mu)$ is *decomposable* if there is a subfamily U of \mathfrak{B} that partitions *X* such that:

- (i) $0 \leq \mu(U) < \infty$, $U \in \mathcal{U}$.
- (ii) $\mu(B) = \sum_{U \in \mathcal{U}} \mu(U \cap B)$ for each $B \in \mathfrak{B}$ with $\mu(B) < \infty$.
- (iii) $B \in \mathfrak{B}$ for each $B \subseteq \Gamma$ such that $B \cap U \in \mathfrak{B}$ for $U \in \mathcal{U}$.

Not all properties that are true for σ -finite measures hold true for decomposable measures. The duality of the spaces L^1 and L^∞ , thus, still applies. The proof of the following can be found in [\[3,](#page-27-4) Theorem 20.19, p. 351].

Theorem 1.4.9. Let $(\Gamma, \mathfrak{B}, \mu)$ be a decomposable measure space. Then $(L^1(\Gamma, \mu), \|\cdot\|_1)'$ is *isometrically isomorphic to* $(L^{\infty}(\Gamma, \mu), \|.\|_{\infty})$ *.*

Example 1.4.10*.* Let *X* be a non-empty, Stonean space and let $(\mu_i)_{i \in I}$ be a maximal singular family in $N(X) \cap P(X)$ and set $S_i = \text{supp } \mu_i$. Now take Γ to be the union of the family $(S_i)_{i \in I}$ and set

$$
\mu = \sum_{i \in I} \mu_i.
$$

Then *µ* is a decomposable measure as in *Def inition* 1*.*4*.*[8:](#page-20-0)

[\(](#page-20-1)*i*) Since $\mu_i(X) = 1$ for all $i \in I$, it follows that $0 \le \mu(S_{i_0}) = \mu_{i_0}(S_{i_0}) \le \mu_{i_0}(X) < \infty$.

(*[ii](#page-20-2)*) The family $(S_i)_{i \in I}$ consits of pairwise disjoint sets, so

$$
\mu(B) = \sum_{i \in I} \mu(B \cap S_i) = \sum_{i \in I} \mu_i(B).
$$

(*[iii](#page-20-3)*) This is trivial. 

2 *C* (*X*) **as dual space of a Banach space**

2.1 Dual space theorem

Theorem 2.1.1. *Let X be a non-empty compact space. Then the following statements are equivalent.*

- (i) $C(X)$ *is isometrically a dual space*;
- *(ii) there is a C* ∗ *-isomorphism*

$$
T: \begin{cases} f \mapsto f|_{S_i} \\ C(X) \to \bigoplus_{\infty} L^{\infty}(S_i, \mu_i) \end{cases}
$$

where $(\mu_i)_{i \in I}$ *is a maximal singular family in* $N(X) \cap P(X)$ *and we are setting* $S_i =$ *supp* μ_i *,* $i \in I$ *;*

(iii) the map $T: C(X) \to N(X)'$ *defined by*

$$
(Tf)(\mu) = \langle f, \mu \rangle = \int\limits_X f \, d\mu
$$

is an isometric isomorphism, and so $C(X) \cong N(X)'.$

- *(iv) X is Stonean and, for each* $f \in C(X)^+$ *with* $f \neq 0$ *, there exists* $\mu \in N(X)^+$ *with* $\langle f, \mu \rangle \neq 0;$
- *(v) X is hyper-Stonean;*
- *(vi) X is Stonean and there exists a category measure on X;*
- *(vii) there is a locally compact space* Γ *and a decomposable measure* μ *on* Γ *such that* $C(X)$ *is* C^* -*isomorphic to* $L^{\infty}(\Gamma, \mu)$ *.*

Proof.

We are going to establish the following implications:

 $f''(ii) \Rightarrow (i)$ $f''(ii) \Rightarrow (i)$ $f''(ii) \Rightarrow (i)$ " This is trivial. $f''(iii) \Rightarrow (i)''$ $f''(iii) \Rightarrow (i)''$ $f''(iii) \Rightarrow (i)''$ This is trivial.

["\(](#page-21-7)*i*) \Rightarrow (*[iv](#page-21-9)*)" By *Proposition* 1.3.[5,](#page-16-0) there exists a real-linear subspace *Y* of $M_{\mathbb{R}}(X)$ with $Y' =$ $C_{\mathbb{R}}(X)$. The space $(B_1^{C_{\mathbb{R}}(X)})$ $\mathcal{L}_{\mathbb{R}}^{(\mathcal{L},\mathcal{L})}(0), \sigma(C_{\mathbb{R}}(X), Y)$ is compact. Since the map

$$
\psi : \begin{cases} f \mapsto \frac{1}{2}(1+f) \\ B_1^{C_{\mathbb{R}}(X)}(0) \to B_1^{C(X)}(0)^+ \end{cases}
$$

is a bijection which is a homeomorphism with respect to the weak^{*}-topology and so $B_1^{C(X)}$ $I_1^{(C(X)}(0)^\dagger$ is compact as the continuous image of a compact set. By the *Krein-Šmulian* theorem [\[7,](#page-27-2) Theorem 6.3.4, p.121], the positive cone is closed. Take $f \in C_{\mathbb{R}}(X) \backslash C(X)^{+}$. Then, by the Hahn-Banach theorem, there exists

$$
\lambda \in (C_{\mathbb{R}}(X), \sigma(C_{\mathbb{R}}(X), Y))' = Y
$$

with

$$
\int\limits_X f \ d\lambda < \inf\limits_{g \in C_{\mathbb{R}}(X)^+} \int\limits_X g \ d\lambda.
$$

It cannot be that

$$
\int\limits_X g\ d\lambda < 0
$$

for some $g \in C_{\mathbb{R}}(X)^+$: indeed this would imply that

$$
\int\limits_X ng \ d\lambda < \int\limits_X f \ d\lambda
$$

for some $n \in \mathbb{N}$, a contradiction, and so

$$
\inf_{g \in C_{\mathbb{R}}(X)^{+}} \int_{X} g \ d\lambda = 0.
$$

Thus $\lambda \in Y^+$. It follows that, for each $f \in C_{\mathbb{R}}(X)$, we have $f \geq 0$ if and only if

$$
0 \le \int\limits_X f \ d\lambda, \ \ \lambda \in Y^+.
$$

Let $(f_i)_{i \in I}$ be an increasing net in $B_1^{C_{\mathbb{R}}(X)^+}$ $\binom{C_{\mathbb{R}}(X)}{1}$ (0). Then $(f_i)_{i \in I}$ has an accumulation point, say *f*₀, in the unit ball of $C_{\mathbb{R}}(X)^+$ endowed with $\sigma(C_{\mathbb{R}}(X), Y)$). By passing to a subnet we may suppose that $\lim_{j\in J} f_{i_j} = f_0$ with respect to the weak^{*}-topology. For each $\lambda \in Y^+$, the net $(\int_X f_i \ d\lambda)_{i \in I}$ is increasing and bounded. So it converges to the limit of the subnet, and hence to $\int_X f_0 \, d\lambda$, and so

$$
\int\limits_X f_i \ d\lambda \le \int\limits_X f_0 \ d\lambda, \ \ i \in I.
$$

It follows that $f_i \leq f_0$ for $i \in I$. Suppose that $g \in C(X)^+$ with $f_i \leq g$ for all $i \in I$. Then

$$
\int\limits_X f_i \ d\lambda \le \int\limits_X g \ d\lambda, \ \ \lambda \in Y^+,
$$

for each $i \in I$, and so

$$
\int\limits_X f_0 \ d\lambda \le \int\limits_X g \ d\lambda, \ \ \lambda \in Y^+.
$$

This implies that $f_0 \leq g$ and hence that $f_0 = \sup_{i \in I} f_i$. Thus $C(X)$ is Dedekind complete, thus *X* is a Stonean space.

Next suppose that $\mu \in Y$ and $g_i \searrow 0$ in $C_{\mathbb{R}}(X)$. Then

$$
1 = \sup_{i \in I} (1 - g_i)
$$

and we know from the first part of the proof that $1 - g_i \stackrel{w^*}{\to} 1$, hence we get

$$
\lim_{i \in I} \int\limits_X g_i \ d\mu = 0.
$$

This shows that μ is normal. Thus, $Y \subseteq N(X)$. For each $f \in C(X)^+$ with $f \neq 0$, there exists $\mu \in Y^+$ with

$$
\int\limits_X f \ d\mu \neq 0,
$$

since $Y^+ \subseteq N(X)^+$. $f(iv) \Rightarrow (v)$ $f(iv) \Rightarrow (v)$ $f(iv) \Rightarrow (v)$ $f(iv) \Rightarrow (v)$ $f(iv) \Rightarrow (v)$ " Let *U* be a non-empty, open subset of the Stonean space *X*. Then there exists $f \in C(X)^+$ with $f \neq 0$ such that supp $f \subseteq U$. By (iv) (iv) (iv) , there exists $\mu \in N(X)^+$ with

$$
\int\limits_X f \ d\mu \neq 0.
$$

Clearly supp $\mu \cap U \neq \emptyset$. This shows that W_X is dense in *X*, and so *X* is hyper-Stonean. " (v) \Leftrightarrow (ii) (ii) (ii) " Since *X* is Stonean and *U*_F, from *Remark* 1.4.[7,](#page-19-0) is dense in *X*, the map

$$
\psi : \begin{cases} f \mapsto f|_{U_{\mathscr{F}}} \\ C(X) \to C^b(U_{\mathscr{F}}) \end{cases}
$$

is a unital *C* ∗ -isomorphism. The map

$$
\phi: \begin{cases} f \mapsto f|_{S_i} \\ C^b(U_{\mathscr{F}}) \to \bigoplus_{\infty} C(S_i) \end{cases}
$$

is clearly a unital *C*^{*}-isomorphism. For each $i \in I$, the measure μ_i is normal, and so $L^{\infty}(S_i, \mu_i)$ $C(S_i)$.

 $((ii) \Rightarrow (iii)$ Since $(ii) \Rightarrow (i) \Rightarrow (iv)$ $(ii) \Rightarrow (i) \Rightarrow (iv)$ $(ii) \Rightarrow (i) \Rightarrow (iv)$ $(ii) \Rightarrow (i) \Rightarrow (iv)$, the space X is Stonean, and the spaces S_i are pairwise disjoint. Set $Y = \bigoplus$ 1 $L^1(S_i, \mu_i)$, so that $Y' = \bigoplus$ $\bigoplus_{\infty} L^{\infty}(S_i, \mu_i)$. The map

$$
T': Y'' \to M(X)
$$

is an isometric isomorphism. We will show that *T*' maps *Y* onto $N(X)$. Take $y = (y_i)_{i \in I}$ in *Y* and set

$$
\lambda = T'y \in M(X).
$$

Take $f \in C(X)$, and, for each *i*, set $f_i = f|_{S_i}$, so that

$$
\int\limits_X f \, d\lambda = \langle f, \lambda \rangle = \langle Tf, y \rangle = \sum_{i \in I} \int\limits_{S_i} f_i y_i \, d\mu_i,\tag{2.1}
$$

where we note that

$$
\int\limits_{S_i} f_i y_j \ d\mu_i = 0, \ \ i \neq j.
$$

Take $C \in \mathscr{K}_X$. Then, for each $i \in I$, we have $C \cap S_i \in \mathscr{K}_X$ and $\mu_i \in N(X)$, and so $\mu_i(C \cap S_i) = 0$. By *Equation* [\(2.1\)](#page-23-0) with $f = \mathbb{1}_C$, we have $\lambda(C) = 0$. By *Theorem* 1.1.[9,](#page-7-2) $\lambda \in N(X)$.

and so, by the Radon-Nikodym theorem, there exists $y_i \in L^1(S_i, \mu_i)$ with $\lambda|_{S_i} = y_i d\mu_i$ and $||y_i||_1 = ||\lambda|_{S_i}||$. Set $y = (y_i)_{i \in I}$. Then

$$
\sum_{i \in I} ||y_i||_1 = \sum_{i \in I} ||\lambda|_{S_i}|| = ||\lambda||,
$$

so that $y \in Y$, and

$$
\int\limits_X f \ d\lambda = \sum_{i \in I} \int\limits_{S_i} f_i y_i \ d\mu_i,
$$

whence $T'y = \lambda$. It follows that $C(X) \cong N(X)'$. When we identify *Y* and $N(X)$, we obtain the formula.

 $f'(v) \Leftrightarrow (vi)$ $f'(v) \Leftrightarrow (vi)$ $f'(v) \Leftrightarrow (vi)$ " This follows from *Proposition* 1.4.[3.](#page-18-1)

 $\hat{f}(vii) \Rightarrow (i)$ $\hat{f}(vii) \Rightarrow (i)$ $\hat{f}(vii) \Rightarrow (i)$ " This follows from *Theorem* [1](#page-20-4).4.9 because $L^{\infty}(\Gamma,\mu) \cong L^{1}(\Gamma,\mu)$ '.

" $(ii) \Rightarrow (vii)$ $(ii) \Rightarrow (vii)$ $(ii) \Rightarrow (vii)$ $(ii) \Rightarrow (vii)$ $(ii) \Rightarrow (vii)$ " We take Γ to be the pairwise disjoint union of the family $(S_i)_{i\in I}$, and set $\mu = \sum_{i \in I} \mu_i$. We have seen in *Example* 1.4.[10](#page-20-5) that μ is decomposable. It is clear that $C(X)$ is C^* -isomorphic to $L^{\infty}(\Gamma,\mu)$.

Definition 2.1.2. A C^* -algebra Z is a *von Neumann algebra* if there is a Hilbert space H such that Z is a C^* -subalgebra of $\mathcal{B}(H)$ and Z closed in the weak operator topology.

T heorem [2](#page-21-2)*.*1*.*1 will help us proving, that every commutative *C* ∗ -algebra that is isometrically isomorphic to a dual space is a von Neumann algebra.

Definition 2.1.3. Let *Z* be a subset of $\mathcal{B}(H)$, for a Hilbert space *H*. Then the *commutant* of *Z* is

$$
Z^{\complement} = \{ T \in \mathcal{B}(H) \, | \, TS = ST, \ S \in Z \}.
$$

Theorem 2.1.4. Let H be a Hilbert space, and let Z be a C^* -subalgebra of $\mathcal{B}(H)$. Then $\overline{Z}^{wo} = Z^{\text{CC}}$.

A proof of this can be found, e.g., in [\[1,](#page-27-5) Theorem 3.2.32].

Example 2.1.5. Let Z be a commutative C^* -algebra which is isometrically a dual space. As we have already seen Z is isometrically isomorphic to $C(X)$ for a compact space X . Now by *Theorem* 2.1.[1,](#page-21-2) there is a locally compact space Γ and a decomposable measure μ on Γ such that $C(X)$ is C^* -isomorphic to $L^{\infty}(\Gamma,\mu)$. We show that $L^{\infty}(\Gamma,\mu)$ is a von Neumann algebra. Take *H* to be the Hilbert space $L^2(\Gamma, \mu)$, and for $f \in L^\infty(\Gamma, \mu)$, define

$$
M_f(g) = fg, \quad g \in L^2(\Gamma, \mu).
$$

Then $M_f \in \mathcal{B}(L^2(\Gamma,\mu))$ and the set $N := \{M_f \mid f \in L^{\infty}(\Gamma,\mu)\}\$ is a C^* -subalgebra of $\mathcal{B}(L^2(\Gamma,\mu))$. The map

$$
\psi : \begin{cases} L^\infty(\Gamma,\mu) \to N \\ f \mapsto M_f \end{cases}
$$

is a C^* -isomorphism. *N* is a C^* -subalgebra and if *N* is closed in the weak operator topology it is even a von Neumann algebra. To show this we will make use of *T heorem* 2*.*1*.*[4.](#page-24-0) We even show that $N = N^{\complement}$.

Let $T \in N^{\mathbb{C}}$ with $T \neq 0$ and let $f = T(\mathbb{1}_{\Gamma}) \in L^2(\Gamma, \mu)$. We have to show that f belongs to $L^{\infty}(\Gamma,\mu)$ and *T* is M_f . We claim that the essential supremum of $|f|$ is less than $||T||$. Assume the contrary, then there exists a measureable set $A \subseteq \Gamma$ of positive measure such that $|f| > \|T\|$ on *A*. Define a function

$$
g: \begin{cases} \Gamma \to \mathbb{C} \\ x \mapsto \mathbb{1}_A \frac{1}{f(x)} \end{cases}
$$

Then $g \in L^{\infty}(\Gamma, \mu)$, so we have

$$
T(g) = T(M_g(1_\Gamma)) = M_g(T(1_\Gamma)) = gT(1_\Gamma) = gf.
$$
\n(2.2)

Now since $gf \equiv \mathbb{1}_A$, we have

$$
\mu(A) = \|gf\|_{L^2(\Gamma,\mu)}^2 = \|T(g)\|_{L^2(\Gamma,\mu)}^2 \le \|T\|^2 \|g\|_{L^2(\Gamma,\mu)}^2 < \|T\|^2 \frac{\mu(A)}{\|T\|^2} = \mu(A).
$$

A contradiction and so $f \in L^{\infty}(\Gamma, \mu)$. Moreover, *Equation* [\(2.2\)](#page-25-1) shows that $T(g) = gf$ for *g* in the dense subset $L^{\infty}(\Gamma,\mu)$ of $L^2(\Gamma,\mu)$ and we get $T = M_f$.

So we see that $L^{\infty}(\Gamma,\mu)$ satisfies the conditions of *Definition* [2](#page-24-1).1.2 and is a von Neumann \Box algebra. \Box

2.2 Uniqueness of the predual

Definition 2.2.1. Let X be a Banach space with an isometric predual Y . Then X has a *strongly unique* predual *Y* if, whenever *Z* is also a Banach space and $T : Z' \rightarrow Y'$ is an isometric isomorphism, the map $T': Y'' \to Z''$ carries $\iota_Y(Y)$ onto $\iota_Z(Z)$.

Lemma 2.2.2. Let Y and Z be Banach spaces. A linear map $T: Z' \to Y'$ is weak^{*}-weak^{*}*continuous if and only if* $T = S'$ *for some bounded operator* $S: Y \to Z$ *.*

Proof.

" \Rightarrow " Since *T* is weak^{*}-weak^{*}-continuous, take $y \in Y$, then $\iota(y) \circ T$ is weak^{*}-continuous on *Z* and so it is of the form $\iota(S(y))$ for a unique $S(y) \in Y$. Since $S(y)$ is uniquely determined, it follows that *S* is linear. Now *S* is continuous by the closed graph theorem. If $y_n \to y$ and $Sy_n \to z$ then for each z' on Z' we have

$$
\left\langle z,z'\right\rangle_{Z,Z'}=\lim_{n\to\infty}\left\langle Sy_n,z'\right\rangle_{Z,Z'}=\lim_{n\to\infty}\left\langle y_n,Tz'\right\rangle_{Y,Y'}=\left\langle y,Tz'\right\rangle_{Y,Y'}=\left\langle Sy,z'\right\rangle_{Z,Z'}
$$

and thus $z = Sy$. Hence *S* is bounded.

"[←] Conversely, to see that the dual of a bounded operator is weak^{*}-weak^{*}-continuous, we take a net z_i' $\stackrel{w^*}{\rightarrow} z'$. Then we get

$$
\big_{Y,Y'}=\big_{Z,Z'}\to 0
$$

and hence the claim follows.

The following proposition can be useful to see when isometric isomorphisms have dual operators that take $\iota_Z(Z)$ onto $\iota_Y(Y)$.

 \blacksquare

Proposition 2.2.3. *The dual of an isometric isomorphism T is weak*[∗]-*weak*[∗]-*continuous if and only if* T' *maps* $\iota_Y(Y)$ *onto* $\iota_Z(Z)$ *.*

Proof. "⇒" We have

$$
\left\langle z',T'\circ\iota_Y(y)\right\rangle_{Z',Z''}=\left\langle Tz',\iota_Y(y)\right\rangle_{Y',Y''}=\left\langle y,Tz'\right\rangle_{Y,Y'}.
$$

By *Lemma* [2](#page-25-2).2.2 there is a bounded operator *S* with $S' = T$. This leads to

$$
\left\langle z',T'\circ\iota_Y(y)\right\rangle_{Z',Z''}=\left\langle y,S'z'\right\rangle_{Y,Y'}=\left\langle Sy,z'\right\rangle_{Z,Z'}=\left\langle z',\iota_Z(Sy)\right\rangle_{Z',Z''}.
$$

Since *S* is bijective, T' is a bijection between $\iota_Y(Y)$ and $\iota_Z(Z)$. " \Leftarrow " We define a map *S* by the diagram below, $S = \iota_Z^{-1} \circ T' \circ \iota_Y$.

If we can show that $S' = T$ the statement follows by *Lemma* [2.](#page-25-2)2.2. We compute

$$
\langle y, S'z' \rangle_{Y,Y'} = \langle Sy, z' \rangle_{Z,Z'} = \langle \iota_Z^{-1} \circ T' \circ \iota_Y(y), z' \rangle_{Z,Z'} = \langle z', T' \circ \iota_Y(y) \rangle_{Z',Z''} = \langle Tz', \iota_Y(y) \rangle_{Y',Y''} = \langle y, Tz' \rangle_{Y,Y'}.
$$

And T is weak^{*}-weak^{*}-continuous.

Theorem 2.2.4. *Let X be a non-empty, hyper-Stonean space. Then N*(*X*) *is a strongly unique predual of* $C(X)$ *.*

Proof. Suppose that *Y* is an isometric predual of $C(X)$. Then we can regard *Y* as a closed linear subspace of $M(X)$, and we have noted in the proof of *Theorem* [2](#page-21-2).1.1 in implication " (i) ⇒ (iv) (iv) (iv) " that $Y \subseteq N(X)$. Now assume that there is $\mu \in N(X) \setminus Y$. With the Hahn-Banach theorem we get

$$
\exists f \in N(X)' : f(Y) \le \gamma_1 < \gamma_2 \le f(\mu) \Rightarrow f(Y) = 0
$$

but *Y* operates seperating on $C(X)$ and so $f = 0$. Thus, we have $f(\mu) \neq 0$, a contradiction. Hence, $Y = N(X)$.

Next suppose that *Z* is a Banach space and that

$$
T: N(X)' \to Z'
$$

is an isometric isomorphism. By *Lemma* 2.2.[2,](#page-25-2) we know that T' is weak^{*}-weak^{*}-continuous. Now we endow Z' with $\sigma(Z', Z)$ and $C(X)$ with $\sigma(C(X), N(X))$. It now follows that $T'(\iota_Z(Z)) \subseteq$ *ι*_{*N*}(*X*)
(*N*(*X*)). The first part of the proof now applies to show that $T'(i_Z(Z)) = i_{N(X)}(N(X))$. Thus $N(X)$ is the strongly unique predual of $C(X)$.

References

- [1] H. G. Dales. *Banach algebras and automatic continuity.* Oxford: Clarendon Press, 2000.
- [2] H. G. Dales, F. K. jun. Dashiell, A. T.-M. Lau, and D. Strauss. *Banach spaces of continuous functions as dual spaces.* Cham: Springer, 2016.
- [3] E. Hewitt and K. Stromberg. *Real and abstract analysis. A modern treatment of the theory of functions of a real variable. 3rd printing.*, volume 25. Springer, New York, NY, 1975.
- [4] R. V. Kadison and J. R. Ringrose. *Fundamentals of the theory of operator algebras. Vol. I: Elementary theory. 2nd printing with correct. 2nd printing with correct.*, volume 15. Providence, RI: American Mathematical Society, 2nd printing with correct. edition, 1997.
- [5] W. Rudin. *Real and complex analysis. 3rd ed.* New York, NY: McGraw-Hill, 3rd ed. edition, 1987.
- [6] W. Rudin. *Functional analysis. 2nd ed.* New York, NY: McGraw-Hill, 2nd ed. edition, 1991.
- [7] H. Woracek, M. Kaltenbäck, and M. Blümlinger. Lecture notes: Funktionalanalysis, 2019. URL: <https://www.asc.tuwien.ac.at/~funkana/skripten/fana2019.pdf>. Last visited on 02.09.2019.