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SEQUENTIAL CONVERGENCE ON THE SPACE OF

BOREL MEASURES

LIANGANG MA

Abstract

We study equivalent descriptions of the vague, weak, setwise and total-
variation (TV) convergence of sequences of Borel measures on metrizable and
non-metrizable topological spaces in this work. On metrizable spaces, we give
some equivalent conditions on the vague convergence of sequences of measures
following Kallenberg, and some equivalent conditions on the TV convergence
of sequences of measures following Feinberg-Kasyanov-Zgurovsky. There is
usually some hierarchy structure on the equivalent descriptions of conver-
gence in different modes, but not always. On non-metrizable spaces, we give
examples to show that these conditions are seldom enough to guarantee any
convergence of sequences of measures. There is a remark on the attainability
of the TV distance at the end of the work.

1. Introduction

Let X be a topological space with its Borel σ-algebra B. Consider the collection
M̃(X) of all the Borel measures on (X,B). When we consider the regularity of
some mapping

F : M̃(X) → Y

with Y being a topological space, some topology or even metric is required on the
space M̃(X) of Borel measures. Various notions of topology and metric grow out of
different situations on the space M̃(X) in due course to deal with the corresponding
concerns of regularity. In those topology and metric endowed on M̃(X), it has been
recognized that the vague, weak, setwise topology as well as the total-variation (TV)
metric are highlighted notions on the topological and metric description of M̃(X)
in various circumstances, refer to [Kal, GR, Wul]. From the viewpoint of sequential
convergence ([Cla]) in M̃(X), they induce corresponding notions of convergence of
sequences of Borel measures. One is recommended to refer to [Fol, Kallen2, Kallen3,
Kle] for vague convergence, to [Bil1, Bil2, HL1, Kallen4, Kallen5, Kle, Las2] for weak
convergence, to [FKL, FKZ1, FKZ2, Las1, Las3] for setwise and TV convergence
of sequences of measures in M̃(X). The focus of this work is on the sequential
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convergence of measures instead of the topology on M̃(X), however, they are closely
related ways on describing properties of M̃(X).

In this work we mean to study the necessary or sufficient conditions for the vague,
weak, setwise as well as the TV convergence of sequences of measures in M̃(X). We
tend to give equivalent conditions (that is, necessary and sufficient) on the sequential
convergence in these modes, however, some conditions being merely necessary or
sufficient seem to be more interesting in due course. We collect equivalent (or
merely necessary or sufficient) descriptions of the vague, weak, setwise as well as the
total-variation (TV) convergence of sequences of measures already established, while
we formulate new descriptions for further interest and study relationships between
these descriptions.

Note that until now most results on vague, weak, setwise and TV convergence of
sequences of measures are set on M̃(X) with the ambient space X being a metric
space. This is reasonable from the viewpoint of actual applications of these results in
due course, see for example the application of vague convergence on non-interactive
particle systems by O. Kallenberg on Euclidean spaces in [Kallen1], on interactive
particle systems by J. T. Cox, A. Klenke and E. A. Perkins on a locally compact
Polish space in [CK, CKP], application of the weak, setwise or TV convergence
in the Markov decision processes by E. Feinberg, P. Kasyanov A. Piunovskiy, M.
Zgurovsky and Y. Zhang [FKZ1, FKZ3, FP, PZ1, PZ2], in optimization theory by
Lasserre [Las1] on general metric spaces and in stochastic control theory by T. Linder
and S. Yüksel [LY] on Euclidean spaces. However, it is interesting to ask whether
these results still hold when the ambient space X losts metrizability. We provide
examples to show these necessary or sufficient descriptions are seldom true for any
sequential convergence of measures on non-metrizable ambient spaces.

Another concern for us is on the scope of measures to which these results apply.
Let

M̂(X) = {ν ∈ M̃(X) : ν(X) < ∞}

be the collection of all the finite Borel measures on X and

M(X) = {ν ∈ M̂(X) : ν(X) = 1}

be the collection of all the Borel probability measures on X . We mainly confine
our attention to finite measures in M̂(X) in this work, while many results on it are
shared on M(X). Some results extend onto M̃(X), but not always.

The organization of the paper is as following. In Section 2 we introduce notions
of the vague, weak, setwise and TV convergence of sequences of measures in M̃(X),
between which we present results on the equivalent descriptions of the vague and TV
convergence-Theorem 2.3 and 2.11. Based on Theorem 2.9 in this section one can
construct examples that equivalent descriptions of these convergences fail. Section
3 to 5 are devoted to (equivalent, necessary or sufficient) descriptions of the vague,
setwise and TV convergence of sequences of measures in M̂(X) (some results or ex-
amples are on M̃(X) or M(X)) respectively. Cases that the ambient space X being
metrizable or non-metrizable are both in our consideration throughout the work. In
the last section we point out some distinctions on the equivalent descriptions of the
TV metric by their attainability.
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2. The vague, weak, setwise and TV convergence of sequences of mea-

sures in M̃(X)

In this section we introduce the four kind of sequential convergence on the space of
Borel measures M̃(X). These notions differ from one another in strength, such that
one can expect better properties on the sequence of measures or their limit measures
under stronger convergent mode, at the cost of more difficulty in guaranteeing the
stronger convergence. One can subtly choose the appropriate level of convergence
mode, this is sometimes crucial in dealing with its problems. There are basically two
points of views to describe these notions of convergence of sequences of measures.
One is from their behaviours on measurable sets in X , another is from integrations
of functions with respect to them. There are some equivalent descriptions of these
notions from both point of views, however, the difficulty on verifying these descrip-
tions may be of big difference in various applications, at least technically. This is
one of the reason for us to provide more (equivalent, necessary or sufficient) condi-
tions on these convergence. We decide to take the second point of view to define
these notions of convergence, that is, we are going to define them by the asymp-
totic behaviours of integrations of functions of certain regularity with respect to the
sequences of measures in M̃(X).

For a set A ⊂ X , let A,Ao, Ac, ∂A be its closure, interior, complement and
boundary respectively. A continuous function f : X → R is said to vanish at
infinity if

f−1
(

(−∞,−a] ∪ [a,∞)
)

is always compact for any a > 0 [Fol, p132] in X . The support of a function
f : X → R is defined to be

S(f) := f−1
(

(−∞, 0) ∪ (0,∞)
)

.

The following families of functions are highlighted in our work.

• C(X) = {f : f is a continuous function from X to R}.

• C0(X) = {f : f is a continuous function from X to R vanishing at infinity}.

• Cc(X) = {f : f is a continuous function from X to R with compact support}.

• Cb(X) = {f : f is a bounded continuous function from X to R}.

• Mb(X) = {f : f is a bounded measurable function from X to R}.

• Mγ(X) = {f : f is a measurable function from X to [−a, a]} for γ ≥ 0.

The following relationships between these families of functions are obvious.

Mγ(X) ⊂ Mb(X) and Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ Mb(X).

For integrations on a topological space X with a Borel measure, see [Li] or [Tay,
Chapter 3].
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Definition 2.1. For a sequence of measures {νn ∈ M̃(X)}∞n=1, we say {νn}
∞
n=1

converges vaguely to ν ∈ M̃(X), denoted by νn
v
→ ν, if

limn→∞

∫

X
f(x)dνn =

∫

X
f(x)dν

for any f ∈ Cc(X).

Denote by νn
v
9 ν as n → ∞ if {νn ∈ M̃(X)}∞n=1 does not converge vaguely to

ν ∈ M̃(X).

Remark 2.2. Note that some people prefer to define a sequence of measures {νn ∈
M̃(X)}∞n=1 converges vaguely to ν ∈ M̃(X), if

limn→∞

∫

X
f(x)dνn =

∫

X
f(x)dν

for any f ∈ C0(X), see for example [Fol, P223] and [Las1, P132]. The two concepts
are not equivalent to each other in general, see our Example 3.1. However, they
two coincide with each other in some cases, see Proposition 3.2. Without special
declarations we always mean Definition 2.1 by vague convergence in the following.

A metric space is said to be a Heine-Borel space if any closed bounded subset
in it is compact [JW]. There are lots of typical spaces in the Heine-Borel family, for
example, the Euclidean spaces, or any σ-compact and locally compact metric space.
For a measure µ ∈ M̃(X), a set A ⊂ X is called an µ-continuity set if µ(∂A) = 0.
Following Kallenberg, we provide some equivalent conditions on verifying vague
convergence of sequences of measures in M̂(X) with X being Heine-Borel.

Theorem 2.3. For a sequence of measures {νn ∈ M̂(X)}∞n=1 and ν ∈ M̂(X) on a
separable and complete Heine-Borel space X, the following conditions are equivalent.

(I). νn
v
→ ν as n → ∞.

(II). For any compact set A ⊂ X,

lim supn→∞ νn(A) ≤ ν(A),

while for any bounded open set B ⊂ X,

lim infn→∞ νn(B) ≥ ν(B).

(III). For any bounded closed set A ⊂ X,

lim supn→∞ νn(A) ≤ ν(A),

while for any bounded open set B ⊂ X,

lim infn→∞ νn(B) ≥ ν(B).

(IV). For any bounded set A ∈ B,

4
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νn(A
o) ≤ lim infn→∞ νn(A) ≤ lim supn→∞ νn(A) ≤ ν(A).

(V). limn→∞ νn(A) = ν(A) for any bounded ν-continuity set A ∈ B.

(VI). limn→∞

∫

X
fdνn =

∫

X
fdν for any continuous function f with bounded support.

(VII). limn→∞

∫

X
fdνn =

∫

X
fdν for any Hölder continuous function f ∈ Cc(X).

(VIII). limn→∞

∫

X
fdνn =

∫

X
fdν for any uniformly continuous function f ∈ Cc(X).

(IX). limn→∞

∫

X
fdνn =

∫

X
fdν for any function f ∈ Mb(X) with bounded support

and

ν({x ∈ X : f is discontinuous at x}) = 0.

(X). limn→∞

∫

X
fdνn =

∫

X
fdν for any non-negative (or non-positive) valued func-

tion f ∈ Cc(X).

Remark 2.4. The conditions (IV ), (V ) are due to Kallenberg [Kallen1, Lemma 4.1],
while (IX) is due to Klenke [Kle, Theorem 13.16] essentially. Some of these condi-
tions provide concrete examples of approximating classes in Cc(X). In fact, accord-
ing to [Kallen1, Lemma 4.1], condition (V ) can be substituted by limn→∞ νn(A) =
ν(A) for any set in a dissecting semi-ring of all bounded ν-continuity sets.

A stronger notion of sequential convergence of measures than vague convergence
is the weak convergence as following.

Definition 2.5. For a sequence of measures {νn ∈ M̃(X)}∞n=1, we say {νn}
∞
n=1

converges weakly to ν ∈ M̃(X), denoted by νn
w
→ ν, if

limn→∞

∫

X
f(x)dνn =

∫

X
f(x)dν

for any f ∈ Cb(X).

There are lots of equivalent descriptions on the weak convergence of sequences
of measures whose collection is called the Portemanteau Theorem, see for example
[Bil1, Theorem 2.1], [HL1, Theorem 1.4.16] and [Kle, Theorem 13.16]. The weak
convergence of sequences of measures is widely used and studied in various situations,
so will not be our focus in this work.

Although the weak convergence of sequences of measures is a powerful tool,
there are some situations under which some important properties are not guaranteed
under this mode of convergence, for example, the Vitali-Hahn-Saks Theorem (refer
to [Doo, HL2]) or the semi-continuity of some measure-dimension mappings (refer to
[Ma, Theorem 3.2]). These properties are guaranteed under the setwise convergence
of sequences of measures, which appears as a stronger mode of convergence than the
weak convergence as following.

Definition 2.6. For a sequence of measures {νn ∈ M̃(X)}∞n=1, we say {νn}
∞
n=1

converges setwisely to ν ∈ M̃(X), denoted by νn
s
→ ν, if

limn→∞

∫

X
f(x)dνn =

∫

X
f(x)dν

5
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for any f ∈ Mb(X).

Since simple functions are dense in the space of bounded measurable functions,
νn

s
→ ν is equivalent to say that

limn→∞ νn(A) = ν(A)

for any A ∈ B. Feinberg, Kasyanov and Zgurovsky gave some equivalent conditions
on the setwise convergence of sequences of measures in M̂(X) with a metric ambient
space X as following [FKZ1, Theorem 2.3]. See also [Bog].

Theorem 2.7 (Feinberg-Kasyanov-Zgurovsky). For a sequence of measures {νn ∈
M̂(X)}∞n=1 and ν ∈ M̂(X) on a metric space X, the following conditions are equiv-
alent to each other:

(I). νn
s
→ ν as n → ∞.

(II). limn→∞ νn(B) = ν(B) for any open set B ⊂ X.

(III). limn→∞ νn(A) = ν(A) for any closed set A ⊂ X.

Remark 2.8. Feinberg-Kasyanov-Zgurovsky’s original result is set on sequences of
probability measures in M(X), however, their result extends naturally to sequences
of finite measures in M̂(X), or even sequences of infinite measures in M̃(X) in
some cases.

Considering Theorem 2.3 and 2.11, it is an interesting question to ask that when
limn→∞ νn(A) = ν(A) for any closed (or open) bounded set A ⊂ X is enough to
force νn

s
→ ν as n → ∞ in M̂(X), at least in case the ambient space X is good

enough. This is usually not true even if X is a separable and complete Heine-Borel
space X (of course unbounded), see our Example 4.1.

Since it is inevitable to deal with unbounded measurable functions in various
applications of the setwise convergence, we will briefly discuss limit behaviours of
integrations of unbounded measurable functions with respect to setwisely convergent
sequences of measures in M̂(X) in Section 4. Our Example 4.2. alerts the readers
that the convergence of integrations of unbounded measurable functions with respect
to setwisely convergent sequences of measures is usually lost. However, one may
expect the convergence in some special cases, see Proposition 4.4.

We are also quite interested in Theorem 2.7 when the ambient space X is non-
metrizable. Since measures on non-metrizable ambient spaces lose regularity, one
can expect that Theorem 2.7 will not be true in some cases.

Theorem 2.9. For a topological space X with its Borel σ-algebra B, if it admits
infinitely many non-empty pairwise disjoint closed (open) sets, and every proper
closed (open) subset in X contains at most finitely many disjoint non-empty closed
(open) subsets, then there is a sequence of probability measures {νn ∈ M̂(X)}∞n=1

and ν ∈ M(X) satisfying both the conditions (II), (III) in Theorem 2.7, while

νn
s
9 ν

as n → ∞.

6
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Especially, this means limn→∞ νn(B) = ν(B) for any open (or closed) set of
an affine (or projective) space endowed with the Zariski topology is not enough to
guarantee νn

s
→ ν for Borel measures {νn}n∈N ∪ {ν} on the affine (or projective)

space, see Corollary 4.7. Theorem 2.9 also provides some counter examples on
denying Theorem 2.3 and 2.11 on non-metrizable ambient spaces.

The strongest notion of convergence of sequences of measures considered in our
work is the TV convergence. Of course more desiring properties is guaranteed under
this mode of convergence.

Definition 2.10. For a sequence of measures {νn ∈ M̃(X)}∞n=1, we say {νn}
∞
n=1

converges in total variation (TV) to ν ∈ M̃(X), denoted by νn
TV
→ ν, if

limn→∞ supf∈M1(X) |
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0.

In this case the space M̃(X) is metrizable under the total-variation (TV) metric

‖µ− ν‖TV := 2 sup
A∈B

|µ(A)− ν(A)| = sup
f∈M1(X)

|

∫

X

f(x)dµ−

∫

X

f(x)dν| (2.1)

for any two probability measures µ, ν ∈ M̃(X). We also give some equivalent
conditions on the TV convergence of sequences of measures in Theorem 2.11.

Theorem 2.11. For a sequence of measures {νn ∈ M̂(X)}∞n=1 and ν ∈ M̂(X) on
a metric space X, the following conditions are equivalent to each other:

(I). νn
TV
→ ν as n → ∞.

(II). limn→∞ sup
A is closed and bounded |νn(A)− ν(A)| = 0.

(III). limn→∞ sup
B is open and bounded |νn(B)− ν(B)| = 0.

(IV). limn→∞ supf∈Mγ(X) |
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0 for any γ ≥ 0.

(V). limn→∞ sup
f has bounded support in Mγ(X)

|
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0 for

any γ ≥ 0.

(VI). limn→∞ sup
f has bounded support in C(X)∩Mγ(X)

|
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0

for any γ ≥ 0.

(VII). limn→∞ sup
f is uniformly continuous in C(X)

|
∫

X
f(x)dνn−

∫

X
f(x)dν| = 0 for

any γ ≥ 0.

One is recommended to compare the result with [FKZ1, Theorem 2.5], Theorem
2.3 as well as our Example 4.1.

We alert the readers that the strength of the mode of sequential convergence

TV convergence⇒ setwise convergence ⇒ weak convergence ⇒ vague convergence

holds as we are considering Borel measures on the topological space X . These
relationships may not be true if one considers measures on X with non-Borel σ-
algebra. This also affects descriptions of these kinds of convergence of sequences of
measures on X with non-Borel σ-algebra.
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3. Description of the vague convergence of sequences of measures in

M̂(X)

This section is devoted to the proof of Theorem 2.3. Before the proof we first make
a comparison on the two kinds of vague convergence respectively in Definition 2.1
and Remark 2.2. Example 3.1 shows that the one in Remark 2.2 may be strictly
stronger than the one in Definition 2.1 for vaguely sequential convergence in M̃(X).
For a measure ν ∈ M̃(X) and A ∈ B, let ν|A be the restriction of ν on A.

Example 3.1. Let X = {1, 2, . . . } = N be endowed with the discrete topology and
the corresponding Borel σ-algebra B. Let νc be the counting measure on (X,B). Let
νn := νc|{n,n+1,...} for any n ∈ N on (X,B). Let ν be the null measure on (X,B).

Since a subset of X is compact if and only if it is finite, for any function f ∈
Cc(X), it is identically zero outside a finite subset. Therefore,

∫

X
fdνn =

∑

m≥n f(m) → 0 =
∫

X
fdν

as n → ∞.
Now consider the continuous function g(n) = 1

n
for any n ∈ N, it is in C0(X),

while
∫

X
gdνn =

∑

m≥n
1
m

for any n ∈ N, which does not converge to 0 =
∫

X
gdν.

Even if one restricts the consideration on the probability space M(X), the two
versions of vague convergence may differ from each other if the ambient space X
is pathological, see Theorem 2.9. However, the two notions are equivalent to each
other on M̂(X) with a σ-compact and locally compact Hausdorff (LCH) space X .

Proposition 3.2. In case X is a σ-compact LCH space, let {νn}n∈N∪{ν} ⊂ M̂(X).
If

limn→∞

∫

X
f(x)dνn =

∫

X
f(x)dν

for any f ∈ Cc(X), then

lim
n→∞

∫

X

f(x)dνn =

∫

X

f(x)dν (3.1)

for any f ∈ C0(X).

Proof. If the ambient space X is σ-compact and LCH, according to [Tao, Section
1.10], for any f ∈ C0(X), we can find fc ∈ Cc(X), such that

‖f − fc‖∞ ≤ ǫ

for any ǫ > 0. Since limn→∞

∫

X
fcdνn =

∫

X
fcdν, there exists N1 ∈ N large enough,

such that

|
∫

X
fcdνn −

∫

X
fcdν| < ǫ

for any ǫ > 0. So

8
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|
∫

X
fdνn −

∫

X
fdν|

≤ |
∫

X
fcdνn −

∫

X
fcdν|+

∫

X
|f − fc|(dνn + dν)

≤ (2 + 3ν(X))ǫ

for n large enough. This implies (3.1) since ν(X) < ∞.

From now on we go towards the proof of Theorem 2.3. To do this we need the
following preceding results. For two subsets A,B in a metric space X with metric
ρ, let

ρ(A,B) = infx∈A,y∈B ρ(x, y)

be their distance in X .

Lemma 3.3. Let {νn}n∈N ∪ {ν} ⊂ M̂(X) with X being Heine-Borel with metric ρ.
If νn

v
→ ν as n → ∞, then

lim sup
n→∞

νn(A) ≤ ν(A) (3.2)

for any bounded closed set A ⊂ X, while

lim inf
n→∞

νn(B) ≥ ν(B) (3.3)

for any bounded open set B ⊂ X.

Proof. Let A ⊂ X be an arbitrarily bounded closed set. For any n ∈ N, consider
the following function,

fn,A =











1 x ∈ A,

1− nρ(x,A) 0 < ρ(x,A) < 1
n
,

0 ρ(x,A) ≥ 1
n
.

(3.4)

Note that fn,A has bounded support, and so compact support since X is Heine-
Borel for any n ∈ N. Then

lim supn→∞ νn(A) ≤ lim supn→∞

∫

X
fn,Adνn =

∫

X
fn,Adν

as νn
v
→ ν. Since the sequence {

∫

X
fn,Adν}

∞
n=1 decreases to ν(A) as n → ∞, we get

(3.2).
Now let B ⊂ X be an arbitrary bounded open set. For any n ∈ N, consider the

following function,

gn,B =











1 x ∈ B and ρ(x, ∂B) ≥ 1
n
,

nρ(x, ∂B) x ∈ B and ρ(x, ∂B) < 1
n
,

0 x /∈ B

(3.5)

for n ∈ N large enough. gn,B has bounded support and so compact support since X
is Heine-Borel for any n ∈ N. Then

lim infn→∞ νn(B) ≥ lim infn→∞

∫

X
gn,Bdνn =

∫

X
gn,Bdν

9
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as νn
v
→ ν. Since the sequence {

∫

X
gn,Bdν}

∞
n=1 increases to ν(B) as n → ∞, we get

(3.3).

Remark 3.4. Note that if we assume X is a bounded Heine-Borel space in Lemma
3.3, then (3.2) holds on any bounded closed set A ⊂ X is equivalent to that (3.3)
holds on any bounded open set B ⊂ X.

The following result interprets some limit behaviours of sequences of measures on
bounded continuity sets in words of limit behaviours of sequences of those measures
on bounded measurable sets in a metric space.

Lemma 3.5 (Kallenberg). Let {νn}n∈N ∪ {ν} ⊂ M̂(X) for a metric space (X, ρ).
Then

νn(A
o) ≤ lim inf

n→∞
νn(A) ≤ lim sup

n→∞
νn(A) ≤ ν(A) (3.6)

for any bounded set A ∈ B if and only if

lim
n→∞

νn(A) = ν(A) (3.7)

for any bounded ν-continuity set A ∈ B.

Proof. If (3.6) holds on any bounded set A ∈ B, then (3.7) holds on any bounded
ν-continuity sets obviously. In the following we show the converse. Suppose (3.7)
holds for any bounded ν-continuity set A ∈ B. We first justify the first inequality
in (3.6). For any bounded measurable set A, since ∂Ao = ∅, Ao is a ν-continuity
set, this induces

lim inf
n→∞

νn(A) ≥ lim
n→∞

νn(A
o) = ν(Ao). (3.8)

Now we justify the third inequality in (3.6), which is enough to finish the proof.
We do this by reduction to absurdity. Suppose lim supn→∞ νn(A) > ν(A) for some
bounded set A ∈ B. Consider the following collection of bounded open sets in X ,

{

Aǫ := {x ∈ X : ρ(x,A) < ǫ}
}

0<ǫ<∞
.

It is obvious that

lim supǫ→0Aǫ = A,

which forces
lim
ǫ→0

ν(Aǫ) = ν(A) (3.9)

since ν is finite. Now choose a decreasing sequence of positive real numbers {ǫk}
∞
k=1

with limk→∞ ǫk = 0, such that {Aǫk}
∞
k=1 are all ν-continuity set for any k ∈ N (in fact

there can be at most countably many ǫ in (0,∞) such that Aǫ is not an ν-continuity
set). Then we have

ν(Aǫk) = limn→∞ νn(Aǫk) ≥ lim supn→∞ νn(A) > ν(A)

for any k ∈ N. This gives

lim
k→∞

ν(Aǫk) = lim
ǫk→0

ν(Aǫk) > ν(A), (3.10)

which contradicts (3.9).

10
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One is recommended to refer to [Kallen1, Lemma 4.1] for condition (3.6). In fact
(3.6) holds on any set A ∈ B is equivalent to that (3.7) holds on ν-continuity sets
in the context of Lemma 3.5.

Lemma 3.6. Let {νn}n∈N ∪ {ν} ⊂ M̂(X) with a metric space (X, ρ). If

limn→∞

∫

X
fdνn =

∫

X
fdν

for any Hölder continuous function f ∈ Cc(X), then

lim sup
n→∞

νn(A) ≤ ν(A) (3.11)

for any bounded closed set A ⊂ X, while

lim inf
n→∞

νn(B) ≥ ν(B) (3.12)

for any bounded open set B ⊂ X.

Proof. This is because the continuous functions fn,A, gn,B ∈ Cc(X) in (3.4) and (3.5)
are both Hölder continuous for any n ∈ N large enough.

Equipped with all the above results, now we are well prepared to prove our The-
orem 2.3.

Proof of Theorem 2.3:

Proof. The strategy of our proof follows the following diagram.

I VI IV

VIXX

VIII

VII III

II

• (I) ⇔ (V I): this is because X is Heine-Borel.

11
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• (IV ) ⇔ (V I): this is due to [Kallen1, Lemma 4.1].

• (IV ) ⇔ (V ): this is due to Lemma 3.5.

• (V ) ⇒ (IX): see [Kle, Theorem 13.16 (vi) ⇒ (iii)]. The proof applies to our
bounded case here.

• (IX) ⇒ (I): this is trivial.

• (I) ⇒ (V II): this is trivial.

• (V III) ⇒ (V II): this is because any Hölder continuous function on a metric
space is uniformly continuous.

• (I) ⇔ (V III): this is because any continuous function on a compact metric
space is uniformly continuous.

• (V II) ⇒ (III): this is due to Lemma 3.6.

• (I) ⇒ (III): this is due to Lemma 3.3.

• (III) ⇒ (IV ): this is obvious.

• (II) ⇔ (III): this is because X is Heine-Borel.

• (I) ⇔ (X): this is because any f ∈ Cc(X) can be splitted as the difference of
two non-negative (or non-positive) valued function in Cc(X).

Due to Remark 3.4, in case X is a bounded Heine-Borel space in Theorem 2.3,
condition (III) degenerates into that either (3.2) holds on any bounded closed set
A ⊂ X or (3.3) holds on any bounded open set B ⊂ X .

4. Description of the setwise convergence of sequences of measures in

M̂(X)

In this section we focus on the equivalent descriptions of setwise convergence of
sequences of bounded Borel measures with the ambient space X being a general
topological space. We first give an example to show that

limn→∞ νn(A) = ν(A)

for any closed (or open) bounded set A ⊂ X is not enough to guarantee its setwise
convergence in M̃(X). Then we give an example that the sequence of integrations of
an unbounded measurable function with respect to a setwisely convergent sequence
of measures in M̂(X) diverge, followed by a partially convergent result. At last we
prove Theorem 2.9 and indicate some of its applications. Let Ld be the d-dimensional
Lebesgue measure on Rd.

12
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Example 4.1. Let X = [1,∞) endowed with the Euclidean metric. Consider the
following sequence of Borel measures on (X,B),

νn(A) =
∫

[1,n]∩A
1
x4dx+ L1|[n,n+1](A)

for any A ∈ B, in which L1|[n,n+1] is the restriction of L1 on [n, n+ 1]. Let

ν(A) =
∫

X∩A
1
x4dx

for any A ∈ B.

In Example 4.1 X is a separable and complete Heine-Borel space. One can check
easily that

limn→∞ νn(A) = ν(A)

for any closed (or open) bounded set A ∈ B (in fact νn(A) = ν(A) for any n large
enough). However, {νn}n∈N does not converge setwisely to ν since

limn→∞ νn(X) = ν(X) + 1.

Example 4.2. Let X = [1,∞) endowed with the Euclidean metric. Consider the
following sequence of Borel measures on (X,B),

νn(A) =

{
∫

[1,n]∩A
1
x4dx+ 1

n2L1|[n,n+1](A) n is odd,
∫

[1,n]∩A
1
x4dx+ 2

n2L1|[n,n+1](A) n is even

for any A ∈ B. Let

ν(A) =
∫

X∩A
1
x4dx

for any A ∈ B.

One can check easily that in Example 4.2 that νn
s
→ ν as n → ∞ (in fact the

convergence is even TV). Let f(x) = x2 on X . Now consider the integrations of the
function f with respect to {νn}n∈N and ν. One can check that

limn→∞

∫

X
fdνn =

{

4
3

n is odd,

7
3

n is even,

while
∫

X
fdν = 1

3
.

Remark 4.3. The measures in Example 4.1 and 4.2 can be made into probability
ones with continuous or even smooth density with respect to L1 on [1,∞).

This example indicates the complication of integral behaviours on families of
unbounded measurable test functions with respect to setwisely convergent sequences
of finite measures. However, in some special cases one can expect the convergence of
integrals of test functions with respect to setwisely convergent sequences of measures.
For a function f : X → R on a topological space X , let

13
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f+(x) =

{

f(x) for f(x) ≥ 0,
0 for f(x) < 0

and

f−(x) =

{

0 for f(x) > 0,
−f(x) for f(x) ≤ 0

be its positive part and negative part respectively. So f(x) = f+(x)− f−(x) on X .
We say f is integrable with respect to a Borel measure ν on X if at least one of the
integrals

∫

X
f+dν and

∫

X
f−dν is finite.

Proposition 4.4. Let X be a topological space and νn
s
→ ν as n → ∞ in M̂(X).

For an unbounded function f : X → [0,∞), if
∫

X
fdν = ∞, then

lim
n→∞

∫

X

fdνn = ∞. (4.1)

Proof. Let Ak = {x ∈ X : 0 ≤ f(x) < k}. Since
∫

X
fdν = limk→∞

∫

Ak
fdν = ∞, for

any M > 0, there exists some kM ∈ N large enough, such that
∫

AkM

fdν > M .

Now consider the truncated bounded measurable function

1AkM
f(x) =

{

f(x) for f(x) < kM ,
0 for f(x) ≥ kM

on X , in which 1AkM
is the characteristic function of AkM . Since νn

s
→ ν as n → ∞,

we have

limn→∞

∫

X
fdνn ≥ limn→∞

∫

X
1AkM

fdνn =
∫

X
1AkM

fdν ≥
∫

AkM

fdν > M .

This justifies (4.1).

Remark 4.5. Proposition 4.4 does not apply to unbounded integrable functions f :
X → [0,∞) whose integration is finite with respect to ν, as one can construct a
counter example based on Example 4.2. This again indicates the complication of
integral behaviours on families of unbounded measurable test functions with respect
to setwisely convergent sequences of measures.

The rest of the section is devoted to descriptions of setwise convergence of se-
quences of measures in M̂(X) with non-metrizable ambient space X . Let δx be the
Dirac measure at the point x ⊂ X . We first give a proof of Theorem 2.9.

Proof of Theorem 2.9:

Proof. We only prove the case on existence of closed sets with the desiring properties,
the open case is similar to the closed case.

According to the assumption on the topology of X , let {Ai}
∞
i=1 be an infinite

sequence of non-empty and pairwise disjoint closed sets in X such that

14
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X \ A 6= ∅,

in which A = ∪∞
i=1{Ai}. Now choose a sequence of points {ai ∈ Ai}

∞
i=1 and a∗ ∈

X \A. Define a sequence of probability measures {νn ∈ M(X)}∞n=1 as following on
X ,

νn =
n− 1

n
δan +

1

n
δa∗ .

Let ν = δa∗ . We claim that the sequence of measures {νn}
∞
n=1 and ν satisfy both

the conditions (II), (III) in Theorem 2.7. To see this, for any proper closed subset
F ⊂ X , it intersects with at most finitely many sets from {An}n∈N. If this is not
true, we can always find a sub-sequence {nj}j∈N, such that {F ∩ Anj

}j∈N are all
closed subset of F , which contradicts the assumption that every proper closed set
contains at most finitely many disjoint non-empty closed subsets. Now we can see
that

limn→∞ νn(F ) = 0.

This forces

limn→∞ νn(G) = 1.

for any non-empty open set G ⊂ X , which justifies the claim. However, it is easy
to see that

νn
s
9 ν

as n → ∞ since

limn→∞ νn(A) = 1 > ν(A) = 0.

Considering Theorem 2.7, we can deduce the following result in virtue of Theorem
2.9. One can clearly see the impact of the topology of the ambient space X on the
sequential convergence of measures on X from the result.

Corollary 4.6. If a topological space X admits infinitely many pairwise disjoint
closed (open) sets, and every proper closed (open) subset in X contains at most
finitely many disjoint non-empty closed (open) subsets, then it is not metrizable.

Theorem 2.9 has some applications to some well-known (non-metrizable) topolog-
ical spaces in various circumstances. For example, considering the Zariski topology
on algebraic varieties (see for example [Har], the topology is known to be non-
metrizable), we have the following result.

Corollary 4.7. For K being an algebraically closed field, let X = An (or Pn) be the
n-dimensional affine (or projective) space over K for some n ≥ 2. Let Sn (or Sn+1)
be a set of polynomials of n (or n + 1) variables over K sharing infinitely many
common solutions for some n ≥ 2. Then the affine (projective) space equipped with
the Zariski topology represented by the triples

(An, Sn, K) (or
(

Pn, Sn+1, K)
)

15
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admits a sequence of probability measures {νn ∈ M(X)}∞n=1 and ν ∈ M(X) satisfy-
ing both the conditions (II), (III) in Theorem 2.7, while

νn
s
9 ν

as n → ∞.

Proof. This is because An (or Pn) with the Zariski topology admits infinitely many
disjoint closed sets as common solutions of the polynomials in Sn (or Sn+1) for any
n ≥ 2. Moreover, every closed set in An (or Pn) is constituted by only finitely
many solutions of the polynomials in Sn (or Sn+1). Then the conclusion follows
from Theorem 2.9 instantly.

It is easy to construct a sequence of probability measures {νn ∈ M(X)}∞n=1 and
ν in M(X) on (X = An, Sn, K) (or (X = Pn, Sn+1, K)) with the Zariski topology,
such that it satisfies all the conditions (ii)− (v) in [Bil1, Theorem 2.1], while

νn
w
9 ν,

following the ideas of Proof of Theorem 2.7. The details are left to the readers. So
we have the following result.

Proposition 4.8. For K being an algebraically closed field, let X = An (or Pn) be
the n-dimensional affine (or projective) space over K for some n ≥ 2. Let Sn (or
Sn+1) be a set of polynomials of n (or n + 1) variables over K sharing infinitely
many common solutions for some n ≥ 2. Then the affine (projective) space equipped
with the Zariski topology represented by the triples

(An, Sn, K) (or
(

P
n, Sn+1, K)

)

admits a sequence of probability measures {νn ∈ M(X)}∞n=1 and ν ∈ M(X) satisfy-
ing all the conditions (ii)− (v) in [Bil1, Theorem 2.1], while

νn
w
9 ν

as n → ∞.

This result denies the Portemanteau Theorem on non-metrizable ambient spaces,
in its general form.

5. Description of the TV convergence of sequences of measures in M̂(X)

In this section we prove Theorem 2.11, followed by a similar discussion on the
descriptions of TV sequential convergence of measures in M̂(X) with the ambient
space being non-metrizable. To prove Theorem 2.11, we need several preliminary
results on the equivalent description of TV distance between two measures in M̂(X).

Lemma 5.1. For two finite measures µ, ν ∈ M̂(X) with the ambient space X being
metrizable, we have
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supA∈B |µ(A)− ν(A)|
= sup

A is closed and bounded |µ(A)− ν(A)|
= sup

B is open and bounded |µ(B)− ν(B)|.

Proof. According to [FKZ1, Theorem 2.5 (i)(ii)], to justify these equalities, we only
need to show

sup
A is closed

|µ(A)− ν(A)| = sup
A is closed and bounded

|µ(A)− ν(A)| (5.1)

and

sup
B is open

|µ(B)− ν(B)| = sup
B is open and bounded

|µ(B)− ν(B)|. (5.2)

In the following we only show (5.1), as the proof of (5.2) follows a similar way. Choose
an arbitrary point x0 ∈ X , consider the sequence of closed balls {B(x0, n)}n∈N
centred at x0 of radius n ∈ N. Since ∪n∈NB(x0, n) = X , for any small ǫ > 0, there
exists nǫ ∈ N large enough, such that

µ(B(x0, n)) > µ(X)− ǫ and ν(B(x0, n)) > ν(X)− ǫ. (5.3)

Now let

sup
A is closed |µ(A)− ν(A)| := s.

Then for any small ǫ > 0, there exists a closed set A ⊂ X such that

0 ≤ s− |µ(A)− ν(A)| < ǫ.

Let Aǫ = A ∩B(x0, n). It is a bounded and closed set. Since

µ(A)− ν(A) = µ(Aǫ)− ν(Aǫ) + µ(A \ Aǫ)− ν(A \ Aǫ),

then

|µ(A)− ν(A)| − |µ(Aǫ)− ν(Aǫ)|
≤ |µ(A \Aǫ)− ν(A \ Aǫ)|
≤ max{µ(A \ Aǫ), ν(A \ Aǫ)}

≤ max{µ(X \B(x0, n)), ν(X \B(x0, n))}
≤ ǫ.

The last inequality is due to (5.3). Then we have

0 ≤ s− |µ(Aǫ)− ν(Aǫ)| = s− |µ(A)− ν(A)|+ |µ(A)− ν(A)| − |µ(Aǫ)− ν(Aǫ)| < 2ǫ,

which is enough to imply (5.1).

Remark 5.2. In case X is a σ-compact metric space, there is an increasing sequence
of compact subsets {Kn}n∈N whose union is X. Then

sup
A is compact

|µ(A)− ν(A)| = sup
A is closed

|µ(A)− ν(A)|. (5.4)

This can be seen by repeating the proof of Lemma 5.1 with B(x0, n) replaced by Kn

therein. Aǫ is now a compact set since it is a closed subset of a compact set.
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Lemma 5.3. For any non-negative γ ∈ R, we have

supf∈Mγ(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν| = γ supf∈M1(X) |

∫

X
f(x)dµ−

∫

X
f(x)dν|

for any µ, ν ∈ M̂(X) with X being a topological space.

Proof. Without loss of generality we assume γ > 0. We only show

sup
f∈Mγ(X)

∣

∣

∣

∫

X

f(x)dµ−

∫

X

f(x)dν
∣

∣

∣
≤ γ sup

f∈M1(X)

∣

∣

∣

∫

X

f(x)dµ−

∫

X

f(x)dν
∣

∣

∣
(5.5)

in the following, the inverse inequality follows a similar way. For any small ǫ > 0,
there exists fǫ ∈ Mγ(X) such that

0 ≤ sup
f∈Mγ(X)

∣

∣

∣

∫

X

f(x)dµ−

∫

X

f(x)dν
∣

∣

∣
−
∣

∣

∣

∫

X

fǫ(x)dµ−

∫

X

fǫ(x)dν
∣

∣

∣
< ǫ. (5.6)

Since
1

γ
fǫ ∈ M1(X), we have

γ sup
f∈M1(X)

∣

∣

∣

∫

X

f(x)dµ−

∫

X

f(x)dν
∣

∣

∣
≥

∣

∣

∣

∫

X

fǫ(x)dµ−

∫

X

fǫ(x)dν
∣

∣

∣
. (5.7)

Now combing (5.6) and (5.7) together, we have

supf∈Mγ(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν| − γ supf∈M1(X) |

∫

X
f(x)dµ−

∫

X
f(x)dν|

≤ supf∈Mγ(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν| − |

∫

X
fǫ(x)dµ−

∫

X
fǫ(x)dν|

< ǫ.
(5.8)

Then we get (5.5) by letting ǫ → 0 in (5.8).

Lemma 5.4. Let X be a metric space endowed with the metric ρ. For any non-
negative γ ∈ R, we have

supf∈Mγ(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν|

= sup
f has bounded support in C(X)∩Mγ(X)

|
∫

X
f(x)dµ−

∫

X
f(x)dν|

for any µ, ν ∈ M̂(X).

Proof. Considering [FKZ1, Theorem 2.5 (iv)] and Lemma 5.3, we only need to justify

supf∈C(X)∩Mγ (X) |
∫

X
f(x)dµ−

∫

X
f(x)dν|

≤ sup
f has bounded support in C(X)∩Mγ(X)

|
∫

X
f(x)dµ−

∫

X
f(x)dν|

(5.9)

for any non-negative γ ∈ R and µ, ν ∈ M̂(X). To see this, for any small ǫ > 0,
there exists some fǫ ∈ C(X) ∩Mγ(X), such that

0 ≤ sup
f∈C(X)∩Mγ (X)

∣

∣

∣

∫

X

f(x)dµ−

∫

X

f(x)dν
∣

∣

∣
−
∣

∣

∣

∫

X

fǫ(x)dµ−

∫

X

fǫ(x)dν
∣

∣

∣
< ǫ. (5.10)
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Choose an arbitrary x0 ∈ X , consider the sequence of open balls {B(x0, n)}n∈N
centred at x0 of radius n ∈ N. Let nǫ ∈ N be large enough such that

µ(B(x0, nǫ)) > µ(X)− ǫ and ν(B(x0, nǫ)) > ν(X)− ǫ. (5.11)

The function

f1,B(x0,nǫ) =











1 x ∈ B(x0, nǫ),

1− ρ(x,B(x0, nǫ)) 0 < ρ(x,B(x0, nǫ)) < 1,

0 ρ(x,B(x0, nǫ)) ≥ 1.

is continuous with bounded support. So f1,B(x0,nǫ)fǫ ∈ C(X) ∩ Mγ(X) also has
bounded support. Moreover, we have

|
∫

X
f1,B(x0,nǫ)fǫdµ−

∫

X
f1,B(x0,nǫ)fǫdν|

≥ |
∫

X
fǫ(x)dµ−

∫

X
fǫ(x)dν| − |

∫

X
(f1,B(x0,nǫ) − 1)fǫdµ−

∫

X
(f1,B(x0,nǫ) − 1)fǫdν|

≥ |
∫

X
fǫ(x)dµ−

∫

X
fǫ(x)dν| − γµ

(

X \B(x0, nǫ)
)

− aν
(

X \B(x0, nǫ)
)

≥ |
∫

X
fǫ(x)dµ−

∫

X
fǫ(x)dν| − 2γǫ

≥ supf∈C(X)∩Mγ (X) |
∫

X
f(x)dµ−

∫

X
f(x)dν| − (1 + 2γ)ǫ.

(5.12)
The third inequality is due to (5.11), while the last one is due to (5.10). Now let
ǫ → 0 in (5.12), we get (5.9).

Equipped with all the above results, now we are in a position to prove Theorem
2.11.

Proof of Theorem 2.11:

Proof. The strategy of our proof follows the following diagram.

I II III

IV

VII

V

VI

• (I) ⇔ (II) ⇔ (III): this is due to Lemma 5.1.

• (I) ⇔ (IV ): this is due to Lemma 5.3.
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• (IV ) ⇔ (V I): this is due to Lemma 5.4.

• (IV ) ⇒ (V II): this is trivial.

• (V II) ⇒ (V I): this is because any continuous function on a compact metric
space is uniformly continuous.

• (IV ) ⇒ (V ): this is trivial.

• (V ) ⇒ (V I): this is trivial.

Remark 5.5. In all the results such as Lemma 5.1, 5.4, Theorem 2.11 and [FKZ1,
Theorem 2.5], besides the three terms

supA∈B
|µ(A)− ν(A)|,

supf∈M1(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν|,

supf∈Mγ(X) |
∫

X
f(x)dµ−

∫

X
f(x)dν|,

the sup can not be substituted by Max, see Example 6.1.

The following result follows from Remark 5.2 and Theorem 2.11 instantly.

Corollary 5.6. For a sequence of measures {νn ∈ M̂(X)}∞n=1 and ν ∈ M̂(X) on a
σ-compact metric space X, the following conditions are equivalent to each other:

(I). νn
TV
→ ν as n → ∞.

(II). limn→∞ supA is compact |νn(A)− ν(A)| = 0.

(III). limn→∞ sup
f has compact support in Mγ(X)

|
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0 for

any non-negative γ ∈ R.

The following description of TV sequential convergence of measures follows from
the proof of [FKZ1, Theorem 2.5] essentially.

Corollary 5.7. For a sequence of measures {νn ∈ M̂(X)}∞n=1 and ν ∈ M̂(X) on a

metric space X, νn
TV
→ ν as n → ∞ if and only if

limn→∞ sup
f is Hölder in Cb(X)

|
∫

X
f(x)dνn −

∫

X
f(x)dν| = 0

Proof. This is because the continuous extension f̃C1,C2
(s) of fC1,C2

(s) in the proof of
[FKZ1, Theorem 2.5] can be taken to be Hölder. Details are left to the readers.

The above results on TV convergence of sequences of measures are set on M̂(X)
with the ambient space being metrizable. While the ambient space X is not metriz-
able, these results are seldom true in general (some descriptions are not applicable
in case X is not metrizable). For example, considering the proof of Theorem 2.9,
we have the following result.
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Proposition 5.8. For K being an algebraically closed field, let X = An
K (or Pn

K)
be the n-dimensional affine (or projective) space over K for some n ≥ 2. Let Sn

(or Sn+1) be sets of polynomials of n (or n + 1) variables over K respectively for
some n ≥ 2. Then the affine and projective spaces equipped with the Zariski topology
represented by the triples

(An
K , Sn, K) (or (Pn

K , Sn+1, K))

admits a sequence of probability measures {νn ∈ M(X)}∞n=1 and ν ∈ M(X) satisfy-
ing both the conditions (II)(III) in Theorem 2.11, while

νn
TV
9 ν

as n → ∞.

6. Attainability of the TV metric between two measures in M̂(X)

Comparing Theorem 2.3, Example 4.1 and Theorem 2.11, we can see that there is
some fracture between descriptions of these successive modes of convergence. Due
to the Hahn decomposition, the total-variation distance of two finite measures can
be attained on some bounded measurable function or on some Borel measurable set
in (2.1). Although Theorem 2.11 reduces the difficulty on checking TV convergence
of sequences of measures in M̂(X) in some cases, the total-variation metric between
two measures may never be attained.

Example 6.1. Let X = (0, 1). Let

µ = 1
2
L1|(0,1) +

1
2
δ 2

3

and

ν = L1|(0, 1
3
) + L1|( 2

3
,1) +

1
3
δ 1

3

be two Borel probabilities on X.

One can check that

‖µ− ν‖TV = 2
3

in Example 6.1. However, there does not exist any open (or closed) set B such that

2|µ(B)− ν(B)| = 2
3
,

or any continuous function f such that

|
∫

X
fdµ−

∫

X
fdν| = 2

3
.
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One should also be careful that although there are many equivalent ways to
formulate the total-variation metric between two finite measures on metric spaces
([FKZ1, Theorem 2.5], Lemma 5.1, Lemma 5.4), the attainability of the total-
variation metric between two measures may vary depending on situations. For
example, there are examples of unbounded metric spaces X with finite Borel mea-
sures µ, ν ∈ M̂(X) such that

‖µ− ν‖TV = 2|µ(B)− ν(B)| (6.1)

for some open (or closed) B ⊂ X , while there does not exist any bounded open (or
closed) B ⊂ X satisfying (6.1), or any continuous function f such that

|
∫

X
fdµ−

∫

X
fdν| = ‖µ− ν‖TV .
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