
Chapter 6

The Daniell integral.

Daniell’s idea was to take the axiomatic properties of the integral as the start-
ing point and develop integration for broader and broader classes of functions.
Then derive measure theory as a consequence. Much of the presentation here
is taken from the book Abstract Harmonic Analysis by Lynn Loomis. Some of
the lemmas, propositions and theorems indicate the corresponding sections in
Loomis’s book.

6.1 The Daniell Integral

Let L be a vector space of bounded real valued functions on a set S closed under
∧ and ∨. For example, S might be a complete metric space, and L might be
the space of continuous functions of compact support on S.

A map
I : L→ R

is called an Integral if

1. I is linear: I(af + bg) = aI(f) + bI(g)

2. I is non-negative: f ≥ 0 ⇒ I(f) ≥ 0 or equivalently f ≥ g ⇒ I(f) ≥ I(g).

3. fn ↘ 0 ⇒ I(fn) ↘ 0.

For example, we might take S = Rn, L = the space of continuous functions of
compact support on Rn, and I to be the Riemann integral. The first two items
on the above list are clearly satisfied. As to the third, we recall Dini’s lemma
from the notes on metric spaces, which says that a sequence of continuous
functions of compact support {fn} on a metric space which satisfies fn ↘ 0
actually converges uniformly to 0. Furthermore the supports of the fn are all
contained in a fixed compact set - for example the support of f1. This establishes
the third item.
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The plan is now to successively increase the class of functions on which the
integral is defined.

Define

U := {limits of monotone non-decreasing sequences of elements of L}.

We will use the word “increasing” as synonymous with “monotone non-decreasing”
so as to simplify the language.

Lemma 6.1.1 If fn is an increasing sequence of elements of L and if k ∈ L
satisfies k ≤ lim fn then lim I(fn) ≥ I(k).

Proof. If k ∈ L and lim fn ≥ k, then

fn ∧ k ≤ k and fn ≥ fn ∧ k

so I(fn) ≥ I(fn ∧ k) while

[k − (fn ∧ k)] ↘ 0

so
I([k − fn ∧ k]) ↘ 0

by 3) or
I(fn ∧ k) ↗ I(k).

Hence lim I(fn) ≥ lim I(fn ∧ k) = I(k). QED

Lemma 6.1.2 [12C] If {fn} and {gn} are increasing sequences of elements of
L and lim gn ≤ lim fn then lim I(gn) ≤ lim I(fn).

Proof. Fix m and take k = gm in the previous lemma. Then I(gm) ≤ lim I(fn).
Now let m→∞. QED

Thus
fn ↗ f and gn ↗ f ⇒ lim I(fn) = lim I(gn)

so we may extend I to U by setting

I(f) := lim I(fn) for fn ↗ f.

If f ∈ L, this coincides with our original I, since we can take gn = f for all n
in the preceding lemma.

We have now extended I from L to U . The next lemma shows that if we
now start with I on U and apply the same procedure again, we do not get any
further.

Lemma 6.1.3 [12D] If fn ∈ U and fn ↗ f then f ∈ U and I(fn) ↗ I(f).
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Proof. For each fixed n choose gmn ↗m fn. Set

hn := gn1 ∨ · · · ∨ gnn

so
hn ∈ L and hn is increasing

with
gni ≤ hn ≤ fn for i ≤ n.

Let n→∞. Then
fi ≤ limhn ≤ f.

Now let i→∞. We get
f ≤ limhn ≤ f.

So we have written f as a limit of an increasing sequence of elements of L, So
f ∈ U . Also

I(gni ) ≤ I(hn) ≤ I(f)

so letting n→∞ we get

I(fi) ≤ I(f) ≤ lim I(fn)

so passing to the limits gives I(f) = lim I(fn). QED
We have

I(f + g) = I(f) + I(g) for f, g ∈ U.

Define
−U := {−f | f ∈ U}

and
I(f) := −I(−f) f ∈ −U.

If f ∈ U and −f ∈ U then I(f)+I(−f) = I(f−f) = I(0) = 0 so I(−f) = −I(f)
in this case. So the definition is consistent.

−U is closed under monotone decreasing limits. etc.
If g ∈ −U and h ∈ U with g ≤ h then −g ∈ U so h − g ∈ U and h − g ≥ 0

so I(h)− I(g) = I(h+ (−g)) = I(h− g) ≥ 0.

A function f is called I-summable if for every ε > 0, ∃ g ∈ −U, h ∈ U
with

g ≤ f ≤ h, |I(g)| <∞, |I(h)| <∞ and I(h− g) ≤ ε.

For such f define
I(f) = glb I(h) = lub I(g).

If f ∈ U take h = f and fn ∈ L with fn ↗ f . Then −fn ∈ L ⊂ U so fn ∈ −U .
If I(f) < ∞ then we can choose n sufficiently large so that I(f) − I(fn) < ε.
The space of summable functions is denoted by L1. It is clearly a vector space,
and I satisfies conditions 1) and 2) above, i.e. is linear and non-negative.
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Theorem 6.1.1 [12G] Monotone convergence theorem. fn ∈ L1, fn ↗ f
and lim I(fn) <∞ ⇒ f ∈ L1 and I(f) = lim I(fn).

Proof. Replacing fn by fn − f0 we may assume that f0 = 0. Choose

hn ∈ U, such that fn − fn−1 ≤ hn and I(hn) ≤ I(fn − fn−1) +
ε

2n
.

Then

fn ≤
n∑
1

hi and
n∑
i=1

I(hi) ≤ I(fn) + ε.

Since U is closed under monotone increasing limits,

h :=
∞∑
i=1

hi ∈ U, f ≤ h and I(h) ≤ lim I(fn) + ε.

Since fm ∈ L1 we can find a gm ∈ −U with I(fm)− I(gm) < ε and hence for m
large enough I(h)− I(gm) < 2ε. So f ∈ L1 and I(f) = lim I(fn). QED

6.2 Monotone class theorems.

A collection of functions which is closed under monotone increasing and mono-
tone decreasing limits is called a monotone class. B is defined to be the
smallest monotone class containing L.

Lemma 6.2.1 Let h ≤ k. If M is a monotone class which contains (g ∨ h)∧ k
for every g ∈ L, then M contains all (f ∨ h) ∧ k for all f ∈ B.

Proof. The set of f such that (f ∨ h)∧ k ∈M is a monotone class containing
L by the distributive laws.QED

Taking h = k = 0 this says that the smallest monotone class containing L+,
the set of non-negative functions in L, is the set B+, the set of non-negative
functions in B.

Here is a series of monotone class theorem style arguments:

Theorem 6.2.1 f, g ∈ B ⇒ af + bg ∈ B, f ∨ g ∈ B and f ∧ g ∈ B.

For f ∈ B, let
M(f) := {g ∈ B|f + g, f ∨ g, f ∧ g ∈ B}.

M(f) is a monotone class. If f ∈ L it includes all of L, hence all of B. But

g ∈M(f) ⇔ f ∈M(g).

So L ⊂ M(g) for any g ∈ B, and since it is a monotone class B ⊂ M(g). This
says that f, g ∈ B ⇒ f + g ∈ B, f ∧ g ∈ B and f ∨ g ∈ B. Similarly, let M be
the class of functions for which cf ∈ B for all real c. This is a monotone class
containing L hence contains B. QED
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Lemma 6.2.2 If f ∈ B there exists a g ∈ U such that f ≤ g.

Proof. The limit of a monotone increasing sequence of functions in U belongs
to U . Hence the set of f for which the lemma is true is a monotone class which
contains L. hence it contains B. QED

A function f is L-bounded if there exists a g ∈ L+ with |f | ≤ g. A class
F of functions is said to be L-monotone if F is closed under monotone limits of
L-bounded functions.

Theorem 6.2.2 The smallest L-monotone class including L+ is B+.

Proof. Call this smallest family F . If g ∈ L+, the set of all f ∈ B+ such that
f ∧ g ∈ F form a monotone class containing L+, hence containing B+ hence
equal to B+. If f ∈ B+ and f ≤ g then f ∧ g = f ∈ F . So F contains all L
bounded functions belonging to B+. Let f ∈ B+. By the lemma, choose g ∈ U
such that f ≤ g, and choose gn ∈ L+ with gn ↗ g. Then f ∧ gn ≤ gn and so is
L bounded, so f ∧ gn ∈ F . Since (f ∧ gn) → f we see that f ∈ F . So

B+ ⊂ F .

We know that B+ is a monotone class, in particular an L-monotone class. Hence
F = B+. QED

Define
L1 := L1 ∩ B.

Since L1 and B are both closed under the lattice operations,

f ∈ L1 ⇒ f± ∈ L1 ⇒ |f | ∈ L1.

Theorem 6.2.3 If f ∈ B then f ∈ L1 ⇔ ∃g ∈ L1 with |f | ≤ g.

We have proved ⇒: simply take g = |f |. For the converse we may assume that
f ≥ 0 by applying the result to f+ and f−. The family of all h ∈ B+ such that
h ∧ g ∈ L1 is monotone and includes L+ so includes B+. So f = f ∧ g ∈ L1.
QED

Extend I to all of B+ be setting it = ∞ on functions which do not belong
to L1.

6.3 Measure.

Loomis calls a set A integrable if 1A ∈ B. The monotone class properties of
B imply that the integrable sets form a σ-field. Then define

µ(A) :=
∫

1A

and the monotone convergence theorem guarantees that µ is a measure.
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Add Stone’s axiom
f ∈ L⇒ f ∧ 1 ∈ L.

Then the monotone class property implies that this is true with L replaced by
B.

Theorem 6.3.1 f ∈ B and a > 0 ⇒ then

Aa := {p|f(p) > a}

is an integrable set. If f ∈ L1 then

µ(Aa) <∞.

Proof. Let
fn := [n(f − f ∧ a)] ∧ 1 ∈ B.

Then

fn(x) =

 1 if f(x) ≥ a+ 1
n

0 if f(x) ≤ a
n(f(x)− a) if a < f(x) < a+ 1

n

.

We have
fn ↗ 1Aa

so 1Aa ∈ B and 0 ≤ 1Aa ≤ 1
af

+. QED

Theorem 6.3.2 If f ≥ 0 and Aa is integrable for all a > 0 then f ∈ B.

Proof. For δ > 1 define

Aδm := {x|δm < f(x) ≤ δm+1}

for m ∈ Z and
fδ :=

∑
m

δm1Aδ
m
.

Each fδ ∈ B. Take
δn = 22−n

.

Then each successive subdivision divides the previous one into “octaves” and
fδm

↗ f . QED
Also

fδ ≤ f ≤ δfδ

and

I(fδ) =
∑

δnµ(Aδm) =
∫
fδdµ.

So we have
I(fδ) ≤ I(f) ≤ δI(fδ)
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and ∫
fδdµ ≤

∫
fdµ ≤ δ

∫
fδdµ.

So if either of I(f) or
∫
fdµ is finite they both are and∣∣∣∣I(f)−
∫
fdµ

∣∣∣∣ ≤ (δ − 1)I(fδ) ≤ (δ − 1)I(f).

So ∫
fdµ = I(f).

If f ∈ B+ and a > 0 then

{x|f(x)a > b} = {x|f(x) > b
1
a }.

So f ∈ B+ ⇒ fa ∈ B+ and hence the product of two elements of B+ belongs to
B+ because

fg =
1
4
[
(f + g)2 − (f − g)2

]
.

6.4 Hölder, Minkowski , Lp and Lq.

The numbers p, q > 1 are called conjugate if

1
p

+
1
q

= 1.

This is the same as
pq = p+ q

or
(p− 1)(q − 1) = 1.

This last equation says that if
y = xp−1

then
x = yq−1.

The area under the curve y = xp−1 from 0 to a is

A =
ap

p

while the area between the same curve and the y-axis up to y = b

B =
bq

q
.
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Suppose b < ap−1 to fix the ideas. Then area ab of the rectangle is less than
A+B or

ap

p
+
bq

q
≥ ab

with equality if and only if b = ap−1. Replacing a by a
1
p and b by b

1
q gives

a
1
p b

1
q ≤ a

p
+
b

q
.

Let Lp denote the space of functions such that |f |p ∈ L1. For f ∈ Lp define

‖f‖p :=
(∫

|f |pdµ
) 1

p

.

We will soon see that if p ≥ 1 this is a (semi-)norm.
If f ∈ Lp and g ∈ Lq with ‖f‖p 6= 0 and ‖g‖q 6= 0 take

a =
|f |p

‖f‖p
, b =

|g|q

‖g‖q

as functions. Then∫
(|f ||g|)dµ ≤ ‖f‖p‖g‖q

(
1
p

1
‖f‖pp

∫
|f |pdµ+

1
q

1
‖g‖qq

∫
|g|qdµ

)
= ‖f‖p‖g‖q.

This shows that the left hand side is integrable and that∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ‖f‖p‖g‖q (6.1)

which is known as Hölder’s inequality. (If either ‖f ||p or ‖g‖q = 0 then
fg = 0 a.e. and Hölder’s inequality is trivial.)

We write
(f, g) :=

∫
fgdµ.

Proposition 6.4.1 [Minkowski’s inequality] If f, g ∈ Lp, p ≥ 1 then f+g ∈
Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

For p = 1 this is obvious. If p > 1

|f + g|p ≤ [2max(|f |, |g|)]p ≤ 2p [|f |p + |g|p]

implies that f + g ∈ Lp. Write

‖f + g‖pp ≤ I(|f + g|p−1|f |) + I(|f + g|p−1|g|).

Now
q(p− 1) = qp− q = p
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so
|f + g|p−1 ∈ Lq

and its ‖ · ‖q norm is

I(|f + g|p)
1
q = I(|f + q|p)1−

1
p = I(|f + g|p)

p−1
p = ‖f + g‖p−1

p .

So we can write the preceding inequality as

‖f + g‖pp ≤ (|f |, |f + g|p−1) + (|g|, |f + g|p−1)

and apply Hölder’s inequality to conclude that

‖f + g‖p ≤ ‖f + g‖p−1(‖f‖p + ‖g‖p).

We may divide by ‖f + g‖p−1
p to get Minkowski’s inequality unless ‖f + g‖p = 0

in which case it is obvious. QED

Theorem 6.4.1 Lp is complete.

Proof. Suppose fn ≥ 0, fn ∈ Lp, and
∑
‖fn‖p <∞ Then

kn :=
n∑
1

fj ∈ Lp

by Minkowski and since kn ↗ f we have |kn|p ↗ fp and hence by the monotone
convergence theorem f :=

∑∞
j=1 fn ∈ Lp and ‖f‖p = lim ‖kn‖p ≤

∑
‖fj‖p.

Now let {fn} be any Cauchy sequence in Lp. By passing to a subsequence
we may assume that

‖fn+1 − fn‖p <
1
2n
.

So
∑∞
n |fi+1 − fi| ∈ Lp and hence

gn := fn −
∞∑
n

|fi+1 − fi| ∈ Lp and hn := fn +
∞∑
n

|fi+1 − fi| ∈ Lp.

We have
gn+1 − gn = fn+1 − fn + |fn+1 − fn| ≥ 0

so gn is increasing and similarly hn is decreasing. Hence f := lim gn ∈ Lp and
‖f − fn‖p ≤ ‖hn − gn‖p ≤ 2−n+2 → 0. So the subsequence has a limit which
then must be the limit of the original sequence. QED

Proposition 6.4.2 L is dense in Lp for any 1 ≤ p <∞.

Proof. For p = 1 this was a defining property of L1. More generally, suppose
that f ∈ Lp and that f ≥ 0. Let

An := {x :
1
n
< f(x) < n},
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and let
gn := f · 1An .

Then (f−gn) ↘ 0 as n→∞. Choose n sufficiently large so that ‖f−gn‖p < ε/2.
Since

0 ≤ gn ≤ n1An
and µ(An) < npI(|f |p) <∞

we conclude that
gn ∈ L1.

Now choose h ∈ L+ so that

‖h− gn‖1 <
( ε

2n

)p
and also so that h ≤ n. Then

‖h− gn‖p = (I(|h− gn|p))1/p

=
(
I(|h− gn|p−1|h− gn|)

)1/p
≤

(
I(np−1|h− gn|)

)1/p
=

(
np−1‖h− gn‖1

)1/p
< ε/2.

So by the triangle inequality ‖f − h‖ < ε. QED

In the above, we have not bothered to pass to the quotient by the elements
of norm zero. In other words, we have not identified two functions which differ
on a set of measure zero. We will continue with this ambiguity. But equally
well, we could change our notation, and use Lp to denote the quotient space (as
we did earlier in class) and denote the space before we pass to the quotient by
Lp to conform with our earlier notation. I will continue to be sloppy on this
point, in conformity to Loomis’ notation.

6.5 ‖ · ‖∞ is the essential sup norm.

Suppose that f ∈ B has the property that it is equal almost everywhere to a
function which is bounded above. We call such a function essentially bounded
(from above). We can then define the essential least upper bound of f to be
the smallest number which is an upper bound for a function which differs from
f on a set of measure zero. If |f | is essentially bounded, we denote its essential
least upper bound by ‖f‖∞. Otherwise we say that ‖f‖∞ = ∞. We let L∞
denote the space of f ∈ B which have ‖f‖∞ < ∞. It is clear that ‖ · ‖∞ is a
semi-norm on this space. The justification for this notation is

Theorem 6.5.1 [14G] If f ∈ Lp for some p > 0 then

‖f‖∞ = lim
q→∞

‖f‖q. (6.2)
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Remark. In the statement of the theorem, both sides of (6.2) are allowed to
be ∞.

Proof. If ‖f‖∞ = 0, then ‖f‖q = 0 for all q > 0 so the result is trivial in this
case. So let us assume that ‖f‖∞ > 0 and let a be any positive number smaller
that ‖f‖∞. In other words,

0 < a < ‖f‖∞.
Let

Aa := ‖x : |f(x)| > a}.
This set has positive measure by the choice of a, and its measure is finite since
f ∈ Lp. Also

‖f‖q ≥
(∫

Aa

|f |q
)1/q

≥ aµ(Aa)1/q.

Letting q →∞ gives
lim inf

q→∞
‖f‖q ≥ a

and since a can be any number < ‖f‖∞ we conclude that

lim inf
q→∞

‖f‖q ≥ ‖f‖∞.

So we need to prove that
lim ‖f‖q ≤ ‖f‖∞.

This is obvious if ‖f‖∞ = ∞. So suppose that ‖f‖∞ is finite. Then for q > p
we have

|f |q ≤ |f |p(‖f‖∞)q−p

almost everywhere. Integrating and taking the q-th root gives

‖f‖q ≤ (‖f‖p)
p
q (‖f‖∞)1−

p
q .

Letting q →∞ gives the desired result. QED

6.6 The Radon-Nikodym Theorem.

Suppose we are given two integrals, I and J on the same space L. That is, both
I and J satisfy the three conditions of linearity, positivity, and the monotone
limit property that went into our definition of the term “integral”. We say that
J is absolutely continuous with respect to I if every set which is I null (i.e.
has measure zero with respect to the measure associated to I) is J null.

The integral I is said to be bounded if

I(1) <∞,

or, what amounts to the same thing, that

µI(S) <∞
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where µI is the measure associated to I.
We will first formulate the Radon-Nikodym theorem for the case of bounded

integrals, where there is a very clever proof due to von-Neumman which reduces
it to the Riesz representation theorem in Hilbert space theory.

Theorem 6.6.1 [Radon-Nikodym] Let I and J be bounded integrals, and
suppose that J is absolutely continuous with respect to I. Then there exists an
element f0 ∈ L1(I) such that

J(f) = I(ff0) ∀ f ∈ L1(J). (6.3)

The element f0 is unique up to equality almost everywhere (with respect to µI).

Proof.(After von-Neumann.) Consider the linear function

K := I + J

on L. Then K satisfies all three conditions in our definition of an integral, and in
addition is bounded. We know from the case p = 2 of Theorem 6.4.1 that L2(K)
is a (real) Hilbert space. (Assume for this argument that we have passed to the
quotient space so an element of L2(K) is an equivalence class of of functions.)
The fact that K is bounded, says that 1 := 1S ∈ L2(K). If f ∈ L2(K) then the
Cauchy-Schwartz inequality says that

K(|f |) = K(|f | · 1) = (|f |,1)2,K ≤ ‖f‖2,K‖1‖2,K <∞

so |f | and hence f are elements of L1(K).
Furthermore,

|J(f)| ≤ J(|f |) ≤ K(|f |) ≤ ‖f‖2,K‖1‖2,K
for all f ∈ L. Since we know that L is dense in L2(K) by Proposition 6.4.2, J
extends to a unique continuous linear functional on L2(K). We conclude from
the real version of the Riesz representation theorem, that there exists a unique
g ∈ L2(K) such that

J(f) = (f, g)2,K = K(fg).

If A is any subset of S of positive measure, then J(1A) = K(1Ag) so g is non-
negative. (More precisely, g is equivalent almost everywhere to a function which
is non-negative.) We obtain inductively

J(f) = K(fg) =
I(fg) + J(fg) = I(fg) + I(fg2) + J(fg2) =

...

= I

(
f ·

n∑
i=1

gi

)
+ J(fgn).

Let N be the set of all x where g(x) ≥ 1. Taking f = 1N in the preceding string
of equalities shows that

J(1N ) ≥ nI(1N ).

Since n is arbitrary, we have proved
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Lemma 6.6.1 The set where g ≥ 1 has I measure zero.

We have not yet used the assumption that J is absolutely continuous with
respect to I. Let us now use this assumption to conclude that N is also J-null.
This means that if f ≥ 0 and f ∈ L1(J) then fgn ↘ 0 almost everywhere (J),
and hence by the dominated convergence theorem

J(fgn) ↘ 0.

Plugging this back into the above string of equalities shows (by the monotone
convergence theorem for I) that

f
∞∑
i=1

gn

converges in the L1(I) norm to J(f). In particular, since J(1) < ∞, we may
take f = 1 and conclude that

∑∞
i=1 g

i converges in L1(I). So set

f0 :=
∞∑
i=1

gi ∈ L1(I).

We have
f0 =

1
1− g

almost everywhere

so
g =

f0 − 1
f0

almost everywhere

and
J(f) = I(ff0)

for f ≥ 0, f ∈ L1(J). By breaking any f ∈ L1(J) into the difference of its
positive and negative parts, we conclude that (6.3) holds for all f ∈ L1(J). The
uniqueness of f0 (almost everywhere (I)) follows from the uniqueness of g in
L2(K). QED

The Radon Nikodym theorem can be extended in two directions. First of
all, let us continue with our assumption that I and J are bounded, but drop the
absolute continuity requirement. Let us say that an integral H is absolutely
singular with respect to I if there is a set N of I-measure zero such that
J(h) = 0 for any h vanishing on N .

Let us now go back to Lemma 6.6.1. Define Jsing by

Jsing(f) = J(1Nf).

Then Jsing is singular with respect to I, and we can write

J = Jcont + Jsing

where
Jcont = J − Jsing = J(1Nc ·).



170 CHAPTER 6. THE DANIELL INTEGRAL.

Then we can apply the rest of the proof of the Radon Nikodym theorem to Jcont
to conclude that

Jcont(f) = I(ff0)

where f0 =
∑∞
i=1(1Ncg)i is an element of L1(I) as before. In particular, Jcont

is absolutely continuous with respect to I.

A second extension is to certain situations where S is not of finite measure.
We say that a function f is locally L1 if f1A ∈ L1 for every set A with
µ(A) <∞. We say that S is σ-finite with respect to µ if S is a countable union
of sets of finite µ measure. This is the same as saying that 1 = 1S ∈ B. If S
is σ-finite then it can be written as a disjoint union of sets of finite measure.
If S is σ-finite with respect to both I and J it can be written as the disjoint
union of countably many sets which are both I and J finite. So if J is absolutely
continuous with respect I, we can apply the Radon-Nikodym theorem to each of
these sets of finite measure, and conclude that there is an f0 which is locally L1

with respect to I, such that J(f) = I(ff0) for all f ∈ L1(J), and f0 is unique
up to almost everywhere equality.

6.7 The dual space of Lp.

Recall that Hölder’s inequality (6.1) says that∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ‖f‖p‖g‖q

if f ∈ Lp and g ∈ Lq where
1
p

+
1
q

= 1.

For the rest of this section we will assume without further mention that this
relation between p and q holds. Hölder’s inequality implies that we have a map
from

Lq → (Lp)∗

sending g ∈ Lq to the continuous linear function on Lp which sends

f 7→ I(fg) =
∫
fgdµ.

Furthermore, Hölder’s inequality says that the norm of this map from Lq →
(Lp)∗ is ≤ 1. In particular, this map is injective.

The theorem we want to prove is that under suitable conditions on S and
I (which are more general even that σ-finiteness) this map is surjective for
1 ≤ p <∞.

We will first prove the theorem in the case where µ(S) <∞, that is when I
is a bounded integral. For this we will will need a lemma:


