THE NORMAL COMPLETION OF THE LATTICE OF
CONTINUOUS FUNCTIONS

BY
R. P. DILWORTH

1. Introduction. Let S be a topological space(*) and let C(S) denote the
set of all real valued, bounded, continuous functions on S. It is well known
that C(S) is a distributive lattice under the operations sup (f, g) and inf (f, g).
In general, however, C(S) is not a complete lattice; that is, an arbitrary
bounded set of continuous functions in C(S) need not have a least upper
bound in the lattice C(S). Furthermore, the structure of the minimal comple-
tion of C(S) by means of normal subsets has not been determined even in the
simple case where S is the real interval [0, 1].

The first part of the paper will be devoted to the construction of a set of
functions which form a complete lattice isomorphic to the normal completion
of C(S). We use for this purpose a class of bounded, upper semicontinuous
functions (called normal) which are characterized by the following property(%).

(f)* = 1.

It is proved that the normal completion .of C(S) is isomorphic with the
lattice of all normal, upper semicontinuous functions on a suitably determined
completely regular space So. If S is completely regular, then So is simply S itself.

As an application we deduce the Stone-Nakano theorem on spaces S for
which C(S) is lattice complete.

In the second part of the paper it is shown that the normal completion of
C(S) is itself isomorphic to the lattice of all continuous functions on some
compact Hausdorff space. The precise theorem is the following.

Let S be completely regular. Then the normal completion of C(S) is isomorphic
with the lattice of all continuous functions on the Boolean space associated with
the Boolean algebra of regular open sets of S.

Birkhoff has shown that if .S is a completely regular space without isolated
points and satisfying the second countability axiom, then the Boolean alge-
bra of regular open sets is isomorphic with the normal completion of the free
Boolean algebra with a countably infinite set of generators. Hence specializing
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() The term “topological space” is used in the sense of Alexandroff and Hopf, Topologie,
Berlin, 1936. I am indebted to Professors Bohnenblust and Karlin for their advice in connection
with the topological questions arising in the work.

(?) f* and f« represent respectively the upper and lower limit functions of f. See formulas
(3.1) and (3.2) for the precise definitions.
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we get the following theorem:

If S is a completely regular space without isolated points and satisfying the
second countability axiom, then the normal completion of C(S) is isomorphic
with the lattice of all continuous functions on the Boolean space associated with
the normal completion of the free Boolean algebra with a countably infinite set
of generators.

Thus the lattices of continuous functions on spaces satisfying the condi-
tions of the theorem all have the same normal completion. In particular, this
theorem gives a simple representation of the normal completion of the lattice
of continuous functions on the real interval [0, 1].

PART I. NORMAL UPPER SEMICONTINUOUS FUNCTIONS

2. Preliminary reduction. Since we shall be interested in lattice properties
of C(S), we may, if we wish, assume that S is completely regular(®) (Cech
[2](®). The reduction to the completely regular case can be accomplished as
follows: Define

x~y if f(x) = f(y) for all f € C(S).

The relation x~y is clearly an equivalence relation and hence separates S into
equivalence classes X, ¥, Z, - - - . Let Sy denote the set of equivalence
classes. To each f&C(S) there corresponds a function F on S, defined by
F(X)=f(x) where x is an element of X. If A, is a subset of .S, let the closure
of A, consist of all X such that for every F, F(X)=0 whenever F(Y)=0 for
all ¥ contained in A4,. Then .Sy becomes a completely regular topological
space under this definition of closure and the mapping

f—F

is a lattice isomorphism of C(S) onto C(S)).

By appealing to the Stone-Cech compactification theorem we could also
assume that S is compact. However, little is gained from the additional as-
sumption and it seems desirable that the results of part I should not depend
upon transfinite methods.

We shall frequently use the fact that every completely regular space is
regular; that is, if NV is any open set containing x, there is an open set 4
containing x whose closure is contained in N.

3. Properties of normal upper semicontinuous functions. Let B(S) denote
the set of all bounded, real functions on S. If x is a point of S, let N, denote
an arbitrary open set containing x. Then the two basic unary operations on
B(S) which we shall use are defined as follows:

(%) A topological space S is completely regular if for each x and open set 4 containing x,
there is a continuous function f having the value 1 at x and vanishing outside 4. Replacing f by
sup (0, inf (1, f)) if necessary one may assume that the values of f lie between 0 and 1.

(*) Numbers in brackets refer to the references cited at the end of the paper.
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3.1 ¢*(x) = inf sup ¢(y),
: N, vEN,

3.2) é4(x) = sup inf ¢(y).
N VeNz

LEMMA 3.1. The operations ¢* and ¢« have the following properiies:

(3.3) o' Z ¢ = ¢y

(3.4) dZY > ¢*ZY* and ¢ 2 Yy,
(3.5 (¢%)* = 6%  (Bu)x = ¢x

(3.6) (@))% = (%) (((9)®))* = (d0)*.

Properties (3.3), (3.4), and (3.5) follow immediately from (3.1) and (3.2).
Also by (3.3), ((¢*)%)*2 (¢*)+ and hence (((6*)%)*)xZ ((¢*)#)+=(9*)x by
(3.4) and (3.5). On the other hand (¢*)x<o*>((¢*)s)*=(d*)*=0*
S(((@*)%)*)x < (¢™)x by (3.3) and (3.4). Thus the first part of (3.6) is proved
and the second part follows in a similar manner.

DEFINITION 3.1. ¢ is upper semicontinuous on S if p*=¢.

Lower semicontinuous functions are defined dually. Clearly ¢ is continu-
ous if and only if ¢* =¢«.

The functions of B(S) which will be used to characterize the normal com-
pletion of C(S) are defined as follows:

DEFINITION 3.2. An upper semicontinuous function ¢ on S is normal if
(¢%)*=¢. Clearly every continuous function is normal.

Normality can be characterized. as follows:

THEOREM 3.1. An upper semicontinuous function ¢ on S is normal if and
only if for each €>0, xES, and open set N containing x, there exists a non-
empty open set AT N such that ¢p(y) >¢(x)—eall yEA.

For the proof let ¢ be an upper semicontinuous function on .S and let us
suppose first that ¢ is normal. Let ¢>0 and let NV be an open set containing x.
By (3.1),

sup 0x(2) Z ($2)*(2) = ¢(x).
For some 2&EN
ox(2) > ¢(x) — e
By (3.2) there is a neighborhood 4 of z contained in N such that

inf ¢(y) > ¢(x) — e
1EA
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This gives the necessity of the condition of the theorem.

Conversely, if the condition is satisfied for all ¢>0 and N containing x, let
2EA. Then

#4(2) 2 inf ¢(y) 2 ¢(x) — e
vEA4

Hence
sup ox(2) = ¢(x) — e
Thus
(P)*(2) = iz?,f sup éx(2) 2 ¢(x) — e
Since € is arbitrary we have
(¢e)* 2 ¢.
Since ¢ is upper semicontinuous we have by (3.3) and (3.4)
(p)* = ¢* = ¢.

Hence (¢x)*=¢ and the proof is complete.

Now a lower semicontinuous function can be characterized by the condi-
tion that {xl¢(x) >)\} is open for each real A\. A dual result holds for upper
semicontinuous functions. Normal upper semicontinuous functions can also
be characterized in a similar manner.

THEOREM 3.2. An upper semicontinuous function ¢ on S is normal if and
only if for each real \, {xl #(x) >N} is a union of closures of open sets.

Let us suppose first that ¢ =(¢+)* and let 4 = {xlq&(x) >)\}. Let xo be an
arbitrary element of 4. Then ¢(x0) >\ and hence ¢(x,) >N-+6 for some 6 >0.
Let B= { xl b (x) >N+6 } Clearly B is open since ¢« is lower semicontinuous.
If N is an arbitrary open set containing x,, then

sup ¢4 (y) = (d4)*(x0) = d(%0) > N + 6.
yEN

Hence ¢«(y) >N+6 for some y&N. Thus BNN#0 for all N and hence
xo& B. Moreover, if yo& B, then BN\ N0 for every open set NV containing v,
and thus

sup ¢4(y) > N+ & all N containing y,.
yEN
Hence ¢(v0) = (¢+)*(y0) 2N+ >\ and thus y,EA. But then x,& BC 4 and it

follows that 4 is a union of closures of open sets.
On the other hand, suppose that ¢ is upper semicontinuous and that
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{ x|¢(x)>)\} is a union of closures of open sets for each real . Let ¢>0,
x%9ES, and N be an arbitrary open set containing x,. Then {x|¢(x) > p(xo)
—e€} is a union of closures of open sets and hence there exists an open set
Alg{x|¢(x) >¢(xo)—-e} such that xo&E4,. But then 4=4ANN is a non-
empty open set contained in N such that ¢(y) >¢(xy) —€ all yEA4. Thus ¢
is normal by Theorem 3.1. This completes the proof of the theorem.

COROLLARY. Every normal upper semicontinuous function on S is continuous
if and only if the closure of every open subset of S is open.

For by Theorem 3.2 the characteristic function of the closure of an open
set is upper semicontinuous and normal. Hence if every normal upper semi-
continuous function is continuous, the closure of every open set is open.
Conversely, if the closure of every open set is open and ¢ is any normal upper
semicontinuous function on .S, then by Theorem 3.2, ¢ is lower semicontinu-
ous and hence continuous.

4. Normal subsets of C(S). Before applying these results to the comple-
tion problem we shall recall some relevant facts from the theory of partially
ordered sets(’). A subset S of a partially ordered set P is normal if S contains
all @ for which a 2 x for every x such that y = x for all yES. If X is an arbitrary
subset of .S, the set of all x containing all elements of X is normal. In particu-
lar, for each a the set of all x=a is a normal subset called the principal normal
subset generated by a. The collection of normal subsets of P form a complete
lattice containing P as the partially ordered set of principal normal subsets
and preserving sup and inf whenever they exist in P. This normal completion
is minimal in the sense that if P is imbedded in any other complete lattice L,
the lattice of normal subsets is isomorphic with a lattice within L.

In the present case P is the lattice C(S) of continuous functions on S.
If € B(S), let L, denote the set of all f& C(S) such that f=¢.

LeEMMA 4.1, If  EB(S), then inf (L) =¢*.

Since ¢*(x) =infx_ sup,en, ¢(»), for €>0 there exists an open set NV con-
taining x such that ¢*(x) >sup,en ¢(y) —e. By complete regularity, g& C(S)
exists such that g(x)=1, g(y)=0 all y&’N and g<1. Let m=sup,es ¢(¥)
and let

f=m— (m — sup¢(y))g.
vEN

Clearly fEC(S). If yEN, then f(y)Zm—(m—sup,en ¢(3)2¢(y). If
yE&'N, then f(y) =m =¢(y). Hence f=¢ and thus fEL,;. We have then

¢*(x) > supd(y) —e = f(x) —e = ¥(x) — ¢
vEN

(5) The reader is referred to Birkhoff [1] for an account of this theory.
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where y=inf (L,). Since € is arbitrary, ¢*(x) 2¢(x) for all x. On the other
hand, f=¢ implies f=f*=¢*, which implies Y =¢*. Hence ¢* =y =inf (L,).

LeMMA 4.2. Let ¢ be a normal, upper semicontinuous function on S. Then
Ly is a normal subset of C(S).

For let f=g for all g contained in the functions of Ls. We must show that
fEL,. Let x&S and let €>0. Since f is continuous, there exists an open set
N containing x such that f(y) —f(x) <e/2 all yEN. Since ¢ is normal there
exists a non-empty open set 4 CN such that ¢(y) >¢(x) —€/2 all yEA. Let
y¢ be a point of 4. By complete regularity, there exists a continuous function
h(y) such that 21, k(ye) =1, and k(y)=0 all y&’4. Let m.=inf,cs ¢(¥)
—e¢/2 and set g=m.+ (p(x) —e/2—m)h. Now if yE A, then

8(3) = me+ (6(2) — €/2 — me) = &(x) — ¢/2 < $(3).

But if y&’A4, then g(y) =m.<¢(y). Hence g<¢ and thus g is a continuous
function contained in all of the functions of L. It follows that f=g¢. But then

f(30) = g(y0) = me + (¢(x) — €/2 — m) = ¢(x) — €/2.
Since yoCACN we have

f(@) = f(yo) + (f(2) = f(30)) > &(x) — e

Since e is arbitrary, f(x) 2¢(x) for all x and hence f&E L,. This completes the
proof of the lemma.
We need also a converse result.

LEMMA 4.3. Let U be a normal subset of C(S). Then inf (N) is a normal,
upper semicontinuous function on S.

For let ¢ =inf () and let ¢« < f where fE C(S). Then if g is contained in all
of the functions of A, we have g=<¢ and hence g <¢« <f. Hence f&U since A
is normal. But then by Lemma 4.1

(¢4)* = inf (L) = inf (%) = ¢.

Thus ¢ is a normal, upper semicontinuous function and the lemma follows.
With these lemmas we are ready to prove the fundamental isomorphism
theorem.

THEOREM 4.1. Let S be a bompletely regular topological space. Then the com-
pletion of C(S) by normal subsets is isomorphic with the lattice of all normal,
upper semicontinuous real functions on S.

For the proof let us recall that B(S) is a complete lattice containing C(S)
as a sublattice and hence it follows from the general theory of the normal
completion of a partially ordered set that if A is a normal subset C(S) the
mapping A—inf () is an isomorphism. By Lemma 4.3, % is mapped into the
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set of normal, upper semicontinuous real functions on .S. But by Lemmas 4.1
and 4.2 every normal upper semicontinuous function is an image of a normal
subset of C(S). The proof is thus complete.

If Y EB(S) and ¢ = (Yx)*, then (¢«)*=¢ by (3.6). Conversely, if (¢px)* =09,
then ¢ trivially has the form (Yx)* with Y €B(S). Hence Theorem 4.1 can
also be stated in the following way.

COROLLARY. If S is completely regular, then the normal completion of C(S)
is 1somorphic to the lattice of all functions of the form (Yx)* where§ is a bounded
real function on S.

Now it is clear from Theorem 3.2 that sup (¢1, ¢2) where ¢, and ¢ are
normal upper semicontinuous functions is also upper semicontinuous and
normal. Hence sup (¢1, ¢2) is the lattice union of ¢; and ¢.. However, if A
is a bounded class of normal upper semicontinuous functions, sup () need
not be normal. For example, let ¢ be defined over the real interval [0, 1] by
¢(x) =1 when x1/2 and ¢(1/2) =0. Let A be the set of all continuous func-
tions f such that f<¢. Then sup (¥) =¢ and ¢ is not normal. Also it should
be noted that inf (¢1, ¢2) need not be normal if ¢; and ¢, are normal. For
example, let ¢;, ¢2 be the characteristic functions of the closed intervals
[0, 1/2] and [1/2, 1] respectively. Then {x[inf (1, ¢2)>0} consists of the
single point x=1/2 and hence is not a union of closures of open sets.

The general determination of the lattice operations in the set of normal
upper semicontinuous functions is contained in the following theorem.

THEOREM 4.2. Let S be an arbitrary topological space and let U be a bounded
collection of mormal upper semicontinuous functions on S. Then the unique
minimal normal upper semicontinuous function containing the functions of A s
(sup A)*, while the unique maximal normal upper semicontinuous function con-
tained in the functions of A is ((inf A)s)*.

For by (3.3), (3.4), and (3.5) we have (((sup %)*)x)* =< (sup A)*. On the
other hand, since sup A=¢ all ¢S, we have (((sup A)*)x)*= ((¢*))*
= (¢x)*=¢ for all pU. Hence (((sup A)*)«)*=sup A and thus (((sup A)*)x)*
= (sup A)*. We conclude that (sup A)* is normal. If ¢ is a normal upper
semicontinuous function such that y 2¢ all <9, then ¢ =sup A and hence
Y=y¢*=(sup A)*. Thus the first conclusion of the theorem holds. Now if
Y=¢ all €, then ¢ <inf A and hence Y = (Yx)* < ((inf A)x)* and ((inf A)x)*
is a normal, upper semicontinuous function by (3.6). The proof is thus
complete.

5. An application. We show now that the results of §§3 and 4 contain as
a special case the theorem of Stone [5, 6] and Nakano [3] on complete lat-
tices of continuous functions.

TuHEOREM 5.1 (Stone-Nakano). If S ¢s a topological space in which the
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closure of every open set is open, then C(S) is complete. Conversely, if C(S) is
complete and S is completely regular, then the closure of every open set is open.

For if the closure of every open set is open, by the corollary to Theorem
3.2, every normal upper semicontinuous function is continuous and by
Theorem 4.2, C(S) is complete. Conversely, if C(S) is complete and S is
completely regular, by Theorem 4.1 every normal upper semicontinuous
function is continuous and hence by the corollary to theorem 3.2, the closure
of every open set is open.

PART I1. THE BOOLEAN SPACE ASSOCIATED WITH THE NORMAL COMPLETION

6. The second representation theorem. In this section it will be shown
that the normal completion of the lattice of continuous functions on a topo-
logical space is isomorphic to the lattice of all continuous functions on another
suitably determined topological space. Now it is well known (Birkhoff [1])
that the regular open sets(®) of a topological space form a complete Boolean
algebra under set inclusion. Furthermore, with any Boolean algebra there is
associated the Boolean space of minimal dual ideals. The precise theorem to
be proved is the following:

THEOREM 6.1. Let S be completely regular. Then the normal completion of
C(S) is isomorphic with the lattice of all continuous functions on the Boolean
space(”) associated with the Boolean algebra of regular open sets of S.

Let & denote the Boolean space associated with the Boolean algebra  of
regular open sets of .S. Thus & is the set of all minimal dual ideals(?) of Z.
The topology in & is such that the closure of a subset A of & consists of all
minimal dual ideals p of & for which \U32Dp in the lattice of dual ideals.

We next define a pair of correspondences, ¢ and 7, one of which maps
B(S) into B(®) while the other maps B(&) into B(S). The mapping ¢ is defined
by
(6.1) af(p) = inf sup f(y).

Py yEP
Thus for each regular open set PEp, the upper bound of f on P is calculated

and the lower bound of these values for all PEp is of(p). The mapping 7 is
defined by

(6.2) 7F(x) = inf supF(q).
xEA AEq

Thus for each regular open set 4 containing x, the upper bound of F(q) for all

(®) See Birkhoff [1, p. 177].

(7) See Stone [4].

(®) The minimal dual ideals of the lattice = are in one-to-one correspondence with the
maximal ring ideals of = as a Boolean ring.
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q containing A is calculated and the lower bound of these values for all 4
containing x is 7 F(x). '

The proof of Theorem 6.1 will rest on a series of lemmas concerning the
mappings o, 7.

LemMA 6.1. If f*>g, then of Zog. Dually, if F*=G, then 1F=7G.
For if N is any open set, we have
sup f(x) = sup f*(x).
zEN zEN
Hence

of(p) = inf sup f(x) = inf sup f*(x) = inf sup g(x) = ag(p).
PEy zEP PEy zEP PEy zE€
If A is any regular open set of S, then the set of all g containing 4 is both
open and closed and hence

sup F(q) = sup F*(q).
Eq

Thus if F*=G, we have
7F(x) = inf supF(q) = inf supF*(q) = mf squ(q) 7G(%).
2EA AC,

e

LEMMA 6.2. of and 7F are upper semicontinuous for each fEB(S) and
FEB(©).

For let af(p) <N\. Then PEp exists such that sup,er f(y) <\. If P&q,
then of(q) Ssup,er f(») <. Since the set of all q containing P is both open
and closed, it follows that {pl af(p) <\} is open and hence df is upper semi-
continuous.

Similarly if 7F(x) <\, then there exists a regular open set 4 containing x
such that supsep F(p) <N. Hence if yEA4, we have 7F(y) Ssupaey F(p) <\
Since 4 is open {x/7F(x) <\} is open and 7F is thus upper semicontinuous.

LeMMA 6.3. If f is a normal, upper semicontinuous function on S, then of
is a continuous function on &.

For let af(p) >\ and suppose that for each PE&p there exists a q containing
P such that af(q) =N. Let af(p) >M>N. Then of(q) <A;, and hence there
exists Q€ q such that f(y) <A; all yGQ Now PNQ belongs to ¢ and hence is
non-empty. Let

W= {ylf(y) <M}

Then PNQC WCW and if B denotes the interior of W we have PNQCB.
Hence BNP#0 for every PEyp and thus (B)Np=0. But then B&Eyp. On
the other hand, since BCW, f(y) <\4, on a set dense in B. Hence fx(y) =\
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for all y&B. But then (f«)*(y) =\ all yEB. From the normality of f we get
f) = (fD*») =M all y € B.

Hence of(p) =supy,es f(¥) =M <af(p) which is impossible. Thus for some
PcEy, af(q) >N\ all 4 containing P. It follows that {pl af(p) >)\} is open for
each N and hence of is lower semicontinuous. But then Lemma 6.2 implies
that of is continuous.

LEMMA 6.4. If S is regular and F is a lower semicontinuous function on &,
then TF is a normal, upper semicontinuous function on S.

Now 7F is upper semicontinuous by Lemma 6.2. Hence if 7F is not
normal, by Theorem 3.1 there exists ¢>0, x&.S and open set N containing x
such that U= {leF(y) <7F(x) —e} is dense in N. By regularity there exists
a regular open set 4 such that x&A4 C N. It follows that AN U is dense in 4.
Let 7F(x) >A>7F(x)—e. If yEANU then 7F(y) <\, and hence a regular
open set 4, containing y exists such that F(p) <\ all p containing 4,. Let A
be the collection of all p for which 4,Ep for some yEANU. Let B&€UA.
Then BDA, all yEANU and hence BDANU. Since ANU is dense in 4
we have BDA. But B is a regular open set and hence BDA. Thus UYDp
all p containing 4. But F(q) <\ all ¢€¥ and hence by the lower semicon-
tinuity of F, F(p) <\ all p containing 4. But then

TF(x) < supF(p) = X < 7F(x),
A€y
which is impossible. It follows that 7F is a normal, upper semicontinuous
function on S.
LEMMA 6.5. If S is regular and fEB(S), then raf <f*.
For all regular open sets 4 containing x we have
sup af(p) = 70f().
Ay
Thus if €>0, for each 4 containing x, there exists a p containing 4 such that
af(p) >70f(x) —e. But then
sup f(y) Z of(p) > 10f(x) — e
vEA .
Thus f(y) >1of(x) — € for some y in each 4 containing x. Hence if S is regular,
f*(x)=7af(x) —e. Since e is arbitrary we have f*=raf.

LEMMA 6.6. If f is a normal, upper semicontinuous function on S, then
Tof=f.

For if €>0 and x is any element of S, there exists a regular open set 4
such that af(p) <7of(x)+e€ for all p containing 4. But then for some PEYp
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we have f(y) <raf(x)+e€ all yEP. Let
= {317 < 1of(2) + ¢}.

Then for each p containing 4, there is a PEp such that WD P. Thus if B
denotes the interior of W, BDOP and hence BEp all p containing 4. But then
BDA and hence x&B. Now f(y) <7af(x)+e€ on a set dense in W and hence
dense in B. Thus fx(y) =70f(x) +¢€ for all y&B. By the normality of f we have

) = (f)*(9) = 70f(x) + € all y &€ B.
In particular, f(x) S7af(x)+ € for each €>0. Thus f<7df.
LeEmMA 6.7. If FEB(S), then Fx <orF =< F*.

For let €>0 and let p be an arbitrary element of ©. Then P&y exists such
that 7 F(y) <ot F(p) + € all yEP. But for each yE P there exists a regular open
set A, containing y, such that F(q) <orF(p)+e€ all g€4,. Let A; be the set
of all q containing 4, for some y. If BEUY,, then y&EA4,C B forall y and hence
PCB. But then BEp and hence UY; Dyp. Since pE;, we have

Fy(p) = o7F(p) + e

But €is arbitrary; and hence Fx <o7F.
On the other hand, for every P&p we have

sup 7F(y) = o7F(p).
vEP

Hence if €>0, there is a' yEP such that 7F(y)>orF(p)—e and thus
supreq F(g) >orF(p) —¢. Let U= {q| F(g) >orF(p)—e}. Then ULN(P) =0
for every P&y. Thus U?sz\p?fO and hence U%;Dp. Since p is a limit point
of YAz, we have

F*(p) 2 o1F(p) — «.

But € is arbitrary, and hence F*=o7F.

Proof of Theorem 6.1. By Lemma 6.3, 0 maps normal, upper semicon-
tinuous functions on S into continuous functions on €. By Lemmas 6.5 and
6.6, distinct normal semi-continuous functions on .S map into different con-
tinuous functions. By Lemmas 6.4 and 6.7, every continuous function on & is
an image of a normal, upper semicontinuous function on S. Finally, Lemma
6.1 shows that the mapping is an isomorphism. Hence the theorem follows
from Theorem 4.1 of Part I.

It should be noted that if C(S) is lattice complete, then the regular open
sets are simply the open and closed set of .S and Boolean space of Theorem
6.1 is the Stone-Cech compactification of S.

7. Special cases. Birkhoff [1, p. 177] has shown that if S is a com-
pletely regular space without isolated points and satisfying the second
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countability axiom, then the Boolean algebra of regular open sets is iso-
morphic with the normal completion of the free Boolean algebra with a
countably infinite set of generators. Applying Theorem 6.1 to this case we
obtain the following theorem.

THEOREM 7.1. Let S be a completely regular space without isolated points
and satisfying the second countability axiom. Then the normal completion of
C(S) 1s isomorphic with the lattice of all continuous functions on the Boolean
space associated with the normal completion of the free Boolean algebra with a
countably infinite set of generators.

As an immediate consequence we have the following corollary.

COROLLARY. All completely regular spaces without isolated points and satis-
fying the second countability axiom have the same normal completion for their
lattices of continuous functions.

In particular, Theorem 7.1 gives a simple representation of the normal
completion of the lattice of continuous functions on the interval [0, 1].
According to the corollary, the Cantor set and the real line also have lattices
of continuous functions with this same normal completion.
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