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1. Introduction. Let 5 be a topological space(1) and let C(S) denote the

set of all real valued, bounded, continuous functions on 5. It is well known

that C(S) is a distributive lattice under the operations sup (/, g) and inf (/, g).

In general, however, C(S) is not a complete lattice; that is, an arbitrary

bounded set of continuous functions in C(S) need not have a least upper

bound in the lattice C(S). Furthermore, the structure of the minimal comple-

tion of C(S) by means of normal subsets has not been determined even in the

simple case where S is the real interval [O, l].

The first part of the paper will be devoted to the construction of a set of

functions which form a complete lattice isomorphic to the normal completion

of C(S). We use for this purpose a class of bounded, upper semicontinuous

functions (called normal) which are characterized by the following property(2).

(/*)* - /•

It is proved that the normal completion of C(S) is isomorphic with the

lattice of all normal, upper semicontinuous functions on a suitably determined

completely regular space So- If S is completely regular, then So is simply S itself.

As an application we deduce the Stone-Nakano theorem on spaces 5 for

which C(S) is lattice complete.

In the second part of the paper it is shown that the normal completion of

C(S) is itself isomorphic to the lattice of all continuous functions on some

compact Hausdorff space. The precise theorem is the following.

Let S be completely regular. Then the normal completion of C(S) is isomorphic

with the lattice of all continuous functions on the Boolean space associated with

the Boolean algebra of regular open sets of S.

Birkhoff has shown that if 5 is a completely regular space without isolated

points and satisfying the second countability axiom, then the Boolean alge-

bra of regular open sets is isomorphic with the normal completion of the free

Boolean algebra with a countably infinite set of generators. Hence specializing
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we get the following theorem :

If S is a completely regular space without isolated points and satisfying the

second countability axiom, then the normal completion of C(5) is isomorphic

with the lattice of all continuous functions on the Boolean space associated with

the normal completion of the free Boolean algebra with a countably infinite set

of generators.

Thus the lattices of continuous functions on spaces satisfying the condi-

tions of the theorem all have the same normal completion. In particular, this

theorem gives a simple representation of the normal completion of the lattice

of continuous functions on the real interval [0, l].

Part I. Normal upper semicontinuous functions

2. Preliminary reduction. Since we shall be interested in lattice properties

of CiS), we may, if we wish, assume that S is completely regular(3) (Cech

[2 ](")). The reduction to the completely regular case can be accomplished as

follows: Define

x ~ y   if   /(*) = /(y) for all / G CiS).

The relation x~y is clearly an equivalence relation and hence separates S into

equivalence classes X, Y, Z, • • • . Let So denote the set of equivalence

classes. To each fE CiS) there corresponds a function F on So defined by

FiX) =/(x) where x is an element of X. If A 0 is a subset of S0, let the closure

of A o consist of all X such that for every F, F(X) = 0 whenever F( Y) = 0 for

all Y contained in ^40- Then So becomes a completely regular topological

space under this definition of closure and the mapping

f-*F

is a lattice isomorphism of C(5) onto CiS0).

By appealing to the Stone-Cech compactification theorem we could also

assume that S is compact. However, little is gained from the additional as-

sumption and it seems desirable that the results of part I should not depend

upon transfinite methods.

We shall frequently use the fact that every completely regular space is

regular; that is, if N is any open set containing x, there is an open set A

containing x whose closure is contained in N.

3. Properties of normal upper semicontinuous functions. Let BiS) denote

the set of all bounded, real functions on S. If x is a point of 5, let Nx denote

an arbitrary open set containing x. Then the two basic unary operations on

BiS) which we shall use are defined as follows:

(3) A topological space 5 is completely regular if for each x and open set A containing x,

there is a continuous function/ having the value 1 at x and vanishing outside A. Replacing/ by

sup (0, inf (1,/)) if necessary one may assume that the values of/lie between 0 and 1.

(4) Numbers in brackets refer to the references cited at the end of the paper.
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(3.1) 4>*(x) m inf  sup <p(y),
Ax   vENx

(3.2) fa(x) = sup  inf   <f>(y).
Nx   vE.Nx

Lemma 3.1. The operations <j>* and 0* have the following properties:

(3.3) <t>* ^ 4> ̂ 4>*,

(3.4) <t> ^ *    -*    <b*^t*    and    0* ^ *«,,

(3.5) (<f>*)* = <!>*,       (0*)* = 0*,

(3.6) (((0*)*)*)* = (<*>*)*,       (((<*>*)*)*)* = (0*)*.

Properties (3.3), (3.4), and (3.5) follow immediately from (3.1) and (3.2).

Also by (3.3), ((0*)*)*S;(0*)* and hence (((0*)*)*)*è ((**)*)* = (**)* by

(3.4) and (3.5). On the other hand (0*)* g </>*->-( (0*)*)*^ (</>*)* =<A*
-*(((<£*)*)*)* ̂  (0*)* by (3.3) and (3.4). Thus the first part of (3.6) is proved

and the second part follows in a similar manner.

Definition 3.1. 0 is upper semicontinuous on 5 if <p* = 0.

Lower semicontinuous functions are defined dually. Clearly 0 is continu-

ous if and only if 0*=0*.

The functions of B(S) which will be used to characterize the normal com-

pletion of C(S) are defined as follows:

Definition 3.2. An upper semicontinuous function 0 on S is normal if

(0*)*=0. Clearly every continuous function is normal.

Normality can be characterized as follows:

Theorem 3.1. An upper semicontinuous function 0 on S is normal if and

only if for each e>0, x^S, and open set N containing x, there exists a non-

empty open set A^N such that <p(y) ><p(x) — e all yÇzA.

For the proof let 0 be an upper semicontinuous function on S and let us

suppose first that 0 is normal. Let e>0 and let Nbe an open set containing x.

By (3.1),

sup 0*(z) ^ (4>*)*(x) = 4>(x).
¡£A'

For some z(EN

0*(z) > <t>(x) — €.

By (3.2) there is a neighborhood A of z contained in N such that

inf <p(y) > (¡)(x) — e.
»Si
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This gives the necessity of the condition of the theorem.

Conversely, if the condition is satisfied for all e > 0 and N containing x, let

zEA. Then

*»(«) è inf 4>iy) â <t>ix) - e.

Hence

sup^(s) ^ <t>ix) — e.

Thus

(<£*)*(*) = inf  sup^(z) ^ <*>(*) - e.

Since « is arbitrary we have

(4>*)* ^ </>•

Since <j> is upper semicontinuous we have by (3.3) and (3.4)

(**)* ̂  </>* = 0.

Hence (<£*)*=$ and the proof is complete.

Now a lower semicontinuous function can be characterized by the condi-

tion that {x|<£(x)>X} is open for each real X. A dual result holds for upper

semicontinuous functions. Normal upper semicontinuous functions can also

be characterized in a similar manner.

Theorem 3.2. An upper semicontinuous function <f> on S is normal if and

only if for each real X, {x| <p(x) >X} is a union of closures of open sets.

Let us suppose first that <£= (<£*)* and let A = {x|<£(x)>X}. Let x0 be an

arbitrary element of A. Then 0(xo) >X and hence 4>(xo) >X+ô for some ô>0.

Let B= }x|(£*(x) >X+Sj. Clearly B is open since </>* is lower semicontinuous.

If N is an arbitrary open set containing x0, then

sup 4>*iy) ^ (>*)*(*o) = <i>(xo) > X + 8.

Hence <£*(y)>X + 5 for some yEN. Thus BC\N^0 for all N and hence

XoEB. Moreover, if yoG-S, then Bi^N^O for every open set N containing y0

and thus

sup <t>*(y) > X + 5    all A7 containing    y0.
vGN

Hence^(yo) = (0*)*(yo)eX + S>X and thusy0G^4. But then x0EBQA and it

follows that A is a union of closures of open sets.

On the other hand, suppose that </> is upper semicontinuous and that
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{x|0(x)>X} is a union of closures of open sets for each real X. Let €>0,

XoÇLS, and N be an arbitrary open set containing x0. Then {x\<p(x)><p(xo)

— e] is a union of closures of open sets and hence there exists an open set

AiÇ \x\<p(x) >0(xo) — e} such that x0G-4i- But then A=AC\N is a non-

empty open set contained in N such that 0(y) ><p(x0) — e all y(EA. Thus 0

is normal by Theorem 3.1. This completes the proof of the theorem.

Corollary. Every normal upper semicontinuous function on S is continuous

if and only if the closure of every open subset of S is open.

For by Theorem 3.2 the characteristic function of the closure of an open

set is upper semicontinuous and normal. Hence if every normal upper semi-

continuous function is continuous, the closure of every open set is open.

Conversely, if the closure of every open set is open and 0 is any normal upper

semicontinuous function on S, then by Theorem 3.2, 0 is lower semicontinu-

ous and hence continuous.

4. Normal subsets of C(S). Before applying these results to the comple-

tion problem we shall recall some relevant facts from the theory of partially

ordered sets(s). A subset 5 of a partially ordered set P is normal if 5 contains

all a for which a ¡tx for every x such that y ^x for all y(E.S. If X is an arbitrary

subset of 5, the set of all x containing all elements of X is normal. In particu-

lar, for each a the set of all x^a is a normal subset called the principal normal

subset generated by a. The collection of normal subsets of P form a complete

lattice containing P as the partially ordered set of principal normal subsets

and preserving sup and inf whenever they exist in P. This normal completion

is minimal in the sense that if P is imbedded in any other complete lattice L,

the lattice of normal subsets is isomorphic with a lattice within L.

In the present case P is the lattice C(S) of continuous functions on 5.

If <¡>GB(S), let L0 denote the set of all f€.C(S) such that/^0.

Lemma 4.1. If<p£B(S), then inf (L+) =0*.

Since <p*(x) =infiv3. sup„gjvx <f>(y), for e>0 there exists an open set N con-

taining x such that <f>*(x)>supy^N 0(y) — e. By complete regularity, gÇ£C(S)

exists such that g(x) = l, g(y)=0 all y(E_'N and g^l. Let m = supy^s 4>(y)

and let

/ = m - (m - sup 4>(y))g.
vEN

Clearly fGC(S). If yGN, then f(y)^m-(m-supv&N 0(y))e0(y). If
ytE'N, then f(y)= m ̂ <p(y). Hence/§£0 and thus/G£«- We have then

0*f» > suP0(y) - € = /(*) - e â Hx) - e
vE.fi

(6) The reader is referred to Birkhoff [l ] for an account of this theory.
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where \p = 'mí (L¿). Since e is arbitrary, <p*(x) ̂ \¡/(x) for all x. On the other

hand,/^^> implies/=/*^^>*, which implies yf/}^<j>*. Hence 0*=i£ = inf (£,*,).

Lemma 4.2. Let <f> be a normal, upper semicontinuous function on S. Then

Lj, is a normal subset of C(S).

For let/ïïg for all g contained in the functions of L^. We must show that

ÍEL$. Let xES and let e>0. Since/ is continuous, there exists an open set

N containing x such that f(y) — f(x) < e/2 all y EN. Since <p is normal there

exists a non-empty open set A QN such that <f>(y) ><p(x) — e/2 all yG-<4. Let

y0 be a point of A. By complete regularity, there exists a continuous function

h(y) such that A^l, A(y0) = l, and A(y)=0 all yG'^4- Let me = inîy^s <£(y)

— e/2 and set g = mt-\-(<p(x)—t/2—mt)h. Now if yEA, then

g(y) ^me+ (4>(x) - e/2 - m.) - 4>(x) - e/2 < 0(y).

But if yE'A, then g(y) =mt<<p(y). Hence gá</> and thus g is a continuous

function contained in all of the functions of £¿. It follows that/eg. But then

/(yo) ^ g(yo) =mt+ (<b(x) - e/2 - me) = $(x) - e/2.

Since yoG-4 QN we have

K*) = Ayo) + (A*) - f(yo)) > ♦(*) - e.

Since e is arbitrary,/(x) ^</>(x) for all x and hence fEL$. This completes the

proof of the lemma.

We need also a converse result.

Lemma 4.3. Let 31 be a normal subset of CiS). Then inf (21) is a normal,

upper semicontinuous function on S.

For let </> = inf (SI) and let (/>* ?£/ where/G Cí-S1). Then if g is contained in all

of the functions of 21, we have g^cp and hence gg</>* ̂ /. Hence/G2Í since 21

is normal. But then by Lemma 4.1

(**)* = inf (L„) = inf (2Í) = <¡>.

Thus <f> is a normal, upper semicontinuous function and the lemma follows.

With these lemmas we are ready to prove the fundamental isomorphism

theorem.

Theorem 4.1. Let S be a completely regular topological space. Then the com-

pletion of C(S) by normal subsets is isomorphic with the lattice of all normal,

upper semicontinuous real functions on S.

For the proof let us recall that B(S) is a complete lattice containing C(S)

as a sublattice and hence it follows from the general theory of the normal

completion of a partially ordered set that if 21 is a normal subset C(S) the

mapping SI—>-inf (21) is an isomorphism. By Lemma 4.3, 2Í is mapped into the
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set of normal, upper semicontinuous real functions on 5. But by Lemmas 4.1

and 4.2 every normal upper semicontinuous function is an image of a normal

subset of C(S). The proof is thus complete.

UiPGB(S) and 0= (^*)*, then (0*)*=0 by (3.6). Conversely, if (0*)*=0,
then 0 trivially has the form (^*)* with \p(EB(S). Hence Theorem 4.1 can

also be stated in the following way.

Corollary. If S is completely regular, then the normal completion of C(S)

is isomorphic to the lattice of all functions of the form O/'*)* where ip is a bounded

real function on S.

Now it is clear from Theorem 3.2 that sup (0i, 02) where 0i and 02 are

normal upper semicontinuous functions is also upper semicontinuous and

normal. Hence sup (0i, 02) is the lattice union of 0i and 02. However, if §1

is a bounded class of normal upper semicontinuous functions, sup (SI) need

not be normal. For example, let 0 be defined over the real interval [O, 1 ] by

0(x) = l when xf^I/2 and 0(1/2) =0. Let 31 be the set of all continuous func-

tions / such that /^0. Then sup (SI) =0 and 0 is not normal. Also it should

be noted that inf (0i, 02) need not be normal if 0i and 02 are normal. For

example, let 0i, 02 be the characteristic functions of the closed intervals

[0, 1/2] and [l/2, l] respectively. Then {x|inf (0i, 02)>O} consists of the

single point x—1/2 and hence is not a union of closures of open sets.

The general determination of the lattice operations in the set of normal

upper semicontinuous functions is contained in the following theorem.

Theorem 4.2. Let S be an arbitrary topological space and let %be a bounded

collection of normal upper, semicontinuous functions on S. Then the unique

minimal normal upper semicontinuous function containing the functions o/SI is

(sup Si)*, while the unique maximal normal upper semicontinuous function con-

tained in the functions of% is ((inf SI)*)*.

For by (3.3), (3.4), and (3.5) we have (((sup SI)*)*)*^ (sup SI)*. On the

other hand, since sup 31^0 all 0G3I, we have (((sup 31)*)*)*^ ((0*)*)*

= (0*)*=0 for all 0G3I. Hence (((sup SI)*)*)* à sup 31 and thus (((sup 31)*)*)*

è (sup 31)*. We conclude that (sup 31)* is normal. If ^ is a normal upper

semicontinuous function such that ^2?0 all 0G3Í, then ^^sup 31 and hence

^,=i¿*í>(SUp 21)*. Thus the first conclusion of the theorem holds. Now if

4<S<t> all 0G3I, then ̂ ginf 31 and hencexP = (^*)*^((inf 31)*)* and ((inf SI)*)*
is a normal, upper semicontinuous function by (3.6). The proof is thus

complete.

5. An application. We show now that the results of §§3 and 4 contain as

a special case the theorem of Stone [5, 6] and Nakano [3] on complete lat-

tices of continuous functions.

Theorem 5.1  (Stone-Nakano). If S is a topological space in which the
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closure of every open set is open, then C(S) is complete. Conversely, if C(S) is

complete and S is completely regular, then the closure of every open set is open.

For if the closure of every open set is open, by the corollary to Theorem

3.2, every normal upper semicontinuous function is continuous and by

Theorem 4.2, C(S) is complete. Conversely, if C(S) is complete and 5 is

completely regular, by Theorem 4.1 every normal upper semicontinuous

function is continuous and hence by the corollary to theorem 3.2, the closure

of every open set is open.

Part II. The Boolean space associated with the normal completion

6. The second representation theorem. In this section it will be shown

that the normal completion of the lattice of continuous functions on a topo-

logical space is isomorphic to the lattice of all continuous functions on another

suitably determined topological space. Now it is well known (Birkhoff [l])

that the regular open sets(6) of a topological space form a complete Boolean

algebra under set inclusion. Furthermore, with any Boolean algebra there is

associated the Boolean space of minimal dual ideals. The precise theorem to

be proved is the following:

Theorem 6.1. Let S be completely regular. Then the normal completion of

C(S) is isomorphic with the lattice of all continuous functions on the Boolean

spaceC) associated with the Boolean algebra of regular open sets of S.

Let © denote the Boolean space associated with the Boolean algebra 2 of

regular open sets of S. Thus © is the set of all minimal dual ideals(8) of 2.

The topology in © is such that the closure of a subset 21 of © consists of all

minimal dual ideals p of © for which VJ212P in the lattice of dual ideals.

We next define a pair of correspondences, a and t, one of which maps

B (S) into B (©) while the other maps B (©) into B (S). The mapping a is defined

by

(6.1) <r/(p) = inf sup/(y).

Thus for each regular open set PGp, the upper bound of / on P is calculated

and the lower bound of these values for all PGp is o/(p). The mapping r is

defined by

(6.2) tF(x) = inf supF(q).
«Gi A£q

Thus for each regular open set A containing x, the upper bound of F(q) for all

(•) See Birkhoff [l, p. 177].
(7) See Stone [4].

(8) The minimal dual ¡deals of the lattice 2 are in one-to-one correspondence with the

maximal ring ideals of 2 as a Boolean ring.
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q containing A is calculated and the lower bound of these values for all A

containing x is tF(x).

The proof of Theorem 6.1 will rest on a series of lemmas concerning the

mappings a, r.

Lemma 6.1. Iff*^g, then af^ag. Dually, if F*^G, then tF^tG.

For if N is any open set, we have

sup/(x) = sup/*(x).
xGN zEN

Hence

<r/(p) = inf  sup/(x) = inf  sup/*(x) ^ inf  supg(x) = <rg(p).
PEv xEP PEv xEP PEv i£f

If A is any regular open set of S, then the set of all q containing A is both

open and closed and hence

supF(q) = supF*(q).
AEq ^Eq

Thus if F*^G, we have

tF(x) = inf supF(q) = inf supF*(q) ^ inf  supG(q) = tG(x).
*GA AEq xEA AEq i£A ¿Sq

Lemma 6.2. af and tF are upper semicontinuous for each fEB(S) and

FEB(&).

For let o/(p) <X. Then PGp exists such that sup¡,eP f(y) <X. If PGq,

then o/(q) ^sup„gp/(y) <X. Since the set of all q containing P is both open

and closed, it follows that {p| o/(p) <X} is open and hence af is upper semi-

continuous.

Similarly if tF(x) <X, then there exists a regular open set A containing x

such that supxGP P(í) <^- Hence if yG-4, we have rF(y) ^sup^e? F(p) <X.

Since A is open \x/tF(x) <X} is open and tF is thus upper semicontinuous.

Lemma 6.3. /// is a normal, upper semicontinuous function on S, then of

is a continuous function on ©.

For let o/(p) >X and suppose that for each PGp there exists a q containing

P such that o/(q)5sX. Let <r/(p)>Xi>X. Then <r/(q) <Xi, and hence there

exists QGq such that/(y) <Xi all yEQ- Now PC\Q belongs to q and hence is

non-empty. Let

W* {y\f(y) <Xi}.

Then Pr\QQWQW and if B denotes the interior of W we have PPiÇÇP.

Hence PAP^O for every_PGp and thus (B)C\p^0. But then PGp. On

the other hand, since BQW, f(y) <Xi, on a set dense in B. Hence/*(y)^Xi
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for ail yÇ_B. But then (/*)*(y) ^Xi all yE_B. From the normality of/ we get

f(y) = (U)*(y) ̂  Xi all   y G B.

Hence o/(p) ^sup^gs /(y) ^Xi<o/(p) which is impossible. Thus for some

PGp, o/(q)>X all ^4 containing P. It follows that {p|<r/(p)>X} is open for

each X and hence of is lower semicontinuous. But then Lemma 6.2 implies

that af is continuous.

Lemma 6.4. 2/ 5 is regular and F is a lower semicontinuous function on <5,

then tF is a normal, upper semicontinuous function on S.

Now tF is upper semicontinuous by Lemma 6.2. Hence if tF is not

normal, by Theorem 3.1 there exists e>0, xGS and open set N containing x

such that V— {y|r£(y) ^r£(x) — e} is dense in N. By regularity there exists

a regular open set A such that xG^4 C^. It follows that A(~\ U is dense in A.

Let t£(x)>X>t£(x) —e. If yÇ^AC\U then r£(y) <X, and hence a regular

open set Ay containing y exists such that £(p) <X all p containing Ay. Let SI

be the collection of all p for which ^4¡,Gp for some yC£AC\U. Let 5GUSI.

Then B^2Ay all yEACMJ and hence B^AiMJ. Since virW is dense in ^

we have B~DA. But £ is a regular open set and hence B\WA. Thus U3Í3P

all p containing A. But £(q) <X all qGSI and hence by the lower semicon-

tinuity of F, £(p) gX all p containing A. But then

tF(x) ^ supF(p) g X < t£(s),

which is impossible. It follows that tF is a normal, upper semicontinuous

function on S.

Lemma 6.5. If S is regular andfÇzB(S), then ro-fSf*.

For all regular open sets A containing x we have

SUpo/(p)   ^   TO-f(x).
AE*

Thus if e>0, for each A containing x, there exists a p containing A such that

o/(p)>to/(x)-€. But then

sup/(y) à <r/(p) > ro-f(x) - €.

Thus/(y) >rof(x) — e for some y in each .4 containing x. Hence if 5 is regular,

f*(x)^rof(x) — e. Since e is arbitrary we have/*^ro/.

Lemma 6.6. If f is a normal, upper semicontinuous function on S, then

TO-f^fi

For if e>0 and x is any element of S, there exists a regular open set A

such that <r/(p) <ro/(x)+e for all p containing A. But then for some PGP
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we have/(y) <r<r/(x)+e all yEP- Let

W=  {y\f(y) <raf(x) + e\.

Then for each p containing A, there is a PGp such that W\WP. Thus if B

denotes the interior of W, B^P and hence PGp all p containing A. But then

B~^_A and hence xEB. Now f(y) <ro/(x)+e on a set dense in W and hence

dense in B. Thus/*(y) ^ro-f(x)-\-e for all yEB. By the normality of/we have

f(y) = (f*)*(y) ^ raf(x) + e all    y G P.

In particular,/(x) ¿Tfff(x)+e for each e>0. Thus/^ to/.

Lemma 6.7. If FEB(&), then F*gorFáF*.

For let e>0 and let p be an arbitrary element of ©. Then PGp exists such

that rF(y) <errF(p) +e all yEP- But for each yEP there exists a regular open

set Ay containing y, such that F(q) <o-rF(p)+e all qEAy. Let 2ii be the set

of all q containing Ay for some y. If PGUSIi, thenyG^4¡,CP for all y and hence

PQB. But then PGp and hence U2Ii2p. Since pGSi, we have

F*(p) ^ <rrF(p) + e.

But e is arbitrary, and hence F* ^otF.

On the other hand, for every PGp we have

sup rF(y) Si orF(p).
vEP

Hence  if  e>0,  there is  a yEP such   that rF(y) >orF(p) — e  and   thus

'     supi>G, F(q)>orF(p)-e. Let 2I2= {q|P(q) >orF(p) -e}. Then U2L/MP) ?¿0
for every PGp. Thus L^np^O and hence U2l22p- Since p is a limit point

of 2Í2, we have

F*(p) ^ crF(p) - e.

But e is arbitrary, and hence F*^<ttF.

Proof of Theorem 6.1. By Lemma 6.3, a maps normal, upper semicon-

tinuous functions on S into continuous functions on ©. By Lemmas 6.5 and

6.6, distinct normal semi-continuous functions on 5 map into different con-

tinuous functions. By Lemmas 6.4 and 6.7, every continuous function on © is

an image of a normal, upper semicontinuous function on S. Finally, Lemma

6.1 shows that the mapping is an isomorphism. Hence the theorem follows

from Theorem 4.1 of Part I.

It should be noted that if C(S) is lattice complete, then the regular open

sets are simply the open and closed set of S and Boolean space of Theorem

6.1 is the Stone-Cecli compactification of S.

7. Special cases. Birkhoff [l, p. 177] has shown that if 5 is a com-

pletely regular space without isolated  points and  satisfying the second
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countability axiom, then the Boolean algebra of regular open sets is iso-

morphic with the normal completion of the free Boolean algebra with a

countably infinite set of generators. Applying Theorem 6.1 to this case we

obtain the following theorem.

Theorem 7.1. Let S be a completely regular space without isolated points

and satisfying the second countability axiom. Then the normal completion of

C(S) is isomorphic with the lattice of all continuous functions on the Boolean

space associated with the normal completion of the free Boolean algebra with a

countably infinite set of generators.

As an immediate consequence we have the following corollary.

Corollary. All completely regular spaces without isolated points and satis-

fying the second countability axiom have the same normal completion for their

lattices of continuous functions.

In particular, Theorem 7.1 gives a simple representation of the normal

completion of the lattice of continuous functions on the interval [0, l].

According to the corollary, the Cantor set and the real line also have lattices

of continuous functions with this same normal completion.
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