On Banach Spaces with the Gelfand-Phillips Property

Lech Drewnowski

Institute of Mathematics, A. Mickiewicz University, ul. Matejki 48/49, 60-769 Poznań, Poland Institute of Mathematics, Polish Academy of Sciences (Poznań Branch)

1. Introduction and Preliminaries

If X is a Banach space, then $(X)_1$ denotes its closed unit ball, and X^* is the Banach dual space to X; X^* is often considered with its weak* topology, w^* . An "operator" always means a continuous linear operator from one Banach space into another. In general, our terminology is standard, as in [2] or [11].

Throughout, E and F denote Banach spaces.

A (bounded) subset A of E is called *limited* [2] if, for every w^* -null sequence (x_n^*) in E^* , we have $x_n^*(x) \to 0$ uniformly for $x \in A$. If all limited subsets of E are relatively (norm) compact (the converse holds trivially), then E is said to have the Gelfand-Phillips property [3] or to be a Gelfand-Phillips space; we shall often write $E \in (GP)$ in this case.

In Sect. 2 we prove that $E \in (GP)$ if $(E^*)_1$ contains a subset that is norming and weak* conditionally sequentially compact; this improves on the earlier results mentioned in [2, p. 238] and [3, p. 150], and a recent result in [7]. We also show that if $F \in (GP)$ and T is any topological space containing a dense and conditionally sequentially compact subset, then $C(T,F) \in (GP)$. This result was obtained by the author in [5] with a more direct but much longer proof, and is an improvement of similar results in [2] and [7].

In Sect. 3 we show that if E and F are Gelfand-Phillips spaces, then so is their injective tensor product $E \otimes F$. The same conclusion was obtained in [7] under the additional assumption that $\text{ext}(E^*)_1$ or $\text{ext}(F^*)_1$ is weak* conditionally sequentially compact. In particular, if T is a compact space, then $C(T,F) \in (GP)$ whenever $C(T) \in (GP)$ and $F \in (GP)$.

Section 4 brings the following result: If E^* and F are in (GP), then also K(E,F), the space of compact operators from E to F, is in (GP).

Finally, in Sect. 5, the main result is that $E \in (GP)$ if E admits a Schauder decomposition with Gelfand-Phillips summands.

In principle, Sects. 2-5 are mutually independent.

The following two results will be frequently used below; (A) can be verified directly, while (B) follows easily from a result due to Bourgain and Diestel [1]. (B) will play a significant role in many of our arguments.

406 L. Drewnowski

(A) A sequence (x_n) in E is limited (i.e., the set of its terms is limited) iff $x_n^*(x_n) \to 0$ for each w*-null sequence (x_n^*) in E*.

(B) $E \in (GP)$ iff every limited weakly null sequence in E is norm null.

Let us also note that continuous linear images of limited sets or sequences are limited, and that any Banach space isomorphic to a subspace of a Gelfand-Phillips space is Gelfand-Phillips.

Following Bourgain and Diestel [1], we say that an operator $u:E \to F$ is limited if it maps $(E)_1$ to a limited subset of F or, equivalently, if $u^*:(F^*,w^*)\to(E^*,\|\cdot\|)$ is sequentially continuous. One readily verifies that

(C) $E \in (GP)$ iff every limited operator with range in E is compact.

2. Gelfand-Phillips Spaces and Conditional Sequential Compactness

We shall say that a subset S of a topological space $T = (T, \rho)$ is $(\rho -)$ conditionally sequentially compact (shortly, $(\rho -)$ CSC) if every sequence in S has a subsequence converging to a limit in T.

2.1 **Lemma.** Let $u:E \to F$ be a limited operator. If B is a w^* -CSC subset of F^* and $C = \overline{aco}^{w^*}(B)$ is its w^* -closed absolutely convex hull, then $u^*(C)$ is a norm compact subset of E^* .

Proof. Since B is w^* -CSC and u^* is weak*-to-norm sequentially continuous, it follows that $u^*(B)$ is relatively norm compact, hence its norm closed absolutely convex hull $D = \overline{u^*(acoB)}$ is norm compact. It is easily seen that $D = u^*(C)$.

A bounded subset B of F^* is called *norming* (for F) if $y \mapsto \sup\{|y^*(y)|: y^* \in B\}$ is an equivalent norm on F. It is well known that B has this property iff $\overline{aco}^{w^*}(B)$ contains a ball in F^* centered at 0.

Our principal result in this section is the following.

2.2. **Theorem.** If F^* has a norming w^* -CSC subset, then $F \in (GP)$.

Proof. As noted above, if B is such a subset of F^* , then $C = \overline{aco}^{w^*}(B)$ contains a ball centered at 0. On the other hand, if $u: E \to F$ is a limited operator then, by Lemma 2.1, $u^*(C)$ is norm compact in E^* . Thus u^* is a compact operator, and so is u, by Schauder's theorem. It follows that $F \in (GP)$, by (C).

2.3 Corollary. If $(F^*)_1$ is w^* -sequentially compact or, more generally, if it contains a w^* -dense w^* -CSC subset, then $F \in (GP)$.

This corollary, combined with Rosenthal's ℓ_1 -theorem and Goldstine's theorem, gives the following known fact ([2, p. 150]; cf. also [6]): If F does not contain any isomorphic copy of ℓ_1 then $F^* \in (GP)$.

We shall say that a topological space T satisfies condition (DCSC) if it has a dense CSC subset S. It is easily verified that the class of (DCSC)-spaces is closed with respect to continuous images and arbitrary products. [In fact, let T be the product of a family (T_i) of (DCSC)-spaces. For each i let S_i be a dense CSC subset of T_i , and let S be any Σ -product of the family (S_i) (see [8]), i.e., fix any point $a = (a_i)$ in $\prod S_i$ and set $S = \{(s_i) \in \prod S_i : \text{card } \{i : s_i \neq a_i\} \leq \aleph_0\}$. Then S is a dense CSC subset of T.]

If $T \in (DCSC)$, F is a Banach space and $f: T \to F$ is a continuous function, then f(T) is easily seen to be a compact subset of F; hence f is bounded. We denote by C(T,F) the Banach space of all continuous functions from T to F, with the sup norm. As usual, if F is the space of scalars, we simply write C(T).

If $T \in (DCSC)$ with a dense CSC subset S and if $\delta: T \to C(T)^*$ is the canonical map, then $\delta(S)$ is easily seen to be a norming w^* -CSC set in $C(T)^*$. Hence $C(T) \in (GP)$, by Theorem 2.2. A more general result is valid:

2.4. **Theorem.** If T is a topological space satisfying (DCSC) and $F \in (GP)$, then also $C(T,F) \in (GP)$.

Proof. In view of (B) it suffices to show that if (f_n) is a limited weakly null sequence in C(T,F), then $||f_n|| \to 0$. We first observe that for each t in T the evaluation operator $f \mapsto f(t)$ from C(T,F) to F maps the sequence (f_n) to the sequence $(f_n(t))$, so the latter is also limited and weakly null - in F. But $F \in (GP)$, so $||f_n(t)|| \to 0$ by (B).

Now, suppose $||f_n|| \to 0$. Then we may assume that for some sequence (s_n) in S (a dense CSC set in T) and some r > 0 we have $||f_n(s_n)|| > 2r$ for all n. Next, applying the fact that S is CSC and passing to a subsequence if necessary, we may assume that (s_n) converges to some $t \in T$. Since $||f_n(t)|| \to 0$, we may finally assume that $r_n = ||f_n(s_n) - f_n(t)|| > r$ for all n. Now choose for each n a norm one functional y_n^* in F^* so that $y_n^*(f_n(s_n) - f_n(t)) = r_n$, and define $\eta_n \in C(T, F)^*$ by $\eta_n(f) = y_n^*(f(s_n) - f(t))$. Since $|\eta_n(f)| \le ||f(s_n) - f(t)|| \to 0$ because $s_n \to t$, we see that (η_n) is a w^* -null sequence in $C(T, F)^*$. But $\eta_n(f_n) = r_n > r > 0$ for all n, contradicting the assumption that (f_n) is limited.

- 2.5. Remarks. 1) As observed in [5], if T satisfies (DCSC), then C(T,F) is isometrically isomorphic to a space C(K,F), where K is a compact Hausdorff space satisfying (DCSC).
- 2) Let I be a set of cardinality 2^{\aleph_0} . Then $K = [-1,1]^I$ is a compact space satisfying (DCSC) so that $C(K) \in (GP)$; however, K is not sequentially compact. Moreover, $K = (\ell_{\infty}(I))_1 = (\ell_1(I)^*)_1$ has a norming w^* -CSC subset (e.g., formed by the functions with a countable support) so that $\ell_1(I) \in (GP)$; however, ext K is not w^* -conditionally sequentially compact. Thus the results proved above are indeed more general than those contained in [7].

3. Injective Tensor Products of Gelfand-Phillips Spaces

We refer to [3, Ch.VIII] for the definition and basic properties of injective tensor products of Banach spaces. Our main result here is the following

3.1. **Theorem.** If both E and F are Gelfand-Phillips spaces, then so is their injective tensor product $E \otimes F$.

Proof. According to (B), we have to prove that if (z_n) is a limited weakly null sequence in $E \otimes F$, then $||z_n|| \to 0$.

Let $i: E \to E$ and $j: F \to F$ be the identity operators.

For every x^* in E^* consider the operator $v_{x^*} = x^* \otimes j : E \otimes F \to F$; thus $v_{x^*}(x \otimes y) = x^*(x)y$ for all $x \in E$, $y \in F$. Then $(v_{x^*}(z_n))$ is a limited and weakly null

408 L. Drewnowski

sequence in F; hence, by (B),

$$||v_{x^*}(z_n)|| \to 0.$$

Since $||z_n|| = \sup \{|(x^* \otimes y^*)(z_n)|: ||x^*|| \le 1, ||y^*|| \le 1\}$, we can find sequences (x_n^*) in E^* and (y_n^*) in F^* of functionals of norm ≤ 1 such that, for each n,

$$|(x_n^* \otimes y_n^*)(z_n)| \ge \frac{1}{2} ||z_n||.$$

For any y^* in F^* consider the operator $w_{y^*} = i \otimes y^* : E \otimes F \to E$; thus $w_{y^*}(x \otimes y) = y^*(y)x$ for all $x \in E$, $y \in F$. Let, for each n,

$$x_n = w_{v_n^*}(z_n)$$
.

Since $x^*(w_{v^*}(z)) = (x^* \otimes y^*)(z)$, we have

(*)
$$||x_n|| \ge |x_n^*(x_n)| = |(x_n^* \otimes y_n^*)(z_n)| \ge \frac{1}{2} ||z_n||.$$

 (x_n) is weakly null in E: Indeed, if $x^* \in E^*$, then

$$|x^*(x_n)| = |(x^* \otimes y_n^*)(z_n)| = |y_n^*(v_{x^*}(z_n))| \le ||v_{x^*}(z_n)|| \to 0.$$

 (x_n) is limited in E: Let (u_n^*) be a w^* -null sequence in E^* . Then $(u_n^* \otimes y_n^*)$ is a w^* -null sequence in $(E \otimes F)^*$. In fact, it is bounded and for any $x \in E$ and $y \in F$ we have $((u_n^* \otimes y_n^*)(x \otimes y) = u_n^*(x)y_n^*(y) \to 0$. Since $E \otimes F$ is dense in $E \otimes F$, we must have $(u_n^* \otimes y_n^*)(z) \to 0$ for every z in $E \otimes F$. Now,

$$u_n^*(x_n) = u_n^*(w_{v_n^*}(z_n)) = (u_n^* \otimes y_n^*)(z_n) \to 0$$

because (z_n) is limited in $E \otimes F$ and $(u_n^* \otimes y_n^*)$ is w^* -null in $(E \otimes F)^*$. It follows that (x_n) is limited in E, as claimed.

Thus the sequence (x_n) is limited and weakly null in E. Since $E \in (GP)$, $||x_n|| \to 0$, by (B); now, using (*) we get $||z_n|| \to 0$ which concludes the proof.

- 3.2 Corollary. Let T be a compact space and F a Banach space. If both C(T) and F are Gelfand-Phillips spaces, then so is $C(T, F) = C(T) \otimes F$.
- 3.3. Remarks. 1) Of course, Theorem 3.1 is best possible: If $\{0\} \neq E \otimes F \in (GP)$, then $E \otimes F$ contains isometric copies of both E and F and so $E, F \in (GP)$.
- 2) A direct proof of 3.2 (which was discovered first) is a bit simpler: In this case, starting with a limited weakly null sequence (f_n) in C(T, F), we can find a sequence (y_n^*) of norm one functionals in F^* so that $||f_n|| = ||y_n^* f_n||$. Therefore, proceeding as in the proof of 3.1, we do not need the sequence (x_n^*) . [The relevant operators used in this particular situation are: $v_{\mu}(f) = \int_T f d\mu$ for $\mu \in C(T)^*$, the space of Radon measures on T; $w_{y^*}(f) = y^* f$; $(\mu \otimes y^*)(f) = \int_T y^* f d\mu$.]
- 3) The present author does not know whether $C(T) \in (GP)$ may occur for a compact space T not satisfying (DCSC). Consequently, it is not clear at the moment if Corollary 3.2 is a genuine improvement of Theorem 2.4.

4. The Gelfand-Phillips Property in Spaces of Compact Operators

Let K(E,F) denote the Banach space of all compact operators from E to F. We start with an application of Theorem 2.4 although, in a moment, a more general (and, in fact, best possible) result will be proved, using arguments similar to those applied in Sect. 3.

- 4.1. Proposition. Let E and F be Banach spaces such that
 - (i) E does not have subspaces isomorphic to ℓ_1 and $F \in (GP)$, or
 - (ii) $E^* \in (GP)$ and $(F^*)_1$ is w^* -sequentially compact.

Then K(E,F) is a Gelfand-Phillips space.

- *Proof.* (i): $T = (E^{**})_1 \in (DCSC)$ (by Rosenthal's ℓ_1 -theorem and Goldstine's theorem), hence $C(T,F) \in (GP)$ by 2.4. Now it is enough to observe that the map $u \mapsto u^{**}|_T$ is a linear isometry from K(E,F) into C(T,F).
- (ii): In this case $u \mapsto u^*|_T$, where $T = (F^*)_1$, is a linear isometric embedding of K(E,F) into $C(T,E^*)$, and the latter space is Gelfand-Phillips, by 2.4 again.

[Of course, we have considered the unit balls above with their respective weak* topologies.]

4.2. **Theorem.** If the Banach spaces E and F are such that both E^* and F are Gelfand-Phillips spaces, then also K(E,F) is a Gelfand-Phillips space.

Proof. Let (u_n) be a limited weakly null sequence in K = K(E,F). We have to show that $||u_n|| \to 0$ (cf. (B)).

Choose a sequence (x_n) in E so that $||x_n|| = 1$ and $||u_n(x_n)|| \ge \frac{1}{2} ||u_n||$ for all n. We claim that $(y_n) = (u_n(x_n))$ is a weakly null limited sequence in F.

For every y^* in F^* , applying the operator $u \mapsto y^*u: K \to E^*$, we see that (y^*u_n) is a limited weakly null sequence in E^* . Since $E^* \in (GP)$, $||y^*u_n|| \to 0$ obtains by (B); hence $y^*(y_n) = (y^*u_n)(x_n) \to 0$. Thus (y_n) is weakly null.

Now let (y_n^*) be w^* -null in F^* , and define a sequence (η_n) in K^* by $\eta_n(u) = y_n^*(u(x_n))$. If $u \in K$, then $u[(E)_1]$ is relatively compact in F; therefore, $y_n^*(u(x)) \to 0$ uniformly for x in $(E)_1$, i.e., $||y_n^*u|| \to 0$. It follows that $y_n^*(u(x_n)) \to 0$ and so (η_n) is w^* -null in K^* . Since (u_n) is limited, we have $y_n^*(y_n) = \eta_n(u_n) \to 0$. Thus (y_n) is limited.

Since $F \in (GP)$, we appeal to (B) again to get $||y_n|| \to 0$ which, in turn, implies $||u_n|| \to 0$.

Remark. K(E,F) is linearly isometric to the ε -product $E^*\varepsilon F$, and $E^*\varepsilon F$ contains $E^* \otimes F$ (see [9] or [10]). Hence 4.2 implies 3.1 when one of the spaces in 3.1 is a dual Banach space.

5. Schauder Decompositions with Gelfand-Phillips Summands

5.1. **Theorem.** If a Banach space E has a Schauder decomposition (cf. [11]) $E = \sum_{n=1}^{\infty} E_n$, where each summand E_n is a Gelfand-Phillips space, then E itself is a Gelfand-Phillips space.

410 L. Drewnowski

Proof. For every $x \in E$ and n = 1, 2, ..., we denote by x(n) the natural projection of x in E_n ; thus $x = \sum_{n=1}^{\infty} x(n)$ and $x(n) \in E_n$ for all n.

Suppose $E \notin (GP)$; Then there exists a limited sequence (x_k) in E such that for some r>0 we have $||x_k-x_j||>2r$ whenever $k\neq j$. Since, for each n, the projection $(x_k(n))$ is a limited sequence in E_n and $E_n\in (GP)$, we may assume (by passing to a subsequence if needed) that $\lim_k x_k(n)$ exists in E_n for each n. Then $(y_k)=(x_{k+1}-x_k)$ is a limited sequence in E, and

$$||y_k|| > 2r$$
, $\forall k$ and $\lim_k y_k(n) = 0$, $\forall n$.

By applying a standard sliding hump argument, we may find a subsequence (z_k) of (y_k) , and a sequence $1 = m_1 < m_2 < \dots$ of integers such that if $n_k = m_{k+1} - 1$ and

$$w_k = \sum_{n=m_k}^{n_k} z_k(n),$$

then

$$||w_k|| > r$$
, $\forall k$ and $||z_k - w_k|| \rightarrow 0$.

The latter relation implies that (w_k) is a limited sequence in E. Now, for each k, choose a norm 1 functional w_k^* in F_k^* , where

$$F_k = \sum_{n=m_k}^{n_k} E_n$$

(with the norm induced from E) such that $w_k^*(w_k) = ||w_k||$. Also, let Q_k be the natural projection from E onto F_k , and set $v_k^* = w_k^* \circ Q_k$. Then, since the projections Q_k are uniformly bounded, we have for every $x \in E$

$$|v_k^*(x)| \le ||w_k^*|| \cdot ||Q_k|| \cdot \left||\sum_{n=m_k}^{n_k} x(n)\right|| \to 0 \quad \text{as } k \to \infty.$$

Thus (v_k^*) is a w^* -null sequence in E^* . But $|v_k^*(w_k)| = |w_k^*(w_k)| > r$ for all k, which contradicts the limitedness of (w_k) .

The above result is also valid for uncountable unconditional Schauder decompositions; in order to see this, we need the following simple observation.

5.2. **Proposition.** If for every separable subspace L of the Banach space E there exists a complemented subspace M of E such that $L \subset M$ and $M \in (GP)$, then $E \in (GP)$.

Proof. It suffices to show that every countable limited subset A of E is relatively compact. Given such a set A, let E be the (separable) closed linear span of E, and choose a complemented subspace E containing E. Let E be a projection from E onto E. Then E is limited in E, hence relatively compact because E is E compact.

5.3. Corollary. If a Banach space E admits an unconditional (possibly uncountable Schauder decomposition $E = \sum_{i \in I} E_i$, where $E_i \in (GP)$ for all $i \in I$, then E is a Gelfand-Phillips space.

5.4. Corollary. If $(E_i)_{i \in I}$ is a family of Gelfand-Phillips spaces, then

$$(\sum_{i \in I} E_i)_{\ell_p}$$
 for $1 \leq p < \infty$ and $(\sum_{i \in I} E_i)_{c_0}$

are Gelfand-Phillips spaces.

References

- Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachrichten 119, 55– 58 (1984)
- Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Math. 92. Berlin, Heidelberg, New York: Springer 1984
- Diestel, J., Uhl, J.J., jr.: Vector measures. Mathematical Surveys No. 15, American Math. Soc. 1977
- Diestel, J., Uhl, J.J., jr.: Progress in vector measures 1977-83, in: Lect. Notes Math., vol. 1033, 144-192. Berlin, Heidelberg, New York: Springer 1983
- 5. Drewnowski, L.: On the Gelfand-Phillips property in some spaces of continuous vector valued functions. Functiones et Approx. (to appear)
- 6. Emmanuele, G.: A dual characterization of Banach spaces not containing ℓ_1 . Bull. Acad. Polon. Sci., Sér. Sci. Math. (to appear)
- Emmanuele, G., Räbiger, F.: On the Gelfand-Phillips property in ε-tensor products. Math. Z. 191, 485-488 (1986)
- 8. Engelking, R.: General topology. Warszawa: Polish Scientific Publishers PWN 1977
- 9. Jarchow, H.: Locally convex spaces. Stuttgart: B.G. Teubner 1981.
- 10. Köthe, G.: Topological vector spaces II. Berlin, Heidelberg, New York: Springer 1977
- Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I. Sequence spaces. Berlin, Heidelberg, New York: Springer 1977

Received August 8, 1985