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1. Introduction and Preliminaries

If X is a Banach space, then (X), denotes its closed unit ball, and X* is the
Banach dual space to X; X* is often considered with its weak* topology, w*.
An “operator” always means a continuous linear operator from one Banach
space into another. In general, our terminology is standard, as in [2] or [11].

Throughout, E and F denote Banach spaces.

A (bounded) subset 4 of E is called limited [2] if, for every w*-null
sequence (x¥) in E*, we have x*(x) -0 uniformly for xe A. If all limited subsets
of E are relatively (norm) compact (the converse holds trivially), then E is said
to have the Gelfand-Phillips property [3] or to be a Gelfand-Phillips space; we
shall often write Ee(GP) in this case.

In Sect. 2 we prove that E€(GP) if (E*), contains a subset that is norming
and weak* conditionally sequentially compact; this improves on the earlier
results mentioned in [2, p. 238] and [3, p. 150], and a recent result in [7]. We
also show that if Fe(GP) and T is any topological space containing a dense
and conditionally sequentially compact subset, then C(T,F)e(GP). This result
was obtained by the author in [5] with a more direct but much longer proof,
and is an improvement of similar results in [2] and [7].

In Sect. 3 we show that if E and F are Gelfand-Phillips spaces, then so is
their injective tensor product E® F. The same conclusion was obtained in [7]
under the additional assumption that ext(E*); or ext(F*), is weak* con-
ditionally sequentially compact. In particular, if T is a compact space, then
C(T,F)e(GP) whenever C(T)e(GP) and Fe(GP).

Section 4 brings the following result: If E* and F are in (GP), then also
K(E,F), the space of compact operators from E to F, is in (GP).

Finally, in Sect. 5, the main result is that Ee(GP) if E admits a Schauder
decomposition with Gelfand-Phillips summands.

In principle, Sects. 2-5 are mutually independent.

The following two results will be frequently used below; (A) can be verified
directly, while (B) follows easily from a result due to Bourgain and Diestel [1].
(B) will play a significant role in many of our arguments.
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(A) A sequence (x,) in E is limited (ie., the set of its terms is limited) iff
x¥(x,) =0 for each w*-null sequence (x¥) in E*.
(B) Ee(GP) iff every limited weakly null sequence in E is norm null.

Let us also note that continuous linear images of limited sets or sequences
are limited, and that any Banach space isomorphic to a subspace of a Gelfand-
Phillips space is Gelfand-Phillips.

Following Bourgain and Diestel [1], we say that an operator u:E—F is
limited if it maps (E); to a limited subset of F or, equivalently, if
u*:(F*,w*) - (E*,||- |) is sequentially continuous. One readily verifies that

(C) Ee(GP) iff every limited operator with range in E is compact.

2. Gelfand-Phillips Spaces and Conditional Sequential Compactness

We shall say that a subset S of a topological space T=(T,p) is (p—) con-
ditionally sequentially compact (shortly, (p —)CSC) if every sequence in S has a
subsequence converging to a limit in T.

2.1 Lemma. Let u:E —F be a limited operator. If B is a w*-CSC subset of F*
and C=aco" (B) is its w*-closed absolutely convex hull, then u*(C) is a norm
compact subset of E¥*.

Proof. Since B is w*-CSC and u* is weak*-to-norm sequentially continuous, it
follows that u*(B) is relatively norm compact, hence its norm closed absolutely

convex hull D=u*(acoB) is norm compact. It is easily seen that D=u*(C).

A bounded subset B of F* is called norming (for F) if yrosup {|y*(y)|:y*eB}
is an equivalent norm on F. It is well known that B has this property iff
aco™"(B) contains a ball in F* centered at 0.

Our principal result in this section is the following.

2.2. Theorem. If F* has a norming w*-CSC subset, then Fe(GP).

Proof. As noted above, if B is such a subset of F* then C=aco""(B) contains a
ball centered at 0. On the other hand, if u:E — F is a limited operator then, by
Lemma 2.1, u*(C) is norm compact in E*. Thus u* is a compact operator, and
so is u, by Schauder’s theorem. It follows that Fe(GP), by (C).

2.3 Corollary. If (F*), is w*-sequentially compact or, more generally, if it
contains a w*-dense w*-CSC subset, then Fe(GP).

This corollary, combined with Rosenthal’s #,-theorem and Goldstine’s theo-
rem, gives the following known fact ([2, p. 150]; cf. also [6]): If F does not
contain any isomorphic copy of #; then F*e(GP).

We shall say that a topological space T satisfies condition (DCSC) if it has
a dense CSC subset S. It is easily verified that the class of (DCSC)-spaces is
closed with respect to continuous images and arbitrary products. [In fact, let T
be the product of a family (T;) of (DCSC)-spaces. For each i let S; be a dense
CSC subset of T, and let S be any X-product of the family (S;) (see [8]), i.e., fix
any point a=(a;) in [[S; and set S={(s)e[]S;: card {i:s;+a,} <N}. Then S is
a dense CSC subset of T.]
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If Te(DCSC), F is a Banach space and f:T— F is a continuous function,
then f(7T) is easily seen to be a compact subset of F; hence f is bounded. We
denote by C(T,F) the Banach space of all continuous functions from T to F,
with the sup norm. As usual, if F is the space of scalars, we simply write C(T).

If Te(DCSC) with a dense CSC subset S and if §:T— C(T)* is the canoni-
cal map, then J(S) is easily seen to be a norming w*-CSC set in C(T)* Hence
C(T)e(GP), by Theorem 2.2. A more general result is valid:

2.4. Theorem. If T is a topological space satisfying (DCSC) and Fe(GP), then
also C(T,F)e(GP).

Proof. In view of (B) it suffices to show that if (f,) is a limited weakly null
sequence in C(T,F), then |f,| —0. We first observe that for each t in T the
evaluation operator fi— f(t) from C(T,F) to F maps the sequence (f,) to the
sequence (f,(t)), so the latter is also limited and weakly null - in F. But
Fe(GP), so |If, ()|l =0 by (B).

Now, suppose ||f,[|+0. Then we may assume that for some sequence (s,) in
S (a dense CSC set in T) and some r>0 we have |f,(s,)||>2r for all n. Next,
applying the fact that S is CSC and passing to a subsequence if necessary, we
may assume that (s,) converges to some teT. Since [|f,(t)| =0, we may finally
assume that r,= |, (s,) —f,(t)|| >r for all n. Now choose for each n a norm one
functional y* in F* so that y*(f,(s,)—f,(t))=r,, and define n,e C(T,F)* by n,(f)
=yr(f(s,)—f(#)). Since |n,(/)) <[ f(s,)—f ()| >0 because s, —~1, we see that (1,)
is a w*-null sequence in C(T,F)* But n,(f,)=r,>r>0 for all n, contradicting
the assumption that (f)) is limited.

2.5. Remarks. 1) As observed in [5], if T satisfies (DCSC), then C(T,F) is
isometrically isomorphic to a space C(K,F), where K is a compact Hausdorff
space satisfying (DCSC).

2) Let I be a set of cardinality 2%. Then K=[—1,1]" is a compact space
satisfying (DCSC) so that C(K)e(GP); however, K is not sequentially compact.
Moreover, K=(¢,(I));=(¢,(I)*), has a norming w*-CSC subset (e.g., formed
by the functions with a countable support) so that /,(I)e(GP); however, ext K
is not w*-conditionally sequentially compact. Thus the results proved above
are indeed more general than those contained in [7].

3. Injective Tensor Products of Gelfand-Phillips Spaces

We refer to [3, Ch.VIII] for the definition and basic properties of injective
tensor products of Banach spaces. Our main result here is the following

3.1. Theorem. If both E_and F are Gelfand-Phillips spaces, then so is their
injective tensor product EQF.

Proof. According to (B), we have to prove that if (z,) is a limited weakly null
sequence in E®F, then Iz, —=0.

Let i:E— E and j:F — F be the identity operators. -

For every x* in E* consider the operator v,.=x*®j.:EQF—F; thus
v+ (x®y)=x*(x)y for all xeE, yeF. Then (v..(z,)) is a limited and weakly null
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sequence in F; hence, by (B),
[v+(2,) I = 0.

Since ||z, =sup {|(x* ® y*)(z,)|: [x*|| <1, |y*| <1}, we can find sequences (x*)
in E* and (y¥) in F* of functionals of norm <1 such that, for each n,

IGex @ yi)(z,) 23 11z, -

For any y* in F* consider the operator wy*=i®y*:E®F — E; thus
w(x ® y)=y*(y)x for all xeE, yeF. Let, for each n,

X, =W,(z,).
Since x*(w+(2)) = (x* @ y*)(2), we have
(*) Ixall 2 1% () =035 @ i)z, 23 [z, .
(x,) is weakly null in E: Indeed, if x*e E*, then
[x* ()l = 10* @ yi) (z) = Y3 (04 (2D < [[0,0(2,) | 0.

(x,) is limited in E: Let (u¥) be a w*-null sequence in E*. Then (u* ® y¥) is
a w*-null sequence in (E ® F)*. In fact, it is bounded and for any xeE and yeF
we have ((u*® y*)(x® y)=u*(x)y*(y) —0. Since EQF is dense in EQF, we
must have (u* ® y*¥)(z) -0 for every z in E®F. Now,

Uy (X)) = (W (2,)) = @ y3)(z,) = 0

because (z,) is limited in EQ F and (u* ® y*) is w*-null in (EQ® F)*. It follows
that (x,) is limited in E, as claimed.

Thus the sequence (x,) is limited and weakly null in E. Since Ee(GP),
[x,I =0, by (B); now, using (*) we get ||z, =0 which concludes the proof.

3.2 Corollary. Let T be a compact space and F a Banach space. If both C(T)
and F are Gelfand-Phillips spaces, then so is C(T,F)=C(T)®F.

3.3. Remarks. 1) Of course, Theorem 3.1 is best possible: If {0} + E® Fe(GP),
then E® F contains isometric copies of both E and F and so E, Fe(GP).

2) A direct proof of 3.2 (which was discovered first) is a bit simpler: In this
case, starting with a limited weakly null sequence (f,) in C(T, F). we can find a
sequence (y}) of norm one functionals in F* so that | f,||=|y*f,|. Therefore,
proceeding as in the proof of 3.1, we do not need the sequence (x*). [The
relevant operators used in this particular situation are: v ()= [ fdp for

ueC(T)*, the space of Radon measures on T; w,.(f)=y*f; (u®y*)(f)
=Jy*fdu]
3) The present author does not know whether C(T)e(GP) may occur for a

compact space T not satisfying (DCSC). Consequently, it is not clear at the
moment if Corollary 3.2 is a genuine improvement of Theorem 2.4.
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4. The Gelfand-Phillips Property in Spaces of Compact Operators

Let K(E,F) denote the Banach space of all compact operators from E to F. We
start with an application of Theorem 2.4 although, in a moment, a more gener-
al (and, in fact, best possible) result will be proved, using arguments similar to
those applied in Sect. 3.

4.1. Proposition. Let E and F be Banach spaces such that
(i) E does not have subspaces isomorphic to £, and Fe(GP), or
(ii) E*e(GP) and (F*), is w*-sequentially compact.

Then K(E,F) is a Gelfand-Phillips space.

Proof. (i): T=(E**),e(DCSC) (by Rosenthal’s £,-theorem and Goldstine’s theo-
rem), hence C(T,F)e(GP) by 2.4. Now it is enough to observe that the map
ur—>u**|, is a linear isometry from K(E,F) into C(T,F).
(ii): In this case urou*|, where T=(F*),, is a linear isometric embedding
of K(E,F) into C(T,E*), and the latter space is Gelfand-Phillips, by 2.4 again.
[Of course, we have considered the unit balls above with their respective
weak* topologies. ]

4.2. Theorem. If the Banach spaces E and F are such that both E* and F are
Gelfand-Phillips spaces, then also K(E,F) is a Gelfand-Phillips space.

Proof. Let (u,) be a limited weakly null sequence in K=K(E,F). We have to
show that |u,| —0 (cf. (B)).

Choose a sequence (x,) in E so that ||x,[|=1 and |u,(x,)|| =3 |lu,| for all n.
We claim that (y,)=(u,(x,)) is a weakly null limited sequence in F.

For every y* in F* applying the operator ur—y*u:K — E* we see that
(y*u,) is a limited weakly null sequence in E*. Since E*e(GP), ||y*u,| -0 ob-
tains by (B); hence y*(y,)=(*u,)(x,) —0. Thus (y,) is weakly null.

Now let (y¥*) be w*-null in F*, and define a sequence (,) in K* by 7,(u)
=y¥u(x,)). If ueK, then u[(E),] is relatively compact in F; therefore,
y¥(u(x)) -0 uniformly for x in (E),, i.e., |yFfu| —0. It follows that y¥(u(x,))—0
and so (n,) is w*-null in K* Since (u,) is limited, we have y*(y,)=n,(,) —0.
Thus (y,) is limited.

Since Fe(GP), we appeal to (B) again to get |y,| —0 which, in turn, implies
| —0.

Remark. K(E,F) is linearly isometric to the e-product E*¢F, and E*¢F con-
tains E*®F (see [9] or [10]). Hence 4.2 implies 3.1 when one of the spaces in
3.1 is a dual Banach space.

5. Schauder Decompositions with Gelfand-Phillips Summands

5.1. Theorem. If a Banach space E has a Schauder decomposition (cf. [11]) E
[

= ) E,, where each summand E, is a Gelfand-Phillips space, then E itself is a
n=1

Gelfand-Phillips space.
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Proof. For every xeE and n=12,..., we denote by x(n) the natural projection

of x in E,; thus x= Y x(n) and x(n)eE, for all n.
n=1
Suppose E¢(GP); Then there exists a limited sequence (x,;) in E such that
for some r>0 we have Xy —x;|>2r whenever k=j. Since, for each n, the
projection (x,(n)) is a limited sequence in E, and E,e(GP), we may assume (by
passing to a subsequence if needed) that lim x,(n) exists in E, for each n. Then
k

(Vi)=(x,,{—x;) is a limited sequence in E, and

lyell>2r, Vk and limy,(n)=0, Vn
k

By applying a standard sliding hump argument, we may find a subsequence (z,)
of (y,), and a sequence 1=m,<m,<... of integers such that if n,=m, , —1

and -
Wy = Z Zk(n)s
n=mi
then

[Well>r, Vk and |z,—w,|—0.

The latter relation implies that (w,) is a limited sequence in E.
Now, for each k, choose a norm 1 functional wf in F*, where

Nk
Fk= Z En
(with the norm induced from E) such that wif(w,)=|w,|. Also, let Q, be the
natural projection from E onto F,, and set v} =w{oQ,. Then, since the pro-
jections Q, are uniformly bounded, we have for every xeE

Nk

> x(n)

n=mpy

log I IWEN-I1Q - -0 as k- oo,

Thus (vf) is a w*-null sequence in E*. But |v}(w,)|=|w¥(w,)|>r for all k, which
contradicts the limitedness of (w,).

The above result is also valid for uncountable unconditional Schauder
decompositions; in order to see this, we need the following simple observation.

5.2. Proposition. If for every separable subspace L of the Banach space E there
exists a complemented subspace M of E such that LM and Me(GP), then
Ee(GP).

Proof. It suffices to show that every countable limited subset A of E is
relatively compact. Given such a set A, let L be the (separable) closed linear
span of 4, and choose a complemented subspace Me(GP) containing L. Let P
be a projection from E onto M. Then 4=P(A) is limited in M, hence relatively
compact because Me(GP).

5.3. Corollary. If a Banach space E admits an unconditional (possibly uncount-
able Schauder decomposition E=Y" E,, where E,e(GP) for all iel, then E is a
Gelfand-Phillips space. tel
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5.4. Corollary. If (E),.; is a family of Gelfand-Phillips spaces, then

Q. E),  for 1Sp<oo and () E),
el iel

are Gelfand-Phillips spaces.
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