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1. Introduction

Suppose A is the Lebesgue measure on the real line and f is an integrable function. Then
the measure v defined for all the Lebesgue measurable sets

v(E) =f fdxr
E

is called the indefinite integral of f with respect to A. It is obvious from the definition of
the integral that if A(E) = 0, then v(E) = 0 for any Lebesgue-measurable set £. This is
expressed saying that v is absolutely continuous with respect to A and will be denoted by
v K A

It is not difficult to check (see [27, Section 30, Theorem B]) that under the assumption
that v is a finite measure, this condition is equivalent to another one which can be given
in £-8 terms, which will be denoted by v «, A: given any ¢ > 0, there exists a § > 0 such
that if A(E) < §, then v(E) < ¢, for any Lebesgue-measurable set E.

We always have that v « A implies that v « A, but the converse implication does
not hold in general, as it can be easily seen considering for instance the measure v(E) =
S Ix]dA(x).

In the o-additive case, absolute continuity of a measure v with respect to another
measure i implies, under mild conditions on p and v. that v is the integral measure of
some function f € L!(u): such function is called Radon—-Nikodym derivative of v with
respect to u, and it is denoted by %

Nikodym [44] was the first to prove this result in a quite general setting. If x4 and v
are two finite measures on the same o -algebra, and if v « u. then there exists a Radon—

Nikodym derivative (‘5—L 1.e., a u-integrable function f such that

v<E>=f fdu
E

holds, for any measurable set E.

Earlier, Radon [46] proved (using Vitali bases) the same implication under the
assumption that the maximal element of the o-algebra is a measurable subset of the
n-dimensional Euclidean space. For the real line, the corresponding result goes back to
Lebesgue.

However the situation is not so nice, either when the measures are just finitely additive,
or when they take values in a Banach space of infinite dimension, and it gets even worse
if both of the above cases occur. We shall outline a survey of the results known so far,
involving the existence of a Radon-Nikodym derivative, in some appropriate sense, and
with respect to suitable types of integrals. In this first section, we deal essentially with a
general Radon-Nikodym theorem for nonnegative finitely additive scalar measures, from
which the basic ideas of further results can be drawn. In the second section, we turn to the
o -additive measures, investigating conditions which permit that even unbounded measures
have Radon-Nikodym derivatives. In the third section we face the finitely additive case for
scalar measures, indicating how the existence of a Radon-Nikodym derivative dv/du is
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strictly related to some geometrical properties of the range of the vector valued measure
(u, v). The fourth section deals with the most beautiful (and difficult) results concerning
those Banach spaces possessing the so-called Radon—Nikodym Property (RNP): the
geometric concepts met in the third section here become essential tools for describing
such Banach spaces. The fifth section is devoted to finitely additive measures taking
values in Banach spaces, and to the research of weaker types of derivatives. Finally, the
sixth section concerns a number of recent results, for locally convex-valued measures, for
multimeasures, for Riesz space-valued measures, and finally also a brief outline of the so-
called fuzzy integration: from this survey one can find that, though hidden by the abstract
settings and the different kinds of integrals involved, the leading ideas of the first section
are always at work.

We end the chapter with an appendix devoted to some decomposition theorems for
measures, which are relevant for the Radon-Nikodym theorem.

We do not give all proofs, some of them being too long and technical: when it is possible,
we give an outline of the main steps, trying to clarify the basic ideas. Also, we realize that
it would be almost impossible to present here a detailed account of all the contributions
given to this problem along almost 100 years, so we simply chose among the results in our
knowledge, sometimes simplifying settings, in order to reach a sufficient variety within a
relatively concise treatment.

The general result, from which we start, is due to Greco [25]. Though the integration
theory and the results by Greco involve more general set functions, we shall give the proof
only for the finitely additive case. It should be noted that the idea to relate the Radon-
Nikodym theorem to the existence of a “scaled” Hahn decomposition goes back, for the
o -additive case, to J.L.. Kelley [33].

We need some definitions (see also [19]).

DEFINITION 1.1. Let (£2, X) be any measure space, where X is a o -algebra of subsets
of §2, and let u be any monotone nonnegative set function on X, u(¥) = 0. We say that a
measurable function f : 2 — R is integrable with respect to p if the following integral
is finite:
x
f fdu ::f u({x: f(x)>1})dr.
R 0
Since {x: f(x) > ¢t} is nonincreasing in ¢, the second integral has to be understood in

the Riemann sense.
If this is the case, for each set E € X, we put:

Ju(E) :=fEfdu:=folEdu-

The set function fu is often called the integral measure of f, with respect to .

The integral defined above is called Choquet integral, and coincides with the usual
integral, in case f is nonnegative and u is a o -additive nonnegative measure, or a finitely
additive one.
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THEOREM |.2. Assume that u and v are two monotone nonnegative set functions, defined
on the g -algebra X, such that n(9) = v(¥) = 0. satisfying:

V() =u($)=0 = p(AUS)=pu(A) (h

forall Ae X.
Then, the following conditions are equivalent:
(a) There exists a measurable nonnegative function f:$§2 — R such that

V(E)=f fdu (2)
E

forall E€e X

(b) There exists a (decreasing) family of sets {A,},~0 in X, satisfying:
(bl) v(A)—v(B) 2 ru(A)—ru(B), A, BEX, BCACA,, r>0;
(b2) v(E) —v(ENA)Sr(w(EY—w(ENA)), E€X, r>0;
(b3) limv(A,;) =0, as r — +o0.

Itis clear that (1) is satisfied, as soon as ¢ and v are additive. Moreover, in case v and u
are finitely additive, conditions (bl) and (b2) above are equivalent respectively to (b'l)
and (b'2) below:

') WEY> ru(E), forall EC A,, r > 0;

(b'2) v(F)<<ru(F),forall FC 2\ A, r>0.

Moreover, from (b'1) we deduce that lim u(A,) = 0 (since v(A,) < v(§2) < 00), hence,
in case v <, u. (b3) is satisfied, too.

PROOF. As already mentioned, we shall give the proof just in the case of finitely additive,
nonnegative measures, such that v <, u.

We first assume (a) and prove (b). Set: A, ;= {x € 2: f(x) >r}andfix EC A, E€ X.
Asv(E)= [ flpdu,we getv(E) 2 r [1gdu =ru(E), so (b'l)is proved.

If Fisfixed, Fe X, F CA{, then v(F) = ffl[-‘dﬂ < ru(F). so (b'2) holds. As
already observed, (b3) is satisfied because of the absolute continuity, so the first implication
is completely proved.

Now, we assume that (b) holds, and construct a suitable derivative f.

For all x € £2, set: f(x):=sup{r > 0: x € A,}. To see that f is measurable, fix any
t €10, +oo[, and observe that {x: f(x) >t} =|J{A,: r € D, r > t}, where D denotes the
set of all dyadic positive numbers, i.e., D = {;”r, h and k positive integers}.

Now, for each element 2’—1 € D, set B,",' = Ap i \A gy

We see that v(B) > _{—',\[L(B[];), and also v(B,",') < 211 (BY). For each positive integer k,
set

k2t

h

h=|
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We can easily see that [, fdu =limy; [, frdu, forall E € £, and moreover

k2t

2t
f fkdugzigv(Bh NE) < v(E)
E h=1
for all k and E. Therefore, we get:

f fdu <v(E),
E

for all E. On the other hand, for each k, we have:

kot

fﬁdu=f(2%13é>du—f%(%lBlA’>du

h=1 h=I

K24

> ZV(Bﬁ) — u2y/2h.

h=|

k2t k
As 332 v(Bh = V(A|,21) — v(Ayg), from (b3) we deduce that
liznffkdu Zliznv(A”gA)

from which we also get lim; [ fidu > v($2). because V(A1) < 2_1‘,LL(A|/2A') <
27K (82).

So far, we have seen that the finitely additive measures v and fu are in this relation:
V(E) 2 fu(E),forall E € X, and v(£2) < fu($2). From this it follows immediately that
the two measures agree on X (simply considering the complements of the involved sets),
and therefore the theorem is proved. U

COROLLARY 1.3. If p and v are finite and countably additive, and v « u (or

equivalently v <, 1), then there exists a Radon—Nikodym derivative l‘,%

PROOF. Conditions (b’'l) and (b'2) mean that there exists a Hahn decomposition for the
measure v — ru, for all r > 0: this is always the case, for o-additive measures, and this
concludes the proof. U

The importance of Theorem 1.2 rests not only on its generality, but also on the
relative simplicity of the involved conditions. from which other similar criteria have been
obtained. We shall see many of them in the sequel. dealing with finitely additive measures,
with Banach- and nuclear-valued measures, and also with different kinds of integrals.
Our dissertation however now focuses the o -additive case for not necessarily bounded
measures.
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2. The o -additive case

In this chapter, we mainly deal with countably additive, possibly unbounded measures.
In general, the Radon-Nikodym theorem fails to hold, for unbounded measures, as the
following example shows.

EXAMPLE 2.1. Let 2 =[0,1],let 0 <i < j < | and consider the Hausdorff i- and j-
dimensional measures H' and H/. Then H’/ « H' but dH//d'H' does not exist.

The reason for the failure of the Radon-Nykodym theorem in the previous example has
been described already by S. Saks [50] who considered the case i =0 and j = | (see also
Vol¢i¢ [59]). We will make some additional comments on this example after Theorem 2.12.

However we will see that, under suitable conditions, Radon-Nikodym derivatives do
exist, even if both measures, u and v, range over [0.+00]. Such conditions involve
properties of the so-called measure algebra, which we are now going to introduce.

As usual, (£2, £, u) denotes a measure space, where X' is a o-algebra and u is any
nonnegative o -additive measure, taking values in [0, 4+00]. We shall assume that the
Carathéodory extension has already been done, and so X is actually the o -algebra of all
pu-measurable sets. In particular, all subsets of p-null sets belong to X. We recall the
definition of the outer measure, u* : P($2) — [0. +2¢]:

¢
w (Ey=inf{ Y " p(Fp): Fye Z. EC| JFay.

n=1

DEFINITION 2.2. Given two subsets A and B of £2, we say that A and B are equivalent,
if u*(AAB) =0, and write: A~ Bor A=B u-ae.

In a similar fashion, if f and g are real functions defined on £2, we say that f and g are
equivalent (and write f ~ g, or f =g a.e.)if

p({xe2: f(x)#gx)})=0.
In the quotient P(§2)/~ we can introduce a partial order, as follows:
[A]>[B]

if and only if u*(B\A) =0.
Of course, P(§2) /= contains X/, which is called the measure algebra. One can easily
see that P(§2)/~ and X'/~ are g -complete lattices.

We will see that completeness of X /= is important for our purposes, however in general
the two lattices are not complete. We have the following facts (more details and related
results can be found in a series of papers by Voléi¢ [58-60]):

Under CH, if u is the usual Lebesgue measure on 2 := [0, 1]. then P(§2)/~ is not
complete.

There exist measures such that X /= is not complete (see [27. Section 31, Exercise 9]).
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DEFINITION 2.3. Given any measure space (§2, X, u), we say that u is semifinite if
M(E) =sup{u(A): ACE, A€ Z. u(A) <oo},
for all sets F € X.
Such measures are called essential measures by N. Bourbaki [8].

PROPOSITION 2.4. Suppose v < i, suppose that v is semifinite and suppose moreover
that v(E) = O whenever u(E) < oo. Then dv/du exists only if v is identically zero.

PROOF. Suppose dv/du exists and let E be any set of finite and positive v measure. Then

xe: dv/dp>0)NE=| J{xe: dv/du>}}NE.

n

Each set {x € £2: dv/du > ,'7} N E has finite 4 measure and since v(E) > 0, at least one
of them, A, say, has positive measure u, a contradiction. This shows that if v(E) < oo,

then v(E) = 0 and from the semifiniteness of the measure we deduce that v = 0. d

DEFINITION 2.5. A semifinite measure p on (2, X') is said to be strictly localizable, if
there exists a family of sets { Ey}qe 4, such that

(@) 0 < u(Ey) <o

(by EqNEg=0whena # 8

(©) W(ENEy)=0Ya=> u(E)=0.

THEOREM 2.6. If u(82) < oo (or more in general if u is strictly localizable), then X [~
is complete.

PROOF. We will limit the proof to the case of a finite measure. Given any family G of
measurable sets, we shall show that there exists a measurable set G such that:

(1) u*(G\Gp)=0forall G €@, and

(2) If u*(G\Gy)=0forall G € G, then u*(Go\G|)=0.

Without loss of generality, we may assume that G is a o -ideal. Now, set:

a:=sup{u(G): G egG}.

As p s finite, @ < 0o. Now, let (G,),en be any sequence in G, such that u(G,) > o« — ;',
and put G :={JG,. As G is a o-ideal, Gg € G. So, we only have to prove that Gg
satisfies (1) above. If this is not the case, then there exists H € G , satisfying u (H\Gg) > 0.

This implies that H U Gy € G, and u (H U Gy) > «, a contradiction. O

DEFINITION 2.7. A semifinite measure u is said to be Maharam (or also localizable) if
X/~ is complete (see [36]).
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REMARK 2.8. According to Theorem 1, strictly localizable measures are Maharam. It
was a long standing open question whether Maharam measures are strictly localizable.
The problem has been stated explicitly for the first time in [34, Problem 1], and is relevant
in lifting theory. The question has been solved in the negative by D. Fremlin [24].

DEFINITION 2.9. Given two measures u and v on X we say that 4 and v are strongly
comparable if u and v are the Carathéodory extensions of u|s and of v|s respectively,
where S is the ideal of all sets E € X, such that u(E) 4+ v(E) < 400.

The following definition is related to the previous one.

DEFINITION 2.10. Given two measures u and v on X we say that 4 and v are weakly
comparable if 1 and v are the Carathéodory extensions of u|x and of v|x respectively,
where X is the intersection of the two ¢-algebras of u- and v-measurable sets (in the
Carathéodory sense).

The measures H' and H/ are not strongly comparable, if i # j. but they are weakly
comparable.
In 1951, LE. Segal proved the following version of the Radon-Nikodym theorem [51].

THEOREM 2.11. Given a ¢ -additive measure ., the following properties are equivalent:
(1) wis Maharam;
(2) for any o-additive measure v, strongly comparable with u and such that v < .
there exists a Radon-Nikodym derivative dv/du. Such function is unique, up 1o
equivalence.

PROOF. We only prove the implication (1) = (2). So, assume that p is Maharam, and v
is any strongly comparable, o -additive measure, v < u. We denote by S the ideal of all
sets E € X, such that u(E) 4+ v(E) < co. For every element E € S there exists a Radon-

Nikodym derivative of v|g with respect to u|g: we denote by fr such derivative. and
define fr on E° as the null function. Now, for every positive real number ¢, set:

A= \/{A(E): EeS).

where A,(E) = {x € £2: fe(x) > t}. (The supremum exists as u is Maharam.) It is clear
that (A,) is a decreasing family in X'/~. Now, for all x € £2 we define:

fx):=sup{r >0: x € A, }.

As in the proof of Theorem 1.2, one can prove that f is measurable. Let us show that f
is the required derivative. In view of the strong comparability, it is enough to check that

f Fdu=v(E)
E
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forall E € S. So, fix any element E € S, and compute:
¢
ffdu:f p({x € E: fx)>1t})dr. (3)
E 0

Now, u({x € E: f(x) > t}) =sup{u(EN A 1) ne N}. For every positive number r,
we claim that '

ENA,=~ A (E). @

Indeed, A, (E) C E by definition, and A, (E) C A, up to anull-set, hence A, (E) C ENA,
up to a null-set; conversely, E N A, = V(E N A, (F)), where the supremum is taken as
F e€S8. Now, ENA,(F)= A,(E N F) because of the essential uniqueness of fr, hence
ENA, CA/(E)ae. and (4)is proved.

From (4), we get immediately

sup{u(EN A[+’1): neN} :sup{u(A[+’1 (E)): n € N} = u(A/(E))

for all positive numbers 7, and so from (3) we deduce

e o}

Lfdu:_/é u({x e f2: f(x)>t})dt=f p(A(E))dt

0

= f JEdu =v(E),
by definition of f£. This concludes the proof. 0
For weakly comparable measures, we have the following result.

THEOREM 2.12. Given a o-additive measure 11 on (52, X), the following properties are
equivalent:
(1) wis Maharam,
(2) for any o-additive measure v, weakly comparable with u and such that v < [,
there exists a decomposition §2|, 2> of 2, §2; € X fori =1, 2, such that:
e forany E € X and E C 2|, u(E) < o0 implies that v(E) = 0;
. 1{ we denote by v the restriction of v to X N §2>, the Radon—Nikodym derivative
(1

m exists.
du .
i

The decomposition §2|, §22 and the function . are unique, up to equivalence.

The proof follows from the combination of Theorem 2.11 and the decomposition
Theorem A.4 from the Appendix.

REMARK 2.13. The previous theorem explains why Radon-Nikodym theorem fails
when u is the counting measure H" on [0. 1], and v is the Lebesgue measure, in spite
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of the fact that u is localizable. The measures u and v are in this case just weakly and not
strongly comparable, and v « p. Theorem 3 applies here with £2; = £2.

We conclude this section presenting two interesting variants of the Radon—Nikodym
theorem.

We need first two definitions.

DEFINITION 2.14. Given a measure space (£2. X, i), we say that u admits a monotone
differentiation, if there exists a mapping ﬁ defined on the family A of all the measures
which are strictly comparable with ¢ and absolutely continuous with respect to u, such
thatif v; e N, fori = 1,2, and v| < v», then

dvy

Dy i
2 <.

forany x € £2.

DEFINITION 2.15. Given a measure space (§2, X, ), we say that p admits a linear
differentiation, if there exists a mapping ﬁ defined on the family A of all the measures
which are strictly comparable with x4 and absolutely continuous with respect to pt, such
thatif v e A, fori =1, 2, and a,, a> are two real numbers, then

d(ayvi + dv d
ﬁlv_‘dﬂa_zvz)(x) =aj d%: (x) +a> d_‘:j (x).

forany x € £2.
The following result is due to D. Kélzow [34, Theorems 4, 7 and 8].

THEOREM 2.16. Given a measure space (§2. X, i), the following properties are equi-
valent:
(1) u admits a monotone differentiation;
(i) u admits a linear differentiation:
(i) p is strictly localizable.

For the long and sophisticated proof we refer to Kélzow’s monograph, which also
illustrates in great detail the strong relations between the monotone and linear versions
of the Radon-Nikodym theorem and lifting theory.

The Radon-Nikodym theorem for the Daniell integral is discussed by M.D. Car-
rillo [15], Chapter 11 in this Handbook.

3. The finitely additive case

When the measures (even one of them) are just finitely additive, the Radon-Nikodym
theorem does not hold, in general: (we remark that, in this case, absolute continuity is
to be intended in the £-48 sense).
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It is appropriate to begin with the oldest result concerning the Radon-Nikodym theorem
for finitely additive measures, attributed to Bochner [7].

THEOREM 3.1. If u and v are two finitely additive measures on X, such that v <, [,
then for any n > 0 there exists a p-integrable function f,,, such that

<,

o&)~ [ fydu
E

forany E € X.
In order to give an example, we introduce a definition.

DEFINITION 3.2. Letu:X — Rg be a finitely additive measure, and let J denote the
ideal of null sets. If J is a o-ideal, we say that u has the property o.

One can easily see that, if f > 0 and u has property o. then

ffd;L:O

implies that f =0 a.e.

Similarly, one can deduce that, whenever u has property o, and f and g are two u-
integrable functions, then f =g p-a.e.assoonas [, fdu = fA gdu for all A € X (this
entails uniqueness of the Radon-Nikodym derivatives, up to a.e. equivalence).

EXAMPLE 3.3 ([10]). Let A be the family of all subsets D C [0, 1], such that the
following limit exists:

lim M =8(D)_

e—-0t £

Though A is not an algebra, the function & can be extended (using the axiom of choice)
to the whole o -algebra X of the Lebesgue measurable sets, in such a way that

AMB N[O, . AMB N[O,
liminf—(—ﬁ <8(B)<11msup(—[8[),
F—>0+ £ F—>0+ £

for all sets B € X', and so that § is finitely additive on X. Obviously. if A(B) =0 then
3(B)=0.

Now set p := A + 8. It is clear that u(B) = 0 if and only if A(B) = 0, hence u enjoys
property o. Moreover, A <« p also in the (¢-8) sense, however one can easily see that
dA /du does not exist. In fact, such a function f should satisfy

A(Bﬂ[s.l])=f fdu=f fdA+f fd8=f fdx,
BN[e.1] BNle. 1] BNle. 1] BNle. 1]
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foralle >0,andall Be X,ie., f =1a.e.in[e, 1] forall ¢ > 0. Thus, by the property 7,
it should follow that f = 1 u-a.e., a contradiction.

The property ¢ has a double face: on one hand, it looks like a strengthening of finite
additivity, in the sense of ¢ -additivity. On the other hand, it prevents in some sense that
a finitely additive measure might behave like a o -additive one, at least with respect to the
Radon-Nikodym property. This statement is clarified by the next theorem.

THEOREM 3.4. Let u: % — R()* be any finitely additive measure, defined on the o -
algebra X, and enjoying property o. The following are equivalent:
(1) w is countably additive;,
(2) for every finitely additive measure v: X — Rg, which is (e-8) absolutely continu-
ous with respect to uu, there exists dv/d .

PROOF. Of course, since (1) and the other assumptions imply that v is also o-additive,
just (2) = (1) needs to be proved. Let (A,),¢j: be any increasing sequence of sets in X,
and denote by A their union. Set: v(B) :=limu(A, N B), for all B € X. It is clear that v
satisfies the condition (2), hence there exists f =dv/du.

Now, for every B € X, we have v(B) = v(BNA) = fB fladp, so f can be replaced
by f14. On the other hand, it is clear that f14, =14, pn-a.e., hence f =14 u-ae.

As a consequence, we have lim,_,  u(A,) = v(A) = fA fdu = fA ldu = u(A). As
the sequence (A, ),eN Was arbitrary, u turns out to be o -additive. g

In the spirit of the remark preceding Theorem 3.4, we can give an antithetic example.

EXAMPLE 3.5. Let £2 be any infinite set, and let J denote the ideal of all finite subsets
of £2. According to the Axiom of Choice, there exists a maximal ideal J*, including J.
Define for A € P(£2):

3 ok
G(A)::[O 1fAe.'J,
1 otherwise.

According to a well-known theorem by Ulam [57]. 6 is a finitely additive measure,
lacking the property . However, if v: P(£2) — Rg is any finitely additive measure, (0-0)
absolutely continuous with respect to 6, then the only possibility is that v = k6, for some
nonnegative constant k. In this case, obviously, k = dv/d6.

To find a characterization of the Radon-Nikodym property, we have to introduce the
concept of completeness. In a recent paper by A. Basile and K.P.S. Bhaskara Rao [1]
an excellent presentation is given. mainly concerning finitely additive measures defined
on algebras. We shall adapt here one of their results, dealing with the Radon-Nikodym
property.

DEFINITION 3.6. Let u: X — RJ be any finitely additive measure, on a o-algebra X',
If A and B are elements of X, we set: d,, (A, B) = u(AAB). It is clear that (X, d,) is a
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semimetrizable space. We say that (X, i) is complete, if the quotient X'/~ is complete as
a metric space, where = is the natural equivalence relation in X.

The characterization given in [1] can be stated as follows (we recall that in our
assumptions X' is a o -field, and contains all subsets of sets of measure 0).

THEOREM 3.7. Letp:X — Rg be any finitely additive measure, on a c-algebra X. The
following are equivalent:
(1) (X, dy) is complete.
(2) For every increasing sequence of sets (Fy)yer; in X, there exists a sequence of j1-
null sets (H,)),en in X, such that

n—oC

lim p(F,) = lim u(Fy\ Hy) =u(

JEa H,,>>

nelt

From Theorem 3.7 one can easily deduce that if v <, u and (X, d,,) 1s complete, then
(X, d,) is complete, too.

COROLLARY 3.8. If(X.d,) is complete, and v is any signed finitely additive bounded
measure such that v &, |, then v admits a Hahn decomposition.

PROOF. We only have to show that there exists a set P € X, such that v(P) =
SUp pex V(A).

As v 1s bounded, the number § := sup, .y v(A) is finite, and there exists a sequence
(A))nen 1In X, such that S =1im,_, x v(A,). Setting now

vt(A)=supv(ANE) and v (A)=— inf V(ANE), VA€ X,
Eef EeX

we readily see that vt (A, AA,,) - Oand v~ (A, AA,,) = 0asboth m and 1 diverge. Now,
vtand v~ are both (¢-8) absolutely continuous with respect to u, andsois [v| ;= v 4+ v 7,
hence there exists a set P € X, such that lim,_,  [v|(A,AP) = 0. The set P has the
required property. g

COROLLARY 3.9. The following are equivalent:
(1) (X, d,) is complete;
(2) For every nonnegative finitely additive measure v &, |, there exists dv/du.

PROOF. We only prove the implication (1) = (2). As v &, . we see that the signed
measure v — r i is £~ absolutely continuous with respect to u, and therefore it has a Hahn
decomposition. Due to Corollary 1.3, this implies the existence of dv/du. g

The corollary above has been proved in [1].
A different approach to the problem consists in finding additional conditions on the two
measures 4 and v, besides absolute continuity, which ensure the existence of dv/du.
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One of the first consequences of Theorem 1.2 and Corollary 1.3 is the following (see
also [3,12,13]):

THEOREM 3.10. Let p, v be two nonnegative finitely additive measures, defined on the
same o -algebra X, and such that v <, w. If the range of the pair (i v) is a closed subset
of R?, then there exists dv/d .

PROOF. In view of Corollary 1.3, it is enough to show that, for every real number r > 0,
there exists a Hahn decomposition for v — ru. But it is clear from the assumption on the
range of (i, v) that the range of v — ru is a closed subset of R, hence there exists an
element A € X in which v — rp attains its maximum: so (A, A) is a Hahn decomposition
for v — ru, and we are done. g

Of course, closedness of the range of (u, v) is just a sufficient condition. In [3] and [12]
necessary and sufficient conditions are given on the range of (¢, v) in order that dv/du
exists. In both papers, the condition involves the so-called exposed points of the range,
according with the following definition.

DEFINITION 3.11. Let R be any convex, bounded subset of R”. Let us denote by R
its closure. We say that a point Q € R”, Q € 3R, is an exposed point for R if for every
hyperplane H, supporting R at Q, we have RN H = {Q}.

THEOREM 3.12. Let (. v) be a pair of nonnegative finitely additive measures, defined
on a g-algebra ¥ and such that v <, u, and let R denote the range of (i, v). Then the
Sollowing are equivalent:

(1) There exists dv/dpu.

(2) The convex hull of R contains its exposed points.

The theorem above has been proved in [3].

In [12] a similar theorem is stated, for the case of continuous measures.,

A measure u: X — R is said to be continuous if for every £ > 0 it is possible to
decompose £2 into a finite number of subsets A|, A>..... A, belonging to X, such that
U(A;) <eforalli.

If 4 and v are both continuous, finitely additive and nonnegative, it is well-known
that the range of (i, v) is a bounded convex subset of the plane (see also [11]), hence
condition (2) of Theorem 3.12 can be expressed in a simpler way. However, in [12] the
following result has been proved, which gives a full description of those bounded convex
sets R C R? that are the range of some pair (1. v) for which dv/du exists.

THEOREM 3.13. Let R be any bounded convex subset of [0, o[-, Then the following
properties are equivalent:
(1) There exists a pair (. v) of nonnegative continuous finitely additive measures,
defined on a suitable o -algebra, such that there exists dv/du, and such that R
is the range of (i, v).
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Fig. 1. Equation of the lower curve: v = 1 — /(1 — x2).
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Fig. 2. Equation of the lower curve: v = (1 — /(1 = x2))/2.

(2) R contains its exposed points, and for every segment L C 3R, at least a (possibly
degenerate) closed subsegment I C L is contained in R. (See Figure 5 (a) and (b).)

Usually, if (i, v) is a pair of nonnegative continuous finitely additive measures, the
range looks like in Figure 1, or in Figure 3, when v «, p. In Figure 2 a particular situation
is shown, where v is obtained by adding to u some measure which is singular with respect
1o 4.

We observe that the range is always symmetric with respect to the midpoint (1 (§2)/2,
v(£2)/2): hence in Figure 5 (a) and (b) just half of 3R has been drawn.
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Fig. 4. Lower curve: v = (1 — /(1 — x?))/2. for x < 0.5, then linear.

4. The Banach-valued case

The results from the previous sections can be easily extended to bounded signed measures,
since the Jordan decomposition (even in the finitely additive case) always exists. Similarly a
complex measure or function can be studied investigating separately its real and imaginary
part. In the same way we can also extend the previous results to measures or functions
taking values in a finite-dimensional space.

A really different situation occurs with infinite-dimensional measures, as we shall see in
this section. The research on this subject led, mainly in the seventies, to a variety of quite



266 D. Candeloro and A, Volci¢

081

067 s

081
U.B‘: /
04

0.2

(b)

Fig. 5. (a) Range closed. (b) Range not closed, Part of the segments is missing.

interesting results, relating the Radon-Nikodym property to topological and geometric
properties of the range space. Here, we shall confine ourselves to the Banach-valued o -ad-
ditive measures, and with respect to the Bochner integral. (As to absolute continuity, for
the o-additive case, the (¢-8) definition is still equivalent to the (0-0) one.) Maybe the
richest survey on this subject is [20], so we refer the reader to that paper, in order to find
the proofs missing here, and an exhaustive historical account.

We start, recalling the definition of Bochner integral [6,21,22].
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DEFINITION 4.1. Given a finite measure space (2. X, u), where X is a o-algebra,
and a Banach space X, a function f:$2 — X is said to be simple if it is of the form:
f= Z,N:Ix,-lA,, where x; € X and A; € X foralli=1,..., N. If this is the case, then
the integral of f is the element:

N
ffdu = Zx,-u(A,-) €X.

=1

In the same framework, if (£, ),er; is any sequence of simple functions, we say that f,
converges in measure to some function f. if the following holds:

lim p*({w € 2: | fi(w) = flw)] >£})=0

nH—20

for all € > O (here, u*(A) is the outer measure defined in Section 2).

Incase f:$2 — X is the limit in measure of some sequence ( f;, }ners of simple functions,
then f is said to be measurable (also, strongly measurable).

We say that f:$2 — X is (Bochner)-integrable, if there exists a sequence ( f,)nen of
simple functions, converging in measure to f, and such that

lim f ” fn - fm " dﬂ =0.

(n.m)—o¢

It can be proved that, if f:$2 — X is integrable, then the sequence (f fodw)yen is
convergentin X, and the limit is independent of the particular sequence ( f; )ners. Of course,
the limit lim [ f, du is called the integral of f.

Also, as in the real-valued case, one can prove that convergence in measure implies
convergence a.e. for some subsequence, hence a strongly measurable function is essentially
separably valued, i.e., there exists a separable subspace Y C X, such that f(w) € Y for all
but a p-null set of elements w. Moreover, a strongly measurable function is also weakly
measurable, i.e., (x*, f) is measurable for all x* belonging to X*.

Like in the scalar case, it can be proved that integrability of f implies integrability
of || fIl. and that || { fdull < [||fllde. When f is integrable with respect to u, we
also say that f is in L}((u). The latter is a Banach space if we identify functions which
coincide a.e. with the norm || f|| = [ || f|| di. Moreover, if f is integrable, then f1p is
also integrable, for all E € X, and the integral becomes a function of E: we set

Fu(E) :=fEfdu :=ff1f;du.

One can see that fu is an X-valued measure, which is separably valued. whose variation
is | flle. The variation of an X-valued measure v is denoted by |v| and is defined as:

VI(E)=sup ) "[v(ED].
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where the supremum is taken over all finite partitions of E: one can also regard |v| as the
least upper bound of {|{x* v)|: x* € X*, ||x*|| = 1}. in the lattice of measures.

Moreover, fu < .

The converse question leads, of course, to the problem of the existence of a Radon-
Nikodym derivative. The problem can be stated in various different ways:

(1) Given ameasure v: X — X, which is absolutely continuous with respect to a scalar
positive measure u, does there exist a Bochner-integrable function f, such that
v= fu?

(2) Given a measure v : ¥ — X, with finite variation, |v|, does there exist a function f,
Bochner integrable with respect to |v|, and such that v = f|v|?

Of course, a necessary condition for an affirmative answer to (1), is that v has finite
variation. Moreover, if |v| is finite and v < u. then it is clear that |v| « u: hence, an
affirmative answer to (2) would yield an affirmative answer to (1). Conversely, assuming
the existence of dv/du, one can decompose p into the sum w1 + pa2, where py < |v|
and py L |v]. (See Theorem A4.) Hence |v| « wu|. dv/du = dv/du,, and dv/d|v| =
(dv/dp)duy/dv)).

In conclusion, we can see that (1) and (2) are essentially equivalent.

Moreover, in [17], Chatterji remarks that in (1) above the o-algebra X can be
equivalently replaced by the Borel o-algebra on the unit interval, and (up to irrelevant
renorming) the measure p by the usual Lebesgue measure.

Now, we give a couple of examples showing that the answer is not always affirmative.

EXAMPLE 4.2. Let X be the L'space over the unit interval in R. Also, let ([0, 1], X, )
be the measure space, where X denotes the Borel o -field, and A the Lebesgue measure.
Forall Ae X, set v(A) = 14, i.e., the characteristic function of the set A.

It is easy to see that v is an X-valued countably additive measure, defined on X', and that
jvi = A. However, if a Radon-Nikodym derivative f := dv/dX existed, we would have:

fg(x)dx=(g.lA)=f(f(x).g)dx
A A

forall A€ X, and all g € L™ (= (L')*). Therefore, for every fixed g € L™, we would
have:

g(x)=(f(x).g) ae.

Hence, there would exist a A-null set N € X such that, forall o, 8in [0. 1]N Q. « < B.
we would have

(OO, lap)=1

for all x € N" N [e, B]. So. if we fix x ¢ N. and choose (@, )neri. (Bn)ner: in such a way
that e, < x < By, an, B €Q, and 8, — o, — 0, we get:

nl_iIT;c(f(x)s llﬂ’n-ﬂn])= 1

which is impossible, since f(x)e L'.
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EXAMPLE 4.3. The next example concerns the same measure space, ([0, 1], Z', A), but
with a different range: here, X is ¢y, the space of all real sequences, vanishing at infinity.
Let us define:

R(AY = (1 (A), . a(A). ).

where
;L,,(A):f sin(2mrnx)dx
A

forall Ae ¥, and n € N.

As |uy(A)] € A(A) for all A and all »u. it is clear that 4 has bounded variation,
and [u|([0, 1]) < 1. Obviously, u « A, however dA/du does not exist. Indeed, such a
derivative f, f = (fi..... fu....). should satisfy:

[L,,(A):f sin(27rnx)dx=f fu(x)dx
A A

for all A and n. Thus, it would be f, (x) = sin(27nux) a.e., which is impossible, because
sin(2nx) is not vanishing, as 1 — oo.

The first affirmative answer to the Radon-Nikodym problem in infinite-dimensional
spaces is due to Birkhoff.

THEOREM 4.4 ([4]). If X is a Hilbert space, then every o-additive measure i~ — X
with bounded variation admits a Radon—-Nikodym derivative with respect to |j1].

We do not give the proof now, because we will see later some generalizations of this
result.

REMARK 4.5. What happens if we try to adapt Theorem 4.4 to the example given in
Example 4.2? One can always think of 14 as an element of L, and of v as an L?-valued
o-additive measure, with v « A. However, by the same argument, one can still show
that dv/di does not exist. What is wrong? A simple calculation shows that u does not
have bounded variation, when considered with values in L2. This remark also shows the
importance for a measure of having bounded variation. (However, more can be said on this
example, see Remark 4.18.) From now on, we shall write BV to mean “bounded variation”.

DEFINITION 4.6. We say that a Banach space X has the Radon—Nikodym Property (RNP)
if (1) or (2) above holds, i.e.. every countably additive X-valued BV measure p, defined
on the measure space (§2, X), admits a Radon-Nikodym derivative with respect to |u|.

Hence, according to Theorem 4.4, all Hilbert spaces have the RNP.
Other spaces with RNP can be derived from another important sufficient condition, due
to Dunford and Pettis [23].
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THEOREM 4.7. If X is a Banach space, whose dual space X* is separable, then X* has
RNP.

PROOF (Sketch). Let v: X — X* be any BV measure, with v « 1. For any x € X, and
any A € X' set v, (A) = (v(A), x). Itis clear that v, « . Of course, there exists dv, /du.
The idea now is to set f, = dv, /du. and to show that f, defines, as x varies in X, a linear
continuous functional f; however one must take into account that f, is defined a.e., hence
a “good” function f must be defined carefully, and this can be done, if X* is separable. [J

For example, the space L) is not a dual space, because we know from Example 4.2 that
it has not RNP, however /| is a separable dual, hence it enjoys RNP.

We will see in the sequel other classes of spaces with that property, but we will introduce
first a very important definition.

DEFINITION 4.8. Given a bounded nonempty subset B of a Banach space X, we say
that B is dentable if for every ¢ > 0 there exists a point x, € B such that x, does not
belong to the closed convex hull of B\B(x, . ¢). In case it is possible to choose the same x
for all ¢, then x is said to be a denting point of B.

Dentable sets are closely related to the existence of Radon-Nikodym derivatives, as
Rieffel showed in [47,48].

We first remark that B is dentable whenever every countable subset of B has this
property. This was proved by Maynard [39], and can be seen as follows: assume that B is
not dentable; then there exists £ > 0 such that x € co(B\B(x.¢)). Vx € B. So, choose any
elementx € B, and points y|, . ... yn € B, such that ||y; —x| > ¢ forall i, and some convex
combination z;| of these points belongs to B(x, £/2). For the initial point x, and each of
these points, say y;, one can choose a finite subset F; C B. such that ||y — y;|| > ¢, for
any y € F;, and such that some convex combination 23 of F; belongs to B(y;.£/4). Now,
the union of the sets F;, together with x and the points y,, gives a finite subset E| C B.
For each element s € E | the same construction is possible, giving rise to a finite subset E>.
We continue by induction. The union of all the sets E; is then a countable subset of B,
which is not dentable.

Now, let us state a lemma, where the construction of a Radon-Nikodym derivative is
shown, under suitable assumptions.

LEMMA 4.9. Let (2, X, 1) be any finite measure space, and v: X — X be any BV
measure, |v| K . Then dv/du exists, whenever the following condition holds:
(a) For every & > 0 there exist sequences (X;)pers in X, and (H) Jpen in X, such that
the sets HY, are pairwise disjoint, have positive measure, (2) =Y _ u(Hy), and

{ v(A)

cAeX, ACH!} CB(xi. ¢).
A CHy (€ B(x).¢)
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PROOF. Assume that (a) holds, and fix ¢ > 0. Consequently, a sequence (x{),en exists
in X, and a corresponding sequence (H, ),er: in X, according to (a). Now choose n large
enough, so that u(2\{;,, HY) <, and set

Je = Z leHj~

IS0

It is easy (though tedious) to see that ( f;) is Cauchy in L)'( (1), hence converges to some
function f in this space. Now, since [, fdu =lim [, fodu as e — 0, forall E € X,
it is enough to compare v(E) with fE fedu. Of course, up to £, we can assume E C
Ujcn, Hj andsov(E)=3", ., v(E N Hj), while fEﬁdu X j<n XR(ENHD).
Now, as E me C Hs we have [lv(E ﬂHF) x£ u(E ﬂHF)ll <su(E N HF) by (a),

therefore ||v(E) — fE fe dull L eu($2). and [hlS proves the lemma O

THEOREM 4.10 (Rieffel). Let (2, X', i) be any finite measure space, and letv: X — X
be any BV measure, with |v| < . The following are equivalent:

(1) There exists dv/dpu.

(2) Foreachset E € X, u(E) > 0, there exists D CE, D e X, u(D) > 0, such that

A
A(D):[% ACD, Ae X, u(Ay>0t isdentable.

PROOF (Sketch). (1) = (2) We first observe that the result is obvious, if dv/du is simple:
for every set E € X, having positive measure p. there exists D C E, with D € ¥, and
u(D) > 0, such that dv/du is constant in D, and hence { ‘((A) ACD, Ae X u(A)>0}
is a singleton. In the general case, let f denote the derlvatlve dv/du, and let (s, ), en be any
sequence of simple functions, convergingto f in the L'-norm, and also almost uniformly.
For any set E € X', such that u(F) > 0. there exists a set D C E, with D € X' such that
u(D) >0, and 5, — f uniformly on D. Now, it is easy to apply the previous argument.

(2) = (1) We shall use Lemma 4.9. To prove (a), we proceed as follows: first, we show
that, forevery set E € ¥ such that 4 (E) > 0, and for any ¢ > 0, there exists D C E, with
D e ¥, and u(D) > 0, such that the set A(D) is contained in B(x, ¢) for some element
x € X.

Once we have proved this, it is possible to replace E with D¢, and iterate the procedure,
constructing a disjoint sequence as in (a).

So fix E € X, with u(E) > 0, and let £ > 0. We know that there exists Eg C E, with
Eo € ¥, and u(Ep) > 0, such that A(E;) is dentable. Let x be an element of A(Ep),
such that x ¢ co(A(Eg)\B(x,¢)). Write x = v(Dg)/u(Dyg), for suitable Dy C Eg. If
A(Dg) C B(x, ¢), we have finished. Otherwise, there exists E; C Dp, with u(E}) > 0,
such that

v(ED)
1(E})

— X

As l:((?l)) € A(Dy), we also have

; € Co(A(Do)\B(x, €)).
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Let us denote by k| the smallest positive integer for which such an element E| exists,
satisfying u(E|) = ﬁ and choose in this way E|. Set D} = Dy\E . It is impossible that
u(D)) =0, because this would imply

L vD0) _ v(ED
u(Dy)  p(E)’

a contradiction.

Now, if A(D|) C B(x,¢), we are done. Otherwise, continuing that way, we can
produce a disjoint sequence (E,),en in X, an increasing sequence (k,)pen in N, such
that u(E,) < ﬁ and L—‘é—’,”)) € co(A(D)\B(x.¢)). Of course, we have k, 1 oco. Setting
Eo = JE,, and D = Dg\ E., we can deduce that D is the desired set, i.e., u(D) >0
and A(D) C B(x, ). Indeed, if it were (D) = 0, we would have

_ v(Dp) _ V(Ex) _ ZV(EH) _ Z v(E,) u(Ey)

B - = = co(A(EQ)\B(x, ¢)),
u(Do)  p(Ex) p(Ex) w(Ey) .u(Eoc)GCO( (Eo)\B(x.2))

which is impossible.
Now, to show that A(D) C B(x.¢), fix D' C D, with D' € X and u(D") > 0. If

;;g’,; ¢ B(x,#), then X8 € 75( A(Eq)\B(x. ), because D' C Do\ /-, E; for all n.
But then, by the choice of (k,),en, we must have p(D') < ﬁ for all n, and hence
w(D'y =0, acontradiction. U

Let us see some consequences of Theorem 4.10.

Forinstance, we can deduce that if X has the RNP then every subspace of X has the same
property, Indeed, the construction of Lemma 4.9 shows that, if v takes values in a subspace
Y C X, then the derivative can be constructed as a limit of ¥-valued simple functions.

Another consequence is that X enjoys RNP as soon as every bounded subset of X is
dentable. However, the converse is also true, as Huff in [29], and Davis and Phelps in [18],
independently proved.

THEOREM 4.11. Let X be any Banach space. The following are equivalent.
(1) X enjoys RNP.
(2) Every bounded subset of X is dentable.

We refer the reader to [20] for a proof of the implication (1) = (2).

Another consequence is that Radon-Nikodym Property is separably determined, i.e.,
a Banach space X possesses RNP if and only if every separable subspace Y C X has
RNP. This is now an easy consequence of Theorem 4.11, and the remark following
Definition 4.8: a set is dentable as soon as its countable subsets are dentable.

As weakly compact sets are dentable, it is now clear that every reflexive Banach space
has the RNP.

An interesting consequence of Theorems 4.7 and 4.11 is that X enjoys RNP as soon as
each of its separable subspaces are duals. In [52], Stegall showed a stronger result:
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THEOREM 4.12. The following are equivalent, for any Banach space X:
(1) X* has RNP;
(2) every separable subspace of X has separable dual,
(3) every separable subspace of X is embedded in some separable dual.

A consequence of Theorem 4.12 is that the dual of a separable Banach space possesses
RNP if and only if it is separable.

Some of the previous results are also included in a “martingale-type result”, obtained by
Chatterji in [17]. For the sake of completeness, we give some definitions.

DEFINITION 4.13. Let (2, X, P) be any probability space, i.e., any measure space,
with P(§2) = 1. Given any Bochner-integrable function f:$2 — X (here, X is any
Banach space), and given any sub-o-algebra Xy C X, the conditional expectation of the
function f with respect to Xy is the Bochner-integrable function (defined P-a.e.), denoted
by E(f|Zo). which has the following two properties:

(1) E(f|Xo) is strongly Xy-measurable;

() fpfdP = [ E(f|Z0)dP forany F € Xo.

The existence of E(f|Xo) is independent of the RNP, and is proved first directly, for
simple functions f, and then by approximation, in the general case.

DEFINITION 4.14. Let X, and (§2. X, P) be as above. An X-valued martingale is a
sequence ( fy, Zp)pen of Bochner-integrable functions f, and sub-g-algebras X, C X,
such that:

() X, CXyyy, VREN;

2 fo= E(fpt11Z0), Vn e N.

The martingale ( f,,. X, ).en is said to be convergent if there exists a Bochner-integrable
function foo: §2 — X, such that f, = E(fx|X,) foralln e N,

A typical way to obtain martingales is the following: assume §2 = [0, 1], X' is the Borel
o-algebra, and X the Lebesgue measure. Construct a sequence of decompositions (Dy),en
of the unit interval, first splitting [0, 1] into two sub-intervals of the same length, thus
obtaining Dj, and then, by induction, dividing each interval from D, into two disjoint
sub-intervals of the same length in order to get D,,. Let X, be the (o-) algebra generated
by D,. Now, if v is any measure defined on X, set: f,(x) = v({x(x))/A(1:(x)), where
In(x) is the unique interval of D, containing x. It is clear that f, is constant on each
interval of D,,, hence it is X, -measurable. It is also easy to see that |, j, e di= f , S d)
(=v(ly)), which implies that ( f,,, X,,),en is a martingale.

If this martingale is convergent, and if v is o -additive, then the function f, satisfies the
identity:

f foodA=v(F),
F

forany F € | ] X, and therefore for any F € X i.e., we have foc = dv/dA (and of course
V< A)
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In case v is real-valued, a classical condition for the convergence of a martingale is
particularly simple: as soon as sup,.;: [ | ful dX < oo, the functions f, are uniformly
integrable, and pointwise convergingto fx.

When the martingale (or the measure v) takes values in a general Banach space X, this
is no longer true, in general. Chatterji’s result clarifies the situation.

THEOREM 4.15 ([17]). Let (82, X. P) be any probability space, and assume that X is a
Banach space. The following are equivalent:
(1) X has the RNP with respect to (2. X . P).
(2) Every X-valued martingale (fy. £y)ueti» satisfying sup,cy fo | ful dP < 00, is
convergent, in the sense that f, converges P-a.e. and strongly in X to a Bochner-
integrable function fx :§2 — X, such that E( fxc|Zn) = fu. Vn e N,

We shall not give the proof here: for the implication (2) = (1), the construction above
gives an idea of the main steps. The converse is less elementary. As a consequence of this
result, one can easily deduce, besides the already mentioned classes of reflexive spaces,
and separable dual spaces, another class of Banach spaces with the RNP, i.e., the weakly
complete spaces with separable dual.

We conclude this section with an analytic result, due to Moedomo and Uhl [41],
connecting “weak” derivatives with “strong™ ones. We need a further definition. (See
Chapter 12.)

DEFINITION 4.16. Let($2, X, 1) be any finite measure space, and X any Banach space.
Given a strongly measurable function f:$2 — X (see Definition 4.1), we say that f is
Pettis integrable if for every set A € X there exists an element J(A) € X, such that

)= [ 6, prau

A

for any x* € X*. The element J(A) is called the Pettis Integral of f in A, and is denoted
by (P) [, fdu.

THEOREM 4.17 ([41]). Letv: X — X be any o -additive measure, v < . The following
are equivalent.
(1) There exists a Pettis integrable function f:$§2 — X such that

(P)f fdu=v(A)
A

forall A€ X. (f is the Pettis derivative of v.)

(2) For every € > 0 there exists a set He € X, such that u(HY) < ¢, and the set

{—%: A C H, u(A) > 0} is relatively compact.

(3) Forevery A € X, with u(A) > 0, there exists B€ X, B C A, with u(B) > 0, such

that {;’((?) E C B, u(E) > 0} is relatively compact.
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(Initems (2) and (3) above, “relatively compact” can be equivalently replaced by “weakly
relatively compact”.)

Moreover, f turns out to be Bochner integrable, if and only if v is BV.

We shall not give a proof of Theorem 4.17, however we emphasize again the fact that
weak compactness of bounded sets ensures that they are dentable, so at least part of this
theorem is a consequence of Theorem 4.10.

REMARK 4.18. In some sense, Theorem 4.17 tells us that bounded variation is not an
essential requirement for v to be an integral measure: if one of the properties (2) or (3)
of Theorem 4.17 is satisfied, v is at least the Pettis integral of some function f, with
respect to u. For example, if X is reflexive, the only requirement is that (2) or (3) above
hold, with “relatively compact” replaced by “bounded”; however, if v is not BV, this
is not automatic, even for Hilbert spaces: if we consider the Remark 4.5, the example
outlined there deals with an L>-valued measure v. absolutely continuous with respect to
the Lebesgue measure A, lacking even a Pettis derivative: indeed, the “averages” % fail
to be bounded, as soon as A(A) decreases to 0.

5. Finitely additive Banach-valued measures

Of course, the problems concerning the existence of a Radon-Nikodym derivative are still
harder, when one allows also finitely additive measures into consideration. As we already
observed, even for real-valued finitely additive measures, there are examples in which the
derivative does not exist, hence it makes no sense to look for spaces with a property which
would take the place of RNP.

This is clarified by the next theorem, which is a Banach-valued version of the
approximate Radon-Nikodym-Bochner Theorem 3.1. We need first a definition.

DEFINITION 5.1. If X is a Banach space, we shall say that it has the “approximate finitely
additive Radon-Nikodym property” (AFARNP), if for any measure space (§2, X, u),
where u is a finitely additive X-valued BV measure, and for any n > 0, there exists a p-
integrable function f, (which may be taken simple), such that

<7,

HH(E)—f fydn
E

forany E € X.
The following result has been communicated to us by Anna Martellotti.
THEOREM 5.2. A Banach space X has AFARNP if and only if it has RNP.
PROOF. Assume X has RNP and let i be a BV finitely additive measure on (£2. X'), with
values in X. Since u is BV, it follows from [11] that it admits a Stone extension, i.e., there

exists a countably additive measure fi on Gs, the Baire o-algebra of the Stone space §
associated to the quotient of X with respect to A/, the family of all |x|-null sets.
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It is also known that 1 is BV and that
[l =|pl.

By RNP there exists a Bochner-integrable function f: S — X such that

ﬂ(F)=f fdlul,
F

for any F € G;s.

A density argument shows that, given 5 > 0, there exists a Gs-simple functiong: § — X
such that

f lg — flldlitl <n.

S

Letg=3}""_, x;lg,. with G; pairwise disjoint. Since G; € Gs, there exist pairwise disjoint
sets Ey,..., E, in X, such that h([E;]) = G;, where h is the natural embedding of /A

in S.
Put now y = Y7, xilg,. and let v = y|ji|. It is easy to check that U = [ gd|fi| and
from [11] we have

i — ¥l =f If - glldim.

——
——

and moreover u —v = g — v and | — v|(§2) = [t — v|(S), so we can conclude that
Il —vl($2) < n. N

Conversely, assume X has AFARNP. Let u: X — X be a countably additive BV
measure. For each n > 0 there exists f;;: 2 — X such that

lu = fylul| < n.

Consider n, = 2—1,, and let f, = f;,. We want to show that ( f;),cx is a Cauchy sequence in
L' (lu]). Indeed, for any » and m, if we put v, = f,,|u|, we have

”fn - fm”l =f ”fn - fm "Xd“‘tl = vy — vyl
2

Since the total variation is a norm in the space of all countably additive BV measures on
(82, X), we have

[vi — vm| < vy — | + [ — V.
hence || f,; — finll1 < nn + nim, and s0 ( f;)nerc 1s Cauchy.

Since |u| is countably additive, L'(|u|) is complete and therefore there exists f €
LY(J]) such that fo = f (in L'(Ju))). By definition, (f,)nen is a defining sequence
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for £, namely [ f, du — [ f du. From the definition of f, it follows now the conclusion.
namely that u = fd|u|. g

From the second part of the proof above, it follows also that an approximate Radon-
Nikodym-Bochner theorem for Banach-valued o -additive measures does not hold, unless
the range space has RNP.

From now on, we shall limit ourselves to look for conditions, necessary and/or sufficient,
1o ensure the existence of some kind of weaker Radon-Nikodym derivatives.

To be able to do that, besides the Bochner and Pettis-type integral, we shall also deal with
the so-called Gel fand integral, and later on with the Bartle—Dunford-Schwartz integral.

DEFINITION 5.3. Letu: Y — Rg be a finitely additive measure, and let X be any Banach
space. Given a function f: 2 — X** we say that f is Gel'fand integrable with respect
to u, if:

(@) (f,x™) is u-integrable, for all x* € X*.

(b) Forevery A € X there exists an element J4 € X such that

(x*, Ja) =fA(f,x*)dH.

for any x* € X*.
(c) The function A — J4 is a p-continuous finitely additive measure.
(d) Forevery £ > 0 there exists H C §2, such that u(H) < ¢, and sup,,. 4 || f ()] < oc.

When a finitely additive measure v: ¥ — X is given, with v « u (throughout this
section we use always the -8 definition of absolute continuity), we say that v has a
Gel 'fand-type derivative, if there exists a Gel'fand integrable function f: 2 — X**, for
which J4 =v(A)forall Ae X, ie.,

fA(f,X*)du — (L v(A)),

forany A € X and x* € X*.

An example of such a derivative can be seen in Example 4.3, where the function f takes
values in /o, while the space X is cy.

Another interesting situation is described in Example 4.2, where the existence of a
Gel’fand derivative is a consequence of the Lifting Theorem (43,36.30,31] (see also
Chapter 28 in this Handbook [53]), in particular for the Lebesgue measure. Let us denote
by ¢ the lifting map. For any @ € §2 = [0, 1], f(w) can be defined as the element of L}_,
which associates ¢(h)(w) to every h € L. So we see that {f, k) turns out to be simply
the function ¢ (h), which is bounded and measurable, for each h € L = X*, hence (a)
is satisfied, and [, (f,h)dx = [, hdx = (h.14) = (h,v(A)),forany A€ X and h € X*.
This proves (b), (¢), and the fact that f is the Gel'fand derivative dv/dAX.

Dealing with finitely additive measures, the existence of Gel'fand derivatives can be
derived from the following theorems, which include Example 4.3 as a particular case.
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THEOREM 5.4 ([13]). LetY be any separable Banach space, and assume that (§2, X, 1)
is any finitely additive measure space, with u nonnegative (and finite). Let us suppose that
a bounded finitely additive scalar measure T(y) is associated to every v € Y, such that
there exists dT (y)/dp, and moreover |T(y)|(A) < ||¥[|u(A) forevery Aec X and y €Y,
where |T (y)| denotes as usual the rotal variation of T(y). Then, there exists a function
f:82 — Y™ such that:

(D) fO)=dT(y)/du forevery y €Y.

The proof of Theorem 5.4 is in some sense reminiscent of the sketch of proof given for
Theorem 4.11. We skip the details, because they are too technical.

A direct consequence is the existence of bounded Gel fand derivatives, under some
conditions.

THEOREM 5.5 ([13]). Assume that X is any Banach space, with separable dual, and let
(82, X', i) be as above. Suppose that v: X — X is a finitely additive measure, such that
d{x* v)/du exists, for every x* € X*. Assuming moreover that the set

@
S:= {H(A). Ae X uA)>90

is bounded, then there exists a bounded Gel 'fand type derivative dv/dpu.
PROOEF. It is sufficient to apply Theorem 5.4, setting ¥ := X*, and T(x*) = (x*,v). O

COROLLARY 5.6 ([13]). Let X, (82, X, u), v be as above. For the existence of a Gel’fand
derivative dv/du it is necessary and sufficient that the following two conditions hold:

(i) d{x*,v)/du exists, for every x* € X*, and

(i) for every € > 0 there exists H € X, n(H®) < &, such that the set

{V(A)
S(Hy={——:AeX. ACH. u(A)>0
1(A)

is bounded.

PROOF. The necessity is clear, by definition of Gel’fand integrability. To see the converse,
let us take an increasing sequence of sets (H, ), i, such that u(HS) | 0, and with S(H,)
bounded for each n: then, applying Theorem 5.5 to H, one gets a Gel’fand derivative f,
on H,, and pasting together the functions f;, gives the required derivative. g

It is interesting to compare Corollary 5.6 with the result due to Moedomo-Uhl, quoted
in Theorem 4.17: in some sense, if compactness for the average sets is replaced by
boundedness, then Gel'fand derivatives take the place of Pettis derivatives.

The requirement concerning the existence of d(x*, v) /d i in the previous theorems may
look too restrictive; however, we can see that it is satisfied under rather mild conditions.
One of these has been outlined in [13], where the following well-known theorem by
Rybakov is used [49].
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Let us recall that a measure ¢ on X is said to be s-bounded, if for every disjoint sequence
of sets £, € X', we have lim,, u(E,) = 0.

THEOREM 5.7 ([49]). Given an s-bounded finitely additive measure v: X — X (here,
X' may be just an algebra), there always exists some element x* € X*, such that v <
[{x*, v}|.

DEFINITION 5.8. If v: ¥ — X is s-bounded and x* € X* is such that v <« |{(x*.v)],
then the measure |(x*, v)| is called a Rybakov control for v. We can (and do) assume that
lx*|=1.

THEOREM 5.9 ([13]). Ler X be any Banach space with separable dual, and let (£2. X') be
any measurable space. Assume that v: X — X is any s-bounded finitely additive measure,
and let i be any Rybakov control for v. If v has weakly closed range, then a Gel fand
derivative dv/du exists if and only if condition (ii) of Corollary 5.6 holds.

PROOF. Having in mind Corollary 5.6, it only remains to show that d{x*, v)/du exists, as
soon as x* € X*. Let us denote by y* the element of X*, such that u = [{y*, v)|. As the
range of v is weakly closed, we see that the measure (sx* — ry*, v) =s{x* v) —r(y*,v)
has closed range, hence it admits a Hahn decomposition, for all real numbers s and r,
and all elements x* € X*. Now, an easy consequence of Corollary 1.3 gives the desired
derivative. g

A more general formulation can be found in the next statement.

THEOREM 5.10 ([13]). Assume that X* has the RNP, and let u: X — X be any s-
bounded measure, with separable weakly closed range. Then (ii) of Corollary 5.6 is a
necessary and sufficient condition for the existence of a Gel'fand derivative dv/du, where
W is any Rybakov control for v.

PROOF. If Y denotes the separable subspace of X, generated by the range of v, from
Theorem 4.12 we find that Y* is separable, hence the conclusion follows from the previous
results. g

In order to obtain Bochner (i.e., strong) derivatives in the finitely additive case, one
has to make different assumptions, as Hagood in [26] showed. The definition of Bochner
integrable function in the finitely additive setting is formally the same as in the o -additive
one (see also (22]). For the sake of simplicity, we shall give here just a particular form of
Hagood’s result, also related to a previous work by Maynard [40].

THEOREM 5.11. Let (82, X, 1) be any nonnegative finite and finitely additive measure
space, and let v: X — X be any Banach-valued finitely additive measure, v < u. Then the
following are equivalent:

(1) there exists dv/du in the Bochner sense;

(2) foreverye >0and $ > 0, there exist C € X, u(C) > 0, and a € 10, 1[ such that:
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(21) pu(CY) <34,
(211) the set S(C) —{ 1(A cAe X, ACC, u(A) > 0} is bounded,
(2iii) for all E C C, Ee X, u(E) > 0, there exists F C E, F € X, such that
W(F) > au(E) and diam(S(F)) < ¢.

PROOF. First, let us prove that (1) = (2). We denote by f the derivative dv/d i, and fix
£,8 > 0. By strong measurability of f, there exists a simple function g = Y \_, Bils,.
such that the sets B; form a finite partition of 2, and u*({w € 2: | f(w) — g(w)| >
£/4}) < 8. Letus choose aset H € X, such that {w € 2: || f(w) — g(w)| > ¢/4} C H, and
u(H) < 8. Set now: C = H¢. Then, (21) is satisfied. Moreover, if A € X, AC C, we have
I1f (@) ~ g(@)]| < &/4. for all w € A, hence [v(A)]| < [, lglldp + §1(A) < Mu(A).
where M = max{||8;|| + £/4}. So. also (2ii) is satisfied. Finally, choose o = ,i if E is
any fixed element of X contained in C, denote by B* one of the elements B; such that
u(EN B*) > ﬁu(E), and put F = B*N E. So, u(F) > au(FE). Now, let us prove that
the diameter of S(F) is less than ¢. Let 8* denote the value of g in B*, and choose any set
Ae X with ACF, and u(A) > 0. We get

v(A) _ [afdu _ B4 fa(f —g)du
u(Ay  p(A) K(A) n(Ay

from which we deduce that || ;((—'AA’) — B*|| < £/2. and therefore diam(S(F)) < €.

We now turn to the converse, i.e., (2) = (1). Fix ¢ > 0, and é = ¢. Then, let C and o
be the corresponding elements, obtained from (2). Now, apply (2iii) to E = C: we find
aset Fy e X, with Fi C C, and u(Fy) > au(C). and such that diam(S(Fy)) < &. If
u(F1) = u(C) we are finished; otherwise, apply again (2iii) to E = C\Fy, thus finding
F> C C\Fy, with F, € X, such that u(F2) > au(C\F}), and diam(S(F»)) < . So, Fi
and F, are disjoint members of X, both satisfying diam(S(F;)) < &. By an exhaustion
argument, it is possible to get a (finite or countable) family (F,),en of subsets of C of
positive measure, each satisfying diam(S(F,)) < &, and such that ZH(F::) = u(C). Now
define f, =3 B,1F,, where B, is. for each n, any element of S(F,). It is now easy to
show that f; is Bochner-integrable (indeed, f: is bounded, by (2ii)), and

< €&,

I
' V(A)—f fedn
A

foranyAe X, ACC.
A routine argument now gives an increasing sequence (Cy)iers, with u(Cy) 0, and a
corresponding convergent sequence ( fi }xepi, whose limit is the required derivative. U

To conclude the section, we turn to the so-called Bartle-Dunford-Schwartz integral,
which allows to integrate a scalar function with respect to a vector-valued measure. We
shall refer to the paper [37], which in turn was inspired at Musial's paper [42].

Actually, in [37] locally convex-valued measures were considered, but here we shall
limit ourselves to the special case of Banach-valued ones, for simplicity.
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For the rest of this section, X will denote a Banach space, p,v: X — X will be s-
bounded finitely additive measures.

DEFINITION 5.12. We denote by P the space of all measurable functions f: 2 — R.
such that f € Li(|{x*, u}|), for any x* € X*.

Givena function f € P, we say that f is u-integrable if for every A € X' there exists an
element v(A) € X such that

(x*,v() = f fdx*w)
A

for every x* € X*. We thenset: v(A) = [, fdu.

In general, when f is u-integrable, the function v is a finitely additive measure, but
it satisfies a much stronger condition than absolute continuity with respect to p. This is
evident even in two-dimensional spaces: one can choose the measure space ([0. 1], B. 1),
X :=R?, and then define: u(A) = (f, x dx.A(A)). v(A) = (AM(A), [, xdx). It is clear
that 4 and v are both equivalent to A, hence v «< u, but there is no function f:[0, 1] - R
such that v(A) = fA f du: indeed, such a function should satisfy:

A(A):fxf(x)dx and fxdx:ff(x)dx
A A A

forany A € X, thus f(x) = x a.e. and xf(x) = | a.e., which is clearly impossible.
The key property is introduced in the following definition.

DEFINITION 5.13. We say that v is scalarly uniformly absolutely continuous with respect
to i, and write: v <= u, if for every £ > 0 there exists § > 0 such that for every x* € X*
and every A € X one has the implication:

| (A <8 = [(x* 0] <e.

We say that v is scalarly dominated by p if there exists a positive number M > 0 such
that

[ (. 0)[(A) < M|, 1) |(A)
holds, for any x* € X* and any A € X

It is easy to see that, in case f:$2 — R is bounded and p-integrable, the measure v,
defined in Definition 5.12 above, is scalarly dominated by 1, and satisfies v << .

The Radon-Nikodym theorem stated in [37] asserts that, under certain conditions,
depending essentially on the finite additivity of the involved measures, scalar domination
is equivalent to scalar uniform absolute continuity, and that each of the two conditions is
also sufficient for the existence of a bounded derivative dv/du. The conditions we shall
mention here are somewhat stronger, for the sake of simplicity.
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THEOREM 5.14 ([37]). Ler A be any Rvbakov control for p. Assume that for every
x* € X*, the set

< (X*,,LL)(A).
A .—{———A(A) tAe X AMA) >0

is bounded. Assume also that the ranges of the measures | and v are closed. Then the
Sollowing are equivalent:

(1) vy,

(2) v is scalarly dominated by u:

(3) there exists a bounded pi-integrable function f:§2 — R, such that

(X", v)(A) =f fd{x* u).
A

forany A€ X, and x* € X*.

6. Further results

In this section, we shall see some recent results, concerning different situations: one of
them concerns Radon-Nikodym derivatives for measures taking their values in locally
convex spaces, and more particularly in nuclear spaces; another situation concerns
multivalued measures, taking values in Banach or locally convex spaces; yet a different
result concerns Riesz space-valued measures; finally, we shall mention some results
concerning Radon-Nikodym derivatives for a different kind of integral, the so-called
Sugeno integral.

As usual, (£2, X, u) denotes a measure space, where X' is a o-algebra, and u is any
nonnegative, finitely additive measure, taking values in [0, +oc[.

We start with some results concerning (finitely additive) measures, taking values in a
locally convex Hausdorff space X. Some definitions are needed, in order to put appropriate
conditions on X. Throughout this section, X* denotes the strong dual space of X.

DEFINITION 6.1. Let X be any locally convex space, and let B denote any bounded,
nonempty subset of X. B is said to be bipolar if B = B%, according with the duality
(X, X*). Given any bipolar set B C X, we denote by Xp the subspace of X which can
be absorbed by B (i.e., the space of those elements x € X such that rx € B for some
positive scalar r); thus the Minkowski functional pg of B can be defined on X g (we recall
that pg(x) = inf{r > 0: :— € B}, for x € Xp). We can endow X g with the semi-norm p g
and then consider the normed space X g/ =, where the equivalence relation is defined by:
x =~ x' & pp(x — x') = 0. We shall denote by X (B) the completion of such normed
space. We say that X satisfies the properry (SP) if X (B) is separable, for every bipolar set
BCX.

Obviously, a separable locally convex space X satisfies (SP).
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DEFINITION 6.2. We say that a locally convex space X has the properry (SP) if X*(B")
is separable, for all bounded subsets B C X. If X* is separable, then X has (SP)'.

When v takes values in a space X with property (SP)’, then a Radon-Nikodym theorem
in the Pettis sense has been proved in [9]. The proof is too long and technical to be
presented here.

THEOREM 6.3. Suppose X has property (SP)', and v: X — X is any p-continuous
finitely additive measure, satisfying the following two conditions:

(1) there exists d{x* v)/du, for any x* € X*:

(2) theset S := {l‘;((ﬁ;: A e X, u(A) > 0} is weakly relatively compact in X.

Then there exists a bounded weakly measurable function g : 2 — X, such that:

L(x*,g())du = (x*. v(A)).
foranyx* e X*andall A X.

This theorem is applied in [9] to the case of dual-nuclear spaces. In order to state other
results, we need some more definitions (see also [45]).

DEFINITION 6.4. Let X and Y denote two locally convex Hausdorff spaces, and let
¢ : X — Y be any continuous linear map. We say that ¢ is nuclear if there exist:

(a) asequence (Ap)yen inly;

(b) anequibounded sequence (x;),er in X*.

(c) a bounded sequence (¥,,),eN in Y, such that

()= huyulxy.x)
for any x € X.

DEFINITION 6.5. A locally convex Hausdorff space X is said to be nuclear if every linear
continuous map ¢ : X — Y is nuclear, for every Banach space Y.

This definition is not the original one, due to Grothendieck, but we have chosen this
equivalent property, because we think it is easier to work with.

Nuclear spaces enjoy very interesting properties: for instance, it follows from the
classical definition of a nuclear space that it is the projective limit of Hilbert spaces.
Another important property is that every bounded set in a nuclear space is pre-compact.
A useful condition for nuclear spaces is quasi-completeness, i.e., every closed bounded
subset is complete. Thus, if a nuclear space X is quasi-complete, all closed bounded subsets
of X are compact (hence, X is Montel). If the strong dual X* is nuclear, then the locally
convex space X is said to be dual-nuclear. It turns out easily that a quasi-complete dual-
nuclear space X is semi-reflexive, i.e., the canonical embedding c: X — X™* is onto.
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From all these remarks, one easily realizes that many interesting results can be found on
measures taking values in spaces of this kind. In [9] there are listed some, for measures
taking values in a dual-nuclear space. We just recall those results, which are strictly
connected with Radon-Nikodym derivatives.

THEOREM 6.6 ([9]). Ler X be a quasi-complete and dual-nuclear space. Then every
bounded finitely additive measure v: X — X is s-bounded, and admits a Rybakov control.

THEOREM 6.7 ([O]). Ler X be as above, and assume that v: X — X is any bounded
Sfinitely additive measure, such that:

(1) {(x*,v) < u, and there exists ‘“‘l",:l“') in L. forall x* € X*;
(2) the set S := {;l;((g)): A€ X, u(A) > 0} is bounded.
v

Then there exists a Bochner-type derivative T

We remark here that “Bochner” means here that the function l(ll_/ll is the limit in measure of
a sequence of simple functions, and the integral is the limit of the corresponding integrals.
This looks like a strong conclusion, and it is worth mentioning how it is derived: from the
assumptions we see that the mapping 7 : X* — L, definedas T (x*) = ‘““l‘);"’) , is nuclear.
(For more details we refer the reader to [9], where also completeness of L. (u) is proved.)

Therefore one can write:

T(X*) = Z)\n (X*, en)yu Vx*e X*.

where (1,),eNn €1, (en)nen is @ bounded sequence in X** = X, and (y)neis 15 a bounded
sequence in L. Choosing a bounded representative f,, from the class of y,, and putting
gn(w) := A, e, fu(w) for all w € 2, the series Y _ g, converges strongly to the desired
derivative.

An even stronger result holds for o -additive measures.

THEOREM 6.8 ([9]). Let X be as above, and assume that u is o-additive. If v: ¥ — X
is any measure, v < [, there exists a Bochner-type derivative dv/d .

We now turn to multimeasures, according with the definitions of [16] and [38]: we will
just recall the notations and the most relevant results in that setting.

DEFINITION 6.9. Given a Hausdorff locally convex space X, the family of all nonempty,
closed, convex, bounded subsets of X will be denoted by C.(X); if Q denotes the set of all
continuous seminorms on X, for every p € Q and every pair of elements A, B € C.(X),
we set:

ep(A, B) =sup igg p(x — y).

xeEAY
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and
dp(A, B) =max{e,(A. B), e,(B.A)}.
For any A € C.(X), we set also: h,(A) =d,(A.{0}).

As d,, is a pseudo-distance, the family {h,: p € Q} defines a topology on C..(X), which
is compatible with the following addition: A+ B:={a+b: a€ A. be B}.

We remark that the same topology arises if Q is replaced by some absorbing subset
Qo. Also, if X is complete, so is C.(X) with this topology. We shall assume, from now
on, that X is complete. Given an absorbing subset Q) C Q, a subset B C C.(X) is Qo-
uniformly bounded if sup ¢ sup scp hpp(A) < 00.

Any finitely additive measure v: X — C,.(X) is said to be a multimeasure in X.

DEFINITION 6.10. Given a multimeasure v: X — C.(X), for every p € Q the p-varia-
tion of v is defined for all £ € X as:

VI)(E): sup Zh])(V(Ai))~

(ANEP(E) io]

where P(E) denotes the family of all finite partitions of E into sets A; € X
We say that v has bounded variation if v, (§2) < 00, Vp € Q.

DEFINITION 6.1 1. Given a multimeasure v: X — C.(X), and a finitely additive measure
n:x - Rg, we say that v is absolutely continuous w.r.t. u (v « p) if for every ¢ > 0 and
every p € Q there exists a 8(¢. p) > 0 such that u(E) < § implies v,(E) < €.

We now turn to integration of multifunctions. Our presentation is necessarily concise,
and restricted to the Radon-Nikodym problem; we refer to Chapter 14 in this Handbook
by C. Hess [28], for a more detailed exposition.

DEFINITION 6.12. Let u:2 — R(J)r be any finitely additive measure. A map F: 2 —
C.(X) is simple if it can be written as:

n
F-_—ZIA,-C{,

=1

where the C;'s are elements of C.(X), and the A;’s are disjoint elements of X.
The integral of F with respect to i is defined as:

f Fdu= ZM(A,')C,'.
i=1

As each C; is convex, the definition of integral does not depend on the representation
of F.
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In case F is not simple, F is said to be rorally measurable if there exists a sequence
(F))nen of simple multifunctions such that

(al) the function d,(F,, F) is measurable for every n € N and every p € Q,

(a2) the sequence (d,(F,, F)) p-converges to 0 forevery p € Q.

Moreover, we say that F is u-integrable if there exists a sequence (F, ),et; of simple
functions, satisfying (al) and (a2) above, such that

(a3) limy, e fdp(Fm Fy)du=0forall pe Q.

Such a sequence will be called a defining sequence for F.

In case Qp is any absorbing subset of Q, and the conditions (a2) and (a3) above hold
uniformly with respect to p € Qg, then F will be said to be strongly integrable (with respect
to Qo, if confusion can arise).

In case F is integrable, and (F,),c; is any defining sequence for F, then for every
E € ¥ the sequence (fE F, di)yer; is Cauchy in C.(X), and hence convergent to some
element of C.(X), which will be called the integral of F on E, and denoted by fE Fdu.
This integral does not depend on the defining sequence (see [38] for details).

PROPOSITION 6.13. If F:82 — C.(X) is u-integrable, then E — fE Fdu defines a
multimeasure, which is absolutely continuous with respect to |L.

In order to state a Radon-Nikodym theorem. we need one more definition.

DEFINITION 6.14. Given a multimeasure v: X — C.(X). we say that v is bounded if

sup hp(v(A)) =M, < o0
AeX

forevery p e Q.
If this is the case, set: Q.. :={Ml—7p: peQ. M, >0}
Ifu:2— R0+ is finitely additive, for every set E € X' and every € > 0. we put:
v(F)
S(E):={ cFeX w(F)>04:
u(F)
Sp(E.€):={C € Co(X): d,(v(F). Cu(F))<eu(F)VFe X. F CE}:

S(E,e):= (1) S,(E.e).
PEQ,

Finally we can state one of the Radon-Nikodym theorems from [38]. The proof is based
upon the technique of Hagood, see Theorem 5.11.

THEOREM 6.15 ([38]). Let v: X — C.(X) be a multimeasure, v < [, where u is any
nonnegative finitely additive measure on X. Assume that
(1) S(82) is Q.-uniformly bounded.
(2) for every ¢ > 0 and every E € X, u(E) > 0. there exists a sequence of pairwise
disjoint subsets (E,)cr; of E, with E, € X, such that p(E) = Z”;L(E,,), and
such that S(E,,. €) # ) for any n.
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Then there exists a Q,,-strongly measurable multifunction G:§2 — C(X), with Q.-
uniformly bounded range, such that:

f Gdu=v(E),
E

forall E€ X.

A quite different problem arises when the measures are both vector-valued. An example
was given in the last part of Section 5, with Banach-valued measures; but sometimes it
is interesting to consider a richer structure, and to assume that the vector measure takes
values in a Riesz space: this is convenient. when the linear spaces have a natural order
structure, and the “order” convergence is not topological, like in the space L. with the a.e.
convergence.

We shall present here a very simplified version of the results. and refer to [5] for further
details or generalizations.

Assume that R is an order-complete Riesz space (here. order-complete means that every
nonempty subset F C R which is bounded from above has a least upper bound in R).
Order-completeness allows to define sup, inf, limsup and liminf.

We first mention the so-called Riemann-type integral for bounded functions with values
in a Riesz space.

DEFINITION 6.16. Given a bounded function f : [a. b] - R, we say that f is Riemann-
integrable (with respect to Lebesgue measure) if

supfs(x)dx: inf ft(x)dx
.YES/ ’ET/

where Sy (Ty. respectively) is the class of all R-valued step functions s < f (£ > f,
respectively), and the elementary integral of a step function is defined in the obvious way.

This integral is well-defined, and is a linear monotone R-valued functional. Moreover,
one can see (by usual techniques) that monotone functions are integrable.

DEFINITION 6.17. Given a positive finitely additive measure u : ¥ — R, we say that p is
a-additive if, for every decreasing sequence (E,),¢t; in X, E,, | E impliesinf{u(E,): n €
N} = p(E).

Given a positive finitely additive measure u: X — R, and a bounded measurable
function f:2 — Rg, we say that f is integrable with respect to u if the following
Riemann-type integral is finite:

ffdu::f u(lx e 2: fx)>1t})dr.
2 0

This means that the set {f(fw u({x € 2: f(x) >t} dr: M > 0} is bounded in R, and
f_Q fduis its least upper bound; we observe that the function g(f) = u({x € 2: f(x) >
t}) is monotone decreasing, and hence Riemann integrable in every interval [0. M].
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If f is integrable, then f1£ is integrable too, forevery E € ¥, and E — fflgdu =
fE f du defines a measure v, which is absolutely continuous with respect to u, in the
sense that limsupv(A,)=0 as soon as (A,),cr; 1S any sequence from X. such that
limsup u(A,)=0.

The Radon-Nikodym theorem for Riesz space-valued measures can be formulated
exactly like Theorem 1.2, with (bl) and (b2) replaced respectively by (b'l) and (b'2),
and (b3) replaced by absolute continuity.

THEOREM 6.18. Let u and v be positive finitely additive measures defined on X and
taking values in R, with v < . Then the following are equivalent:
(a) There exists a measurable and yi-integrable function f : §2 — [0. ool, such that

f Fdu=v(E)
E

forall E € X.

(b) there exists a family of sets (A,) in X, for r > 0, such that, for any r > 0:
(bl) v(E) Zru(E), forany E€ X, E C Ar:
(b2) v(E)<ru(E), forany E€ X, E C A;.

Though the formulation (and the proof) of this theorem is quite similar to Theorem 1.2,
the consequences are not so strong: in fact the same example given before Definition 5.13
shows that even for o -additive measures, absolute continuity is not sufficient to ensure the
existence of the derivative.

A different approach to the idea of integration was presented by Sugeno in [54]. We
shall give here quite a short outline of the involved concepts, and also a very simple
Radon-Nikodym theorem for this integral. For similar topics. see also Chapter 33 in this
Handbook [2].

DEFINITION 6.19. Let (82, X) be any measurable space. A fuzzy measure on this space
is a mapping m : ¥ — [0, +oc¢[, such that:

() m@) =0;

(2) m(A) < m(B), whenever A, Be X, AC B,;

(3) if (A, ) is any monotone sequence in X, then m (lim F, ) = limm(F,).

If m is a fuzzy measure on (§2, X), then the triple (£2. X', m) is called a fuzzy measure
space.

DEFINITION 6.20. Let (§2, X.m) be a fuzzy measure space, and let /: 2 — Rg be any
measurable function. For each A € X, define:

(S)f hdm :=sup{la Am(AN Fp)}.
A

a>0)

where Fy :={we€ 2: h(w) > a}.
The number (S) fA hdm is called the Sugeno integral of h on the set A.
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(Notice that the definition of Sugeno’s integral is reminiscent of the Choquer integral,

one just replaces A with ordinary multiplication, and v with addition.)
From this definition, it follows immediately that

(S)fhdmgm(A), VAeZX.
A

We list a number of results, concerning this integral.

THEOREM 6.21 ([14]). Ler (2, X.m) be any fuzzy measure space, and let h: §2 — R
be any measurable function.
(1) If h is a constant function, h(x) = a. then

(S)f hdm =a Am(A) for any A€ X.

A

(2) Ifh and '+ 2 = R are measurable functions, with h' < h, then
0

(S)fh'dmg(S)fhdm forany A€ X.
A A
(3) If h = 1,4, for some A € X, then

(S)f hdm =m(A).
2

4) If (hpyen is any monotone sequence of measurable functions, such that hy — h,
then

lim(S)f hy dm:(S)f hdm.
A A

forany Ae X.

From part (4) of the previous theorem, it follows that A — (S)fA hdm is a fuzzy
measure, not greater than m. A useful characterization of the Sugeno integral is the
following:

THEOREM 6.22 ([14]). Given a measurable function h: 2 — R(“)L, define, for a > 0:
Ay ={we2: hw) >a}.  Fp={weR: hw)>a}.

If (By) is any decreasing family in X, for a > 0. such that Ay C By C Fy. then

(S)fhdm :=sup{a Am(AN By)}

a>0)

forall Ae X,
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Moreover, if I denotes the set of all a € R(“)L, such that ¢ < m(Fy), then

(S)f hdm =maxI.
7]

This result allows us to state a Radon-Nikodym theorem.

THEOREM 6.23 ([14]). Ler m and y be two fuzzy measures on (82, X), with y < m. The
Jollowing are equivalent:
(a) There exists a measurable function h : 2 — R, such that

y(A)= (S)f hdm
A

forany Ae X,
(b) There exists a decreasing family (B,) in X, with o € Rg, such that:
(bl) y(ANBy) Z2a Am(AN By), and
(b2) y(A) <m(AN B, (4.
forall Ae X, andall @ € R].

For a richer treatment of Sugeno integral, and its properties, we refer the reader to [54]
and [55].

Appendix. Singularity and decomposition theorems

In this appendix we will present some known facts about singularity of measures, the
Lebesgue decomposition theorem and some related decomposition theorems, which are
relevant in connection with the Radon-Nikodym theorem.

We assume that all the measures have been already completed in the Carathéodory sense.

DEFINITION A.l. We say that a measure p is degenerate, if it takes no finite, nonzero
values, i.e., its range is contained in {0. oc}.

In connection to this definition, let us first mention the following result, due to
N.Y. Luther [35].

THEOREM A.2. Let u be a measure on the o-algebra X. Then there exists a unique
decomposition i = [y + W3, where | is semifinite and i+ is degenerate, with the property
that if ' =y} + w5, with y' semifinite and ', degenerate, then | < wy and pa < b

This result and the fact that degenerate measures are not very interesting from the point
of view of their representation as integrals. justify the restriction to semifinite measures in
Section 2 of this chapter. We will make the same assumption in the Appendix.

If 1 is a measure on (§2. X)), we say that u is concentratedon A € X', if u($2\ A) =0.
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DEFINITION A.3. Suppose p and v are two measures on X, and suppose there exists a
pair of disjoint sets A and B in X, such that x4 is concentrated on A and v is concentrated
on B. Then we say that v and u are mutually singular (or that v is singular with respect
to 1) and write

v Lpu. (5)

Obviously, this relation between measures is symmetric, so (5) holds if and only if
ulv.

The following properties are quite obvious:

e Ifvy L pand vy L u,thenvy + 12 L u.

o Ifvi wand vy L u, thenv; L va.

e Ifvwpuandv L u,theny =0.

THEOREM A 4. If i and v are two measures on (2. %) and v is o -finite, then there exist
vo < pu and v L u such that v = vy + v|. The decomposition is unique.

Let us sketch the proof. Suppose first that v(§2) < oo, and let &« = sup{v(B): B € X,
w(B) = 0}. It is easy to prove, using arguments introduced in Section 2. that there
exists C € X, such that v(C) = « and u(C) = 0. Define now v (E) =v(E N C) and
vo(E) =v(E \ C). Itis easy to check that vy <« p and v L u.

If v is o-finite, we consider a measurable decomposition {A,} of §2 such that u(A,) <
oo for all 1, and apply the argument above to each A,,.

If v is not o -finite, the conclusion of the previous theorem may fail. If for instance u is
the Lebesgue measure on [0, 1] and v is the counting measure, such a decomposition does
not exist.

We need now two definitions. The first is due to R.A. Johnson [32], the second one is
taken from [59].

DEFINITION A.5. We say that v is S-singular with respect to p, denoted v Sy, if given
E € X thereexists F€ X, F C E, such that v(E) = v(F) and u(F)=0.

DEFINITION A.6. We say that v is quasi-singular (Q-singular) with respect to u, denoted
v Q u, if there exists A € X such that v is concentrated on A and moreover if v(E) < 0o
then u(ENA)=0.

Singularity implies Q-singularity and the latter implies S-singularity. The three concepts
are not on the other hand equivalent. The counting measure on [0, 1] is Q-singular with
respect to the Lebesgue measure, but it is not singular.

To show that S-singularity does not imply Q-singularity we need a more elaborate
example. Let us consider the measure space defined in [27, Exercise 31.9], which provides
a non-Maharam measure p as sum of two measures v and o. As noted by R.A. Johnson,
vSo ando Sv,butitis not v L o.On the other hand it can not be v Q o (or o Q v) because
of the following proposition [59].
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PROPOSITION A.7. IfvQu and uSv, then v 1 p.
R.A. Johnson proved the following decomposition theorem [32].

THEOREM A.8. If u and v are two measures on (2. X), then there exist vy < u and
v| Spsuch that v = vo +v,. Always v| is unique. Moreover, if v = v(') + vy is another such
decomposition, vo < ..

The advantage of the previous theorem, compared to Theorem A 2 is that no assumption
is required on p and v (not even semifiniteness). The disadvantage lies in the weakness of
the concept of S-singularity.

Q-singularity stays in between and shares some good and bad aspects of both concepts.
A reasonable assumption (specially if we deal with the Radon-Nikodym theorem) provides
the following decomposition theorem (Theorem 2.1 in [59]).

THEOREM A.9. If u + v is Maharam, then 2 admits a (i + v)-unique decomposition §2;,
i=1,2,3, such that if we put vi(E) = v(E N 2;)) and u;(EY=p(EN;)fori=1,2,3,
then

v Qu, (©
u2Qu, N
3 L U3 K vi. (8)

Moreover, vy and 3 are strongly comparable.

The set §2; is defined as the least upper bound in the measure algebra associated to
(£2, X, u + v) of the family of sets

{E: E€ X, v(E) <00, u(E)=0}.

Similarly we define £2,. The major difficulty in the proof is to show that §2;, fori =1,2
are both - and v-measurable.
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