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Preliminaries.

Let S be a compact Hausdorff space and C(S) be the set of
all real or complex valued continuous functions defined on S.
Then C(S) 1is a linear algebra under the usual pointwise operations

(f,1+f2)(s) = f1(S) +f2(3), S\.ES
@) (s) =etf(s), s€s
(f4£5)(s) = £,(s)f,(s), s€S.

There is a natural partial ordering :ﬁ12f2 iff
f1(s)a-f2(s),2 0 all se€S.

The real continuous functions form a vector lattice under

(ff/T2)(s)
(f1Af2)(s)

max|f1(s),f2(s)|, SES

H

min|f,(s),f,(s)], s € 8.
We denote by |f| the function

I£1(s) = [£(s) 1, s€S.
With the norm |

I£l = max|f(s) ]
SES

C(S) Dbecomes a Banach space, a commutative Banach algebra with
unit 1 (the constant) and real C(S) is a Banach lattice (i.e.
Ifl<legl = Itll <llgl).

We denote by YNM(S,B), or simply ‘WL(S), the class of
all regular countably additive real or complex valued measures on
the Borel sets & of S for which

Jue

total variation ()

1]

n
sup .21 IME) | < o,
1=



2.

the supremum being taken ever all finite disjoint collections
{Eis...sE ¥ of Borel sets in S. Then, with this norm and the
usual setwise operations, PL(8) 1is a Banach space, and we have
the following basie theorem identifying MU (S) with the con-
jugate space of C(S). The scalars kmay be real or complex.

Theorem_1.1. (F.Riesz.) For every f*€ C(S)*¥ there is a

unique measure M € HUS) such that

£*(f) =IS f(s) (as), - all fecC(8).

The map f* -» 4« 1is one to one, onto, linear and isometric.
A proof may be found in [12], p.265.

As a way to get some feeling for C(S) and PU(S) we shall
begin by examining the unit spheres. Let B ={rec(s) | |\ 4_.1}

We recall

Definition 1.2. An element x of a convex set K in a

linear space is an extreme point of X if there exist no elements
X,1X%, € K, x1+x2 and t, 0&t< 1, such that

X =tx, + (1-t)x2.

The set of extreme »oints of K will be written ext(K).

Theorem 1.3- Let B ={f: ret(s),|fl <1}. A function
f€B 1is an extreme point iff |f|=1, i.e. |f(s)|=1 for all

s €S,

Proof. Suppose |f|=1 and f=t¢, + (1-t)f,. Then since
If. 141 we get ‘fi|E1. If « ,B are cemplex le¢] = |B] = 1
| to + (1—t)ﬁ| = 1, then °L-=P' . This 1s easy to see. We get
fiE f.

Conversely, if f€B and there exists s_ with If(so)|<‘l
we can find a neighbourhood V3 Sq and a function g with
O<gel, gls )=1, g=0 off V, and a $> 0 such that
|f(s)|« 1-& , for all seV., If 045-"5, the functions f* &g
are in B and f=3%(f+ég) +3(f-Eg). In fact |f+égl=|f] outside
V and |f+eg| < |f] +]&lg « 1-8§+e4 1 inside V. It follows that

f is not extreme.



3.

Lorollary 1.4, Let S e connected and C(S) be the real
contimueus functions. Then 1 and -1 are the only extreme points
of the unit ball.

For cemplex C(S) the situatien is vastly different. Indeed
for any real feC(S), exp(if) is extreme from Theorem 1.3. In
fact we shall show that the unit ball is the closed convex hull ef

its extreme points -~ written B = Co(extB). We need

Theorem 1.5. Let X be a real or complex Banaeh space and

sy

B={x|ﬂxﬂ{71 . Let E Dbe a subset of BB={X: leﬂ——-‘l} such
that e€E and k(|=1=p» oLe€E. Then T6(E) = B iff

| x*| = suplx*(e)l for each x¥*e€X¥*,
' e€El

Proof. We prove the complex case, the real case being similar

Suppose B=TO(E) and x*€X*, Given £ 0, there exists

L i = = -
0£t;41, e €E with x = 3 tie,, S ty;=1, |=x)[>lxH -2 .
Then we must clearly have Ix*(ei)|> |x|*-¢& for some 1.
Conversely, if x,€B and x ¢ T5(E), the separation theorem for
convex sets [12, pP. 14-17] « Yyields XSEX* such that

Ixgl 2 Rexg(x,)> sup Re x50 x € oo(®);
2 Sup{Re x%(e); e €EY.

If e¢€E, xg(e) = lxg(e)lelcP and so

-i¢_y _
x¥(e”Ve) = [xx(e)]
e fecr by mypothesis. Therefore

I x> sup |x%(e) |

which is a contradiction.

Theorem 1,6, Let C(S) Dbe the complex continuous functions

on S, Then B = To(ext(B)).



Proof. Let

E=extB= {f: |f| = 1} .

By the above theorem it is enough to prove that

il = sup | o epel
“or each /u.E?n(S). Let Lul denote the variation of s~ . Let
fep={r: |z 21}
be such that
Lu" £ I\fiféﬂJ + & .

set g e a Dorel measurable bounded real valued function such that

£ = |f] exp(ig).

e have
Jrapl = pa<ifcad + €
< [Islap <&,
s> that
j(w—lfl)dlf»wi :
Therefore

lj(eig-f)cy«l 4 jle*g-f!dw
- j<1-|f|>dw<€.
We can find a continuous real function h such that
Jleteetalu < €
We then have from the above

| JetPaul> b -2¢ .

elh €eext B, we are done,

Since



Definitien 1.7. S 1is called totally disconnected if there

exists a base for the topology consisting of sets which are both
open and closed (clopen sets).

Theorem 1.8.

____________ Let C(S) ©be real continuous functicns en
S, Then B=7to(ext(B)) & S 1is totally disconnected.

Preof. Let S be totally disconnected and /uf67%%8)

be real. Let S=E,UE, be a Hahn decomposition ([12], p. 129) of
S 1into disjoint Borel sets so that

= AUE,) - pa(Ey).

Let &2 0. By regularity we can find K compact, W open
with KCE CW and | (W-K)<E ., Each point of K has a clapen
nelghbourhood contained in W. By compactness of Ky we get a
clopen set V with KCVC W, Let V2=V1C and define f(s)=1

on V, and f(s)=-1, s €V,. Then fe€ext(B) and

J ram = v - pavy
2 p(B) - m(Ey) - |AV)) - ME)]

- vy - (B> - v

Now use Lemma 1.5,

Supposing B=TCo(ext(B)) we see that the class of functiens
taking finitely many values is dense in C(S). Let S, € S, and
g €C(8), O0<g«1, g(so)=1, g(VC)zo, where V 1s a neighbour-
hood of s . Let h be a finitely valued function such that
lg-nj< & Then the set {s: h(s)> %;} is clopen neighbourhood of
S, contained in V.

Another proof of Theorem 1.8 can be given as follows:

Total discomnectedness of S implies that functions taking
enly finitely many values are dense in C(S). If ”fﬂ4:1 we may
assume that the approximating sequence {fn§ (each of which is
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finitely valued) has norm 1 (if f, > £ uniformly W~nw =T
uniformly). Finally a function f w1th I£l «1 and taking
finitely many values is a convex combination of functions whose
modulu are = 1 [because every point in the n-dimensional cube is a
convex cembination of its 2n-vertices].

We next examine the extreme points of the unit ball B of

mes).

Theorem 1.9. The extreme points of the unit ball in .TTI(S)

are the measures of the form A=V , where V is a unit
point mass at a point of S and |[&] =1,

Proof. That a unit point mass is extreme is easy to see. If

M 1s not concentrated at a point, then there exists a Borel set
E with |ul(E)>0, M (E®)> 0. since [u] <1, |ed(E),|u (E®) <1

We can write

A= t/u1 + (1—tlﬁL2
where

M) = TEITE LA,

|

(B) = (BN E®)
Mo (B) 1J/A/|()'w

for all Borel sets A and D and t= hxl(E). We have clearly

b, =1, ol <.

Before proceeding we recall some facts about the weak star
topology of conjugate Banach spaces. Let X be a Banach space. The
weak star topology for X*¥ 1is the coarsest topology for which all
the maps x¥ = x*(x), x€X are continuous. A basic result we need
is

Theorem 1.10. (Alaoglu-Bourbaki.). The unit ball

B = {xx: [xd] < 13

is compact in the weak star tonology.



Proof. We regard B* as a subset of a product ef discs

mee T IN: INI <=} =7
x€X
and give the product its product topolmgy. By Tychonoff's theorem
P is compact; the relative topology of B¥* as a subset of P
is the weak star topology. B¥* 1is a closed subset of P since
pointwise limit of linear functionals is linear. It follows that
B*¥ is compact. '

We now return to 1(S). The set
7 ™~
S: {ésﬁ SES}

where <SS denotes the positive unit mass at s 1is contained in

OB .

Theorem 1.11. % 1is a weak star compact subset of OB* and

the map T : s~ s is a homeomorphism of S onto 3.

Proof. That the map T is 1-1 onto is clear. The topology

on S is the smallest topology for which the map éS'—)Ja?é%==f(S)
is continuous. This means that T 1is continuous.

Thus we have a way of recovering S from C(S). This fact
yields the following important result.

Theorem 1.12. (Banach-Stone.) Let S and T be compact

Hausdorff spaces. Let V: C(S) — C(T) Dbe an isometric linear
map onto C(T). Then there exists a homeomorphism T of T onto
S and a function o €C(T) with |x¢(t)| 2 1 and

(VE)(£) = «(B)F(T(L)), fec(s), teT.

Proof. The map V¥ defined by

(Vxu, £) = (VE,u0), fec(s), meM(T)

is an isometric isomorphism of WU(T) onto MUL(S). It follows

that V* maps the unit ball B% of WUT) onto the unit ball Bg; of



ML(S). Further V¥ maps ext(Bf) onto ext(B%). Therefore
V*(/’.L})Cext(Bg). From Theorem 1.9 we can write for each teT,
V*((yt) = Oi(t)cg_(t), where |a(t)] = 1. Let € denote the map
t - T(t).

T is a map of T into S. Let us show that ¢ 1is one
to one, If T (t1) = ?(tz) we have

On

*-
d,(t1)V )T(t1)’

0s

, *-1
oa.(tz)v ET

t, (t,)
i.e. C\:t and Cg‘t are multiples of the same measure
1 2
¥ %=1 g
v =V . ’
T (t,) T (ty)

i.e. t, = t,. Let us show that T 1is onto. s€8 = Ss €T =
*-1 O

v O €ext(Bf) = there exists te€T and /A (t) with
i §, = v18, S 5,
I)B(t)l = 1, _?nd (), =7 g 1l.e. Vo = o(.(t)éz(t), where
oL(t) = B(t)"', T(t)=s. Thus we have shown that T is
one to one onto. By definition we have for any £ € C(S)

1l

(V) (1) = (VE,6,) = (£,7% &)

H

3 -

For £ =1 weget Vi=ol, i,e. XEC(T). We know that

lt| = 1 and VfeC(T). Therefore f(T(t))€ C(T) for all fe€ C(S)
and therefore T 1is continuous [the set of continuous functions
on a completely regular space determines its topology] .



SECTION 2

Characterizations of C(8).

In this section we shall characterize C(S) among systems
of various types. We start with characterizations of C(S) among
Banach algebras., In this case of real scalars an important tool
will be the Krein-Milman Theorem:

Theorem 2,1. (Krein-Milman.) Let L Dbe a locally convex

linear topological space and K be a compact convex subset. Then
K 1is the closed convex hull of its extreme points:

K = co(ext(K)).

Proof. We say that a subset S 1is a support of K if

(a) 8 1is a compact convex subset of K.

(b) If an interior point of a line segment in XK is in Sy
then the entire segment lies in S.

Remarks. 1) The intersections of supports is a support.

2) If S supports K and T supports S, then T
supports K.

3) If fel*, then

{keK: £(x) = max £(x")}
k'eK

is a support of K.

Let S Dbe a support of K. By Zorn's Lemma there exists a
collection Q of supports of K maximal with respect to the
properties:

(1) SeQ
(1ii) Q@ 1is closed under finite intersections.

The intersection T of all members of Q 1is a support which
contains properly no support of K. T must contain only one point,
since if p,q €T the separation theorem yields a functional f
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taking different values at p and q. The subset of T where

f attains its maximum is a support of T, thus of X by (2),
contradicting the minimality of T. Thus we have proved: Every
support of K contains a one point support, i.e. an extreme point
of X. Finally if

C = &d(ext(K)) + K,
let x€K-C. There exists felL* with
f(x) > max £(y).
yeC

Then the maximum set for f contains an extreme point for X
which is not in C. This contradiction completes the proof.

Our first task is to characterize C(S) among real Banach
algebras.

Theorem 2.2. (Arens.) Let (. be a commutative Banach

algebra with unit e over the reals. Then OL 1is isometrically
isomorphic to the algebra CGw) of all real continuous functions
on a cempact Hausdorff space S iff
2
(1= = 1=, xe O,

2) 1x%5% s 1x%,  xyedt,
The proof is in steps. Consider the set of squares
P = {XZ: XEUZ}.

We will show that P is a closed cone in OL , i.e.
X,y €P = x+y€P and AxeP if A > 0. Note P-P =Cl
because

X = (%‘;5)2- (9-?)2 xe Ol .

Lemma 2,3, If xEECK, "xﬂ{:T, then e-x€P. Also for

x € JL  the following are equivalent:
(a) Izl < 1 and Je-x| < 1.

(b) xXx€P and e-x€P,.
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Proof. Recall V- —-Za t?, with = la |< co. Hence

ir [l <, 2 anxn converges absolutely and is indL . So
Y anxn)2

This proves the first statement.

(a) == (b) 1is proved as follows: [x| £ 1 =>» by above e-x€P
and fle-x] « 1 => e-(e-x) = x€P.

(b) =>» (a): If x=u2, e-x=v° we have

= el = 1wl > lul? ana [v7

ie, vl <1, v <1.

Lemma 2.4. P 1is a closed cone.

Proof. x€P, t>0 =5 txeP 1is clear.

Let x,y€P and llxll{-1, ||y|!4__1 By Lemma 2.3, e-X€P,
e-y €P, Since x€P and e-x€P, by Lemma 2.3 ﬂe-x"éﬂ and
similarly Jle-yll £ 1 implies that I4(e-x) + (-l € 1, 1i.e.
le -ZH £ 1 implies that e - (e -X4)eP by Lemma 2.3. Thus
P is a cone. X €P, Ile-xn"fJ, exn—)exo, le-
Since | XO" < 1 and "e—XOH 4 1, by Lemma 2.3 again XO E P. Thus

P 1is a closed cone.

Lemma 2.5. If xeP, yeP, llxl <1, lyl £ 1, then

Proof. From Lemma 2.3, e-x€P, e-y€P., ©Since (x—y)2€ P

e - (x-y)2 = [(e-x)+y] [(e-y) +x]

is also in P [because (e-x), y€P 1implies that e-x+y€P so
e-x+y 1is a square and product of squares is a square]. Thus

from Lemma 2.3

| -2 2 1, 1.e. lxyl 2 1.
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We denote elements of OLl* by ﬁ'{Q 3 ete.

The dual cone P* is defined by
pe={EeOl* | 320, xer}.
Let
S = p*n B¥,

where B* 1is the unit ball in Cl*' and denote by 1:2_ the set
of all multiplicative linear functionals, i.e.

-§A(XY) = E(X)?,(y), x,y€ O, SEQ

We have to see that > #4¢. First let us show that px+ @, P is
a closed convex set in Ol and —e¢'P. [Indeed if -e€eP, then
—e=%x2 for some x€M. We then have O = e+(-e) = e%+x° =
lol > le?l = 1.] The separation theorem gives a T € O such
that § (—e)(inff(y). Now A> 0, yeP => AyeP, so

B} yEP
TAY) AT (> §(-e) =>§ (y) >0, all yeP.
That 2{ is not empty follows from the following lemma:

Lemma 2.6. (a) Every linear functional on Ol which is

positive on P is continuous, i.e. is in P¥* and
I8 = €, £ epx

(b) P* is weak star closed and >  is a weak star compact
convex subset of P¥*,

(¢) £2L is a weak star compact subset of 2. .

Proof. Suppose F(p) > 0, peP. If "yﬂ4}1, then

ety €P = F(ety) > 0 —> F(e) > |F(y)

This proves (a).

Part (b) is clear. Multiplicative functionals are positive
on P and hence continuous and one at e, Thus "§ e S => S eé{
That S) 1is weak star compact is easy.
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It is true that AYR is precisely the set of non-zero extreme
points of > . [We know S has extreme points by Krein-Milman.]
We prove part of this fact, but first we need an observation about

extreme points.

Lemma 2,7. Suppose § is a non-zero extreme point of Z_ R

that ”'&EZ withg-”Ze pP*, Then
(EICER

Proof. It is true if ”Q=§ ~or M= 0. So suppose

0<7(e) 1. [1f 7 (e) =1, then, since 'g - N 1is positive on
P, we would have ’V( “—;5] We may write

= /'1(@,,% + f}(e)_er(e)] f—éﬁl%—) :

(Note f (e) =1, so we have written f as a convex combination
of elements of = .) Since f is extreme

n
§ - m(e) °

Proof. Suppose XE€EP, Ix| £ 1. Define
gx(y)= §(xy), ye Ol .
Then g x € 2 , Since
§. 1 = K| <151 1 Iyl < Ivl,
for yeOL and clearly §XE P¥, Now if ye€P, y(e-x)€P., So

(S'jx) (y) = ?5 ((e-x)y) > 0, 1.e. % -§Xe P,

Thus

?X=Ex(e)§, i.e. %X(y):g(x)f(y),

xeP and fxl <« 1 1s clearly no restriction because p-P=OL .
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The next lemma is crucial.

Lemma_2,9. If xe€P, then there exists EO e £2 with

00 - ld.

Proof. Let x€P. We show first that there is an element

’T'LE < for which n(x) = "Xﬂ . We may assume Il =1. Define 7"&
on the ray { KK oL realj by N @x) =c¢ , and extend it to
all of OL by Hahn-Banach theorem, so "”ZII =1. We assert "z € P¥
Let yepP, |yl<«1. 1f 7,(y)<0, then

M (x-y) = Txx) - N (y)> ) = 1.

But "x-y||z_.1 by Lemma 2.5. Thus ’VLEP*. Now

H = {3 €35 7is'(x =1= "x“}

is a support of z , and hence contains an extreme point [see

the proof of Theorem 2.1] and now use Lemma 2.8.

Corollary 2.10. If x€Ol, there exists § €<% with

TGS = 15 = 16 (Temma 2.9.).

Then
)2 = D) = 2.

?c(§):§(x), fefé:]., xe Ok .
Then %, is linear and

%y = X7
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31, "Qﬂqaf-”xﬂ. By Corollary 2.10 is isometric, so
() 1is a closed subalgebra of C(LL). (A1) separates
points of L [if 1+ €, there exists xe Ul with
§1(X) + §)2(X), i.e. ?(51) %3{‘(?’2)1 . The Stone-Weierstrass theorem
shows that %;al) = cEy.

Remark. The isomorphism T, carries P onto the positive

cone in C(LL). L *: CcEH* — O1* maps the positive measures

in TN Q) onto P*, and the extreme points of the (compact
convex) set of probability measures onto the extreme points of‘zi .
Because

@ ={ulmro, Il=1%= Ll = 1= 0]

is convex and is a support to the unit ball in 772(51). It follows
that the set L of non-zero nultiplicative linear functionals
coincideswith ext(2Z]).

We now do the complex case.

Definition 2.11. A commutative complex Banach algebra

with unit ‘e 1is a B*-aldgebra if there exists an operation
x in (Ol with the properties

(x*)* = X, x)* = & x¥
(k)% = xHY*,  (xay)* = Hay
hxxx] = 112,
Lemma_2.12.
(a) e¥ = e
(b) Ixl = Ixx, xe O .
Proof.
(a) ee¥ = e*x (because e dis unit). Since
ex¥ = e, ee¥ = eg¥¥g¥ = (e*e)* = (e¥)¥ = e,

() bxxxl < Il Ixxl, so Ixl?< Ixllxdl — Ixl < Il

since (x¥)* = X we get the opposite inequality.
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Theorem 2.13. (Gelfand-Naimark.) A complex commuta tive
Banach algebra is isometrically isomorphic to the algebra of all
continuous complex functions on a compact Hausdorff space iff

it is a B¥*-algebra.

sufficiency. Let
R = {m X*:X}.

Then R 1is a closed, real subalgebra containing e. For X,y E€R

H

2| | (x+1iy) (x+iy) *l

[x2+y2l = || (x+iy) (x-iy)]

| (x+iy)12,

H

because

x¥ + (iy)* = x-iy.

i

(x+iy)*
But lx+iyl > l=l, since [xl> lx+iyl would mean
Izl> | Gerip)*l = Dx-iyl = 2=l > Ixeiyl + Ix-1yl > 2l=l.

Thus

1252l > 1x2

Since x¥*=1x, also

12 = Dl = Ixl®.

Thus the conditions of Theorem 2.2 are satisfied, so R:=Cr(ID =
the set of real continuous functions on £ . If x€Ql, then

X+X¥ L X-X¥

where u and v belong to R and this representation is unique.
also Ixl° = lusivl®. Tt follows that L is the algebra of all
complex continuous functions on JL .
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1y  Let S be any set. M(8) = 211 bounded scalar functions
on S with sup norm

|zl = sup |x(s)1, x*= X,
SES
Conditions of Theorem 2.13 are satisfied and M(S) 1is then

cCdy for some SL ., )L is called the Stone-Cech compactification
of the discrete set S. The basic property of Stone-Cech compacti-
fication is that all bounded continuous functions have extensions
to the compactification. See Dpp. 149-154 of Kelley for definitions
etc.,

2) Let (S,z,m) bea g~ -finite measure space and
M(S,Z,m) = all bounded measurable scalar functions.

Again Theorem 2,13 shows that M is some C(£f1). Let
Ee S , then the indicator function 1p€M. Since (15)°= g
we see that the corresponding function on £2 must be zero-one
valued. Thus the set E corresponds to an open and closed subset
of L . )L can be obtained as follows: Let X Dbe the set
consisting of O and 1, X is a compact Hausdorff space =
by Tychonoff's theorem ) is compact Hausdorff. For each sE€ S,
E — 1E(s) defines a function of 3>  with zero one values. We
may thus map S onto a subset E of Xz. The closure of T is

exactly £L . [We have here ignored the measure P N

similarly L. (8,Z,m) 1is some CLfL);! the norm in L
is defined as

Il = ess.sup|x(s)
SES

3) The following algebras all satisfy the conditions of
Theorem 2.13. Let I=[0,1].

B, = C(1)

B1 = all bounded pointwise limits of Bo-functions

B = all bounded pointwise limits of U B functions
el pLet g

The above defines B,  for all oL < fL = first uncountable ordinal.
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It can be shown that each B, 1is a Banach algebra. By
is the class of all Borel measurable functions.

4) Let IR = real numbers and Bw#&C(R)= the set of bounded
uniformly continuous functions on R, BMC@) satisfies the
conditions of Theorem 2.13 and hence is C({L) for some {2 . L2
will be a certain eompact Hausdorff space containing R as a
dense subset. The nature of L2 is not clear.

We next use Theorem 2.13 to construct the Stone-Cech
compactification of an arbitrary completely regular space.

Theorem 2.14%. (Stone-Cech.) Every completely regular space

S may be homeomorphically imbedded as a dense subspace of a
compact space S such that each bounded continuous function on
S has a unique continuous extension in C(S). The space S is
unique up to homeomorphisms.

Proof. Let (Jl = BC(S) = bounded continuous functions on 8.

Clearly Ut satisfies the conditions of Theorem 2.13 and hence
O~ c(8), i.e. Ol is isometrically isomorphic to C(§) where
€ is compact Hausdorff; S may be identified with the set of
multiplicative linear functionals on QL. . Bach s€8 defines a
multiplicative linear functional on o by the map

A 31t — f(s).

Denote this functional by 8= C(s). Since (Jl separates
points of 8, 314 s, = Z’(sq)+ 7(sy). The map T iiAFlearly
continuous because the weak star topology restricted to 'S gives
the topology of @i Also T 1is a homeomorphism, because of
complete regularity the topology on S is the smallest topology
with respect to which all functions in (UL are continuous. If
‘T(S) were not dense in @ﬁ we could find he C(S) which vanished
on T (S). Since there exists a g such that B=h we see by
isometry that g=0 which is a contradiction.

Uniqueness of §‘ follows from the Banach-Stone theorem
(Theorem 1.12), because for any compact space "S which satisfies
the requirement of the theoremn, C(S) must be isometrically iso-

morphic to QU .



We proceed to characterize Banach lattices which are
for some 8.

Definition 2.15. A vector lattice is a vector space

the reals together with a partial ordering < such that

(1) XLy, Y&z = X<z
XX

XLy, y&£X = x=7y.

(2) X+2z <4 y+z whenever x£y and z€ZT,
(3) XLy, X >0 = Xx<xy .
() For all x,y€E

xVy = l.u.b. {x,y} and

XAy = g.1l.b. {x,7}

exist in &,

We shall say x€E 1is positive if x>0.

190

C(8)

E over

A great number of simple identities may now be proved. A few

we need are:
a) X+Y = XVY + XAY.
b) (XAY) +2 = (x+2) A (y+z2).

c) The positive elements form a cone P and P-P=E,

d) If x'=xv0, x = (-x)vO0 and |x|=x"+x",
| x| =xV(-x), |x+yl L x| +lyl ete.

then

e) If 04z«x+y, where 0<£Xx, 0<y, then there exists

elements a,b with
0«4 ac<x, 0<b<y

and
a+b = z,

In fact put a=2zAx, b=2z-z2ax. Clearly O0<a<x,

0L a<z, OSince z<«X+y, z-y<X, also z-y<z,
y>0. It follows that z-y<g.l.b.{z,x}= a,
that b=2z-a<cy.

because

ioeo
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Definition 2.16. A Banach lattice is a vector lattice which

is a Banach space under a nornm H ﬂ for which

x| < |yl = Izl <y

An element e of a Banach lattice is an order unit if
lel =1 and Jxl €1 = x<e.

An M-space is a Banach space in which the norm satisfies the
relation

Ixvyl = Ixlvivyl, X,y €E, x>0, y30.

Definition 2.17. If E and F are vector lattices, a linear

map T: E - F 4is a lattice homomorphism if

T(xvy) = T(X)VT(y), X,y€E.

A real valued lattice homomorphism of E is a lattice

homomorphism of E into the lattice of real numbers,

1) A linear map T: E —> F is positive if x>0 =Tx>0.
We write T>O.

2) A lattice homomorphism is positive and

T(XAY) = T(X)AT(y).

Indeed
x>0 & x=xV0
so that
T(x) = T(x)VT(0) = T(x)VO => T(x)> 0.
Now
X+y = XVYy + XAY
SO

T(xAyY) = T(x) +T(y) - T(xVy) =

T(x) +T(y) - T(x)VT(y) = T(X)AT(y).

il

i
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3) If E is an M-space with order unit e, a real lattice

homomorphism h is continuous and [h] = h(e). In fact

fl 21 = tx2e = [nx)| < n(e).

4) Ex is partially ordered by f>g iff f-g»0. The
positive elements of E* form a cone P*¥ which is weak star
closed. [Tt can be shown that E* is a Banach lattice, but we
will not need this,j If E has order unit and f 1is a positive
linear map, then f € E¥*., Indeed,

Ixlc1 = ftxce = (efx)>0 = |rx)|<f(e).

Our aim is to prove

Theorem 2.18. (Kakutani.) If E is an M-space with order

unit, there exists a compact Hausdorff space £} and an isometric
linear map T: E = C({L) of E onto C(L) which is a lattice

isomorphism.

Hereafter E will be an M-space with order unit e. We denote
by SY  the set of all real lattice homomorphisms of E which
satisfy h(e)=1. Then Xl is clearly a weak star compact subset

of >. , where
Z‘:{gEE*: g> 0, Ng"{.T}.
We now define T: E — CE) by
(T(x))(h) = h(x), x€E, hell.

If C({L) has its natural ordering we have

i1

T(xvy)(h) = h(xvy) = h(x)vh(y)

[T(x) v T(y)] (),

H

i.e. T dis a lattice homomorphism. Also

lT(x) ()] = [n()| < Inll=l = =, =x€E.
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It remains to prove

(A) T 4is an isometric map.

(B) T is onto all of C(LL).

We first work on (A). We will prove that if x€E, x>0,
then there exists he XL with [|h(x)| = Ix|l. It is true that L
1s precisely the set of extreme points of & . We shall prove

part of this in proving (4).

Lemma 2,19. Let x>0. Then there exists he€ ext(E) such

h(x) = |x].

Proof. We shall show that the set

B=dgeS: g(x) = HXH}

is non empty. Since B is a support to 2 it must then contain
an extreme point,

We can suppose Il =1. It suffices to show there exists
g €EE¥ such that g(x)=1 and gl = 1, g(e)=1. Such a ¢
must be positive, since if y>0, [yl=1, then Ocy<e, so
e-y>0 and "e-ylll_-”e" < 1. Thus

1-g(y) = gle) -g(y) £ 1,

i.e. g(y) >o0.
The case that x=e 1is trivial. Now suppose x and e are
linearly independent and define g on the subspace they span by

gAx+pe) = A+

Certainly g(x)=g(e)=1. To show | gl=1 we can suppose
2 >0,
Then if /u_é 0
gAx+ue) = A+ = [ +)x]
£ | m(e-x) + Qpxl
= Az el
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If <0,

il

leGhx )| = Waul = I=lull = TIA]L - full
< JAx-lulel = IAxipe] .

Thus Jgl =1 in the subspace. A norm preserving extension
to E will now be an element of B.

Lemma 2.20. An extreme point h of > has the property:

If 04g<h, then g = g(e)h.

Proof. It is true if g=0 or g=h. If O04g+h, then

[el = gy 2% ToZel - Thmg) (@)
are in > and since 1> h(e), also

a

T—-_g_(_-g_)—ez

h= g(e) g7§7 + (1-g(e)) 1—_—2—'(%

Lemma 2.21. Let E be a vector lattice, u>0 and f a

positive functional. Then there exists g such that

(a) 0<£gef.
(b) g(u) = f(w.
(e) g(x) = 0 for each x>0 such that xAu = 0.

Proof. For each x>0 define

g(x) = Sup{f(y): 0<4yex, y<tu for some tgo}.

We show g 1s additive on the positive cone P, Let x,y>0. Let

Oézfx+y, z 4£tu for some t> 0. Then there exists a,b such
that
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Z = a+ by Oca<x, 0<4besy.
Then

a<z<£tu, b<z <tu.
So

£(z) « f(a) +£(b) <« g(x) +g(y).
Therefore

g(x+y) <« g(x) +g(y).
On the other hand if 0O<a<x, 0O<bey, a«stu, b<su for
some t,s>0, then O<a+b £ x+y, a+b £ (t+s)u. So

f(a) + £(b) = f(a+b) £ g(x+y),

g(x) +g(y) < g(x+y).

Since g 1s additive on P we may extend it to a linear functional
on all of E. Clearly g(x) <€ f(x), x>0, so 0O<g<f, Also

g(u) = sup{f(y): Oé_.yf—u} = f(u).

Thus (a) and (b) hold. To prove c¢ let x>0 and xAu=0.
Suppose 0<4y<x, y<&tu for some t2> 0., Then 0&y<x,
v (t+u = 04y<xA(t+u & (t+1)(xAu) = 0 =y = O.

Lemma_2.22., If heZ and 0O<«g<h =g=g(e)h, then h

Proof. First note if =x,y»0 and xAy = 0, then

h(x)Ah(y) =0. To see this, suppose n(x)+ 0. By Lemma 2.21,
there exists geE¥, 0<4g<h with

g(x) = h(x), ¢g(y) = 0.
Then
g=gle)h = h(y)=0,

h(x)Ah(y) = 0.
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If x,yeE, x-xAy and y-XAYy are non-negative. Setting
a=X, c=y, h=-(xay) 1in the identity

(a+h)A (c+h) = aAc+h

we get

[x-xAy]l A [y-xay] = xAy - xA¥= 0.

Therefore

o
i

h{x-xAy] A h[y-xA7]
[h(x)-h(zay)] A [0(y)-h(xay)]
h(x)A h(y) - h(xAy)

i

i

(by the identity again), i.e. h 1s a real lattice homomorphism.

Corollary 2.23. If x>0, there exists ne St with

Proof. The h we constructed in Lemma 2.19 satisfies

n(e)=1. [Indeed by Lemma 2.20 with g=h gives h=h(e)h,
i.e. h(e)::1.]

We now know that T 1is isometric. Thus T(E) is a closed
sublattice of C({L) containing 1=T(e). Moreover, T(E)
separates points of SL (h1:|:h2 =» 4 x with h1(X)4=h2(x)).. The
standard proof of Stone-Weierstrass theorem gives

T(E) = C(£fL).
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APPENDIX

We can give another proof of Aren's theorem as follows:
This proof is more measure theoretic. Let (71 be a commutative
real Banach algebra with unit e with

1= = 1xl°, xe O
Ix2y2l > 120, %,y € QL .

Let

P ={T:E e, Igl = £(e) = 15
and let f;L denote the extreme points of P*, We shall show
that SL is precisely the set of multiplicative linear functionals
on CL .

Proposition_ 1. xe€CL, x|l « 1 = e-x = v© for some

e—x2=y2 % e=x2

5% = le-x? = I7°] < lel = 1.

Hence
[f(e-x2)| <1, i.e. % (x%) > o.

—

Proposition 3. xeQ, Iyl <1, Fepr —

HESOINESRACSR
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Proof. x° + x2y = X (e+y) and both ety are squares =

X (e_y) are both squares :=;>‘§(x.(e+y))_> 0 (by Proposition
2). Hence

[N ICOr

Proposition L. .gl.:zext(P*) = set of multiplicative

functionals on JL .

Proof. Let g Eiext(P*) and xe O ”xﬂ4-1 Let us first
show that § (x° y) = § (x° YE(y). If § (x° )=0, nothing to
prove (see Proposition 3). Let O<\§(X ) < 1. Choose SO

that 0<§@%x%)<1. Let &, and ¥, be defined by

£ ((e=x2)y)
(y) = (y) =
§1 ‘?’(X‘2 2y ‘f &e- x3°).

Proposition 3 shows that ,,¥,€P*. Also

£ = TGERAE, + (1-56CxNT,.

Since ‘f is extreme we should have :? =§2, i.e.

£y = §etxy)

g (Xz)f(y) = % x%y).

Since
4x = (e+x)2 - (e—x)2

we deduce that

§ () = §@FG).

Conversely suppose f is multiplicative and

§ =t~ (-0,

Let
_ : 2y & (LY -
f(x)—o = fEx)=0 = {,&)=0

(because §1(X2)20, §2(X2)>_'O by Proposition 2). = by Propo
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sition 2, §1(x) = 0. [Indeed &, ((efAx) 2)>_ 0, i.e.
1 +2)\§(x) > 0 for all A = §'1(X)= 0. Thus the kernels off
and ¥, are the same => § = ¢, 1i.e. j? is extreme,

Only one more proposition is necessary. Namely that given
x € 0L, there exists § € P¥ with

S IR F b

Proposition 5. XEO'L, "XH =1 =

Al éll/\e+/xx2ﬂ for all A,

Proof. If A,m>0, then

e ux?l = IA(e=x®) + Cydx®l > (g

because e-x° is a square. If A> 0, but < 0, we

have

Ihe - 22l > Wlel -l 121
Nfull = asud

HAe+/»xa|

il

Proposition 6. If x€Cl, then there exists f € P¥ with

MCa RS R

Proof. May assume x2 is linearly independent of e, and

| x2|| = From Proposition 5, the functional

)e+/ux2 —}AVM

is of norm 1. So it can be extended to all of L by Hahn-Banach

theorem.

The rest of the proof is the same.
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Simultaneous linear extension.

Let S ©be a compact Hausdorff space and C(S) the real or
complex continuous functions on S. We consider C(S) as a
Banach algebra. The following characterizes closed ideals in C(8)

Theorem 3.1. I 1is a closed ideal iff there exists a closed

subset X &S with

I- 1) ={f: recs), £E®=0k

Proof. The "if" part is clear, Let I Dbe a closed ideal

K=yses: £(s)=0 for all fell.

Let fOE C(S) and fo(K)==O. We shall show that fo €I,
This will of course imply that K:¥¢ because if K were empty,
Z1 is such a function. Let €20 and

P-fs: lr ()] > €f.

By definition of K, for each x€¢F there exists a function in
I which does not vanish at x. By compactness we may select a
finite number of functions f1”"’fn in I such_that not all
of them vanish at any point of F. Now fel =yfeC(8) =>

ff €I. Thus

n
8=
i=1
on F, g=0 on K. The function h,= on I, h1:=O on K
can be extended continuously to all of S. Then the function
h:=h1/\é is continuous, so gh€I. It is clear that gh=1 on
F, gh=0 on K and O<&gh<1. Also fghel and |f -f ghlsg
everywhere, Since I 1is closed this implies fOE I.

If I 1s a closed ideal, we give C(S)lI the quotient

12> €

n
'fi|2E I and g = f; |fi

o — —

norm

le+1l = inf l£+el .
- gel
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Theorem 3.2. Let I be a closed ideal with zero set K.

Then the restriction map
R: f —>flg

defines an isometric isomorphism of C(S)lI onto C(K).

Proof. Clearly f1 and f2 lie in the same coset iff

R(f,) = R(£,).
Thus

R: C(8)l; — K

is well defined and [Rj £ 1. Also R 1is a homomorphism, indeed
an isomorphism. If heC(K), then h has an extension ge€ C(S5)
with "gHS::"h"K. [Take any extension say f and put

£ if £l &

Cleslel oir el >1.]
Thus

Izl = Inl = leg+1l

so R is isometric onto.

Theorem 3,3. Let S and T be compact and

u: C(8) ——=C(T)

be continuous and linear. The following are equivalent.

(1) u(1g) = 1, and ful = 1.
(2) uUS):1T and f£>0 => u(f)>0.
(3) w*P(T)C P(S), [P(T),P(8) are the probability measures

on T,SJ. Or equivalently wu* maps the positive cone
in M(T) isometrically into the positive cone of M(S)

u(f)(T) C co £(8).
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Let oa be a scalar. Then

i

max B -(uf) (t)] maxlu(xjs—f)(tﬂ
teT teT

< max| @1S—f)(s)| = maxlx-f(s)
SES SES

Therefore the range of u(f) 1lies in every circle in the
plane containing the range of f. This implies that the closed
convex hull of the range of f contains the range of uf. In
particular f>0 = uf>0.

[Another way of seeing this is as follows: Let x 1_)(; a
complex number., Then 1>x2>0 is equivalent to |1—x+xel°“l <1
for all real o« . In fact if 1>x>0, then

|1—x+xej"(l z_i. |1-X| +|Xl = 1-x+x = 1,

Conversely if x satisfies the inequality we may choose o& 0
that Xeld’ = |x]. Then we get |1-x+|x]| £ 1 == x 1is real
and positive. Since x can be replaced by 1-x we see that also

1>x. Now if

Ulg = Tps u =1, and 1>f>0,
we have

1> ||u<1s-f+fei“‘)|| for allal

|1T—uf+eid"ufl <4 for alle¢ =uf>0 and 12uf]

(2) = _(3). Let meP(T), 1i.e. il =1, >0. Then

(W) (£) = AL(u(£)) > 0 if £>0
+ S

wru(1e) = (1) = Judl = 1.
Mg SrUp) =]

S0
u¥ s P(T) —» P(S)

is an isometry.
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(3) => (1). (3) 1implies

(s (1g) = mlulig)) = alig)
for all s >0 hence for all AL , so
u(1s) = Ape
Now let feC(S), t€T. Then

Ly )] =[x 8@ 2w S el = lel,
SO l
Tull < 1.

since ulg = 1gy ful = 1.

Definition 3.4. A map wus: C(S) —C(T) 1is called regular

if it satisfies any of the above equivalent conditions of Theorem

3.3,

Definition 3.5. Let X and Y be Banach spaces and

T: X —»Y Dbe continuous linear and onto. Let
N(T) = {_x: Tx = O}'.

A continuous linear map U: ¥ — X is a linear inverse for T
if

TU(y)

il

Yy vyeEY,

Lemma 3.6. (a) If U 1is a linear inverse for T: X —Y

then TU(Y) 1s closed in X and
X = U(Y) @ N(T).

If P is the projection of X onto U(Y), then P=TT,

(b) Suppose W 1is a closed subspace such that

X = WENT)

and P 1s the projection of X onto W. Then U: Y -—X
defined by

Uy = PXy, where y=1Tx

is a linear inverse for T.
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Proof. (a) Let Uyn converge to X Then

Wy,=¥p —> T%X =7,
and

UTUy, = Uy, —> Uy,

SO

U Vo = X5

Thus U(Y) 4is closed in X. Also

N(T)NUE) ={0}

because
TU(y) = 0 = y = TU(y) = O.
Let x€X. Then

x = (x-UTx) + UTx

and

T(x-UTx) = Tx-TUTx = Tx-Tx = 0,
and

(UT)2 = UTUT = U(TU)T = UT.
(b) Note

vy = Ix, = Tx, = X,~X, € N(T)
= P(X1-X2) =0 = Px, = Px,.

Thus U is well defined. Also TU = identity because
y=Tx = TUy = TPx = TX.

Since
x = Px+ (I-P)x and (I-P)x¢€ N(T)

we see that U{¥)=W. It remains to show that U 1is continuous.
This is easy because T restricted to W 1is 1-1 continuous
‘onto Y. Its inverse (which is U) is therefore continuous by

Banach's theorem.
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Definition 3.7. Let T be compact and SCT be closed.

A continuous linear operator e: C(S) —»C(T) is an operator of
simultaneous linear extension (8.L.E.), if

(1) e(g)lg
(2) e(ig)

g, g € C(S)

1T.

i

Remarks. (1). Let R: C(T) — C(8) be the restriction operator

Rf = £ fec(T).

S?

Then
(Re)(g) = g, gecC(s),

so e 1is a linear inverse for R which maps 1S into 1T‘
Conversely, any linear inverse for R which carries TS into
1T is an operator of S.L.E.

(2) Given a S.L.E. e, e(C(S)) is closed, and
C(T) = e(C(8)) @ I(8).

I(S) =’{f‘EC(T): Rf==0} is the ideal of functions vanishing on S.

(3) The existence of a S.L.E. is equivalent to the existence
of a complementary closed subspace W to I(S) containing 1Tz

C(T) = WD I(9), Tp €W,
(4) If P is the projection of C(T) onto W, then
fell = IPl.

Indeed:
P=eR => [Pl < llellrl = lef.

But g€ C(S) implies that there exists fe€C(T) with Rf= g,
I£l =llgl. Then

f-egeI(S),
so

eg = Peg= Pf

= leel <lellzl = Iplllg

.
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(5) If e :C(8) —»C(T) is a regular S.L.E. (this simply
means [lel =1) we nave g>0 = eg>0 and e 1is isometric.

We can now state

Theorem 3.8. Let SCT be closed. The following are equiva-

(a) There exists a regular operator of S.L.E. for C(S).
(b) We have C(T) = W@ I(8),

where W 1is a closed subspace containing 1T and the projection
P: C(T) —> W has norm 1.

(c) We have C(T) = W@ I(S8), where 1p€W and
P: C(T) —» W 1is a positive operator.

It is convenient to have a somewhat more general formulation.

Definition 3.9. Let S, T be compact and ¢ : 8 - T be
a homeomorphic imbedding. The operator CP": C(T) —>C(8)

is defined by (¢°f)(s) = £@(s)), f£eC(T), seS. An operator
u: C(S) => C(T) 1is a (regular) linear inverse of extension for ?°

if

(1) u1g) = 1qp.
(11) Q%u = Iy(gy = identity on C(8).

((@ii) u 1is regular.)

Note that the null space N((}}") = I(¢(8)) and g =
identity => ¢°= R = restriction. We know that under these
conditions u(C(8)) 1is closed and

C(T) = u(C(8)) @ L(@P(S)).

We can state:

The following are equivalerit:

Theorem 3.10. Let ¢ : S -—> T be a homeomorphic imbedding

(1) There exists a (regular) linear inverse of extension for¢® .
(2) There exists a (regular) operator of S.L.E. for Clg(s)).
(3) C(T) =W I(HS) with 1 €EW.
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Our next goal is to prove:

Theorem 3.11. (Borsuk-Dugundji.) Let S be compact metric

and T be any compact space. If q') : S —» T is any homeomorphic
imbedding, there exists a regular linear inverse of extension

for (Po .

Definition 3.12. Let X Dbe a topological space. An open

cover U of X is a family of open sets whose union is X.

An open cover ’U’ is a_refinement of an open cover 'U,, if for
each VE 'U there is a Ue W such that VCU. An open cover
U, is locally finite if for each x€X there exists a neighbour-
hood of x which intersects only finitely many members of w .

If every open cover has a locally finite refinement we say that

X 1is paracompact. A reference for paracompact spaces is [21],

pp. 156-161.,

What we need is

Theorem 3,13. (A.H.Stone.) Every metric space is paracompact.

For a proof, see [21], pp. 156-160.

Lemma 3.14. Let X be a metric space and S a closed subset

of X. Put 67 = X~-S5 the complement of 8. There exists an
open cover W of 6‘1 such that

(1) U is locally finite.

(2) For each point a €S and each neighbourhood V, of a,
there exists a neighbourhood wa such that UE’U,,

un wan g =>UCV,.

Proof. For x¢ @ let

K, = {y: P (x,7)< % P(X,S)}

where V¥ is a metric in X. Clearly each K, C-<5 and the
family {_KX; X € Gb} is an open cover of & . &) is a metric
space. By Theorem 3.13 there exists a locally finite open refine-
ment of this cover. Call this WL ., We shall show that 1L

has the required properties.
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U 1s locally finite by choice. Since each member of L

is contained in Kx for some XE€ 67 ;5 1t is enough to prove (2)
for the family {K § XE€ 6} Since V, 1s a neighbourhood of

a, there exists ¢ > 0O such that the ball { y: P (a,y)< elcv,.
Let w = {y‘ (ary)< E’} Suppose for- some XEG,K nw 4 g, Let
us* show that K C_V . Let zOEKona. Then

Pz Sy P 2oy <HF (x,8)
=3 P(x,8) £ Plx,8) £ P(x,2,) + P(5,2) < § + F P (x,8)

— P,s)<if.
Thus
& 1 £ £ 2t
f’(x,a)<§+§f>(x,8){-_§+.3 = 3
Now
% P(X,Z)< %P(X,S) é "%_' .
So

f(zy2) ¢ P(x,2) + P(a,x)< §+ ——5 = z€V,.

Lemma_3,15. Let U = {UQ( : L € A} be an open locally

finite cover of a metric space X. Then there exists a family
{A*: X € A} of continuous functions such that

(1) 04 M\, &1,
(2) For each oK >\§((X-Ud\) =
(3) > )\“(x) z 1, x € X,

Proof. Define

T (x) = P(x,X-U0).

The functions '{, are continuous; (o (x)=0, iff x€X-Uy .
Each x€ X has a neighbourhood which intersects only finitely many
Ugs SO

T = Z Te(_(x)

ol €A
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is a well defined continuous strictly positive function. Let

Ao L LD

7(x)

We call {(\a‘ s A EA} a partition of unity subordinate

to’LL.

Let X Dbe a metric space, S a closed subset of X and
Gp= X-3, Let W be a locally finite open cover of 67
determined as in Lemma 3.14. Let ’LL = -{Uo(: oCE A} and
{‘,\d.; OCEA} be a partition of unity subordinate to U . For
each oL €A, 1let x, Dbe a point in U, and choose a point
a, €5 such that P (X ,8,)<2P(%,5).

Let g be continuous on S and define

Blx)

i

g(x), xX€S

= ZI\ (x)gla) xe (7
den < =
The sum is meaningful because >\\°,_(X) =0 except for a finite
number of ol . Clearly we have g>0 = "éZO, gz =$E21.
Also 04 A &1, = A, =1 => that the range of F is contained
in the convex hull of g(8).

Lemma_3.16. & 1is continuous on X.

at the boundary points of ©&.
Let p€@NS and let V be a convex neighbourhood of g(p)

(note that E(p)=g(p)). By continuity of g on S, there exists
£> 0 such that a€s, P(a,p)(3&, => g(a) €V, Let

b(p,&) = {yEX: P (a,y)¢ &}. Then as we showed
in Lemma 3.14

vel, un b(p,§> + g =5 UCh(p,8).
So let be(p,%’). If A, (x)40, then

Xl = ULNbp,549 = LCbp,e)

=> 1, €b(p,8) = P(x;,8)<E =»
Pla, %)< 2 Plxg,8)<28 .
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Since x, €b(p,t) we deduce P (axsP) < 3E = g(g,) €V,
What we have said is: xEEb(p,g), KXKX)4 0 imply that g(g,) €V.
Since

"é(x)=2/\()<>-—-g_ (x)g(a,)
= XIB A, OL(X):FOAngaOC

we deduce that 'EYx)eEV, since V was assumed convex..This
proves the continuity of & at p.

We have thus proved (since g — ¢ 1is clearly linear)

Theorem 3.17. Let X be a metric space and S a closed

subset of X. Then there exists a map e: C(S) — C(X) such that

e(1g) =1y, e(£)20 if £>0, and e 1is linear, le(£)] < suplits)].
SES

]
0
b
it
]
IH
i
re
bs
ico

Corollary 3.19 Let SCT, S and T compact metric, Then

there exists a (regular) operator of S.L.E. for C(8).

We have also the following general Tietze theorem. [Dnly let
V of Lemma 3.16 be a convex neighbourhood in a linear space.]

Theorem 3.19. (Dugundji.) Let S Dbe a closed subset of a

metric space X and let Y be a locally convex linear space.
Every continuous map f: S — Y can be extended continuously to
all of X in such a way that the range of the extension is
contained in the convex hull of £(8).

A proof of Theorem 3.19 can also be found in Borsuk [5], P77

Definition_3.20. A compact Hausdorff space is called a

Dugundji space if for every compact space T and every homeomorphic
imbedding <P : S —» T, there exists a regular linear inverse

of extension wu: C(S) — C(T) for q>° . |Equivalently if there
exists a regular operator of S.L.E. for COP(S)).]

We will prove that every compact metric space is a Dugundji
space.
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Remark. Let S and T be compact and @ : S — T be

any continuous map. We may define P° : C(T) ~» C(8) by
(P%)(s) = gPls)), s€8, gecC(m.

Then CPO is an algebraic homomorphism and q;o (1T)= g9 "(Pc" =1,
More about this later. Now we only need CP : S =T, YJ : T -« U

and ’}z =Yg = ”YZO: ?'Jy/o

Lemma 3.21. For a compact space S the following are

equivalent:

(a) S 1is a Dugundji space.
(b) There exists a Dugundji space T and a homeomorphic imbedding
: S = T which admits a regular linear inverse of extension
(R.L.I.E.) for @°.
(c) For some cardinal number m, there exists a homeomorphic
imbedding L‘) : S - ™ (1= [0,1]) which admits a R.L.I.E.

(o]

(a) =>(b). Take T=S8, &P = identity.

{b)_=p(c). Let T be Dugundji, ¢ : 8 - T and
u: C(8) —» C(T) a R.L.I.E. for ° . There exists a homeomorphic
imbedding © : T - ™. since T is Dugundji there exists

v: C(T) —> C(I™) which is a R.L.I.E. for ©8° . Now

Y=6¢: s - I", Define w=vu. Then uk C(8) —» C(I");

u}(‘ISc? = 1 me. Sinfe kyo = ¢°6° we get P W =4>°a°n.u= Cpqeovu

= ¢ idC(T)u = @ u = idC(S)‘ Since 1f|}u3|| < lull vl = 1, Ww

is a R.L.I,E. for Lpo .

(e) =»(a). Let @ :8 — I" with R.L.I.E. W:C(8) — C(I"
Let T be arbitrary and @ : S —> T be a homeomorphism. We will
define amap € : T — ™ as follows: Let A be an index set

of cardinal m. Then

W) = {50 oLeat, £, :8 1,

Define on P (S) vy

9

8 (P(s)) = f.(s).
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Extend each 8o to all of T such that goc(T)C,I. Define ©
by '
G (t) = (g (t): <EA).

It should be clear that He¢ =y . Now define wu: C(8) —> c(T)
by u=0°W . It is simple to show that it is a R.L.I.E. for

Yo s s oo™ o(®) et o™

S
7 |
C})L ;6 ul o (PT o°
T

Theorem 3.22. Every compact metric space S 1is Dugundji.

Proof. Imbed S into a Hilbert cube and use Lemma 3.1L.



L2,

Projections onto self-adjoint subalgecbras of C(S).

We begin by discussing some basic material which might have
been discussed earlier,

If S, T compact and q’: S —T continuous, then
. . e - (-
C(T) — C(S) 1is a homomorphism, P (1T) = 1gs llq\ I=1.

o

? :

(a) ¢"[c(™)] 1is a closed self-adjoint subalgebra of C(8).
(b) CPO is onto C(8) iff q> is one to one.
(c) (PO is one to one > @ is onto < CPO is

an isometric isomorphism into C(8S).

(a) We only need to show that @D [C(TX} is closed. Let
(p"gn —>h €C(S). Then 1lim g (@(s)) = h(s) uniformly on S.
= gn(t) converges uniformly on <? (8) to a continuous
function go(t). Extend g, to T. Then h==£P°go.

(b) qf[b(T)] = C(S) & CPYC(T)) separates points of
S (by Stone-Weierstrass) éz%-s1:¥sg, 5,95, €85 implies that
there exists g€ C(T) such that q>°(g)(s,|):|t€P°(g)(s2) s
g@(s, N 4e@(s,)) < Ps)4 Pls,).

(e) ®° 1is one to one iff °g=0 ¢=> g=0. Thus if
@ (8)+T, there exists g40 with g@(8))=0, i.e. P°®g=0.
The other direction is clear. If ® is onto, isometry of qbQ
is clear,

The above arguments are more general than they seem.

Theorem Y4.2. Suppose & : C(T) —»C(S) is any homomorphism

such that J (1T)= 1g. Then there exists a continuous map
¢: 5 —>T such that U = ®° . Thus ful =1 ana U (C(T))
is closed.



Proof. We have for each sE€S

Thus the function |

F (g) = v (g)(s), g € C(T),

is non-zero and multiplicative, hence continuous, and there exists
t €T such that

Fs(g) = g(t), g € C(T).

The map qD : 5§ = T defined by ¢ (s) =t 1is thus continuous
and

U(g)(s) = g(@(s)) = (¢B)(s), se8, geC(T).
Thus U = CP‘;.

Now let qD ¢ S—=>T be any continuous onto map. We know
gDO: C(T) —> C(S) 1is an isometric isomorphism of C(T) onto a
closed self-adjoint subalgebra QDO[C(TX]<; C(S) containing 18’
Define

A = {q)‘1(t): teT} ;

vj% is a fanily of disjoint closed subsets of S, whose union
is S. We call the set q>'1(t) the fiber over t€T. We can
identify the subalgebra qf’C(T) in terms of A, .

constant on each set of ji, .

Proof. Let feC(S) be constant on each fiber. Define

e(t) = £(¢ ().

If t,—>t_, choose %xEE(P-1(§x>; we may suppose s, —> S, .

G(sy) = Lim@(se) = limty = t,.



Thus
g(ta) = T(F (£0)) = £l —> £(s)) = £(g7 (t,)) = el ).

Thus g 1s indeed in C(T).
As

g(@(s)) = £(s)

O~
we have fe(? LC(T)]. The other direction 1s easy.
We note an important property of¢j2 .

Lemma L.k, If V is an open set in S, then

U{e7 ) o twevd

is also open in S, [This is the property characterizing upper

semi continuous decompositions. See Kelley [21], De 99.]

Proof. Since qP(VC) is closed, (P_1[[y(v)c]cj is

U{q'q(t); q)-‘q(t)c V} = \,{,m"{y(vc)c}c_v.

Theorem 4.5. Let (L€ C(S) be a closed self-adjoint

subalgebra containing 1. Define

5

s;x s, 1iff f£(s;) = f(s,) for all re Ol

Then the equivalence relation partitions S into a
collection uﬁi of disjoint closed sets. There exists a compact
space T and a continuous onto map % : S8 — T such that

R =@t tenf.

Proof. By the Gelfand-Naimark theorem (Theorem 2.13) CU

is isometrically isomorphic to a C(T). This isometry gives an
isometry U : C(T) — C(S) with range UL . By Theorem 4.1
and Theorem 4.2 we get a continuous map (P : 3 —» onto T such
that @°=U. Clearly

R={o ") ter}.
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Definition 4,6. A continuous linear operator wu: C(S) — C(T)

ettt S vt s ove ey

=

. . o . °_ .
1s an averaging operator for (? if u@ = ldC(T)'
If u 1is regular, we call u a regular averaging operator.

Renmarks.

(1)  An averaging operator for ¢° is onto C(T).
(2) u: C(S) —»C(T) is an averaging operator iff

u=0°"" on @%c(T)).

(3) necessarily u(1S) = 1T'

(4) necessarily Wu"% 1. Thus for an averaging operator the

following are equivalent:

(2) u is regular
(b) Ml = 1
(¢c) u>o0.

g, N .
(5) q> is a regular linear inverse for u. Thus

c(s) = ®c(T) ® N(w).

We can now state the connections between linear averaging
operators, and projections of C(S) onto CPO(C(T)).

(a) Let wu: C(S) —»C(T) Dbe an averaging operator for <?0 v
Then P = @®°u 1is a projection of C(5) onto (PO(C(T)).
Moreover [ul = [P}, N(u) = N(P).

(b) Let P be a projection of C(g) onto @°(C(T)) and
define u :Q§)-1P. Then wu 1is an averaging operator for iﬁo .
Tk projection P 1is regular <= P > 0 <= Il = 1 &= u

is regular.

(a) From Lemma 3.6 we see that P = <P°'u is a projection of
C(8) onto C(T) with null space N(P) = N(u). Since @° is
isometric [P = |uf.

(b) If P 1is a projection and u :(P°-1P, then u= @f ' on

?O(C(T)), so by Remark (2) above, wu is an averaging operator.
The rest 1s easy.
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We now discuss multiplicative linear operators of
simultaneous extension. The connection with averaging operators

will become clear as we proceed.

Definition 4.8. Let T Dbe compact, SCT be closed. A
continuous onto map £ : T ~» S 1is called a retraction if
P(s) = s, s€8. We say S admits a retraction from T or

that S dis a retract of T.

Theorem 4.9. There exists a multiplicative linear operator

e of simultaneous extension from S to T, i.e.
e(f1f2) = e(fT)-e(fz), fif5€ c(s)

iff S admits a retraction from T. Moreow e is regular.

Proof. Suppose f : T —- S 1is a retraction. Then e::fe

is the desired multiplicative extension operator. Conversely, let
e: C(8) —»C(T) be a multiplicative operator of S.L.E. From
Theorem 4,2 (it is clear that e1S::1T), there exists a map

p: T = S with F°=e. We have eg = gepy il.e. eg(t)=g(p(t))
for all teT. If seS, eg(s)=g(s), i.e. g(p(s)) = gls)

for all g€ C(8)., Thus f’(s)::s, i.e. [ is a retraction.

Corollary L.10. Let Ol be a closed self-adjoint subalgebra
of C(T) containing Tp  and R, be the collection of sets of
constancy for OL , Then (R 1is the range of a multiplicative

projection P: C(T) — QUL , i.e.
P(fg) = P(f)P(g), f,g € C(T)

iff there exists a closed set S<CT which meets each set in ﬂ{,
in exactly one point. DNecessarily S 1is a retract of T and the
restriction map

is an isometric isomorphism of (R onto C(8).
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Proof. Let P: ¢(T) — JL be a multiplicative projection
and I = N(P). Since I is a closed ideal there cxists a closed
subset S of T such that

1=-14g: g(8)=0}

Also C(T) = A @I, so (As = ¢(8). The map
e: C(S) —C(T) defined by

e(f) = Pg if gls = ¢

is an operator of S.L.E. which is multiplicative since if
g 18=1,, gyl8=1,, (g,;85)18= (g,18)(g,l8), so

e(f1f2) = P(g1g2) = P(g1)P(g2) = e(fT)e(fz).

By the proof of Theorem 4.9 there is s retraction
(3: T —S such that /DG: e. The range of e is Of . If
g€l , gce(f), where f=g|S. Thus

g(t) = e(f)(t) = £(P(t)) = g(p(t)), teT, gell .

It follows that each set of constancy for OL meets 8.
Since CQIS = C(S), 1t meets S in exactly one point. Clearly
the sets of constancy for L are precisely the sets of
constancy for (72 .

Conversely, suppose there exists a closed set ©S meeting
each set of HA  in exactly one point., Define 2 (t)=5S
if the set of J%f which contains t meets S ‘at S. OSuppose
td_-—>to. By compactness of S we can suppose /Q(t&) —%>so.
Then /D(to) = S by uniqueness and the continuity of the
functions in CL . Thus /3 is continuous and a retraction of
T onto 8. The map e-= /30 is a multiplicative S.L.E. from
C(8) whose range is Ol . The map Pg=-e(gl|s), ge C(T)
is a multiplicative projection.

Example 1. Let (f.,2,4 be a complete ¢ -finite
measure space. Let M De the algebra of all bounded measurable
functions with supremum norm. Then M 1is isometrically isomorphic

to a C(T), and the closed ideal N of
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null functions consists of those functions in C(T) which vanish
on a certain closed subset S of T. The algebra LOo of
equivalence classes of essentially bounded measurable functions

is thus isometrically isomorphic to C(S), A deep theorem of the
Tulceas states that there exists a positive, linear, multiplicativ
map T: L, —> M such that for each class fezLa), the function
Tf 1is a member of the class f. Viewed differently, T 1is a
multiplicative linear inverse for the natural homomorphism of M
onto L, (i.e. of C(T) onto C(s)). It follows from the
preceding theorems that S nust be a retract of T.

Example 2. Let S=1IxI, 1I=/[0,1]=T.

Let (2 be the natural projection map: (x,y) —>X.
Let /A{t = Lebesgue measure on q9'1(t). Define

u: C(S) -—» C(T) e mae

P —

(uf)(t) = J 1 £(s)M (ds) HmﬂwmngMMw}

gut is regarded as a measure on the square S.)
u averages f over the fiber q)'1(t) and

ug? = idC(T)'

Thus u is an averaging operator for q30 .
We need not take Lebesgue measure on q)'1(t). Other
choices A will work as long as the map

(vE) () :Lf £(s)vy (ds)
¢~ (t)

maps into C(T). The condition is that t — vy is weak star
continuous from T to M(S). Let us see how general this

situation is,
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and let wu: C(S) -5 C(T) be an averaging operator for QPoi
ie. u@’® = 1dg(py. Then u* maps M(T) —M(E). For each
teT let Aty = u*(é;). Then t —» A4 1s weak star conti-
nuous from T into M(S) and

Theorem L,11. Let p : 8§ =T Dbe a continuous onto map
-

&

uf(t) = Js f£(s) M (ds), fec(s).

Moreover,

lah > 1 ana ol = supll.
teT

because T is homeomorphic to i‘ é t: tE’IE’ and u¥* 1is
continuous in the respective weak star topologies. Also

Proof, That t _TP/Zt is weak star continuous is clear

@D (6) = S ) = (wed) (1)

- jms £(5) M (d5)

lul = max max | (ur) (t)] = nmax | y f(s) (ds)|
tem |72 s jrs o
I £ll 21
-~ max lpel .
teT
Since
Tig @ = uGig) = 10, lud>1.

Now we will investigate the question of existence of maps
from S5 onto T which adnit averaging operators. Given spaces
S and T 1t may happen that certain maps from S onto T adnit
averaging operators and some others do not.

It is a theorem of Milutin that given a compact metric space
T there is always a map from the cantor set onto T which admits
a linear averaging operator. Our next task is to prove this.



Theorem 4.12. (Localization Principle.) Let P: S =T

be a continuous onto map. Let

N
T,

=1

T = i

1

where Ti are compact and

U

3
I

interior of Ti' Let

-1 g .
8, =@ (I;,) ¢, = sy, 1=1,2,...,N,
Suppose that for each 1, wu.: C(%} ——}C(Ti) is a regular
averaging operator for q}i‘ Then there exists a regular
averaging operator wu: C(8) —»C(T) for P .

Proof. We have (u.l @;)g = g for each g€ C(Ti), and for
gec(m, (¢°e)ls; = @i(elry). Let Alyeey Ay bea
. . . (8 .
partition of unity subordinate to the cover 1 Tii . Since
<
by =0 outside T, the function A, (t)u(fls;)(t) is defined

on all of T and continuous., For fe€C(8) define

N
() (t) = 3 A (8) w(els) (),

i1

Then ufe€C(T). Let geC(T). Then c;>°ge0(s> and

H

(W) (t) = & A (6) w(¢els)) ()

il

&

2 A58 s (el ) (B)
2

i1

A (0)(elT(8) = g(t),  teT

and clearly

"U_f"é_.."f", u 13‘: 1T-

Thus u is a regular averaging operator for 99 .
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Theorem 4.13. (Milutin.) Let T be a compact metric space.

There exists a continuous map from the cantor set. C onto T

which admits a regular averaging operator,

The proof we shall give is due to Seymoor Ditor. The proof
proceeds by steps. Let X be a compact space and
N
X = }J Xi,
1=1
where Xi are compact, We shall say that {:Xi}- form a strong

cover if

<
X= U X,
i=1

Xi = interior of Xi'
Let T Dbe compact metric., We construct inductively a

sequence i;Sn} of compact metric spaces as follows: Let SO: T.

Strongly cover SO by compact sets TW""’TN such that diameter

(Ti)f‘l and let §,=disjoint union of T,,...,Ty. We shall say

that T1”"’TN are constituents of 81. Now strongly cover
each constituent of S1 by compact sets of diameter 45%— and
let 82 = disjoint union of all the compact sets thus obtained.

Continue inductively. At the n'th stage all the constituents of
Srl have diameter <4 %. The natural injections define continuous

onto maps:

n+t, o

R 2
$ot 89 =2 S5 =Ty Py Sy =80y ¢ Sy 7P 5pe

Define ?)2: Sy —» Sm, n>m by composition

no_ o M+ n
4} S ""’qbn—1’ men
¢n = id .
Define §7n = q>g, CPn: S, —> T. By the Localization
Principle therc exists a regular averaging operator u§+1 for

n+1

n o 1i-¢.
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n+1,

u s C(S,.4) —> C(8))
n+l, ~n+18

Y ((Pn ) = ldC(Sn) )

By composition we get a regular averaging operator ull;ll for

n
P

n m+1 n
um n LI un_»].
In particular
v = ul: C(s) — C(T)
n o° n
is a regular averaging operator for Cpn: 5, — T,
We have
n
n T Vi Y mn.
Let ©S,, be the "inverse 1limit" of the systen { Sn,a;?gj i.e.
. . ™
SOO:{S: s:{sn}E ;{TO S; such that for all
- ,»r’,l’l a b
mén, s o= ‘fm(“n)j .

Let us show that Soo is a totally disconnected compact
metric space. The map s = ‘{snvg —> s, 1s continuous ==
s — (Pnri(sn) is continuous == A = Is:s :{Sn% ; Sm:(PE(Sn)
for all mgn} is closed. Clearly A, are decreasing and
Soo = M A, Define Wy: S, —>8, by Wyls) = s, if s={s}
Then W = P nsn. Let Y = Yo S 2T

Now \{/n is continuous and onto Sn for all n>0. To
see that Soo is totally disconnected let x4 yE Soo . Then there
exists n with Xniyn and X, and Y lie in distinct con-
stituents X and Y of Sn’ [Note that the diameters of the
constituents — 0.] Then 1};;‘0{), W ;11 (Y) are disjoint
clopen sets containing X and y. We are now going to define

a regular linecar inverse v: C(SOO) —>» C(T) for
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y: C(M —C(8). For each n, , : 5. 28 5 =
w)ﬁ? c(s,) —> C(S,) is an isometric imbedding. Let

W o _
M = rgoqyn [ces )]

Remark that M 1is a self-adjoint subalgebra of C(SOO) separating

i . s . an . o ., N\O
p01ntsoof Sep * I_QSJ:nce Wy = P, Ypy m<n = Wn = Y @)
= meC(Srl)]qun[C(Sn)] and x4y ==> there exists n with
Y, (x) = XnaLyn = wn(y)]. Hence M is dense in C(S_ ). It
will suffice to define v on M. Let f€M. Then for some m,

O .
rey_fc(s)]. Define
_ Oy =1
vf = Vm(‘«Vm) f.

[Recall _W;g C(Sm) —_ L’/;[C(Sm)] is an isometric iso-
morphism.J We check v 1is well defined on M. For ny>n
YA IV R S P ROy ol I (O s
n wn B ' P/ L Py \f’)n

n -1 er-1
= Vvl "I g e
. e] =1
- Vm[%z] L

since

and
(™= L@ Iy ™Y el - 1dg(g y-

Finally, to show that v is an averaging operator for \r

o .
we nust show vy = id However,

C(T)"
ylem] = er [cts )] cm,

SO

vyg = v yog =g

by our definition of v. HNote that since [v l=1 for all n,
Hvll = 1. So v 1is a regular averaging operator for \P . Of
course v 1s extended uniquely to all of C(SOO).



Now let Z= Cx5,. Then Z 1is compact metric, totally
disconnected and perfect. [We toke Z instead of S, Pecause
Soo may have isolated points.] Let f: 2 ——9~SOO be the
canonical projection and define q): Z —>T Dby G = th.
From the following lemma, it follows that ¢ has a regular

averaging operator.

Lemma 4,14, Let X and Y be compact and T : XxY — X
be the canonical projection., Let A be a probability measure on
Y and for each x€X let //*x:ifbb on the fiber YX ='{X}><Y.

Then
(pf)(x) = LYYXf(X,y)/uX(dy)

is regular and averaging.

Now use Theorem 2-97, p. 99, Topology, Hocking and Young,

which states that every compact totally disconnected perfect
mnetric space is homeomorphic to the Cantor set.
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Definition 5.1. Let X and Y be Banach spaces. We write

X~Y if X and Y are linearly homeomorphic (i.e. there cexists

a 71-1 continuous onto linear map T: X —Y). If X~Y, we say
X and Y are isomorphic Banach spaces, If X~Y and the map T
can be chosen to be isometric we write X=Y and call X _and Y
equivalent Banach spaces. We remark that both ~ and == are

equivalence relations.

If X and Y arc Banach spaces, XXY denotes the Banach
space of all pairs (x,y) and norm

L, vl = max(xl,ivl).

(This is an arbitrary choice of norms. We could just as well as
use ("X"p-+”y”p)1/p, 14p <« or many others. The different
choices yield isonorphic spaces.)

Definition 5.2. If X and Y are Banach spaces, we write

X/Y¥Y and call X a factor of Y if there exists a Banach space
Z such that Y~Xx2Z,

emark. Clearly X/Y iff X 4is isomorphic to a complemented

Definition 5.3. Let S be compact and X a Bamch space.

Then C(S,X) denotes the linear normed space of all continuous
functions F of S into X with norm

Izl = sup IF(s)] .
SES

It is not difficult to show that C(S,X) is a Banach space.

Verification of the following is elementary:
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(1) X~ X, =3 C(8,X,)~C(5,X5).
(2) C(8,X, % X5) ~ C(8,X,) *x C(8,X5).
(3) If X~ZXW, then

C(8,X) ~ C(S,Z) * C(S,W).

Our aim in this section is to prove:

Theorem 5.4. (Milutin.) If S and T are any uncountable

compact metric spaces, then

C(8) ~ C(T).

We do this by proving that for any uncountable compact metric
space S: C(8)~C(C), C=Cantor set. Hereafter we shall denote
by X the Cantor set C,

Lemma 5.5. If S 1is any compact nmetric space, then

c(s)lc).

Proof. There exists ¢ : K —>S(onto), with a regular
linear averaging operator, This is Theorem 4.13. Hence C(8)
is isometric (under (PQ ) to a self-adjoint subalgebra q>°(C(S))

of C(K) which is the range of a projection of norm 1.

We show next that if S is uncountable, C(X)|C(8).

For this we need:

Lemma_5.6. Every uncountable compact metric space contains

P = { s: s €S such that every neighbourhood of s
contains uncountably many points} .

Then P 1s non-enpty and closed. Also no point in P 1is
isolated in P, since such a point p has a neighbourhood V 1in



S with V-{plcs-P., However, each point of S-P has a
neighbourhood which contains at most countably points of S.
== V-P 1s countable (S has a countable base). Thus P is
perfect. We shall find a homeomorph of K in P so we might
as well suppose S is perfect. _

If S 1s perfect and U 1is open, then U is perfect.
Thus we can find perfect subsets of S of small diameter. Choose
perfect sets S, S,<85 such that 5,15, = § and diameter
(8;) £ 1, 1=0,1. Put Ag = S,V 6,4, Find disjoint perfect
subsets of SO and S1 of diameter z;%~ and let A1 be the
union of all these four disjoint perfect sets. Next find two
disjoint perfect subsets of each of these four perfect sets of
diameter < 5%—, and let A, De the union of these eight disjoint
perfect sets. Continue this way. In general An will consist of
el disjoint perfect sets each of which has diameter “~ ;% .
Also A, €A . Let A= A . Clearly A is non-empty? Given

n+1
X,y €Ay x4=y, there exists an n such that x and y are

contained in disjoint sets whose union is A 3 since cach of
these sets is clopen in An we sce that x and y are contained
in disjoint clopen subsets of A == A 1is totally disconnected.
The same kind of argument shows that A has no isolated points.
Hence A 1s homeomorphic to K, [Theorem 2-97, p.99, Topology

by Hocking and Young.]

Corollary 5.,7. If S is uncountable C(K)|C(8).

Proof. Let A be a homeomorph of XK in &. By the Borsuk-

Dugundji Theorem C(K) is isometric to a closed subspace of
C(S) which is the range of a projection of norm one.

Now let N = {1,2,..=}' and N¥ = NWJ{OO} be the Alexandroff
compactification of N. If X is a Banach space C(N*,X) = all

sequences (XO,X1,...) such that x =1lim x_, H(XO,X1,...)

sup"xn". Therefore

C(N*,X)m XX C(N*,X).
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Now take X = C(K). Now N*x K 1is compact metric, totally
disconnected and perfect. So N¥XK is homeomorphic to K =»
C(K)=C(N*xK), But as is easily seen, C(N*XK) =C(N*,C(K)).
Thus

C(K) = C(N*,C(K)) == C(K) = C(N*,C(K))

by what we said above.

Proof of Milutin's theorem. We have C(S8)|C(K) and

C(K)[C(S). Hence C(S)~W =xC(K), C(K)mrC(S)x Z.
We have

C(8)~ WX C(K)~W AC(N*,C(K))
~ WX C(K)» C(N*,C(K) )~ C(S)x C(N*,C(K))
(since C(S)~Wx C(XK))
~ C(SYX C(W*,C(8)X Z)~~C(8)=C(N*,C(8)) X C(N*,Z)
r~ C(N*,C(5)) > C(N*,Z)
(because XX C(N*,X)= C(N*,X))

~ C(N*,C(8) X Z)~ C(N*,C(K)) ~C(K).

Exanple. Let 1 denote the Banach space of all bounded

sequences f = i §n}OO of scalars with "f" = suplfhl. Let C
be the closed subspace of convergent sequences and CO be the
closed subspace of sequences which converge to zero. Note that we
have the identifications

CR(N)

1Oo =
C = C(Nx)
C, = those functions in C(N¥*) vanishing

at oo.

We shall prove that there exists no bounded projections of
lao onto € or CO. Thus we will have confructed cxamples of
uncomplemented ideals and subalgebras of C(B(N)).
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Lemma_9.8. There exists a family {qu } of subsets of N
of cardlnallty of the continuum such that

(1) each U,  is an infinite set

(2) U, N U, is finite for & #f3 .

€]

Proof. Let R be the set of rationals in [0,1]. Then R
is countable. Let S = set of irrationals and for each SES
let US be a sequence of distinet rationals converging to 8.

Now map R onto N.

Theorem_5.9. There exists no bounded projection of 1OO

Proof. Let 1Uxt Dbe the family of sets of Lemma 5.8 and

let vid-: (1), ﬁ? (2),... denote the indicator function of
Uy, 1.e. i,((n) 1, 1f neU,, § (n)=0 if néU
Consider a finite subset '§d1,...,§d of the set YM} |
and let b1,...,bk be scalars, Let us show that there exists
an element ‘§ o €C, such that

K 7
b2 by $u - T 0 € man{loglyeeslng S

Indeed define the vector

$o= Gy 502,000

as follows:

0 if n belongs to at most one q{ 3
j;(n) 'W otherwise

éq_b the summation being over those indices
(~ such that nequi.

Since U, AT is finite for o QY it is clear

. . .
that § (n)d i%cept for a finite nu;ber %f n. Thus ¥ _€C..
Also ;5 by & (n)- F o(n) 1is zero if n helongs to at least two
of Qii: and equals b; if =n bi}ongs only to U, . We have
proved the assertion. Now if 1e€CJ and & = 1, it l(f&)é;O,

& =-1 if 1(§o‘)z:o, we have
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k k
i;lu f‘*i)' = 5 £, L(E )

=y 4 j=1 17 %™ i=

I
|,_I
9\('“
Gy
Y
1
H
(T\.
e
'y
T

il

< Il max| & | = 2l

where §:o is the element of CO determined above,

A
Thus 1€C, = the set of & s.t. 1(£)+0 1is at most
* . o .
?ountgblet Now let 1 €17 be defined by lnﬁi) —‘3 0 if
€= (&, ¢y...). Then 1  is total, i.e. 1,(§)=0 for all
n :%>‘§ = 0. Assume that P 1s a projection of 1__ onto C_.
Then ln-lnPE CO . Hence the set of X s.t.

(1n-lnP)(§;) 4+ 0 is at most countable.
Thus there exists o such that (1 -1 P)¥ = 0 for all n.
non =

But

1 [a-pgl =0 forall n = T - PS. = 0,
i.e. f;LE Co’ which is a contradiction becaus Uoc is
infinite.

Remark. What we have proved above implies the following:

Let S be a ¢ -compact, locally compact non-compact spacej
B=R8(S) = set of bounded continuous functions on 5; BO:=set of
continuous functions vanishing at oo. Then there exists no
bounded projection of B onto 'BO.



61.

SECTION_6

Lower bounds for averaging operators.

We have seen in Theorem 4,11 that if @ : S —T is a
continuous onto map and wu: C(S) —» C(T) is an averaging operator

(A.0.) for ¢ , then wu*: C(T)* —3C(8)* induces a weak star
! Fad (o)

continuous map of T into M(8) via _u# = u*(q.) where o,

is the unit point mass at te€T. We have

(ue)(v) = | 1£(s) My (as), fec(s).
g ;
Moreover
@at”,é 1 and lul = sup @utﬁ,
LeT

Our purpose in this zection ig to obsain lower bounds for
} . ~ .
ful in terms of the topological structure of the closed set-

decomposition

Lemma 6.1. If u is an A.0. for <« , then
B ru—/] ] N .
G, | (8)] = O,(L) for all Borel sets ACT,
Vs T

Proof. We have for ge C(T)

i

i rns,
o

g(t) = u( @) () (g7e) () s, (ds)

)
e
i
H

a_JS

1

g(P(8)) puy(@s).

The same eguality holds for all Borel functions on T. Hence

S = (),
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Corollary 6.2. For each teT, A ( cp-1 (t)) =1,

Corollary 6,3. If u is an A.0. for ¢ , then u is

regular iff for each te€T, /{/Lt is a probability measure
concentrated on q)'1(t).

The proof is immediate because u 1is regular iff

"ull = 1 and we have ”u” = sup ” " .
teT M

Definition 6.4. For (;& S —>T onto we define the extended

real number p(cf) by
p(g) = inf{llull: u is an A.0. for CP} .

Thus (P admits no A.0. 1ff p(@) = co. We shall estimate
p(¢) via the nature of the decomposition

R -{gw: verj.

Definition 6.5. Let u be an A.0. for q? : S —»T and

/"t = u*(gt). The residue of Mt is

Roue) = Bl - Ll (@ (0)) = el (s- @71 e)).

Definition 6.6. If {Ad} is a net of sets in S

}._.I
H
B
0
o
s
e
H

is: for each K, and a neighbourhood
U of s there exists o > o(o such that
una, 4 gt

all cluster points of nets {Sx} where

s{x_eA%.

Thus 1im sup cpq(ti) is a non-empty compact subset of
-1 . 1 . . .
q»_; (to), if {t@clg is a net in T converging to to €T,

The next result is crucial.
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Lemma_6.7. (Ditor.) If {t.} is a net in T with

lim inf Rgutd) > 1-+@MT I - .2|/u.t | (1im supc?—1(qx)).
0 o

We remark that if ty —> tq and T 1is any open neighbourhood
of SO = l1lim sup<P—1(Q£), then eventually q>_1(§x)<:U} Indeed if
for some U and each &, there exists §3 ;wxo with
‘P~1(§a)” Ut 4 @, then there exists a cluster point s_ of a
net {s .} with s.€¢7'(t) for all « and s_cs,

Proof of Lemma 6.7. Let £> 0 and choose a compact

Kc;S-SO with pxt [ (K)> U&t I(S—SO) -& . Let V be a neighbour-
o- o

hood of SO with VnK =@ and let W be a closed neighbourhood
of 8, with WcV. Let h,ecC(s) with [nl < 1, h,(¥)=0 and

oy )l > e, T €
(0] @]

Choose h,€C(8) with "h2”:1, h, (W) =1, h,(V)=o.
We may assume that

e, 1D <, 1)) + &
/uto /uto o)
Then also
I/u.tol<h2) £ J/*tO'(V)<.'/”~tO“So) rE .
By weak star continuity eventually

pr o0 1> Jus [0 -
!/*ti(h2) | < _'/‘Lto“so“ 3
2

Since h,=1 on W and ??-1(gx)ciw, o (471(Ei)) = 1, we see
] =

A, (h,) = h, d; :1[ hyde .
2 yv 2/‘*& " an)_ut%)z/‘t&
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Thus
, , hzd/“’ti|>1"/"to'(so)‘6,
Vo~ (t,)
so * %
-1 :
!/otml(V~gc> (t,) » 1- I/ctol(so) -&.
Also
C .
l/»tG\Hv ) > l/utdch1>l> l/lutol(K) -£.
Thus

b T8 =07 e ) > Ty 1) + 1 [ (v -9~ (6 )
}’td\ ¢ A7) 2 /L‘{cd\ + /Utm Py
'/”to' (8-8.) - 2¢ + 1 -'/“%Ol (8,)-&

Vel -2l 105) <3 -

v

cluster set for c? at t,, 1if B=1lim supcp_1(§i} for some net
%& - to.

Definition 6.8. We call a closed subset Bc:qf1(to) a

Theorem 6.9. (Arens.) Suppose 7>”1(to) contains n

disjoint cluster sets. Then

2
p(P) > 3--

net g;f:;;to with
. -1 1 -1
l,wtol (lim sup @™ (4 )) < ﬁl;utol CANCIP)

< Llp, |

From Ditor's Lemma we have for some

oo 1= I 1@V t)) + RO )
?U“td\ f”tdf %W R}”td\

Proof. Suppose u is an A.0. for qD. There exists a

Z 1T+1+ "P% I - 2,ﬁ% | (1im supc?-j(ﬁﬂ))
o] o] )

> 2
22 by b -l 232,
since
v T@ e, > 1.
F§x> ¢ &) 2
”Iherabove holds for all & >0,
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Lemma_6.10. Suppose {ti} and {tﬁ} are nets in T

with tgy — t, and ty —>t, lllm sup @~ (txﬂﬂlllm sup @ ktﬁﬂzgj
Then for one of the nets, say {t, 3§, we nave

lin inf R(/Atoc) > T+R ).
: 0

disjoint, we may suppose

a1 Qim sup 9710600 2 iy 16T (5,0,

i

So

lin inf Rg}itx) > 1+[!,Akt I -2]{}&,6 | (1im sup ?'1(1;@8)
£, e} 0

AV

Pl 1=l 10T (80D
O O

1+R§/Lt ).
0

il

We define the sets M(n)c T as follows:

M( -{t t €T such that there exists nets {t j’ {t }
with t %’t tp —t and

[llm sup g (t@()]ﬂ [1im sup f (tﬁ)] jr

and in general

p () {t: such that there exists nets Lt,,\; , 'it % with
(n
ty —t, tp — 1, tdﬁ,tﬁEM y and N
[1im sup ¢ (t )]ﬂ [1im supc? (t Y] = 2.

Theorem 6.11. If ™ 4g, then p@@) > n.

Proof. Let & > 0., Then there exists to EM(n) and a net

1t C wB- ” tw —>t,, such that by Lemma 6.10

lim inf B(/&t )}1+R§,ut ).
=4 70
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Thus there exists t,=t € M(n-T) with

T
2
R ) > 1T+RM ) - =
1 o
Now %, = limty {tab cu®2) wign
lim inf ROy ) > 1+RG4 ).
1

g

M(n-Z)

Thus there exists tZE with

R(u, ) > 1+Rim, ) - &
Wtz - 7t n
2&
?2+R9J‘tﬁ)—n.
U
Continuing this way we see that there exists t €T with

Ru) 2 (1) + Rl )€ 2 (moT) - €

= lul >n-¢ = llul >n-g forail €3> o.

Hence @°(C(T)) is uncomplemented in C(8).

Example. Let C = ngtor set, and T= [0,1]. C 1is

homeomorphic to & = {0,1 = set of sequences

X = (X1,X2,...) where X, = 0 or 1,
Let (& be the map
S X,
y(x) = 5; —=
§e0 =2

Then ¢ 1is continuous onto T = [0,1]. ¢>_1{1;} consists of
one point if t 1s not a diadic rational and consists of exactly
two points if t is a diadic rational. Each diadic rational is a
point in M(q). Since diadics are dense in themselves each diadic
is in M(n) for every n. :%>M(n)4:¢ for all n = qka(T)) is
uncomplemented in C(S). Thus there exists no A.O. for(ﬁ . How-
ever, Milutin's theorem guarantees the existence of a map

Y: S5 = [0,1] which admits an A.,O.
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Stonian spaces,

In this section we introduce a remarkable class of compact
spaces which play a central role in several theories.

Definition 7.1. A compact Hausdorff s®ace S 1is called

stonian (or extremely disconnected) if disjoint open sets in S

have disjoint closures.

Remark. S is stonian iff U open implies U 1is also open.

Proof. Let S &he stonian and U be open. Then the disjoint
opern sets U and U® nave disjoint closures. But the equalities

ongc = ¢ and on(i°l = g
implies U® = [0°]. Hence U 1is open. Conversely assume that open
sets have open closures. Let Ui’ i=1,2 be open and disjoint.
Since U1 is open U1ﬂ U2 = §. But by assumption ﬁz is open,
hence 510 52 = g.

We note first the simplest examples of stonian spaces. If D
is any completely regular space, then (5(D) denotas the Stone-
Céch compactifieation of D (ef. seotion 2, Theerer 2.14),

Theorem 7.2. Let D be any discrete set. Then /B(D) is

Proof. Let Uiy 1=1,2 be disjoint open sets in /> (D)
and put L, = DNU,. (Note that Ui4:¢ and epen implies Ai:¥¢.)
Since D is discrete, the functions 1Ai are eontinuous, so let
p; denote the corresperniing unique continuous extensions to > (D).
By continuity, D3 t?ke: only the valuef O and 1 and
p,py = O. %s A, 1is derse in Us s pi(Ui) = 1 for 1i=1,2,

Hence U,MU, = ¢ and /3(D) 1is stonian.
We show next tha® the stonian spaces eoincide with those
spaces having another~re@arkable property, and characterize stonian

spaees as retracts rf spaces /> (D), where D is discrete.
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Definition 7.3. A compact Hausdorff smpace S is projective,

if for any compact Hausdorff spaces T and W and continueus
maps ©: T —>W onto @: S —» W, there exists a comtinuous
map ¢ : 8 —>T such that ﬁz@o\r .

Theorem 7.4%. For a compaet Hausdorff space S, the following

are equivalent
(1) S 1is stoniae.
(2) 8 1is a retract of a space 2 (D), where D is
discrete.
(3) S is wrojective.

The theorem will be proved by establishing (1) =>(2),
(2) = (3) and (3) ==(1). To prove (1) =>(2) we need some
definitions and lemmas.

Definition 7.5. Let A and B Dbe compact Hausderff amd

WA —> B be continuous and onto. Then I is ealled irredueible
if 1 (4,) 4B fer any preper closed subset A, of A.

We note the following characterizations of irreducible maps.

Proposition 7.6. Let A and B be compact Hausdorff. For

a continuous map T of A onto B the following are equivalent

(1) 7 is irreducible
(2)  For each open set UCA, the set
V={beB | (p)cuj
is a non empty open set in B,
(3)  For each ewen set UcCA, the set
W= U{mTim | o) oy
is an opem set dense in U, ,
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Proof. Clearly Vv is irreducible iff every open set U

in A centains a hole fiber. Thus (1) &> (2). (2){=)(3) 1is
elementary. That V is open follows from the equality

- ¢
V= [T@W®] and W is open by Lemma 4,4 in Section k.

Lemma_7.7. Let A and B be compact Hausdorff and ™ a
eontinuous map of A onto B. Then there exists a compact set
A CA such that T7 (A)) = B and 1T |p  is irreducible.

o

Proof. Let J+={EcA|E is closed and Tr(E)= B} ,

and order J§ by inclusion. Clearly A€ dd , If {E‘{ S is
any chain in & , then 1T (E)) = B, where ﬂ Ee . For
if y€B and x, €B, with T (x) =y, then by compactness
the net {x,} has a cluster point x €A, Also x €Ej, and

by continuity TV (XO) = y. Hence E_¢€ J and is a lower bound
for the chain {E‘A} . By Zorn's Lemma Jd has a minimal element,
which is the set we require.

Lemma 7.8. Let A and B be compact Hausdorff and

TW: A =B be irreducible. If B is stonian, then W 1is a

homeomorphism.,

Proof. It suffices to show that "T“ is one to one. Suppose
x1$x2, 1,}(26A and y—tl(x1) = tn( . Let Uiy i=1,2, Dbe
disjoint open neighbourhoods of Xi9 1,2, and define

={peB | W (b ¢ Ui?S :

The sets Vi are open and disjoint, and since B 1s stonian
V.0V, = @¢. But yeV,, i=1,2 by Proposition 7.6 (3). This

contradiction proves the lemma.

Proof of (1) = (2). Let S be stonian and S; be S with
the discrete topology. Since C(S) & C((?»(Sd)) there is a conti-
nuous map, T, of />(8;) onto 8 (Section 4, Theorem 4,2 and 4,1)
By Lemma 7.7 we can find a closed subset P of /> (Sd) such
that Tflp is irreducible, and hence by Lemma 7.8 TV ‘P is a
homeomorphism. The map

(“Tlp)‘1oﬁ‘:“: (0 (8;) —>P



is clearly a retraction of fb(Sd) onto P. Hence S is
homeomorphic to a retract of ﬁ:(Sd).

To prove (2) =) (3) we need the following strengthened form
of the Stone-Céch extension theorem (Section 2, Theorem 2,14).,

Lemma 7.9. Let R be a completely regular space, T compact

T has

Hausdorff and T a continuous map of R into T. Then
a unique continuous extension T , mapping (> (R) into T,

Proef. For each bounded continuous function f on R, 1let
f be its unique continuous extension to (% (R). Define the
homomorphism \J ¢ C(T)-—?C((E(R)) by

P —

Jg) = goT vV gec(T).

Clearly V(1) = 1) * Now U*: M(p(R)) - M(T), and
from the proof of Theorem 4.2 , Section 4, it follows that U *
maps unit point masses on [3(R) into unit point masses on T,
Hence restricting J * +to the unit point masses we get a
continuous map from [> (R) into T, and since

N
Q

T)(r)

(0§ = § _(U) = T ® = (g
g(T() = A gy (@)

H

vV geC(T) and V¥ re€R,
J* extends T .

Lemma_7.10. If D is discrete, then F> (D) is projective.

Proof. Let T and W be compact Hausdorff, ¢3(3(D)—9 W

continuous, and 6: T —» W continuous and onto.
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For each d€D choose a point (@) €0~ (#(d)). Then we have
defined a map  : D —>» T, which is continuous since D is
discrete. By Lemma 7.9, ¢ has a continuous extension (also
denoted by y ) toamap ¢ :¢>D) —T. Since

o(y (1)) = #(D) Y deD,
we get @ =6 ¢ on (5 (D), because D 1is dense in (5 (D).

Proof of (2) =>(3). Let S be a retract of (5 (D), where

D 1is discrete. Then there exists a continuous map U :(E(D) —> S
such that J ‘S = j_dS . Now suppose we have the diagram

where T and W are compact E@usdorff, © and @ continuous
and © onto. Extend # to g on (>(D) by £=¢ oV , Since
(>(D) 1is projective (Lemma 7.10), we can find W (»(D) =T

[

such that # = 0¢§ . Define § = {lg. Then for ses

~J

B(s) = ¢ O(s) = B(s) = 0(Y(s)) = 6(P(s))

so @ =0°¢ , Thus S is projective.

We note, that in fact we have proved that any retract of a
projective space is projective.

Proof of (3) =>(1). Let S be projective and G be open

in S. We show G 1is open. Let {p,Q} be the two-point space,
and let T be the closed set

T = Rs\mx{pﬂ‘d[ﬁ“{ﬂ]

in Si<{p,Q}, with the product topology. Let W=35, T Pe the
natural projection of S><{p,q} onto S and © the restriction
of T to T. Then we have the diagram
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where 1 1is the identity map. By the assumption on S, we can
find a centinuous map g S — T so that i=:@<>+> . Now ©
is one to one from Gx{q} < T to G, so

VMX)=(Lq) vV x€E G,

Hence by continuity w/(x) = (x,q9) for xe¢€ é. Similarly
for x44, ‘W/(x) = (x,p) and hence

G =Wy_1(axiqg).

Since §>a{q% is open in T, the continuity of \g' implies
that G 1is open in S as required. This completes the Proof of

Theorem 7.2.

We show next that any compact Hausdorff space is the image
upder an irreducible map of an essentially unique stemlan space.
For this we need the following lemma:

Lemma_7.11. Let P be a compact Hausdorff space and

g: P — P be continuous. If @ is not the identity map, then
there exists a proper closed subset Q ~f P suah that

P = Quﬂ"VQL

Proof. Let peP with @(p)+p, and choose epen disjeint

neighbourhoods U and V af p and @(p) respectively. Let
-~ c S c
Q=[vng~ (] =t g M]" .

Since pGEUf]Q_1(V), Q@ 1s a proper closed subset of P,
Bso

-1

C=ung v et e ) @,

Thu p = QuE~ ' ().



Theorem 7.12. (Gleason.) For every compact Hausdorff

svace S, there exists a pair (P,0), where P 1is a stonian
SPaceﬂénd @ a continuous irreducible map of P onto S. HMore-
over, if (P',8') is another such pair, then there exists a
homeomorphism {3 : P —>P' such that © = 0'om .

Proof. Let Sd be S with the discrete topology and
@ /B(Sd) —» 8 Dbe continuous and onto (ecf. (1) => (2),Thesren-7.4
Let P Te a closed subset of /3 (54) such that QIP is
irreducible and onto S, &nd consider the diagram

P 2y /3(sy --f--5p

¢ e O’nto

>3

where O = ff|, and 1 is the imbedding map. Since /b (5;) is
projective, there exists a continuous map /3 @ /3(Sd) — P
such that @ = © ofb . We show that /boi equals the identity
on P, Hence (b is a retraction of /b(D) onto P, and P
is stoniam by Theorem 7.k.

That © = @], implies Poi = 6 and hence

Oo{‘boi=¢°i=9.

If [>e 1 1s not the identity, then by Lemma 7.11 there exists
a proper closed subset Q of P such that

P=qu(pei)q.
But then

]

59(P) = 6(Que((fo1)7'Q)
0@ U©epeai) (o) @)

o(Q)

contradicting the irreducibility of 6.

¥) Called the Gleason space of S,
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To prove the uniqueness let (P',Q') be another pair satis-
fying the requirements. Consider the diagram

By the projeetivity of P' and P there exists continuous
maps O ¢ P' — P and /5 ¢ P — P such that

0! = 0 arx and 929'9[5 .

Ir /> @ is not the identity on P', then there exists
a proper closed set Q of P' such that

2= Qu (e Q).

But as bpefore @'0/7;00( = Qo = 0' so that

O1(P") = 0 (@)U ()7 (Q) = 07 (Q)

now coatradictipg the irreducibility of O0'. Thus /%aok and
by the same argument, & o/%4 , equals the identity on P' and P
respectively. Hence /% is a homeomorphism.

We now want to characterize C(S) where S is stonian.

Definition 7.13. Let S ©be a compact Hausdorff space. Then

C(S) 1is called injective if for all compact Hausdorff spaces T
and W and (algebra-) homomorphisms Mo CW) — C(S) and

T : CW) = C(T), where T  1is one to one, there exists an
(algebra-) homomorphism J : C(T) — C(S) such that

proveT.
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Theorem 7.1%. Let S be compact Hausdorff. Then C(8S)

is injective iff S 1is stonian.

Proof. Let C(S) be injective and suppose we have the

diagram

Then we have the dual diagram

C(W)

where ©° ana A° are homomorphisms and 0° is one to one
as O 1is onto. By assumption there exict a homomorphism

JY: c(T) —f)C(S) such that = ¥ o ©° . Thus by Theorem 4.2
in section 4%, ¥ ::‘vc for some continuous map Y S =T
and the equalities

p° = Vo = o = @ap )
implies @ = © 0*’. Hence S 1is prdjective.

Conversely assume S is projective and suprose we have the
diagram
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[+]

Again ky Theorem 42,section 4 we get M= g and 7 =0
where @: S —W and 0: T — W are continuous and © is onto
as T is one to one. Now we-have the diagram

and since S 1is projective, there exists a continuous mar
¢ : 8 —T such that § = 0oy . Hence @° = y'20°, and
taking ¥ = \FO we see that C(8) is injective.

Corollary 7.15. (Grothendieck.) Let S be stonian and L

a compact Hausdorff space. Suppose that C(S) is imbedded as a
subalgebra of C(L) with the same unit. Then C(S) 1is the range
of a projection in C(L) which is a homomorphism and hence of
porm one.

Proof. Let X : C(S) —C(L) be the imbedding map. Then

c(8) <-----’n-°---- C(L)
5 T
K 1=1
i
c(8)

where 1 is the idemtity on C(8). Since C(S) 1is injective
there exists a homomorphism /> : C(L) - C(S) such that
ﬂDOQ(z i. Hence /b is a projection.

L

Corollary 7.16. Let S be stonian and L a compact Haus-

dorff space. If there exists a continuous map @ of L onto S/
then S 1s a retract of L.
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Proof. @ ° embeds C(S) as a subalgebra in C(L), so

Corollary 7.15 implies that C(S) is the range of multiplicative
projection on C(L). But by the corollary of Theorem49in section
4 this is possible iff S 4is a retract of L.

To state our next theorem we need some notation. Recall that
for any compact space S the space C(8) of all real continuous
functions is a lattice under the operations
max|f(s),g(s)] ¥ s €S
min|f(s),g(s)] ¥ s €8S,

Il

(fvg)(s)

il

(f~g)(s)

A family {f.} of functions from C(8) is said to be
bounded gbove if there exists fOGEC(S) such that f, <f_ for
all x ., We call fO an upper bound for the family. If fof:go

whenever g, 1s an upper bound we call fo the least upper bound
and write fo = f . One defines bounded below and greatest lower
bound similarly. The lattice C(8) 1is said to be complete if

every family of functions which is bounded above has a least urper

bound. An equivalent definition could of course be given in terms
of lower bounds.

Theorem 7.17. Let S be a compact Hausdorff space., Then S

is stonian iff the space C(S) of all real valued continuous
functions is a complete lattice.

Proof. Suppose C(S) is a complete lattice and V 1is open

in S. By Urysohn's Lemma we can find a family {fdi of conti~
nuous functions on S with 0<¢f, <1, ﬂx(VC) = 0 and such that

1y(s) = sup fx(s), ¥ se€s,

Let f :\/f&. Then f_ (V) = 1 so fo(\_/') = 1. However, if
SOQEV, we can construct a cgntinuous function g such that
0<gg1y, glsy) =0 and g(V) = 1, Hence g 1s an upper bound
for {f,} , so that f_<g. Thus fO(VC) = 0. As f_ 1is
continuous, V 1is open and closed. This completes the easy half

of the proof.
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Conversely assume S is stonian and let {fy} TDbe a family
of functions imx C(S) which is bounded above. Define

h (s) = sup £ (s), Y s€s,
o x
then h, is clearly bounded, and for each real A the set

{sES l ho(s)>)\} :&jQSESIf“(s)>,\%

is open. Suppose =M< h_ (s)<M for all s€8S, and let

Fa .
l, . -M:Ao<‘/\14..l (/\n:M

be a partition of [-M,M]. Then the sets

c =2‘seslho(s)>)k§, K =0,1,2,0..,0,

k

are open and CO = S, Crl =@ and CiD_ Ci+‘l' Mereover, as the

sets —C_]; are open and closed, we may write S as a union of

disjoint open and closed sets

S =

och
a
/
(@]

Define

gF(s)= 11 for SECi\Ei-H’ 1=0,1,25000yR

and
n

= %£1 (Ci\‘ci)

Gy

Then g is continuous, G,", nowhere dense, and the

symmetric difference

(CiNTy P AN Cy ) (€N CU (€ g\ Cyyy)
E- G/a_l, i=0,1,...,n—1.
Since
kiého(s) < >i+1 for s€C;\GCy, .
we get

(*) |h (s) -grds)| & mesh@r) for s€SNGg ,
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where meshfiy = max:{)i- i1 |i=:1,...,n%. We now choose a
sequence {’ﬁ“n% of partitions of [—M,M] such that each is a
refinement of the proceeding and meshT?h —>0. Then, if m>n

0 £ gq (s) - g (8) £ mesh(Ty)
m n

for all s in S, so that ( gwnk is a Cauchy sequence and
thus converges to a continuous function g_ on S. By (#*),p. 78.
gO(S{Mf h (s) for se€8\N, where N is the first category set
N = ‘%LEEh. Also S\ N must be dense in S. Because, if not,
then S\ N® would be a non empty open subset of the compact

Hausdorff space S. But also

®
S\N® = \{)((S\N)CDG%),

hence S \N°© would be of first category, contradicting Baires
Theorem. Thus g_(s) 2 f,(s) for s in dense set S\N and all
X 4 S0 by continuity gog;gx for all « .,

If heC(S) and h>f for all o then

h(s)}l&js) = go(s)

for all s €S\N  and hence for all s€S. Thus gorz\/f , and
C(S) is a complete lattice.

We have characterized the algePras C(S8), where S is stonian,
among algebras C(T), where T is compact Hausdorff, as being those
which were injective. Our next object is to obtain a similar charac-
terization of C(S), where S 1is stonian, among Banach spaces.

The associated maps here, will be coatinuous linear maps.

We start by cousidering Lwo properties . of Ranaeh-swmaces.

Scalars may be real or complex.

Definition 7.18. Let E be a Banach space.

(2) E has the (Hahn-Banach) extensien pronerty if for every

Banach space X and closed linear subspace YC X and continuous

lirear map T: Y —> E, thers exist a linear extension T: X — E
.
of T such that |T| = |T].

(b) E has the projection prorzerty if whenever E is embedded as

an

a subspace of a Banach space 7, there exists a pyrojection of
norm one of F onto E.
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Remark. The extension property can be stated in the follow-

ing equivalent form, where we see the relation with injectivity.

Consider the diagram

<

where X and Y are Banach spaces, T: Y — E is a continuous
linear map and J is a linear isometry of Y into X. E has
the extension property iff there always exists T: X —> E with

T=Te3 anda |T) = ||

The projection pfopérty should be compared with Corollary
7.150

Let E be a Banach space. Ther a subset B of B. tfstherform

B = B(x,,x) = {XEEE | “x-x@“ < r}

is called a ball with center X, and radius r.

%

the binary intersection nroperty for ballsﬁif given any family
{ ng of balls in E such that for each pair K 1,c12, we
have Qx1ﬂ ng + @, then necessarily

0B 4 7.

eorem_7.20. For a real or comﬁlex Banach swace E; the

following (1)-(3) are equivalent

(1) E has the extension property.

(2) E has the pfojection‘property.

(3) There exists a linear isometric map af E onto a space
C(S), where S 1is stonian. | -

In case of real scalars the following (4) is equivalent to

the other
(4) E has the binary intersection property for balls.
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The proof of Theorem‘?.20 is contained in our next results.
Specificly (1) &= (2) is 7:2h»af1d®7.25, 1) = (3) is cgog;ﬂa‘ry
7.30 and (3) = (1) follows from‘Proposition 7.23. The equiva-
lence of (4) and (1)-(3) in the real case follows from Theorem
7.26 ((3) = (%)) and Theorem 7.27 ((4) =) (1)),

Lemma_7.21. If E has the extension property, then E has

the projection property.

Proof. Let E be imbedded as a closed subspace of F and
let T: E — E be the identity map. Then T has an extension
P of norm one, which is a projection of F onto E.

To prove (3) = (1) we note first the following:

Lemma 7.22. Let D be a descrete set. Then the Banach

Proof. Let YCX and T: Y —1_ (D). For each d€D
define the functional yg in Y* by

vi(y) = T(y) (d) Vyevx.

and let Xg be a norm-preserving extension of yg to all of X.

PaN
Define T: X —»iHD(D) by
Fa)
T(x)(d) = xg(x) x € X.

Then T is a norm-preserving extension of T to all of X.

Proposition 7.23. If S 1is stonian then C(S) has the

may identify 1OO(Sd) with C(ﬁ(Sd)), where S, is S with
the discrete topology. From Corollary 7.15 we get that there
exists a projection P: C (Sd)) —» C(3) of norm one. Now assume
YCX and T: Y —C(S). Let T, be T considered as a map
2f Y into C(P(Sd)). BZALcmma 7.22 there exists an extension
Tps X =C(ps) with [T,) = |z,

o “

T = PT,.

« Define
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Then
T(y) = PT. (y) =PI, (y) = T(y) VyeY
and
150 < 1ol AT, = ho,l = 1)
Thus |T| = |T], since T extends T.

We note that the proof above shows more.

Corollary 7.24%. If a Banach space E has the extension

property and a subspace F of E 1is the range of a projection
of norm one, then F also has the extension property.

The precedent corollary can be used to give a direct proof
that (2) = (1).

property then it has the extension property.

Proof. Let E have the projection property. By Corollary

7.24 it suffices to show that we can imbed E as a subspace of a
space with the extension property. Let Q be the unit ball in
the dual E* endowed with the w*¥-topology. The map V: E — C(Q)
defined by

(Vx) (x*¥) = x*(x) Vx*eqQ, ¥ xeE
is an isometric isomorwshism since

IVl = sup [x*(x)| = || V xeE,
x*| <1
Now C(Q) is a subspace of 1_(Q;), so we are done by
Lemma 7.22.

In the next two theorems we only consider real spaces and
we prove that (3) == (4) and &) = (1).

Theorem_7.26. If S is stonian, and C(S) the real

continuous functions on S, then C(S) has the binary intersec-

tion property for balls.
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that any two intersect. Now fe€B, = B(fiy ,p ) iff

Proof. Let { B‘<§ be a family of balls in C(S), such

fw(s) -~ 1, < £(s) < £.(s) +1, ¥V s€s

Since any two balls intersect/for any O-‘x],-’XZ we can find an
f €C(S) such that

fa(.(s) -Te 4 f(s) £ :f'(x.(s) 7+r0<;
i i i i

for all s € 8 and 1=1,2. Thus

rflgi[fo((s)—rx] < ménl_f(c(s)m&] Y ses.

Let By = \4 [& -rm]. This last upper bound exists, since
C(S) 1is a' complete lattice by Theorem 7.17. Since each function
Ve . { =
£ *rp, s an upper bound for the family l{‘f,< -1, we have

f,-r, <8

® T

Ie) ./: f{b + r(b

for all « and /5 « Thus for all «
fx ~Tx< 854 fx +Tu

which means g € By for all X , hence g, ¢ Q B, -

Theorem 7.27. Let E be a real Banach space. If the family

of balls in E has the binary intersection property, then E
has the extension property.

Proof. Let X be a real Banach space, Y a subspace of

X and let T: Y —E be a continuous linear transformation.

Denote by : the collection of all continuous linear transfor-
mations U: Z —E, where |U| = |T] and Z is a closed sub-
space of X containing Y. We partially order T by

U, $U2 if Y¢z,82,cX and U, is an extension of Uj. Suppose

&U,(} is any chain in - . Let

2y = U %y
where Z,  1s the domain of U, . If x€ Zo’ then for some &K
we have X € Zy. If also x€ Zm s then either Uy © U, or
U,C U, , but in both cases Ux(z) = U, (x). Thus U : Z  —>E:
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Uy (x) = U (x) if x€Z,

is well-defined and U (x) = T(x) for x€Y. Clearly U_ is
linear, and

lo, Gt = TugGol < 1T =] V xez .

'The unique continuous extension of UO to the closure ZO of ZO

is in _» and is an upper bound of iux} . Thus by Zorns Lemma,

there exists a maximal extension of T in

———
[
L]

—

To complete the proof it is sufficient to show that if Ue .
is an extension of T whose domain Z 1is not all of X, then U
cannot be maximal. Suppose xOE.X\\Z. Bvery element x in the
subspace Z1 generated by Z and X, has a unique representa-
tion
x=Z+ Ax, A€ R.

We wish to select a vector e, €E and define a map sz Z1 —> B

by setting
Uj(x):U1(z+,\xo):U(z)+'AeO, Vzez, treR
while maintaning the relation
lutz) + xel < HTl - Iz + xx i, Vzez, Vrek,

For A =0 this relation will be true, no matter how €4 is chosen.

For A 40 we can rephrase this inequality in the form

|

10(-2/2) - eoﬂ iy I(—z/;)-—xo

Thus if we can find a vector eOEEE such that

IZ"XO“, VZEZ,

TESTS I LY

the proof will be complete.
For each e€U(Z) consider the ball

B, = fet | ler-el £ po)

where
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[b(e) = || inf{"z-xo" | zEU—T(e)} .

We assert that any pair Be1a Be2 of these balls intersect
To prove this, let ziEU-1(ei), i=1,2. Then

H

le, = ool = 10Ga-2)1 € 171 T2,-2,]

N

178 Hz-x ) + 02h Tzp-x,] -

The left side of this inequality is independent of
z; € ol (e;), so

le,-esl & P (e) + (ble,).
Let e be the vector
e = (pleyde, + plee,) / (Mley) + fley)),
then
le-e.l = I (-ple)) (ey-ey) / (ple) + (ley))]
REFCICHE

Similarly ||e-e2ﬂ < (5(632) so e€B N Be2'
1

Now by the bimary intersection property there is a vector
e, €E common to all the balls B_, so ’

H

le-e |

o lu(z) - eol\

< ple) 01l lz-x|

for all z€Z, and the proof is complete.
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For convenience let us call a (real or complex) Banach space
E injective if it has the extension property (cf. Definiton
7.18) . Our next theorem shows that to each Banach space there
corresponds an essentially unique smallest injective Banach space

into which E may be imbedded.

Theorem 7.28. Let E be e real or complex Banach space.

There exists a pair (J,Y), where Y is an injective Banach
space and J: E -~>Y 1is a linear isometry, such that if Z is
any injective subspace of Y with J(E)< Z<Y, then Z=Y.
Specificly Y dis of the form Y=C(S) 6 where S is a stonian
space. Moreover, if (J',Y') 1is another such pair, then there
exists an isometry H of Y onto Y' such that HeJ = J'.

J
R I

\\::\\\\\ H
3

YI

Definition 7.29. The pair (J,Y) constructed in Theorem

7.28 is called the injective envelope of E.

Before we prove Theorem 7.28 let us note the following
immediate corollary, which in fact is (1) = (3).

Corollary 7.30. An injective Banach space E is linearly

isomorphic to a space C(8), where S 1is stonian.

Proof. Let (J,C(S)) be the injective envelope of E.

Since J(E) is injective, we must have J(E) = C(S).

To prove Theorem 7.28 we need some lemmas. Let E be a
Banach space and let Q denote the unit ball in E¥*. Since @
is weak star compact the Krein-Milman theorem shows that
Q=co(ext(Q)). This is also valid in the complex case, since Q
is also compact in E* considered as a real topoclogical vector
space. We construct certain subsets of ext(Q).
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Lemma 7.31. Let E be a real Banach space. There exists a

subset U of ext Q@ such that

(1) UTU(-U) = ext(Q)

(2) (-0)ND) = 4.

ggggg. We note

(i) Every non-empty symmetric open subset W of ext(Q)
contains a non-empty open subset V with VN (-V) = g.

To see this, choose x¥€W and x, €E such that x¥(x)) = 1
Then

_ 1
vV = {x*ezw | X*(XO)> 2&
satisfies VN(-V) = @#. Now consider all open subsets V of
ext(Q) which satisfy Vn(-V) = ¢#. If {Vy} 1is any chain

of such subsets, V::&}Vd. is an upper bound of {ng with
the same properties. Thus by Zorn's Lemma:

(i1) There exists a subset W of ext(Q) which is maximal
with respect to being open in ext(Q) and satisfying W O(-W) =4,

For such a W we have
(iii)
(Wnext(Q)) Ul(-W) next(Q))
is W¥-dense in ext(Q).

Tt suffices to show that WU(-W) is dense in ext(Q). If
not, the set

ext Q@ \ WU (-W)

is open symmetric and non-empty in ext @, and it follows from
(i) that W is not maximal.

Now define U=WnNext(Q). Then (1) is just statement (iii).
To prove (2) suppose x*¢€ (-U)NTU., Since U = W, the open set
-W intersects W, and hence (-W)N (W) 4 @ contradicting (ii).

We now prove a similar lemma in the case of complex scalars.
First we need a definition.
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Definition 7.32. Let E ©be a complex Banach space and A
be a subset of E., We define the circled hull of A by

ci(a) = {AX'XEA, IRI:TK.

A is circled if A=ci(A). A is called deleted if =x€A implies
AXEA for all but one X on the unit cirele.

Lemma_7.33. Let E be a complex Banach spaxe. There exists

a subset U of ext(Q) such that

(1) ci(U) = ext(Q)
(2) cifux)NT = {u¥ VY u* e U,

Proof. As before we have

(1) every non-empty circled open subset W of ext Q@ con-
tains a non-empty open deleted subset.

To prove (i), let D be the open unit dise with the interval
[0,1) removed. Choose x5 €W and x €E such that x¥(x)€D.

Then we may take

V = {X*ew | x*(XO) ED} .

Using Zorn's Lemma, we again get

(ii) There exists a subset W of ext Q@ which is maximal
with respect to the properties of being open in ext Q and deleted.

For such a W we have
(i11)
ext(Q)Neci(W) is W¥-dense in ext(Q).

This follows since ci(W) 1is demse in ext(Q). For other-

wise ext(Q)\ ci(W) is non-void, circled and open and we can

invoke (i) as before to see that W is not maximal.
Now define
U = fu*E ext(Q) | u*¢W but Au*ew
it Al=1, x 41},
Then (1) follows from (iii), since

ci(U) = ext(@)Nci(W),
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To prove (2) note that W is open in ext(Q) and UCWC,
so UNW= @, If u*€U and X +#1, |Al=1, then Au*eWw
so )\ u*¢ U.

We now proceed with both the real and complex cases together.
Let K Dbe the w*-closure of U, Then K 1s a compaet subset of
Q. Let S be the (stonian) Gleasom space of K and (b : 3 —K
be the irreducible Gleason map ((Sﬁﬁ) is the space and map
constructed in Theorem 7.12). Define the map

J(x)(s) = fA(s) (®) ¥ ses, Yx€eE.

This make sense since /b(s)GEKffE*. We note that

O = e,

Lemma 7.3%. J is a linear isometry.

Proof. Clearly

l7(x)] = sup \fﬁs)(x)\ < %[,
SES

since />(s) €Q. However, given x€E and «>0, we can

find an extreme point x* of @ such that x*(x)=[|x|. By (1)

in either Lemma 7.37 or Lemma 7.33 we can find u*€U such that

x| >l - &

Now u*= /b (s,) for some s €S, so

o

lu*(x) | = Ips ) x| = 130Gz =l - ¢ .

Hence J is an isometry.

Proposition 7.35. The pair. (3,C(8)) has the property that

for each Banach space F and linear isometry G: E —F and linea
map H: C(S) — F with [H| £1 satisfying H°J = G, we have
that H is an isometry,

J

E 5 C(8)
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Proof. Let feC(S) and §> 0 be given. Since we are

interested in the norm of H(f) we can suppose without loss of
generality that |[lf| = £(s ) for some s €8S. Define

Ve = ’lses | 1eGs) =lell < ¢y

Then V¢ is open in S5 and since > 8 =K is irl;e-
ducible, there is a non-void open set A< K such that 2 ~ (4)
is dense in V& (Proposition 7.6). Since U is dense in K,
there exists an extreme point u* of Q@ in A such that the

fiber /> —T(u*)EV& . Hence, writing ® for S considered as

measures in C(S)*, . we have
e T
(%) !/u(f)l > el 2, v/te cO[/b_ (u*)].

Now

_/1\ *_1 ~
W) =3 " u*) N s,
However, it follews from (2) in the Lemmas 7.31 and 7.33 that
71w ns = 7%= 1(u*) nci(B).
To see this, suppose we have |A| = 1 and

J*mgS) = Ap(s) = ux;
then u*€U and 2~ 'uw*=/>(s) €K = U. Thus PSR T

B

Since u*€ext(Q) and J* is continuous and linear, the
set J*~T(u*)n QC(S) is a closed support of the unit ball QC(S)
in C(8)*. Thus we have

ST - B a
P u*)) = co(J (u*¥) N ci(8))

- Zo(3* T n ext(QC(S)))

(%x%) .
= Go ext(I*~T(u*)n QC(S))

= W) Ny g

We now show that H i1s an isometry. Consider the diagram

E* (.....‘_Ti___ c(8)*
/1
H*
G*

Fx



97,

By the Hahn-Bamach theorem there exists y* € F*¥ such that
ly*l = 1 and G*y*=u*. Thus

J*(H*y*) — (J*OH*)y* — (JoH)*y* - G*y* — u*,

so H*y* is a measure in J*'T(u*)FIQC(S)- Consequently by (%)
and (%), p. 90,

| @y | = |yx@Ee)| 2> 02l - ¢,

so lur| >t} -¢. Simce ¢ was arbitrary, H 1is an isometry.

Proof of Theorem 7.28. Let (J,C(S)) be the pair coms tructed

in the precedent. Then J is a linear isometry (Lemma 7.37)

and C(S) 1is injective since S is stonian. (Proposition 7.23.)
Suppose now Z 1s an injective subspace of C(S) eontaining
J(E), Since by Lemma 7.21 Z also has the projection property)
there exists a norm one projection H: C(8) — Z.

Now consider the diagram

E et C(8)
H
g
vV
Z

where G=HeJ, Since J is isometric and J(E)CZ, G 1is iso-
metric. Hence by Propositiin 7.35, H 1is an isometry, so Z=C(S).

To see the uniqueness, suppose (J',Y') is another injective
envelope of E. Consider the following diagram written in two ways:

E 2y C(8) Y e C(S)
™ N
J H Ji J
J\/
Y! B

Since Y' is injective, we get, considering the second diagram,
that there exists an H: C(8) —>Y' such that [H| =13l = 1 and
J'=HoJ. However, considering the first diagram, H must be an
jsometry. Thus H(C(S)) is an injective subspace of Y' containing
J'(E) so H(C(8))=Y'. This completes the Proof of Theorem 7.28.
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Corollary 7.36. Let T ©be a compact Hausdorff spaee. The

injective hull of C(T) is (J,C(S)) where S is the Gleason
space of T and J::/bo, wvhere /» : S—=T is the irreducible

1

Gleason map.
A
Proof. The set T in QC(T) satisfies the lemmas. Since
T is compact, we may take U=%=K,

Remark. If we examine the proofs of Lemma 7.21 and Propo-

sition 7.25, we see that the following theorem is true.

Theorem 7.37. Let E Dbe a real or complex Banach space and

A > 1. Then the following are equivalent

(1) For every Banach space X, closed linear subspace
YL X and continuous linear map T: Y —> E, there exists a
eontinuous linear extension T: X —>E of T (such that
I < > lth.

(2) Whenever E 1s imbedded as a subspace of a Banach
swace F, there exists a projection (of norm less than ) )
of F onto E.

The Banach spaces E for which (1) and (2) hold are called
P spaces (P 5 snaces). It is known that every P space is a
P A space for some A . The injective Banach spaces are just
the P1 spaces, and we know they are just the spaces for which
E = C(S), where S is stonian. Any space isomorphic to a P,
space is a P 5 space for some ) (determined by the norm

of the isomorphism). The following conjecture has withstood

much research effort.

Conjecture. Every P.A space 1s isomorphic to a space

C(S), where &S is stonian.
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Hyperstonian spaces,

This section will be concerned with a subclass of the stonian

spaces, which arise in several settings. They are
(a) The stone-representation spaces of measure algebras.

(b) The maximal ideal spaces of commutative W*-algebras
(B*-algebras, which admit a faithful *-representation as an algebra
of bounded operators on a Hilbert space which is closed for the

weak operator topology).

(¢) The compact Hausdorff spaces S, for which C(S) is

a conjugate space.

(d) The maximal ideal spaces of algebras LGD(RxZ,/N).

Before introducing the hyperstonian spaces, we must discuss
a class of measures. Throughout this discussion S 1is a compact
stonian space and C(S) represents either the real or complex
continuous functions. A measure is an clement of C(S)*/ represented
as usual as a rezular set function defined on the Borel sets of S.
Recall that the real C(S) forms a complete lattice (Theorem 7.17).

Definition 8.1. & real or complex measure 4+« 1is normal if

for each bounded monotone increasing net {fxg of real functions

in C(S) we have

lim gg fu dp = Jﬂs £y dp

where fo: &{f .

Clearly, we could equivalently consider bounded monotone
decreasing nets in Definition 8.1. We recall also that a set
ACS 1is called powhere dense, if int (k) = 4.

Theorem 8.2. A positive measure M is normel iff it vanishes

on all nowhere dense Borel sets.
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Proof. Let x be a positive normal measure and A a nowhere
dense Borel set. Let {ﬂﬁ} be the net of characteristic functions
of clopen sets containing A ordered by inclusion. Then clearly

0 ¢ /N 5

so /\xgk = 0, since /X£€£ is continuous and A nowhere dense.
Thus

0 ¢ (&) = lim Js fe dp = 0.

Conversely suppose p is a positive measure vanishing on
nowhere dense Borel sets. Let {ii} be a bounded monotone in-
creasing net of real functions in C(8) and fo = \é Qk + Define

h,(s) = Sup £,(s), VY se s,

Then ho is lower semicontinuous and ho < fo. The set

0}

is a first category Borel set; in fact it is an RT set. This
follows from the proof of Theorem 7.17, (p. 79, 1.7) but can
also be proved directly. By the properties of M, fA(N) =0

hence gS fo %u = gs hg %u , so the proof will be complete if we

Y

N = {s € S lfo(s) - h_(s)

show
lim ( £, o d, = j h d, .
To see this let M be a constant such that | foLH:’: M for
all o€ and let € >0. By Luzins Theorem there is a Borel set
E such that

/u(S\E) £ &/8M,

and such that hO is continuous on E. By regularity, we can
find a compact set K< E such that

}1(8\ K) < E/uM.

Now by Dinis Theorem Qi-——é hO uniformly on K, so there

exists an oéo such that



i .
SK(ho—fo( Yap & t/2.

0o

Thus for « 2> = 4

o< |
=4

i
(ny-g0dr < | y-2 e

S o}

< - - .
- J‘K (hO fgo)d//\ + SS\K (hO f‘xo)d/ﬁ_

Z

£ l/o v oME MM =6
This completes the proof,

Lemma 8.3. A measure M is normal iff its total variation

|l 1is normal.

Proof. If l/\«l is normal, ‘[fxg a monotone increasing
net and f = \/f,, then

| Ss (fo—fo()d/«W < Xs(fo-fd)dlﬁl =0

Now let /m be normal. Clearly its real and imaginary
parts must ®e normal, so we can suppose that M is real. Let
S=EYUE~ ©bpe a Hahn decomposition of S relative to ol and

+

s and 4~ be the positive and negative parts of s . Then

(BN EH)

x
+

~~
t=
p—

H

and

p (E) = p(EC E7).
+

We show that /w+ and /vv' are normal, hence l/M: M=

i
must be normal.
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Let & >0 be given. By regularity of lfJ we cam find
an open set U and a compact set K such that K{;E+§_U and
|ﬁ‘(U\MK)§ ¢ . Since S is totally disconnected, there exists
a clopen set V with KcVcU. Hence

V&I (E*\ V) + LkI(V \EY) =
= |M (BN V) UNED) < JANCRSE

Now if {ﬁxé is monotone increasing, f_= V£, and M
a constant such that |f,]l €« M for all «x , then

d
| 55 (£, - 24,1 -

= | J' (£, - )dp+ | (fo—fo()d/h—r (£, = £ ) dpl
RN v VT

come v |f (g,- gl =

4
= 2M¢ + Us(fo—fdﬂvd/p .

Since V 1is clopen 1y is continuous. Clearly £, Ty 1s
monotone inereasing and \éf&-1vﬁzf°1va so by normality of /@
the last integral converges to zero with « . Thus /u,+ is

- nt . : : .

normal, so V= —/A, /’ is also normal and the proof is
eomplete.

Lemma_8.4%. Let 4 be a normal measure. Then for any
/

Borel set A(_I_S

l/z«| (A\ int(4)) = O

Proof. Since by Lemma 8.3 lﬁi is normal, we can suppose

p > 0. We show that fcr any Borel set A

S (B) = Lo (A).
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: c
Since A® = [int(4)] , we also have

Jlnt@) = (GO = WD) = i),
Thus

e (A \int(a)) = O,

Let A be a Borel set in S. Using the regularity of i,
we can find a sequence {Un% of omen sets containing A, such
that

/N( (\Un) = (A).

For each n, ﬁ;\\Un is nowhere dense, so by Theorem 8.2 it has

measure zero. Now

A

1O

ienT,
and
(NTHN(NT ) ¢ Y T \T)

which has measure zero by the precedent.
Thus

it

A (8) /uﬁ(f\Un) =

S NT) U AT\ (DY)

M (NT ) 2 /h(A),

SO

0]

e (8) ¢du

and the lemma is proved.

Let M be a positive measure. Using the regularity of i
it is easily seem that the union of the family of all open sets
of zero measure has zero measure. Hence the following is non-

ambiguaous.
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the complement of the largest open set of A~ -measure zero. The
support of a measure s~ 1is the support of bhl.

Definition_8.5. The support of a positive measure M is

Tgeor§@_8.6. The support of a normal measure is both open

and closed.

Proof. We may suppose /Mv 2 0. Let F De the support of
s and U= intF. Since F is closed U< F and since S is
stonian U 1is open. Hence Uc¢U, so U=U. Now F\U 1is no-

where dense, so by Theorem 8.2
/%S\U)zﬁbﬁ\F)+/LW\U):O.

Thus F=U by the definition of the support.

Corollary 8.7. If A~ 1s a positive normal measure and

m(4) = 0, then AN supp 9&) is nowhere dense.

Theorem 8.8. The normal measures form a closed subspace of

Proof. Clearly the normal measures form a subspace in M (8),

so let { My be a sequence of normal measures and
m%n-,wou —> 0, Let {'ﬂxj be a bounded monotone increasing
net of real valued continuous functions and let fO:= \ifk . If
M is a constant such that ||l < M for all £ , then
(‘i
l (f -1, )an | <
!SS O -7( / O -

< - { - -
< | SS (f, g()%ﬁn| + l:BS<fO f%)d(fn.,fo)' <

(A

L{ (e -4, | +2Mlp - p s nel.
s o | 2l -

Let ¢ >0 Dbe given and fix an n, so larze that
2M|I/Ao - _,‘,\noll < ¢ /2. By the normality of pon We can find an

& such that for & 2K, We have

¢ /2.

1/

| § SR ALINY
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Thus for oA\ 2&, Wwe have

i . .
\{gs (fo-fd\)d/»o\ £ &2+ E/2= ¢,

proving the normality of /Mto.

We are now able to define the concept of a hyperstonian

space.

Definition 8.9. A stonian space S 1is called hyperstonian

if the union of the supports of all normal measures is dense in S,

We next prove a decomposition theorem due to Dixmier, which
shows that every stonian space is the disjoint union of a hyper-
stonian space and two stonian spaces of distrinct pathological

type.

Theorem 8.10. Let S Dbe a stonian space. There exists a

unique decomposition of & into the union of three disjoint open
and closed sets 81,S2, and 83, which are stonian spaces with
the properties:

(1) In S, there is a dense first category set, and no

measure is normal except the zZero measure.
(2) 8, 1is hyperstonian.

(3) In 83, every first category set is nowhere dense, and
every measure has nowhere dense support (hence only the zero mea-

sure is normal).

-
Proof. Consider the family & of all open sets in S, each

of which contains a dense first category set. By Zorn's Lemma,
there exists a maximal collection ﬂG,&k of open disjoint sets

from Jf For each * let 4 A | Dbe a sequence of nowhere
dense sets such that k} is dense in G . Let
A = UAQ\, Ynel.
v

Then A" 1is nowhere dense, for if A" contained an open
set U, then UNG, 1is open and non-empty for some K ., while
o
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e~ (AR L n
UNG, < G N (A“ob(¢$u AZ))

which is nowhere dense. Thus

(e0)]
A= U AR
n=1

is of first category and

A = G
A

is open and closed. Define

S1 = '&}Gd.

Then clearly S1 is stonian in its relative topology. By
maximality of the family QG&§ , each first category set in
S\S1 is nowhere dense. Now let Ve be a positive normal
measure with support in 8,. Then, by Theorem 8.2

/u(An) =0 for all neN,
Thus
) = /»(013 A) < jZO/LV(An) - o,
SO

a8 = ) = 0

by Lemma 8.4. Hence /k,zo.

Now let {/@;% be the net of all normal measures on S,
and let F, be the support of Mp « By Theorem 8.6 each IW
is both open and closed. Define

F= QF;%

and

82 = F.
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Then S,<S5N\S5,, and 5, is open and closed and hyperstonian.

2
Let

83 = S‘\(S1LJS2).

‘By construction of S1, every first category set in 83 is
nowhere dense, and by construction of 82, the zero measure is
the only normal measure on 83.

We must show that any positive measure  on 83 has
nowhere dense support. Let

a = l.u.be § V(B) | BC S, novhere dense Borel set} .
Choose {3B, } with
lim V(B ) = a
n n ,
and let

BO = U Bn.
n

Then BO is of first category, hence nowhere dense, and’

clearly
v (BO) = a.

We show that the support of v is contained in 'E;. Let
(}983 be open and closed. It suffices tc prove that \U(G)=0.
To see this, let C be an arbitrary nowhere dense subset of G,
Then §;L}C is nowhere dense, so U9(EEKJC) = a. But then
UJ(C) = 0. Thus the restriction O'O of V to G 1is a positive
measure vanishing on nowhere dense sets, so by Theorem 8.2 ﬁTO
is normal. But then, since U J is concentrated on 83, 17o=:0.

It remains to prove the uniqueness. Suppose

— [ ! 1
S = S1J82US3

is another partition with the properties of the theorem. In
'N

s1 (82U 83

As Sé is hyperstonian, we must have Séf} 53 by the construc-

) there is a dense first category set, hence S% 531.

tion of S, and finally, since

SéﬁS1 =@ = Sé(WSZ

we get Ség:S3 , completing the proof.
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Corollary_8.11. In a hyperstonian space every first category

set is nowhere dense.,

We now proceed to alternate characterizations of C(S)
where S 1is hyperstonian. The next two theorems should rightly
have been given earlier, as we have needed some of the ideas
before.

Defipition 8.12. A subset E in a topological space has the

Baire property if there exists an open set U such that the sym-
metric difference EAU is of first category.

We restrict the discussion to Borel subsets of a compact
Hausdorff space ©S.

Theorem 8.13. Let S be a compact Hausdorff space. Then

every Borel set in S has the Baire property.

sets in S. We define A congruent with B
= i ABe & ,
A=B (mod}) if AsB 3/
Note that
A=B, B=C =)A=,
so = 1is an equivalence relation. ©Since

AAB (o0 B®) v (BNA®)

1

(ACCA BC) U(BCCHAC)

ACa B®

i

we have
A=z B = A® = B,

Let gﬁ denote the class of Borel sets congruent to an open
set. We note that if U is open and E= U, then U= U, so

— 11C
B¢ = U°,

which is open. Let En = Un’ where Un is open. Then
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(UUIN(UE)<e UWN\NE)e Y
o o n - 3 nn 3’
(UEIN(UU) (E \U )€
kr{n nn'tr{ n n %’

SO

Thus E;‘ contains all open sets and is closed under forming

complements and countable unions. Thus @7 = 83.

Remark. An open set U is called regular if

U = int(0).

Since

U=71T= int(0)

1l
Vit

every Borel set in a compact Hausdorff space is congruent to a
regular open set.

then there exists a unique open and closed set U such that
EAU is of first category.

Proof. If S is stonian, every regular open set is open

and closed. Since uniqueness is obvious, the corollary follows
from the precedemt remark.

7

Remark. If S is a stonian space and Ei’ i=1,2 are/f;/'

Borel sets in S8 with E,NE,€ {% (in particular if E1f\Eé==¢)3
then U1f1U2==¢, where Ui are the open and closed sets congru-
ent with E, mod 5{ .

Theorem 8.15. Let S be a stonian space. If f 1is a bounded

Borel measurable function on S, then there exists a unique con-
tinuous function g such that

{sl\f@)—g@)|>ok

is of first category.
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where the sets Ei are disjoint. Let Ui be the open and
closed sets with Ei = Ui' Then by the preceding remark, the

sets Ui are disjoint, and if

n
8= 51l

i
we have
(1) {slle(s) -gs)|>0te .
(2) sup lg(s)| < sup [£(s)],

SES s€S

where the inequality results from the fact that some of the set
Ui may be void. We note that every bounded Borel function is
a uniform limit of simple Borel functions, and that the simple

functions form a linear set.

Now let f be a bounded Borel function, and let §fng be a
sequence of simple Borel functions converging uniformly to f.
Let -{gn% be the corresponding sequence of continuous simple
Borel functions. Then by (2)

- L -
le, gmﬂ £ ggg I, (s) £ ()1,
S0 {_gni converges uniformly, to a continuous function g. If
|£(s) ~gls)| >0
then for n large enough we have
l£, (s) -g (s)| >0.
Thus
fo's)
{ s||f(s)-g(s)|>0}<c U fsl !fn(s)-gn(s)l >0}
n=1

which is a set of first category. Since uniqueness of g 1is
clear, by Baires theorem, the proof is complete.
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Remark. If S 1is hyperstonian, we may replace the words

"first category" by nowhere dense in Theorem 8.15 (cf. Corollary
8.11).

We now suppose that S is hyperstonian and want to show
that C(S) 1is a conjugate space. We first consider the case
where there exists a positive normal measure /M whose support
is all of S. By LOO(S,gi/&) we mean the class of all bounded
Borel measurable functions on S, where we identify two functions
which differ at most on a Borel set of M- -measures zero. Clearly
this class of sets coincides with the nowhere dense Borel sets.

For feL, (8,0

Iel

ess.sup |f(s)]

1

infv%xlﬂsESI If(s)| >t is of }+ -measure
zero] .

Lemma_8.16. Let S be hyperstonian, and let M be a

positive normal measure with supp(/~)= S. Then evéry equivalence
class in LOO(S,SB,fQ contains a unique element of C(S), and
C(S) 1is isometrically isomorphic to LCO(S,QSJL) = L1(S;}y/~)*.

Proof. If f is a bounded Borel function on S, then
by Theorem 8.15 there exists a unique continuous function g
which differs from f at most on a nowhere dense set E. Since
ME)=0, f and g belongs to the same equivalence class in

LOO(S,JﬂfQ, and since suppgk)=:S.

”f"oo: ess.sup |£(s)| = ess.sup |g(s)| = "g“C(S)‘

Now let S be an arbitrary hyperstonian space. Then the
union of the supports of all normal measures on S is dense in
S. Let {/%xﬁ be a maximal family of positive normal measures,
with “/g“ =1, whose supports {G4x | are disjoint. Let

R = G, .
U,

Then R in its relative topology is locally compact. The
next lemma shows that S= »(R).



106,

Lemma_8.17. The restriction map f -3 flp 1is an isometric

isomorphism of C(S) onto BC(R).

Proof. Clearly if fe€C(8), then f|z€BC(R), and since
S\ R 1is nowhere dense ’

“flR“BC(R) = " f“c(s)-

Now let g €BC(R). Without loss of generality we can suppose
that g 1is real and positive. Let {H(., |  be the net of finite
unions of the open and closed sets Gy, ordered by inclusion.

For each[‘;

g-1H{5 = fp € C(S)

and {f@} is a bounded monotone net. Let f= \({)f,5 . Then
i
feC(S) and f=f. on Hy, so f

R™E-

Before we do the general case, some remarks. Suppose that
A 1is an index set and that XO( is a Banach space for each
X.€EA, We define (d%A Xo()]_1 to be the class of all functions F
on A such that for each « , F({x)€X,  and

|

P, = 2 1Py

KEA

sup {, TIFCOly | BeRfem,
€ .

il

where A is the collection of all finite subsets of A. Similar-
ly we define (°<gA X")loo to be the class of all functions G on
A such that for each & , G@*)€X, and

G = sup |G() 0 .
lolg, = smp loCOly <
The standard proofs show

omma_8.18. (SX"‘)l and (% X)q are Banach spaces and
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Returning to R 1let us write

Y= (ZLOO(G“’EE)“"/\"‘))]‘OO
z = (;L,I(GQ(,UE(,/\,,))H.
Then Y=27 .

Theorem 8.19. Let S be hyperstonian. Then C(S) =N(8)*,
where N(S) is the subspace of M(S) consisting of all normal
measures.

roof. It follows from Lemma 8.16 that that map g ——){g,(} ’

where gy = gle( s, 1s an isometric isomorphism of BC(R) onto
Y. Thus composing with the restriction map f — flR we -obtain
an isometric isomorphism J of C(S) onto Y (Lemma 8.17).
Again we write

J(f) = ifql , where f, = fl, , Yrec(s).
- 4

Now

J* 5 Y% = Z¥x 5 M(8)

is isometric and onto. We must show that J* maps the natural
o
image Z of Z in Z*¥* onto N(S).
Let {hd €2 and VU=J3*({n])j then

(J*(@),f}
g 5 30
SgG fu g d s Vfec(s).

"

1
J g 1) U (as)

il

(Note that since {h,} €2, only countable many of the h,
are different from zero in L1(Gu,@, d/by)-) Now let {fp’f be
s bounded monotone increasing net of real functions in C(8)
and let f£° = %f(b . Then for each &

(£P), 7 (9 .
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Let & >0 be given. Then there exists a finite set H of
indices such that

dz{ J‘G Ing | dp, <2

o
Thus

1
£ E 3 10 - 9] Ih“]d/}«_(&ZME ,

where M is a constant such that [ <M for all P .

From the proof of Theorem 7.17 (p. 79 , 1.7) it follows
that sup £ = £° except on a first category Borel set. Hence
it follows from Corollary 8.11 and Theorem 8.2 that for all
l;;m(f(’)og = (£f°),  almost everywhere with respect to M« . Thus
the integral on the right go to zero with /& , and U is
normal.

To see that J* 1is onto, suppose that v is a normal
measure on S. Then |Y|(S\R)=0, and for each o the restric
tion of Yy of V to Gy is absolutely continuous with
respect to M, by Theorem 8.2. For each & 1let h, be the
Radon-Nikodym derivative of U, ; then hy EL1(GO(, 3, ,/‘/w) for
every « . Thus {h,} €Z and for all fe€C(8)

oK.

}
f()d\?zTS £, b d j
SS S ya Ve, o, Dy /h 9

SO

and we are done.
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Weak compactness in M(S),.

While one has no really useful characterization of M(S)¥*,
it is still possible to obtain much useful information concerning
weak convergence and weak compactness in M(S). These results
form an interesting chapter in measure theory, and are useful in
the study of C(S). In this section we develope these ideas. It
is convenient to start by investigating weak compactness in L1

with respect to a fixed measure.

For the present, S 1is a compact Hausdorff syrace and 55
denotes the Borel sets for S. We begin by recalling a classical
fact about absolute continuity of measures.

is mw-continuoug if
VE>03 Io0: MBS = A®IE.

Definition 9.1. Let h ,A€M(8) with /« >0, Then A\

Lemma_9.2. Let A, ) €M(S) with A4 >0. Then A is

/ba-continuous iff A (E)=0 whenever //A(E)=:O.

Proof. Clearly /h«—continuity implies the second condition.

Now suppose A\ satisfies
(%) A(E) = 0 whenever M(E) =0.

To show that ) is I/&-continuous it is enough to show
that the positive and negative parts of the real and imaginary
parts of A are /bu -continuous. Clearly, the real and imaginary
parts satisfy (%), and taking there Hahn-decompositions and
using the positivity of //~ we see that there positive and nega-
tive parts satisfy (%). Hence we may assume A > 0. Suppose A
is not A~ -continuous. Then there exists § > 0 and Borel
sets E  with X (E) > & and /A(En)<;% . Let

co loe!
E = limsupE_ = N U E .

o) n m
n=1 m=n
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For each n

M (B)) 4 /MmL:)nEm) < gn o

so p (E)) = 0. Thus A (E) =0, but also
] /0]

A (E) = ngonék(mgnEm) > .

This contradiction completes the proof.

Remark. If /AEM(S),/IA >0 and fEL1(S,.(J?>,/), then the

A (E) = S £d . VEedS
E
is absolutely continuous with respect to .

The first theorem is a result on equi-continuity:

lim S f du =20
n-o00 FA n f
Then for each é > 0, there exists 5 > 0 such that if
/A(A)«g , then

vae®.

lﬁlA |fn|d/f§ ¢ {7 neh.

of L1(S,‘J§,/~),‘ since if g=1lim a, in L,, then there exists
a subsequence which converges to g a.e., hence g takes only
the values O and 1 a.e. We consider H as a complete metric
space. For fEL1 the map from H into the scalars defined by

g = js f'1Ed/'v = SEfd/M

is continuous, since if

| |
11y =1 ldp= W(EAE) —30
Js' En B, 19" b B =
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by Lemma 9.2 and the remark.

Let Z >0, and for each n let Gn be the set

Then each Gn is closed and
o)
H = U G ..
n=1 o

By Baire's theorem there is an n, such that Gno has non-
empty interior. Thus there exists AO e P and 5 o’ 0 such
that

/L(AA AO) < é =) ‘SA fn d/xl £ ¢ for nzng,e.
Now if /A~(B) < (So and BOA = @, then
i 1
dh i = - < 2 .
|JB Tndp | ‘IAOUde/ JAofnd/\‘ 2 egfor naf,

Similarly, if BEAO. If B is an arbitrary Borel set with
/’\(B) < 30, then B= (BWA) U (BNA ), so

\J‘B fnd/kl < kg for n>n_.
Using the inequality

Joiie < g 1feep

we get

1
M) Lh — JB |fylapé 16 for nang.
o
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It remains to deal with the functions f1,...,fn -19 but
0

since each of the measures S Efnd/" is /‘«-continuous, by
Lemma 9.2, we can find a < § , such that

A
Va (B) < g implies JBlfnld/\{ 16 ¢ ¥ nel,
and the proof is complete.

Corollary 9.4%. If

’
1im)fd.:o
n—-)ooIAn/L

for each Borel set A, then

sup £ ll.< .
n n"1

Proof. Choose any & >0 and take by Theorem 9.3, S> 0

corresponding to ¢ o+ There exists at most a finite set F

F= {51,...,51\]}_

such that M (fsi's’) > é/2. If s¢F, then by regularity there
exists an open neighbourhood V_ of s such that V) f_é .
Again by regularity each s €F has an open neighbourhood Us

such that pa (Us\{s})z__g . By compactness, we get a decomposition

where (Aj) f_B . Hence
rfs Ifplap £

5 y
2 J,Ai‘fn‘d/h + ig1‘fn(si)‘/\(,(sis ) &

e

A

i=1

£ K 3 l l
+ f da
- fe ey J{ S5 n /A

which is bounded as a function of n.
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{
limJ f dn = 0(4a)
n—-o ki A n r

exists for every AEEBA . Then

(1) sgp an“1<oo.

(2) lim \ £, 8 d/.y exists for every g€ LOO(S,SBV«) .
n-?oo S :

(3) There exists f € L1(S,$,/«) such that
ﬁ;}o‘j‘s fogdp= J'Sfogd/« Y geLm(s,CB,/«-) .
SO

e(h) = ‘Y f_ dpn- AE@; .
A ° .
(4) Given ¢>0, there exists 8> 0 such that

JA. ‘fnh%f z yoed
if /M(A)A_§.

Proof. (1), To show sup I fn\l £co it suffices to prove

sup I tnfn“ £ 0o for each sequence t, with t v O. But

n

o
lim }SA tafpdp = O ¥ ae 9>

n

so we can apply Corollary 9.k4.

(2). If gELOO(S,CB,/k) is a simple function. (2) follows
immediately from the assumptions. If g ELOO(S,CB,/M) is arbitrary,
we may without loss of generality suppose that g 1s bounded,
and hence there exists a sequence {gn(;, of simple functions,
such that g, converges uniformly to g. Using this and (1)
we easily get that ,szngd/”" is a Cauchy-sequence, hence con-

vergent.
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(3). The set function

|
o(A) = 1lim g £ a
n—s00 F A n-f*
is additive., We show it is countable additive and /u,—continuous.
We assert

Given &> 0 +there exists 5 >0 and
an integer n_  such that if /M-(A)<5 s, then

&)

SA Ifm-fnld/« < s Vn,m2n .

Suppose not. Then there exists an %O:>O, strictly increas
ing sequences f{ mKE and ¢ nkﬁ and sets {Ak§ ~ with
AL < g such that

f “f d Ly kENo
jAk Iy <o Ih2 e, v
Since
1 .
1im (f -f_ J)dk- =0 A€ CPJ_
k-m A Pk f v

we contradict Theorem 9.3. From () it follows that if /m-(A)fé;
then

1

lo(a) - :)A £, d/ul 5.

Now as before we choose 6 o % % such that

I
‘jA lfnold/'\ < E
if o (4) © 8o+ Then if RO § , we have
|
le(a)] <« lo(a) - JA £, d/al + lAAfnodM

O

< 2%,
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Hence if {E are Borel sets such that E M@, then

'/‘(En)lzo since /A is countable additive. Thus e 1is

countable additive and M -continuous. Now by the Radon-Nikodym
theorem there exists an f_¢€ L1(S,(PJ,/‘<) such that

0(4) =‘S*Afod/A Vae® .

If g€L_, (S,jg,/(,\) is simple, then clearly

lim g fgd.=Yfgd
n—)oo‘Sn/A ‘So/ﬂ,

and hence again using the fact that the simple functions are
uniformly dense in LOO(S,CE,/A« ) and (1), we get that f - f_
weakly and (3) is proved.

(4), Let & >0 be given. Then using () we can find
0>0 and n_ €N such that if Ve (8)<§ , then

£ -f |d,. ¢ ¢/2 m,n>n_ .
IS{A m " n /" - ¥ myn2n,
Choose  § iS such that if /4 (4) < S o ‘then

Then if /A(A) < (30 we have

|
*SA £, | dff 5.

completing the proof.

\/ nelN

By the weak topology of a Banach space X we shall always
mean the topology G~ (X,X*). A subset K<X is called weakly

relatively compact if its weak closure is compact in the weak

topology.

plete for the weak topology. Moreover, a sequence
»{fng c L1(S,$,/h.) converges weakly to an element f_ iff

lim f d/v\,. exists for every AE%. .
n—=owp A
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Before characterizing the weakly relatively compact subsets
of M(S) we recall the following important theorem.

Theorem 9.7. (Eberlein-Smulian.) Let K be a subset of

a Banach space X. Then the following statements are equivalent:

(1) X 1is weakly relatively compact.

(2) Every sequence in K has a subsequence converging weakly to

an element of X.

(3) Every countable infinite subset of K has a limit point
(in X) for the weak topology.

Theorem 9.8. Let }/AEEM(S) with ja 20, and let

K§LL1(S,35”A). Then K is weakly relatively compact iff

(a) K is bounded (in norm).

(b) For every & >0 there exists &> 0 such that /ﬂb(A)ftg

implies

}
IJAfd//«ll_—- ¢ \t rek.

Remark. Condition (b) 1is equivalent to the corresponding

condition with

|
J, Ilap e 2

Proof. If K is weakly relatively compact, then by the

principle of uniform boundedness X is norm-bounded. If (b)
aid not hold, we could find an ¢ ,>0, {f,} < K and {af<cP
with M (A) < 7 such that

I

1
n

ij f dpl 2T, neN.
s 0/

Then Theorem 9.5 (4) implies that no subsequence of £,
can converge weakly, contradicting the Eberlein-Smulian theorem.
Hence the conditions are necessary.
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We now show they are sufficient. Let Kf;L1(S,ﬂ5vh) satis
fy (a) and (b). The natural embedding f —% of L, into

L:* = Lzb is a homeomorphism, when L1 has the G’(L1,Laﬂ

Ve
topology and ﬁ1 has the relative topology from the G“(Lgb,LOO)
topology on L:O. By the Alouglu theorem it suffices to prove
that the §°(I*,L_) closure of X 1lies in T,.

Let © 1lie in the GJ(Lgb,LOO) closure of K. We prove
that there exists a g€5L1(S,557A) such that

1
= . ‘ SyB, ).
o (n) jsghd//\ 7 heLy (8,30

By'the Radon-Nikodym theorem, it is equivalent to show
that the set function A defined by

\(® = e(1y) v Beh.
is countably additive and /NL -continuous.

Let & >0 be given and choose §}>O according to (b).
If /A (E) < 8 and A’ > 0, then there exists f €K such
that

! .
leC1p) - JS lgfanle y .

Hence

| A (E) |

i

!
010} £ le(1) -| fa |+|£ £dul
leGip) | < E JE AR s
< K + ¢ .
Since XC> 0 was arbitrary, we obtain
ME 2o =y (AEIC T,

Hence if E,  are Borel sets such that E ) @, then
/KEn)\/O, since M is countable additive, so A is countabie
additive and /M -continuous.
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I i
lim f hd = ghd
n~->00 j s - /L iS S 7
uniformly for h in any weakly compact subset of L1(S,F3,L).

/

and let M be a constant such that
sup |£. | .« M and sup |n|, < M.
n n'" oo nek 1

Let ¢ >0 ©be given. Then by Theerem 9 .8.

there exists
d >@ such that if P (B<O 5 then

SB Infap < ¢ Y hekK.

By Egoroff's Theorem there exists a compact set F

with
/%S \F) < Y and such that f, converges uniformly to g on
F. Hence there exists an n €N

° such that

|£,(s) -g(s)| « % t nxn_, Y seF.
We now have

' i i
- < - hid f - hiqpm
[ Gpomap i< [ inelinla, + | fame Inlgy

2MX lhld, + ||h||1 sup|fn(s)-g(s)|
{S\F seF

[N

[

Mg + Mg = 3M4 Ynsn , ¥ hek

proving the theorem.
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H = ZA‘EM(S)| A is /4-continuous} .

Then by the Radon-Nikodym theorem the correspondence
X —=yh, where h is the Radon-Nikodym derivate of X  with
respect to Mo is an isometry of H onto L1(S,ﬂgka.

Theorem 9.10. TFor a bounded subset K of M(S) the follow

ing statements are equivalent:
(1) K is weakly relatively compact.

(2) For each uniformly bounded sequenxe '{fn} of Borel
functions which converges pointwise to a function g one has

1lim I f d = gd
R A ;fs /
uniformly for /hw in K.

(3) For each bounded sequence {fn{ C C(S) converging
pointwise to zero one has -

{
lim f dir= 0
nexnrgs n /h
uniformly for /n» in K.
(4) TFor each sequence é Onf of disjoint open sets one has
1lim M(0 ) = O
n-w n

uniformly on K.

(5) For each & >0 and compact set F S, there exists
an open set V with FCV such that

I\ P) ¢ ¢ b XK.

Proof. (1) =\ (2). Let K be weakly relatively compact and

suppose (2) is false. Then, passing to a subsequence, we get that
there exists an ¢>0 and a uniformly bounded sequence %gnf of
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Borel functions converging pointwise to a function g, together
with a sequence of measures {/Mn% from K such that

|
(*) ), Eaprap |2, ¥ nel.

Define a positive measure V eM(S) by

T =S plren

’I :

Then each M is U -continuous, so let h, denote the
Radon-Nikodym derivate of M n with respect to v . By the
preceding Remark and Theorem 9.8 we get that the sequence Shh‘g
is weakly relatively compact in L1(S,<:?>,\7). Since
{gnk < LOO(S,:R,'\T), Theorem 9.9 implies

}
lim Ssgn h dv = ‘xsg hmd\J

n-00

uniformly in m.. But by definition of hm this means

\
lim g d = & d
uniformly in m, contradicting (%).

(2) =(3). Trivial.

(3) =>). Suppose (4) is false. Then there exists an

Z>0 and, passing to a subsequence, a sequence %Unf of open
disjoint sets, together with a sequence {/“nz of measures from
K such that

|/&n(Un)‘ > Z ’ \v nENo

By regularity, for each n there exists anC(S) satisfying

and such that
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lSs fnd/\nl >2? .

But since fn converges pointwise to zero, this contradicts

condition (3).

(&) ==(5). If (5) is false there exists a compact subset

F of S and an ¢ .20 such that if V 1is any open neighbour-
hood of F then there exists a /'\«EK such that

I/~| (VNF) > 5 .

We make an inductive construction. Let V1 =S and choose
/‘"1 € K such that

I/nﬁl(v1\ F)>$§ .

By regularity of l/‘tﬁl there exists an open set 0, with
0,SVAF  and |/~-1 CI I ENr.

Let V? = 510. Then V2 is an open neighbourhood of F
so we can find /M 5 € X such that

| ol (NF) > £
Again using regularity we can find an open set O2 with
0, CV,\F and (0,0 > EAn.

Now let V3=51cu 520 and continue inductively.
At the n'th step let

n-1 _ c
v, = L1) 04
and pick a measure /4« nEK and an open set 0, such that

0 SV \ F and |/~n(on)| > /.
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In this way we obtain a sequence §0n‘f of open sets and
a corresponding sequence i/kn& of measures from K suchthat

Patog) 1> ¢/

Since the sets {On‘) are clearly disjoint we contradict
condition (&),

(5) = (1). By the Eberlein-Smulian theorem it suffices
to prove that each countable subset of X has a weak limit
point. Hence we may suppose K is countable, 1.e.

K = {/’"n*-'

Defining a positive measure VU €M(8) by
oo
= < n

the Remark on p. IX.11. allows us to consider K as a subset
{fnt of L (S,:B 17) and it is easily seen that it is enough
to show that K is weakly relative compact in L, (8,J »,7). By
Theorem 9.8 and the regularity of Vit is enough to show
that given & > O, then there exists a o >0 such that

if U is any open set with ¥ (U)< §, then

SU g lag £ ¢, ¥ nek,

Suppose this is false. Then we can find £>0 and a
sequence { Unk of open sets and a subsequence {gnf( of
Jlfn\' = K such that

’
v (U R ——  and lU \gn\d"\7><‘.‘, neN.

2n+1
n

Let n
V. = NU
R
Then Vn are decreasing and
lim V v,) =

n->m
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Using condition (5) on the compact sets %Vnc{ we obtain
a sequence §F£.% of compact sets such that

¢ n+1
F, <V, and jv F lg ldve ¢/t Yneh.
n n

Let n
H = ﬂ F .
n i=1 n

Then, since {V decreases

n n
VNH, = U (VNF,) < i(:)1 (VAF,),
SO

l n n .
lg lave S lg ldve > ¢2l* e g2,
VAH i£1)] VAR, 1

Thus for all n
A‘ etav= | tete - el
&n dU=J gyldv - gpldv
H, v, NV NH,

- ¢
2 XUnlgnldv /2

> t/2.

Consequently Hn is non-empty. By compactness
o0

=0
1 n n=1 n

is a non-empty compact subset of S, and since an:Vn we have

v (F) = 0,
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Now by condition (5) there exists an open set U containing
F such that

|
X Itla o < 2/2, 7 feK.
HU

However, since Hn decreases we can find an nOEEN such

that Hp, < U, but then
o)

. A
iag > & ay > &/2.
j‘U\gno\ 02y lg, lav 2

n (o]
o

This contradiction completes the proof.

Corollary 9.11. A bounded set KCM(S) 1is weakly relatively

compact iff the set

k| = JIpl ] e

is weakly relatively compact.

Proof. This follows immediately from Theorem 9.10 (5).

ly relatively compact.

(6) 1If {En} is a decreasing sequence of Borel sets such
@
that N E_ = @, then
n=1 o

lim (E) =20
nyeo/ D
uniformly for /A in K.

(7) There exists a positive measure N eM(S) such that
given 7 >0, there exists a S$ >0 such that

\/\(E)lé_z, ¥ pek
ir @< . |
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Proof. (2) = (6). Trivial.

(6) => (&). If {0 { is a sequence of disjoint
open sets, then

(00] a
/u(on) :/4« (iL:)nOi) -/«(_ U Oi)

i=n+1

and by (6) each of the terms on the right side converges to zero

uniformly on K.

(7)__=>_(4). Obvious.

(1) => (7). To prove this implication it suffices to

prove that when K is weakly relatively compact in M(S), then
there exists a positive measure A such that all measures in
K are A =-continuous. This will imply that the natural image
of K 1in L1(S,53,A) will be weakly relatively compact, and
the uniform ) -continuity then follows from Theorem 9.8.

Clearly we can suppose that all measures in K are positive

We show first:

For each f Y0 there exists a finite set
v},...,13n in K and a §‘> 0 such that if

(&) v, (B) < g 1=1,2y00ey0,
then

/M»(E)Af ¢ \j/WEEK.

Suppose not. Then there exists ¢ >0 such that for this

EO (#) can not be satisfied. Let /bv1€IK be arbitrary. Then

there exists E1€f]5 and /m 2€EK such that

S Bz, foB) 2 g

Again there exists E,€ EPD and /‘~3 € K such that

4L L
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Continuing inductively, we get sequences {/An‘S ¢ K and
{Eni < :& such that

/’\/i(En)<-2-jr—l, 13192,-..,1’1
/"n+1(En) 2¢&,
If
o
F = U E.,
n o 4z, 1t
then Fn is a decreasing sequence of sets and
/L"n+‘|(Fn) 2 Eo'
Now if n»i, then
o0) 00
= = ]
. (F ) V4 Z . (E-) Z - f _ ’
/b"ln j:n/"l,j -J?:-nzgj 2n’l
hence
lim /vx,i(Fn) = 0, \v/ iel.
n—»00
Let
foo)
F=N Fn and G, = Fn\ F.
i=1
Then
00
and G, 1is a decreasing sequence of sets with 19:1(}1’1 = .
Moreover, we have
lim My (G) = lim h (F) =0, ¥ iel
n—00 n~300
and
/bvn+1(Gn) :/'”n+1(Fn) Z'zo VHEN

contradicting (6). This proves (&) .
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Now for all nel, 1let 5n>0 and uﬂl,---,dﬁ €K
be chosen such that n

\71? <E)€.c§n’ 1=1425000ym,
implies
M@ <, Vjrex,
and define
m
oo) n
A=S Ls Luy,
10 4%y ol Vi

Then A (E)=0 implies A (E)=0 for all M€K, so
all measures in K are A -continuous. This completes the
proof.

We record a well known theorem which follows from the results
so far.

and suppose

lin A (B) = o(®), VEEDR.

n-w
Then © is a countable additive set function, and B V@

implies

1im |m | (E.) = 0
k=00 ’#ﬁ k

uniformly in neN. Moreover if all the /L'n are \J -continuous,
where U is a positive measure in M(S), then 6 is U -con-
tinuous, and to every € >0 there exists S » 0 such that

l/EKE) ) Y nel
ir U (<Y .
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Proof. Define the positive measure U by

18

5. 2 Al
=1 2%l

Then

M (B) = SE £, a0 V nel,

where f, € L1(S,?J, V). Now apply Theorem 9.5 .

Id = 5 1}l <oon

n=1

If S=Nu{ow! is the one point compactification of the
natural numbers, then each =xE€1, defines a measure on S, if

we set
() = 2. if ECN
* n€k 3 n’ ' -
x({oo})= 0,

Thus we can regard l1 as a closed subspace of co-dimension
one in M(S).

9922—_1-%%22:251&' In l1 a Ssequence converges weakly iff

it converges in the norm topology. Thus the weakly compact
and the norm compact sets coincide in 11.

=l —>o0. Since the sequence {x | is weakly relatively compact
so is the sequence {y,}, where

= {67 e =T

Proof. It suffices to show that if X —>0 weakly, then

Let

B = {3eN | 52xl.
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Then

so by Theorem 9.12 (6), we have

lim |y |(E.) = 1lim >
k- n K k-0 i=k

uniformly in neN.
Let (¢>0 be given.

Then there exists ko such that

©
Z ‘gin‘ 4_, 5/23 \7’ nEN’
i=k
o
and then an ng eN such that
K -1
n
i§|§i|42/2 for nZn_.
Hence
X n
“Xn“ = 21|§1 | < ¢ if n2mn,.
1:

Let KCM(S) and suppose

sup |/~(G)i< 00 each open GE%.
MeK

Then

sup H/A“( 00«

feK

Proof. We suppose that K is unbounded, and prove that
such that

(@) = 0.
;&%lp | = o

We must consider two cases.
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Case A. TFor each s€S there is an open neighbourhood VS

- om g - o

such that
sup Wl (V. N{ s})<o0
/Leﬁ /'Ll s }

Then we can cover S by VS gees3Vs o The deleted neigh-
bourhoods V_\{s.{ cover S‘\{s geesyS ?
S4 i 1

/silelp |/\\(S\( Sysere9Sy {)< oo,

But K is unbounded, so for some 1

sup | (fsié)l =
/keK

Then
/52% »h(vsi)! = 00

and we are done.

Case B. There exists SOGES such that for every open

- - - o= o

neighbourhood V of s, we have

/52§ bk\(v \{s§) =

In this case we choose /br1EfK, and by regularity an

open set G1 with

G, C 8\{s { and \/«1((}1)\ > 1.
If

/Egﬁ DM(G1)| = o

we are done. Otherwise let U1::S and by regularity of bmﬂl
choose an open set U2 with



and

we are doney
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PSP EN DI

Now there exists /4/2 €KX and G, open with

G.C
C-2 o

U2 \ % So(i ’

[An(Go) 1> 2+ |y

Ir

MeEK

finl an open set Gn

and we are done, or we construct sequences {Gns and {U (}

sup |/V(G2)| = 00

with

/9116111% I/'(Gn)l =

of open sets satisfying

(a)
(b)
(c)
(a)
(e)

otherwise continue inductively. Then either we

n .

_G—j__na:-]-:g for i+ j
s, €U, and U ., CU ,<U, ¥nel
G cU \Um1 vnel
Vnﬂ Grp) | _n+1+ |/‘Ar1+‘|(G)" ¥nel
|/"‘Jn“UnH\j\Soj'){’- 1' ¥nel
Let
o0
G = UG..

Then GO is open and

)| 2

>

el -

2 Il -

n"‘1,

/~(UG)l-V‘n( U G;) |

i=n+1
l'l; N
iE1‘ n(Gl) | ‘/L\n n+1 }\so(‘, )|

n=2,3,... 9
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SO

sup |A(G )| = oo

/~EK

and the aroof is complete.

ly iff n%%/wn(G) exists for every open set G.

Theorem 9.16. A sequence /‘/”‘n" in M(S) converges weak-

lim /L»n(G) exists for each open set G. We show that *{/*-n(y
Iil's%%eak;ly relatively compact. This implies that ‘(/A n‘; has
weak cluster points. Since any two clusterpoints of ’(/"“n‘f
agree on all open sets they must agree on all Borel sets. Thus
-i/unj' has a unique cluster point to which it must converge.

From the preceding theorem it follows that the sequence
‘{/"ns is bounded in norm. Now let { G § be any sequence of
disjoint opem sets. We prove

lim 4 _(G.) = 0
jaoo/hn !

uniformly in n. By Theorem 9.10 this will imply that {/b nS
is weakly relatively compact.

For /AEM(S) define /&e11 by

N
- i = ' G- .
VA (3) /“ ( J)
The sequence {/Xnﬁ is a weak Cauchy sequence in 11,
since for each subset EQN,
~ 4]
(B) = 2 (3) = (U G
/{’”n J€E /¢n /”n JEE J
has a limit as n =do. (Use the Remark on p. . 128. and apply
Corollary 9.6). Hence the sequence J\/KD'» ny is weakly relatively

compact in 11 so again by the Remark and Corollary 9.11, the
sequence »{ VYD| 3 is weakly relatively compact. Now let



B, = jiel | 1>k,

Then applying Theorem 9.12 (6) we get

x LN
(@1 < j>=—k|/An(Gj)l = J%kl/vnu)l

uniformly in n. That completes the proof.

133
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SECTION_10

Phillips' theorem and applications.

Let S be any discrete set and let /b (8) Dbe the Stone-
Cech compactification of S. Then we have a canonical identifi-
cation og 1 _(8) with C(3(S)) (section 2 , Theorem 2,1%) and
hemce of 1 (8)* with M({%(S)). There is another useful repre-
sentation of 1_ (8)*, not involving /’:(S) explicitly.

Definition 10.1. Let Z denote the class of all subsets

of S. By QggS,Z} we will mean the class of all finitely addi-
tive set functions / defined en > satisfying

H/»H = sup i}; i/’”(Ei)R o ,

where the supremum is taken over all disjoint decompositions
n - —

S=ig1Ei, where E; € > . For fixed E€ >  we define the

total variation I/'Ll of M by

n
|/~| (E) = sup 21|/-(E0Ei)|,

l:

where the supremum again is taken over all disjoint decompositions

n — -
S:iL_;1Ei, E; € 2 » Clearly I/L\I also belongs to bs(8,5) and
/«/» and |/\ has the same norm, since

ll/;n" = I/»l(S) = | I/»Hl-

Remark. It is easy to see that ba(8,3) is complete. For

let </L"n(} be a Cauchy sequence; then clearly

/ffo(E) = lim /An(E)

n—om

exists for every E€ 3 . Suppose ¢ >0 and

o fal < 2 s ¥ mn2n,.



135,

P
Then for any partition S = iL~/1 E, , we have

P | p
E) - # (E)| = 1i > (E) = 4 (E
2 f(® = Ao @) m;rgo > Ve anel

o~

<2 for nZnO.

Thus M - /voeba(s,z) , SO /woeba(s,i) and
lvh—/%”-—so as n =—>0.
Regarding the elements of 1@ (8) as bounded functiens on

S, then for each /14. € ba(S,Z) we can define the integral f’ f(iyv-
as follows. If f 1is a simple function S

f = % AiTg s E; disjeint,
i=1 i
we define
1
l&Sfd/«, = 12:,1 g(i/l"(Ei).
Clearly

ljsfd/p | & Ilflloow.

If f 1is an arbitrary wounded function on S, then we can
find a sequence {fn‘} of simple functions converging uwmiformly
to f. Now

|
| jS“m'fn)d/' £yl I
g0 we may define
Jf fa 13 ,l f d
h = im A
S / AS n /

If {gn(,f is another sequence of simple functions converging

uniformly to f, then

|
| f\ (e dp | < gl 1AL
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Since the right side converges to zero as

n-—>o0m, WwWe see
that the limit is independent of the choice of { fnﬁ, Clearly
the integral is linear and

i
far| <« |If .
IRTIEYE
for all fel_(S) and //mE ba(S,>) .

We now identify ba(S,)) with the dual of 1, (8.

For each x*e€ 1&3(8)* there exists a unique
/A'E ba(S,2) such that

il

x*(f) = ;Sfd/,., Yfe 1, (8.
i i

The correspondence x* -ﬁ>(ﬁ

is linear, isometric and onto

Let x¥*¢ lOO(S)* and define

/b(E) = x*(1

Then clearly
joint partition S =

2 ¥ BEe X .

is finitely additive, and given any dis-
B E;€ 2 , then

n n , : ’
) = *
i;'/”(Ei” Z lx*(1,

n
Y= x*( >, 15 )
=1 B T B
< x|
S0 /L E'ba(S,Z) and “ﬁ“ < [x*ll. Since the formula

x*(f) = szd/w

holds for simple functions, it follows by uniform density that it
holds for all fe€ la)(S). Since

xx(0) | - IJled/ulf Il 1
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we have ||x*|| é’m%n, so |lx*l = wkﬂ, Clearly the correspondence
X* — /%11 is linear, and since every A € ba(S,> ) defines a
linear functional x*€l_ (8)* by

.
x*(f) = ;\ Sfd/L \ffEZ‘LOO(S),

the correspondence is onto.

We prove now a fundamental theorem concerning ba(S,Eﬁ due
to R.5.Phillips, and develope some consequences.

Theorem 10.3. (Phillips.) Let </"n'g' C ba(s,y and
suppose ‘
lim A (E) = 0O, M Ee >.
n-30 /
Then

lim . (A) =0
Ik>00/&n

uniformly on all finite set A€ ) .,

Proof. Suppose the theorem is false. Then there exists an

% >0 and a subsequence { O'nQ of {y& n% together with a
sequence { An% of finite sets such that

|V e >28 Y nel.

The proof now proceeds by construction of certain further
subsequences of %/M‘n% and sequences of sets, to obtain a

contradiction.

of {U, % and

Step_1. There exists a subsequence { e n

nf
a sequence { Bn% of disjoint finite sets such that

(1) |On(Bn)| > 5 Vnekl

n-1
(i1) |@nl (v

)B,) & T/, Wneh,
j=1
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Before we start the construction, we note that if A 1is any

finite set, then

(4) 1im I'E?‘nl(A) = 0.,
n-30

=A, and .= VU.,. Then by (#) there exists an

Now let B1 ; ;

integer n, > 1 such that
| ‘7}12(31” < Ty,
Then
7y G B 2 | ‘\gzmnz)\ - 17, 3]
>26 - €/M>E .

Define B2::An2\ B, and 92=:C7n2. Now suppose
G 5ev0y8, and B,y+++yB, have been chosen to satisfy (i) and
(i), and suppose @, =7, and ns;<ny.. Again by () we can
. J
find nk+1> n, such that
_ K |
10, 1Cu B 4 Z/ .
k+1  §=1 9

Define

k

B = A N\ (uUB, and 6 = .
k+1 LA j=1 J k+1 L

Then we have

‘gk+1(Bk+1)\ RN

This establishes Step 1.

Step_2. There exists a subsequence { ﬁn% of a&@nk and

sequences {4Wn % and -{Cn% of sets, where the C_ are disjoint

finite sets and the Wn are infinite sets, satisfying
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(a) W, 2 W, 2 .e
(b) Cy @ Wy \Wy Y jel
(e) lﬁj(cj)|>2, Viel
(@) ERRCHR g/, VieR
j-1 ;
(e) lg.1CuU ¢ <&M, vjel.
J' =1 P

We call the disjoint finite sets Bi af Step 1 "blocks".
Set
co

i=1
Since ¢1 is of bounded variation, there exists an infinite
union W2, of the remaining blocks B2,B3,... in W1 such that

18,1 W) < 2/,

Select a block C2:=Bn2 in W, and let ¢2:=Qn2. Now
suppose we have constructed ﬁ Cj and wj satisfying the
conditions (a)-(e) for 1{,3f;k, and fer each j, Cj is one
of the blocks in Wj' There exists an infinite union Wk+1 of

the remaining blocks in WR such that
.
FAECARE LS

Let C,,, = By . be a block in W, . and set ¢k+f:g
Then (a), (b), and %dg are clearly satisfied. Condition (c)
follows from (i) in Step 1, and from (ii) in Step 1, we get
Dyeyq?
l(uc y<le, 1y B« T/,
j= k+1 1=1

g1

Py

so (e) is satisfied. This proves Step 2.

Now define

®
Q = C .
k=1 K
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Then for each

-1

lo. (@} = le (L,c ) +@ (c ) +0.( u C,)
: Jk i+
> 5
> |@j(cj)| - |Gj|(kL=}1Ck) —l@jl(ij)

S - Em-Em= €2,

contradicting the assumption that 1lim ©.(E) =0 for each
EE > REE

Corollary 10.%. Let '</th < pa(S,S) and suppose

lim (B = 0, Y Ee >.
>

Then
lim = | _(fst)| = 0.

n=00 SES /

Proof. For each n€N we have

2 l/}«h(fsk)l <y sup{l/"n(AH lAC;Sa A finite }

S€S

and by Theorem 10.3 the right side converges to zero as n —>@®

of Theorem 10.3 and Corollary 10. LL are equivalent.

Remark. For a sequence ﬁ/»\ {C pa(8,2) the conclusions
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Remark. If E€ 2, let E denote the closure of E in

(8). Then 15 1is the unique continuous extension to @3 (8S)
of the function 1z on S. Thus the isomorphism between 1 (S)
and C(2(S)) induces an iscmorphism between ba(8,Z) and
M(p(8)) where if /AGEba(S,ZJ and & is the corresponding
countably additive measure in M(3(S8)) we have

fonal

(B = (B, Ee .

i

Thus A4 (A) W(4) for all finite sets A. Consider

the splitting

g

i

UWS + uwﬂ(S)“S = U +Uoe

Then by regularity of kf1,

W@ = L s = L p(ish),
SER SER
while
U, = N,(E~E), Ee L ,

SO kf2 vanishes on all finite sets in Z: . Correspondingly
we have the splitting

M= /41 + ﬁﬁ2.
But
[, (E) = SEE s = @), Be .

so /11 is countably additive. We call A4, and f42 the
countably additive and purely finitely additive parts of A
Note

e = Ipsl o+ el

since this holds for the splitting of .
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There is another way of looking at this splitting ef
ba(8,7). Consider the natural imbeddings

il

e (8 < e (8)*F = 1(8)
T *
1,(8) ¢ 1,(8)* =1,(8) = ba(5,2).

N
If K cO(S) - C_ S) is the imbedding map for ¢ (S),
then
e AN
pa(S,;7) = 1,(8) @ ¢ (&)
and K * is the correspondlng projection of ba(S onto

I;(éj. The subspace 1 (S) consists precisely of the countably
additive measures in ba(S,e), and cO(S)'L is just those
measures which are purely finitely additive. We leave these veri-
fications for the reader. We can now state Phillips theorem in

these terms.

Corollary 10.5. Suppose 'b“nz - ba(S,7) = 1 (8)* is a

sequence converging for the weak star topology. Then their countab
1y additive parts converge in the norm topology.

Proof. If lﬁAn -31/40 weak star, then clearly

lim | 4, (B) - M (E)] = 0, Be .,

SO

lim \S,‘A-u)(fsé)‘

n-= 00 seS

Remark. Note that in Theorem 10.3 we have not assumed that

the measures fJIl are uniformly bounded in norm. Actually this
boundedness is implied by the existence of the limit lim ,Lt(E)

n-m
for each E. However, we shall not pursue this point. 7

We now develop some applications of Phillips theorenm.

Theorem_10.6. There exists no bounded projection of 1,,(8)

onto the closed subspace c_(S).
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Proof. Suppose cO(S) is complemented in ltn(s) and

P loo(S)-+>co(S). Let { sn§ be any sequence of distinct
points in S. Consider the elements gsnEElW(S) (bg (s) =1
if s=s,, 2zero otherwise). Then the sequence %55 ? conver-
ges to zero weak star as functionals on cO(S). Now
P¥*¢ 11(8) - ba(S,T) and

(P*S () = s (pr) » 0

S
n n

for each f€1_ (8), since PLE c,(8). Thus

m = [ @e*E Ogs{l = 0.
n->o  sed n

But all terms of this sum are zero except for s=s8 and

n
there
(%S )(Isi) = 9. (P& ) = 5 (55 )=1
Sp oY Sp Sy S, Sy
where we regard o also as an element of cO(S). This

- U n
contradiction completes the proof.

Next we give an application of Phillipé'theorem to conver-

gence of measures on Stonian spacese.

Proof. Suppose that

lim ) £dy = 0, cach feC(8).

n>o S n
It suffices to show the sequence {Fﬁk is weakly relative-
1y compact. By Theorem 9,10 it is enough to show that for every
sequence U 3} of disjoint open sets one has

lim A« (U ) =0

am Mt on
uniformly for m= 1,25... o Thus if the sequence fails to be
weakly relatively compact, there exists an € > 0 and a
sequence of disjoint open sets E'On? and subsequence {(@£
of $¢M,7  such that
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‘Ui(oi)‘7€ 9 121,2,000 .
By regularity we can suppose all the sets Oi are open and

closed.
For each i define the element gej_eba(N;Z) by

2,(B) = . (LU 0.) BoN .
/)l i 5€B i’ =
The finite additivity follows from the fact that if
B1 f ‘g B2 = g, thel’l

- 0, = (/0w (s 0.

cem 3 .

Clearly “ /? l“ ‘_f “ (‘"l“ and

lim (3,(B) = lim ui(k)o.) =0
i%c0 jEB 9

for each B < N, since 7, —» 0 weak star. (It is here that

we use the hypothesis that S is stonian.) However, by Phillips

theorem:
. - x .
\Ui(oi)‘ = ‘/3103»()‘ < Eﬁ‘fﬁa(alf)\ — 0
as i1 = oo, contradicting the fact that ‘UE(Oi)‘;>€ for
all 1.

For the last application of Phillips theorem we shall need
the following notion:

Definition 10.7. Let S be compact, and X be a closed

subspace of C(8). A closed set FcS will be called an inter-
polation set for X 1if

X|F = C(®.

The property of being an interpolation set is a very special
In general for a closed set F, X|F will not even be dense, or
closed in C(F). The next theorem gives a useful criterion due
to Glicksberg for a set F to be an interpolation set for a
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4
subspace. If XCC(S), then X is the set of all measures /M
in M(8) for which

§ fapu =0, all fEX.
S

Theorem 10.8. Let X be a closed subspace of c(s), S

compact, and let F be a closed subset of S. Then X|F=C(F)
iff there exists t, 0< t<1 such that

(%) I = el SERPYNS o

Proof. Let Tf=f|F, fe€C(8). Then T: X—C(F). Since

X* = 1\’1(5)/)\1‘L and C(F)* = M(F) it follows that T*: M(F) = X*
is given by

TR = G+ X, (e M(F).

Suppose T maps X onto C(F). Then T* 1is one to one
with closed range [12] p. 487. . Thus there exists C70
such that

el < ool = v+, e () .

L
Now if pM €X

Il -1 peoh € lem ol = Il
< Clpg - XN < Clpeg -l
- clp s
ol 2 ok 1M peex,

so (%) holds.
Conversely, suppose (¥) holds. Then

el < ol £ Dl mex,
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Now let (eM(F), MeX . Since t<T,

Iapll = =P+l w-/oFcu
= |V-ppl - ll/;cll
7 I -ppl + II/MFCM
> thul -lpgl o+ e

thell -1 ﬂFc\l + ﬂ,chll = il .

Thus |« -X7 » tho] for all W eM(F). It follows that
T* is one to one with closed range. Hence T has closed range
X|F. However X|F  is dense in C(F), since if ( €M(F)
and U X|F) =0, i.e. ‘J'EX%} then (%) shows =0,  since
Ve = 0. Thus X|F=C().

Now consider a loeally compact, 9 -compact space S. Let
CO(S) be the subspace of functions vanishing at infinity on S.
We shall show that C_(S8) is uncomplemented in c(5(S8)). How-
ever, we shall show much more than this.

Suppose C_(S) is complemented, 1i.e. there is a closed
subspace X of C@(S)) such that

C(ﬁ(S)) = CO(S)GBX.
Then clearly »
(%) X| p(8)~8s = C(E(S)~S).

Thus the compact set 3(S)~S will be an interpola-
tion set for X, We show this is impossible by showing that
any closed subspace X of C(B(8)) satisfying (¥) must be so
large that it contains non zero functions in CO(S). We show in
fact that there is necessarily a closed neighbourhood V of
3(8)~S in  (3(8) for which

xlv = cW.

In other words, if 3 (8)~8 is an interpolation set for a sub-
space X, there must be an open set U with compact closure in
S such that v=U% 4is also an interpolation set for X.
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Theorem 10.9. Let S be locally compact and J -compact.

Let X be a closed subspace of C{3(8)) such that
X|p(8)~s = C(p(8)~8).

Then there exists a closed neighbourhood V of (3(8)~S
such that X|V = C(V).

Proof. Write Q = (2(8)~S, Let N Wn% be open in (% (8),
W, . CW Q= {1 W . Since X|Q= C(Q), by Theorenm 10.8 there
exists t, 0< t< 1 such that

el (8) = el @) = 2l oEX .

Suppose the theorem is false, i.e. if V is any closed
neighbourhood of Q, then X|V#C(V). Hence for each €>0
there is /u»EX'L y el = 1, | (vo<e .

Let V1 c_:W1 be a closed neighbourhood of Qs choose
M € xt , “/’””x“ = 1 such that

t (-]
then

oyl (V@) = Lyl Q) - g [V 5)> & -

Nt
N Ict

Now select a closed neighbourhood V, of @Q, V< Wonint(V,)
such that

Q) &
‘/‘41‘(‘]2 Q)’\ 5 .

Hence
‘fH\(Vq““Vg) = lH1\<V{‘Q) "lF%‘(Vé”Q)7'§ —E = E .
Now select /,LZEXL’ “/\,42“ = 1,‘ such that
lpep (V)< 2;62 .
Continuing inductively, construct sequences /’n: ng

. ‘L .
and anf such that AL €X, H;,,un'g'l =1, V, isa closed
neighbourhood of @ with
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Vn+1 C wn+1r\1nt(vn)

Vﬁl\(vnc)<uﬁﬁ
t
\Whl(vn””vn+1)7 G

Now select functions thECO(S) (the continuous functions
vanishing at infinity on $S) such that supp(yh)‘gvnﬂlvn+1,
Ofyn§1 and

‘fh.(yn)|>'%%’

We use the y, to define a subspace W of C(3(S)) 1isometric
- 5 ( . . .
to laﬂNﬁ . If ?o<n3651G3\N) define the continuous function
z on S by

z(s) =f;<nyn(s), s €8,

- Then 2z has a unique continuous extension to 3 (8), since
MV, = Q.

Consider the measures A+, @as linear functionals on W
and define elements /3, of ba(l,7) by

If we show

lim 4 (£) = 0, feEW
1 00

it will follow from Phillips theorem that

lim /3 (E) =0, ECN
n>o
and hence that
1im |l (y )] = 1lim ($n?) |
n- o #n*n n%oopn
@
< lim }:‘(Bn(ﬁf)‘ = 0,
n=o0 j=1

contradicting the fact that
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I v ) 1>, n=1,2y000

Let feW, Since X|Q = C(Q) we may write JF:tg-Fh,
where g€C_(S) and he€X. Thus since A« L€X ‘

M0 = () |
el [ eal v 1 [ sopl
C
Vn VHNQ
ol 1T+ g la(0)
t
< “i“oo + sup lg(s)| =0
2 sEWn

and we are done.

Corollary 10.10. If S is locally compact and g -compact,

then there exists no bounded projection of C(B(S)) onto C_(S).
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SECTION 11

Bibliographic Comments.

In the brief comments below we indicate where various theorems
in the text can be found. We have attempted to give references for
all results not included in the treatise of Dunford and Schwarts
[12].There has been no attempt to trace the historical background
of the theorems.

We wish to call particular attention to the survey articles
[3y] and [35] of Semadeni, where many references to results on
C(s) can be found.

Seetion 1.

Theorem 1.6 and related results are in Phelps [30]. Theorem
1.8 is from [3]. The proof of 1.12 is taken from [12].

Section 2.

Theorem 2.2 is due to Arens [1]. See also Kelley and Vaught
[24]. The classical Theorem 2.13 is from [13] where a different
proof is given, Kakutani's Theorem 2.18 was proved in [20].

The present proof follows Kelley and Namioka [23].

Section 3.

The material of this section is mostly taken fron PeXczynski's
monograph [2§|,where references to earlier work can be found. For
Theorem 3.11 see Dugundji [10] and Borsuk [5]. see also the notes
of Semadeni [36].

Section k.

This material is again taken from PeYczynski [29] . Theorem
4.9 is due to Yoshizawa [39] . References for Theorem 4.13 are
Milutdn [26] and [27], and PeYczynski [29]. The present proof is
due to Ditor [8].
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Section 9.
Again the references are [26], [27], and [29].For Theoret
5.9 see Sobczyk [37].

Section 6.

For results related to this section see Arens [2], Isbell
and Semadeni [19} and PeXczynski [29]. The tasic Lemma 6.7 and
the results which follow from it are due to Ditor [8].

Section 7.

The material through Theorem 7.14 is drawn from Gleason
[14] and Rainwater [32]. Corollary 7.15 is due to Grothendieck
[17]. Theoren 7.17 is from Stone [38]. Theoren 7.20 covers work
of Nachbin [28], Goodner [16],and Kelley [22]. Theorem 7.28 and
the remaining results of this section are from Cohen [6]. For a
penetrating discussion of the p, spaces and further developments

see Lindenstrauss [25].

Section 8.

The results are all drawn from Dixmier [9]. See also Sakal
[33], and Grothendieck [17].

Seccetion 9.

The material on weak compactness in L1 is from [12]. The
original theorems are due to Dunford and Pettis [11]. Theoren
9.10 is from Grothendieck [18], whiie 9.12 - 9.14 are again from
[12]. Theorenm 9.15 1s due to Dieudonné [7]. For Theoren 9.16 sece
Grothendieck.

Section 10.

Phillips' Theorem 10.3 is from [31] as is the application
+0.6. Theorem 10.8 is from Glicksberg [15], and Theorem 10.9 is
Gue to Bade [4].
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