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Introduction

The famous Riesz-Markov representation theorem gives us a special characterization of the dual
space of Cp (X).

Definition 0.0.1. Let X be a non-empty locally compact Hausdorff space. Cj(X) denotes
the subset of all functions f € C'(X), for which the set {z € X | |f(z)| > €} is compact for all
€ > 0. If we endow this space with the supremum norm

£l x = sup [f(z)],
zeX

it is a Banach space.

Definition 0.0.2. Let X be a non-empty, locally compact space. Then we denote by M (X)
the space of complex-valued, regular Borel measures on X and we set

[l = [l (X).
With respect to this norm, called the total variational norm, it is a Banach space.

Theorem 0.0.3 (Riesz-Markov). Let X be a locally compact Hausdorff space. Then every
bounded linear functional ® on Cy (X) is represented by a unique reqular complex Borel measure

p, as

o(u)f = [ f du.
X

for every f € Cq (X). More precisely, ® is an isometric isomorphism from Co (X) to M(X).
A proof of this theorem can be found in, e.g., [5, Theorem 6.19, p.130].

In this bachelor thesis we deal with the following question:

When is Cj (X) (isometrically) isomorphic to a dual space and if a predual exists,
how does it look like?

The thesis is mainly based on [2].

Existence of a predual of a Banach space is not always guaranteed.

Ezample 0.0.4. Let Z be a Banach space with Ext(B7(0)) = (), where Ext(B#(0)) denotes the
set of extreme points in Bf(0) = {z € Z| ||z|| < 1}, then there is no Banach space Y with
Y'=Z.

To show this, assume that Z is isometrical isomorphic to the dual of a space Y. If we endow
Z with the weak*-topology (Z,0(Z,Y)), then, by the Banach-Alaoglu theorem the unit ball is
weak*-compact. So Blz (0) is a non-empty, compact and convex subset of a locally convex space.
By Krein-Milman, Ext(B#(0)) # 0, a contradiction. /

Proposition 0.0.5. For a non-empty, locally compact space X, [ € E:Bt(BfO(X)(O)) if and
only if |f(z)] =1 forx e X.

Proof. Take f € BlCO(X)(O) and suppose that there exists xyp € X such that |f(zo)| < 1. Set

€= M Then there exists a neighbourhood U of zg with |f(zo)| <1 —¢, for x € U. Take

g € Cr (X) such that 0 < g <1y and g(zp) = 1. Then f +eg € Bfo(x)(O) and

1 1
f= §(f +€g) + 5(]‘ —€g),



and so f ¢ Emt(BICO(X)(O)). On the other hand, if we have |f(x)| = 1 for all z € X and
1 +# |g|,|h| with g,h € BlcO(X)(O), then there is zo with |h(zg)| < 1. We get

L= 1f(zo0)| = |(1 = t)g(z0) + th(xo)| < (1 — 1) |g(z0)| + t[h(z0)] <1—t+t=1,
a contradiction. |

Corollary 0.0.6. Let X be a non-empty, locally compact space, that is not compact. Then
Ext(Bloo(X)(O)) = (. Hence, Cy(X) is not isometrically isomorphic to a Banach space.

Proof. By Proposition 0.0.5, it is |f(z)| =1 for all x € X, for f € Ext(Blco(X)(O)). Since X is
not compact, f ¢ Cy(X) and with Ezample 0.0.4, Cy (X) cannot be isometrically isomorphic
to a dual space. |

In view of Corollary 0.0.6 we may restrict our attention to compact spaces X. Moreover, we
will always assume X to be Hausdorff.

Let us note that any predual of a space C'(X) is isometrically isomorphic to a closed sub-
space of M (X). This is the consequence of the following theorems that are part of almost every
basic functional analysis course. These proofs can be found in [7, Lemma 5.5.2, p.86; Theorem
5.3.3, p.79].

Theorem 0.0.7. Let Z be a vector space and let Y be a seperating linear subspace of the
algebraic dual Z*. Then (Z,0(Z,Y)) =Y.

Theorem 0.0.8. Let (X, |.||) be a normed space and let v be the map
{ X = (X
L:
z = (f = f(x)).

Then « maps into the topological bidual space (X', ||.||x,)’, s linear, and is isometric if we endow
X" with the operator norm ||.|| x.

By means of Theorem 0.0.7 and Theorem 0.0.8, we can indeed identify a predual Y of C(X)
with a subspace of M (X):

Y = (V) CY" = O(X) 2 M(X) (0.1)
(C(X),0(C(X),((Y))) = 1Y) C M(X). (0.2)

In the end we will even get some sort of uniqueness of this predual space. We have to distinguish
between types of preduals.

Definition 0.0.9. Let Z be a Banach space. Y is an isomorphic predual of Z if Z is isomor-
phic to Y’ (linear homeomorphic) and a Banach space Y is an isometric predual of Z if Z is
isometrically isomorphic to Y’, we will write Y’ = Z.

There are examples of spaces with isomorphic dual spaces, that are not isometrically isomorphic.
We will need the following proposition.

Proposition 0.0.10. Let Z and E be Banach spaces and let T be an isometric isomorphism.
Then T(Exzt(B#(0))) = Ext(BF(0)).



Proof. T is a bijective linear map. Now for z € Ext(B7(0)) the following holds:
T(z) =tT(a)+ (1 —-t)T(b)=T(ta+ (1 —t)b) = 2=ta+ (1 —t)b=2=a=0b.
Hence z is an extreme point whenever T'(z) is and vice versa. [ |

Ezample 0.0.11. Let ¢ be the set of convergent sequences in R and ¢y the subspace consisting of
the sequences with limit 0. We know that ¢, & ¢1 = ¢/. Tt is easy to see that B{(0) has extreme
points (e.g. the sequence (1,1,1,---)), but the unit ball of B{°(0) has no extreme points. Let
z = (Zp)nen € B{°(0). Since z converges to 0 there is an index N > 0 for which |zx| < 1. Now

define y+ € B{°(0) as
ED n#N
e T lan £l n=N.

So we can write z = %(er +y_). So by Proposition 0.0.10 there can’t be an isometric isomor-
phism between ¢y and c.
To see that these spaces are isomorphic, set

T(x) = (2T00, T1 — Too, T2 — Too,* )

for x = (xp)nen € ¢ with li_)m Tp = Too. Then T : ¢ — ¢y is a linear map. Further, we know
n o0

that
T(x)=(0,0,0,---)=2x=0

since lim,, ., z, = 0 and for every sequence y € ¢y we take

$=(y2+y1,y3+yl,-~-) U1 and T(x) =y.

2 2 2
Obviously, ||T']] = 2. And as one can see
2
3 el < 1T ()]
It follows that ||| < 2, and so ¢ is isomorphic to co. /



1 Stonean spaces and normal measures

1.1 Normal measures
As we have to deal with a subspace of M (X), we should take a closer a look at it.

Definition 1.1.1. Let (X, 7)) be a topological space. Then the Borel sets in X are the members
of the o-algebra o(7) generated by the family 7 of open subsets of X; we set Bx = o(T).

Identifying M (X) as the dual space of C(X), we define

(o) = [ £ du £ €€, pe M),
X

For real-valued measures u,v € Mg(X), we define

(4 V)(B) = sup u(4) +v(B\ A
wer

(uAv)(B) = inf p(A)+v(B\A).
AEBx
ACB
and further u™ = Vv 0 and u~ = pu A 0. It is obvious that |u| = ™ + u~. The set of positive
measures in M (X) is denoted by M (X)*.

In the following C' (X)* C C(X) denotes the space of real-valued, continuous and positive
functions with pointwise order. Since the norm on C (X) is compatible with the lattice struc-
ture, the following definition is appropriate.

Definition 1.1.2. Let (Z,||.||) be a Banach space and (Z, <) an ordered linear space. The
norm is a lattice norm if ||y|| < ||z]| whenever |y| < |z|, with |z| = sup{z, —z} in the lattice.
The space Z is then called a Banach lattice.

To find a more concrete characterization of the space ¢«(Y') in Equation (0.1), we define the
space of normal measures:

Definition 1.1.3. Let X be a non-empty, compact space, and let € M (X). Then pu is normal
if (fi, u) — 0 for each net (f;)icr in C (X)T with f; \, 0. We write f; \, 0 if (f;)ics is decreasing
and inf;er fi = 0 in the lattice. We denote the subspace of normal measures in M (X) by N(X).

Remark 1.1.4. We want N(X) to be a Banach space, so we have to check if it is a closed linear
space with respect to the total variation norm. It is obviously a linear space as we have

Sintvy= [ fidutv) = [ fidp+ [ fodv=fiop)+ fir) 50
X X X

and similar with scalar multiplication. To see that N(X) is closed, we again take a net (f;)ier
with f; \( 0, € > 0 and a sequence (in)nen with g, — . Then

[(fir )] = [{fis it = pin) + (fis )| < [ fis o= pn) | 4+ (i )] -

Choose i1 and take ng with || — pn, || < =57
2||fi1HX

i > g and because f; is decreasing, || fil|x < || fjll for j <i. This leads to

. For this ng we get ig with |(f;, piny)| < § for

€ . .
[{fis = pno) | < W fillx I = pno | < 5 i 2 0

and to sum up |(fi, u)| <e, for i > iy,4g. Since € was arbitrary, we get (f;, u) — 0. /



Subsequently we will need some basic properties of normal measures:

Theorem 1.1.5. Let X be a non-empty, compact space. Then:
(i) n€ M(X) is normal if and only if R(p) and S(u) are normal;
(ii) € Mg(X) is normal if and only if || is normal if and only if = and p~ are normal;
(iii) w € M(X) is normal if and only if |u| is normal

To proof this theorem we need a corollary of Urysohn’s lemma [5, Theorem 2.12, p.39]:

Corollary 1.1.6. Let X be a non-empty, compact space. Suppose that C is compact and U 1is
open in X such that C C U. Then there exists f € C’(X)Jr with 1o < f <1y.

Proof. Since X is compact and Hausdorff, X is a normal space and hence, we can apply
Urysohn’s lemma to the closed subsets C' and U°€. It gives us a function

£1X —[0,1] with £(C) C {1} and f(U<) C {0}. (1.1)
m

Proof of Theorem 1.1.5.

(¢) This is trivial.

(1) Suppose that pu*,u~ € N(X). Then certainly p,|u| € N(X). Suppose that |u| € N(X)
and that v € N(X) with |v| < |u|. Then

)ZfidV

when f; \,0 € C'(X)*, and so v € N(X). In particular, s, u* and p~ are normal whenever |y
is normal. .

Suppose that € Mr(X) is normal and that f; \, 0 in BIC(X) (0). Let {P,N} be a Hahn
decomposition of X with respect to u, and take € > 0. Since p is regular, there exist a compact
set C and an open set U in X with C € P C U and |u| (U\C) < e. Now there exists g € C' (X)*
with 1¢ < g < 1. Then

0<

S/ﬁMM%O
X

/ﬁdwﬂ:/ﬁdug/ﬁﬁdu+L/gﬂdu+2v:/gﬁdu+%-
X P C

U\C X

Since g f; \( 0 and p is normal, lim;e; [ gfi du = 0, and so
X

lim sup/fi dut < 2e.
iel =

This holds true for each € > 0, and so

lim/fi dut = 0.
i€l
X

Thus, pt is normal.
(7i7) Suppose that 4 € N(X). Then |R(p)| + |S(p)] € N(X) from (i) and (i7). However,
|l < [R(p)| + [S(w)]; and so [u] € N(X). u



For another characterization of normal measures we will need the following theorem of Dini.

Theorem 1.1.7 (Dini’s theorem). Let X be a non-empty, compact space, and suppose that
(fi)ier is a net in Cr (X) such that fi(z) N\, g(z), for each x € X, where g € Cr (X). Then,
for each € > 0, there exists ig € I such that ||f; — g||x <€, i > ig.

Proof. Fix € > 0 and i1 € I, and then take the compact subset C' of X such that f;, (z) < e for
xe X\ C. Set
Xi={z € X||fi(z) — g(z)| = ¢}

and C; = X; NC for i € I, so that each C; is a compact subset of C'. Assume towards a
contradiction that each set C; is non-empty. The family (C;);c; has the finite intersection
property: for n € N there is an index j with 41,...,4, < j. Since the net is decreasing, we have
firs-- s fin, = fj and this leads to

e < Jy(@) — () < Fola) — g(a). ke {L....n} > ae [)Ci.
k=1

It follows that (;c; C; # 0, a contradiction of the fact that f;(z) \, g(z). We get X; = 0, for
1 > 10. |

The following is a well-known theorem in measure theory. A proof can be found, e.g., in [5,
Theorem 2.24, p. 55]. We will need it to prove the next important characterization.

Theorem 1.1.8 (Lusin’s theorem). Let X be a non-empty, compact space, and take p €
Mgr(X). For each Borel function f on X and each € > 0, there is a compact subset C' of
X such that |p| (X \ C) < € and f|c is continuous.

Theorem 1.1.9. Let X be a non-empty, compact space. Then a measure pn € M(X) is normal
if and only if u(C) =0 for C € Hx, where KHx denotes the family of compact subsets C' of X
such that C° = ().

Proof.
“=” Suppose that u € N(X). We may suppose that u € N(X)T. Now take C' € #x, and
consider the non-empty set

F={feCr(X)|f21c).

Suppose that g = inf .# in Cr (X). Then g(z) =0 for x € X \ C. If there was zo € X \ C with
g(zp) > 0, we can apply Urysohn’s lemma to the closed sets C' and zp. So we get a function
f e Z, with f(xg) < g(x0), so g(xg) = 0 and since

X\C=X\C°=X,

g(z) = 0 for a dense subset. It follows inf . # = 0. Now (%#,<) is a directed set and the net
(f)fez is decreasing. Since

M(C)Z/lcduz}gg/fduzflg;/fdu,
X X X

we have u(C) = 0.
“«<" Conversely, suppose that € M(X) and p(C) = 0 for C' € #x. It suffices to suppose that
p € M(X)t. Take (f;)ier in C(X)T with f; \, 0. We may suppose that f; < 1 for each i. Set

g(z) = inf fi(z) = €X.

7



Then g is a Borel function, since
glx) <ce Jig: fi, <c=g ' (—o0,c) = U ft (—o0,¢) (1.2)
el
the right hand side of Equation (1.2) is open as a union of open sets and so it is a Borel set.
For n € N, set B, = {z € X |g(z) > 1}, so that B,, € Bx. For each compact subset C of By,
we have C° = (). To see this observe that C< D Bf. If we can show that Bf, is dense the claim
follows. Since BS = {z € X |g(z) < %}, we have to show that for every open set U C X there

is 29 € U with g(zg) < %. If there was no such o, then for all i € I, f;(z) > % for all 2 € U.

Now Urysohn’s lemma applies to show that there is a continuous function fyy with fy(z) < %
for z € U and fy(U€) = 0. Now we have

fUSfiv VZGI,

a contradiction to f; N\, 0. So C€ is dense and C° = (). According to our condition u(C) = 0.
Thus, since p is regular, p(By) = 0, and so

u({x€X|g(x)>0}):u(U Bn) =0,

neN

whence [y g dp = 0. Hence, it suffices to show that

tin [ fi du= [ g d (1.3)
’ X X

Take ¢ > 0. By Lusin’s theorem, Theorem 1.1.8, there is a compact subset K of X with
w(X \ K) < e and such that g|x € C(K). By Dini’s theorem, Theorem 1.1.7, we know that
lim;er || filk — 9|k |lx = 0, and so there exists ig with || fi|lx — 9|k || < € for i > ig. It follows

that
/fi —gdu
X

giving Equation (1.3). |

S/\fz'—g\ dp+2e < (|||l +2)e, >
K

Corollary 1.1.10. Let X be a non-empty compact space, and suppose that p € M(X). Then
the following are equivalent:

(i) pe N(X).
(ii) |pu| (B\ B°) =0 for each B € Bx.
(7ii) (B1) = u(Bs2) for each By, By € Bx with BiABy meagre.

Proof. We may suppose that u € M(X)*.
“(i) = (i7)” Take B € Bx. For each € > 0, there exists an open set U in X with B C U and
w(U\ B) <e. Since U\ U € H#x, we have u(U \ U) = 0. Thus

w(B) < u(B) < p(U) = p(U) < u(B) + e,
and so p(B) = u(B). By taking complements, it follows that u(B°) = u(B). Hence, u(B\ B°) =
0.
“(i) = (7i1)” We know that u(B) = 0 for each nowhere dense set B in By, and so u(B) = 0 for
each meagre set B in Bx. Thus, u(B1) = pu(Bz2) whenever By, By € Bx with B;/A By meagre.
“(i1), (i17) = (i)” These are immediate from Theorem 1.1.9. [ |



There is a connection between measures in M (X).

Definition 1.1.11. Let X be a non-empty, compact space and suppose that u,v € M(X).
Then we write p L v if p and v are mutually singular, in the sense that there exists B € Bx
with |u| (B) =0 and |v| (X \ B) =0, and p < v if |u| is absolutely continuous with respect to
||, in the sense that |u| (B) = 0 whenever B € Bx and |v|(B) = 0.

A family .Z of measures in M(X)" is singular if p 1 v whenever u,v € # and u # v.

Remark 1.1.12. The collection of singular families in M (X)" is ordered by inclusion. With
Zorn’s lemma we see that the collection of singular families of a non-empty subspace % of
M(X)" has a maximal member that contains any specific singular family in .#, a mazimal
singular family in % . /

Definition 1.1.13. Let X be a compact space. A measure u € M(X) is supported on a Borel
subset B of X if |u| (X \ B) = 0. The support is denoted by supp pu.

As supp p is the complement of the union of open sets U in X such that |u| (U) = 0, it is a
closed subset of X.

1.2 Stonean spaces

Since our main interest is the space C'(X), the topology on X will play an important rule. We
will make use of a certain seperation property.

Definition 1.2.1. A topological space X is extremely disconnected if the closure of every open
set is itself open.

Remark 1.2.2. Equivalently, extremely disconnected means if pairs of disjoint open subsets of
X have disjoint closure. To see this let U € T, then U and U° are disjoint open sets. Since
every two disjoint open sets have disjoint closures we get

UnXx\U=0=X\Ucx\T,

which shows that U is closed and U is open. Conversely take disjoint open sets U and V. Since
V is open for any ¥ € V, it is an open neighbourhood of = disjoint from U and so = ¢ U. It
follows that U NV = 0. /

Definition 1.2.3. A compact, extremely disconnected space is a Stonean space.

The definition of a Stonean space seems artificial but there are natural examples of topological
spaces which do have this seperation property.

Ezxample 1.2.4. Let B be a complete Boolean algebra. The Stone space is the family of ultrafilters
on B, denoted by St(B). We define a topology on St(B) by taking the sets

Sy={peSt(B)|bep}, beB

as a base of the topology. With this topology the Stone space is a Hausdorff, compact and
extremely disconnected topological space with clopen basis sets Sp.

To see this take p # ¢ € St(B). Now there is € p with = ¢ ¢. By definition of S,, we
get ¢ € St(B) \ Sz, and since these are ultrafilters, there exists y € ¢ with x Ay = 0, and so
q €Sy C St(B)\ Sy. These are disjoint open neighbourhoods of p respectively ¢ and since S,
is open and its complement is a neighbourhood of every element, S, is clopen.

For a Boolean algebra we have St(B) = S;. Taking I' C B such that {Sa ] a€ I‘} is a cover of S}



with basic sets, we may suppose that I' is closed under finite union. We claim that necessarily
1 € I'. For otherwise, a’ # 0 for each a € I". Since

n

/n\a;:<\/ai> #0, neN
i=1

=1

the family is contained in some p € Si. But p ¢ J,cr Sq, @ contradiction. So 1 € I and S is
compact.

Finally, we have to check the seperation property from Definition 1.2.1. Take an open set U.
Since S, for x € B form a base of the open set, we get U = (Jyc Sy for a subset I' of B. Since
B is complete, a = \/jep b exists. We claim that U = S,. Now take p € S,. For each ¢ € p,
we have ¢ A a # 0, and hence ¢ A b # 0 for some b € T, for otherwise we would have b < ¢ for
b €T, and hence a < ¢/. Thus S. NU # (. This shows that S, C U. The reverse inclusion is
immideate and since S, is open, U is open and St(B) is extremely disconnected. /

Definition 1.2.5. A subset U of a topological space X is regular-open if U = (U)O.

Proposition 1.2.6. Let X be a Stonean space. Then every reqular-open set in X is clopen,
and, for every B € Bx, there is a unique set C' € Cx with BAC is meagre, where €x denotes
the family of open and compact subsets of X.

Proof. Let U be a regular-open set. We have
UeT=UeT=U=(0) =0

For the second part, let .# be the family of subsets of X that differ from a clopen set by a
meagre set and since X is compact these sets are compact and open. If B € % and C is a
clopen set such that CAB is meagre, then B¢ and C° differ by this same set. As C° is clopen,
C°¢ € Z. Each open set U lies in .%, since U is clopen and U \ U is nowhere dense. If B,, € .#
for n € N and C), is a clopen set such that B,/AC, is meagre, then

@1 B") A (g Cn) c U B.ACy).

n=1

As U2, (B,AC,) is meagre and |J;o2; C), is open, Uy> By, € .%. Hence Bx C . and ¥
contains the Borel subsets of X. |

The second part of the proof of Proposition 1.2.6 is taken from [4, Lemma 5.2.10, p.322].
Definition 1.2.7. A set U is regular-closed if its complement is regular-open.

Remark 1.2.8. Equivalently the equality U = U° holds:

0 = (@) - ) -
It is sometimes easier to work with this property. /

The properties of the topological space X have also effect on the measures on this space:

Proposition 1.2.9. Let X be a non-empty, compact space and suppose that p € N(X). Then
supp u is a reqular-closed set.

10



Proof. Since supp 4 = supp |u|, we may suppose that u € N(X)T. Set A = supp pu, a closed
set, and set U = A°, so that U C A. Since A\ U is nowhere dense, u(A\ U) = 0. Thus
u(X \U) =0, and so, by the definition of supp u, we have X \ U C X \ A. Hence U = A, and
A is regular-closed. n

Corollary 1.2.10. Let X be a Stonean space, and suppose that p € N(X)* \ {0}. Then:
(i) The space supp  is clopen in X, and hence Stonean.
(i) For each B € Bx, there is a unique set C' € €x with C C supp p and u(BAC) = 0.

Proof.
(i) In a Stonean space, every regular-closed set is clopen. Since the closure of a set in the
subspace topology is just

gk v — 7 supp

and an open set is obtained in the same way, g7 e w i open in supp f.

(i) By (i) supp u is a clopen subset of X and pu(X \ supp p) = 0, and so we may suppose that
X =supp u. Take B € Bx. By Proposition 1.2.6, there is a unique C' € €x with BAC meagre,
and then pu(BAC) = 0. Suppose that C1,Cy € €x are such that u(BAC:) = p(BAC) = 0.
Then C1ACy C (BACY) U (BACY), so that u(C1AC2) = 0. Since C1ACy is an open set in
X =supp p and p(U) > 0 for all non-empty open subsets U of X, it follows that C1ACy = (),
i.e., Cl = 02. |

Proposition 1.2.11. Let X be a Stonean space, and suppose that p,v € N(X). Then:
(i) supp v C supp p if and only if v < .
(ii) w L v if and only if supp p N supp v = 0.

Proof.

(i) Always supp v C supp u when v < u. For the converse, we may suppose that p, v € N(X)*.
By Proposition 1.2.6, for each B € Bx, there exists C' € €x with BAC meagre. Now suppose
that B is a p-nullset. Then by Corollary 1.2.10, C' is also a u-nullset, and so C' N supp v = (),
whence v(B) = v(C) = 0. This shows that v < p.

(ii) Clearly u L v when supp p N supp v = . Next suppose that u L v, and set U =
supp g N supp v, so that U is an open set. Then v|y L p and v|y < p. Thus v|y = 0, and
hence U = §). |

Definition 1.2.12. A lattice is Dedekind complete if every non-empty subset which is bounded
above has a supremum and every non-empty subset which is bounded below has an infimum.

If the space C (X)) satisfies this completeness property, we can infer that the space X has our
required seperation property.

Theorem 1.2.13. Let X be a non-empty, compact space. Then X is Stonean if and only if
C (X) is Dedekind complete.

Proof.
“=" Suppose that Cr (X) is Dedekind complete, and let U be an open set in X. Take .# to be
the family of functions f € Cr (X) such that

F={feCr(X)|f(z)=0forze X\U, 0<f<1}.

11



Then since C'(X) is Dedekind complete, .# has a supremum, say fy € Cr (X). To determine
this supremum we make use of Urysohn’s lemma. We claim that fo(z) = 1 for x € U and
fo(z) =0 for z € X\ U. To see this take the closed sets {x} and U€. Then there is f, € C (X)
with fu(x) =1, fo(X\U)=0and 0 < f, <1. Now f, € .Z and f, < fy. Next take x € X \U.

Again with Urysohn’s lemma we get g € C' (X) with g({z}) = 0 and ¢g(U) = 1. This leads to

feF=f=fg<yg

and sup.# < g. Hence we get fo = 1. As X \ U is closed as the preimage of {0} under the
continuous function fy, it follows that U is open and X is Stonean.

“«<” Conversely, suppose that X is Stonean, and let .% be a family in C' (X )Jr which is bounded
above, say by 1. For r € [0, 1], define

U= {zeX|flz)>r}

feF
Then U, is open in X, and so V,. := U, is also open in X. Clearly Vi = ). Define

g(x) = sup r.
IEUT
If g(z) € (r,s), then z € V;. \ V, and, if x € V,.\ V;, then g(x) € [r,s]. Take 29 € X, and take
a neighbourhood V' of g(xp). Then there exist r,s € R with g(x¢) € (r,s) C [r,s] C V. Since
V- \ Vs is an open set and

20 €V, \ Vs C g l([r,s]) C g '(V),

we see that ¢ is continuous at zg. Thus g € Cgr (X).

Now take h € Cr (X) with h > f for f € .#. Assume that there exists z9 € X with h(zg) <
g(xo). Then h(xg) < r for some r with zo € V.. Let W be a neighbourhood of z¢ with h(x) < r
for x € W. Then there exists x € W with f(xz) > r for some f € %, a contradiction. Thus
h > g, and so g = sup.#. We have shown that Cg (X) is Dedekind complete. |

We will make use of Theorem 1.2.13 in the following;:

Ezxample 1.2.14. A character on an Banach algebra Z is a homomorphism from Z to C. The
set of all characters on Z is denoted by ®, this is the character space of Z.

For a locally compact space I'" and a measure p € P(T"), the character space of the C*-algebra
L*> (T, ) is denoted by ®,,. Since L>°(I", 1) is commutative the Gelfand transform

e f

is an isomorphism and moreover, a lattice isometry. Since L*°(T', u) is Dedekind complete, it
follows that C'(®,) is also Dedekind complete. Now Theorem 1.2.13 applies to show that @,
is a Stonean space. /

Theorem 1.2.15 (Baire’s theorem). If X is a compact Hausdorff space then the intersection
of every countable collection of dense open subsets of X is dense in X.

Proof. Suppose (V,,)nen are dense open subsets of X. Let Uy be an arbitrary non-empty open
set in X. If n > 1 and an open non-empty U,_1 has been chosen, then there exists an open
non-empty U, since V,, is dense with

U7n - Vn N Un—l-

12



Since (Uy)nen has the finite intersection property, the set

OO —_
K=)Un
n=1
o
is non-empty and we have K C Uy and K C V,, for each n. Hence Uy intersects [ V. |

n=1

Theorem 1.2.16. Let X be a Stonean space, and let U be dense a or open subspace of X. Take
a compact space L and f € C(U,L). Then there exists F € C(U, L) such that F|y = f.

Proof. Take z € U, and let (z;)ie; and (y;);jes be nets in U with lim;er z; = limjeyy; = .
Then the nets (f(x;))ier and (f(y;));jes have accumulation points, say x; and z», respectively,
in L. Assume towards a contradiction that x; # 2, and take open neighbourhoods N, and
N,, of x1 and x9, respectively, such that N, N N, = (. Then the sets

{yEU’f(y)erl} and {yeU‘f(y)ENm}

are disjoint, relatively open subsets of U, and so they have the form U NV and U N W,
respectively, for some open subsets V and W in X. Since U = X, we have VNW = (), and
since X is Stonean VN W = (. In the case where U is open, UNV NU NW = 0. However
zeUNVNUNW. Thus z; = za. It follows that (f(x;))icr converges to a unique limit F'(z),
in L, and that the limit is independent of the net (z;);e;. Now F' is the required extension of
f- |

Corollary 1.2.17. The complement of a meagre set M is dense in X.

Proof. M can be written as the countable union of nowhere dense sets (M, ),en. Taking com-

plements we get
00 c 00 [ 00 o\ C
(5 < (G - ()
n=1 n=1 n=1

And since the union of sets with empty interior has empty interior, M€ is dense. |

Remark 1.2.18. Let X be a non-empty, compact space, and define
My :={f € BY(X)|{z € X | f(z) # 0} is meagre}.

Then My is a closed ideal in the C*-algebra B?(X):
Set
my:={r e X : f(z) #0} = [ {0}
Take g € B*(X) and f € My, we have to show that the set m g is meagre. Now since every
subset of a meagre set is meagre and

m§ = [~ ({0}) € fg~' ({0}) = m§,,

it follows that my, € my. So fg € My.

Secondly we have to show that the sum of two functions f, g € My is again in Mx. This follows
because myi, € myUmgy and the union of meagre sets is meagre.

At last we have to show that My is closed. Let f, — f with f,, € Mx. We have to show that
my is meagre. Take x € my, then |f(x)] = o > 0. Now let ng be sufficiently large so that
|f(x) = fao(2)| < §. Then x € my, for n > ng and

my C U my,.
neN

The countable union of meagre sets is again meagre and so m; is meagre. /
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Definition 1.2.19. Let X be a non-empty, compact space. Then
D(X) = B"(X)/Mx
is the Dizmier algebra of X.

Theorem 1.2.20. Let X be a non-empty, Stonean space. Then D(X) and C(X) are C*-
isomorphic.

Proof. First consider a simple bounded Borel function f of the form f = 7' a;1p,, where
ai,...,an, € Cand By,...,B, € Bx are pairwise disjoint. As we already know, there exist
Ci,...,C, € €x such that B;AC; is meagre. Clearly, the sets C1, ..., (), are pairwise disjoint.

We define .
g= Z ol
i=1

We have g € C'(X) since
CieCx=dg; € C(X) gZ(Cl) - {1}, gl(C’f) - {0} =g, = 1¢,

and so the set {z € X | f(z) # g(x)} is meagre.

Now consider a general function f € B’(X). There is a sequence (f,)nen of simple, bounded
Borel functions that converges uniformly to f on X. For each n € N, choose g, € C(X) such
that M, := {z € X | f(z) # gn(x)} is a meagre subset of X. The set

M:= ] M,
neN

is also meagre in X, and g, (z) = fn(x) for alln € Nand z € X\ M, and so0 (gn)nen is a Cauchy
sequence in (C'(X \ M), | x\pr)- The sequence converges uniformly to a function, say g, in
C (X \ M). Now by Theorem 1.2.15, X \ M is dense in X and by Theorem 1.2.16, g has an
extension in C (X).

For each f € B%(X), take m(f) to be the unique g € C (X) and consider the map

m:B(X) = C(X).

Clearly the restriction of 7 to the simple functions is a x-homomorphism; since the simple
functions are dense in B®(X) and 7(f) = f, f € C(X), the map 7 is a C*-homomorphism that
is a bounded projection from B(X) to C' (X). Clearly ker 7 = My, and so the map

7: D(X) = B"X)/Mx — C(X).
is a C*-isomorphism. |

Corollary 1.2.21. Let X be a Stonean space, and suppose that p € N(X)NP(X) is a strictly
positive measure. Then every equivalence class in L™ (X, p) contains a continuous function, the
C*-algebras (L™ (X, p), ||.|l) and (C(X),|.]|x) are C*-isomorphic.

Proof. By Theorem 1.2.20, there is a C*-isomorphism 7 : D(X) — C (X). However u(B) =0
for each meagre set B € Bx by Corollary 1.1.10 and so ker 7 is exactly the kernel of the
projection of B*(X) onto L>®(X, p). [ |
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1.3 The complexification of Cg (X)

Remark 1.3.1. Often it is easier to work with real Banach spaces. Since we are interested in the
complex Banach space C (X), we want to infer from the real to the complex case.
We give a sketch of how the complexification transfers to the dual space: Let (Z, ||.||) be a real
Banach lattice with dual Z’ and Z¢ = Z @ iZ its complexification. If we want to endow this
complexification with a fitting norm that respects the order, for z = x + iy, define

|z| = |z +iy| = sup wzcos®+ ysinb.
0<0<2n

Then the norm
Izl = [l|=]l

makes Z¢ to a Banach space. At first we can identify Z’ as a real-linear subspace of Z if we
define A(z +1y) = M) +i\(y) for A € Z',z,y € Z. And for each A\ € Z, there exist A; and Ao
in Z’ such that A\(z) = A\ (x) + iAa(z) for x € Z and so Z¢ is isomorphic as a complex Banach
space to the complexification Z’' @ iZ7’. /

In the following section we will deal with this complexification. We want to show that C (X) is
a dual space of a Banach space if and only if Cr (X) is a dual space.

Lemma 1.3.2. Let X be a compact space, and let p € M(X)T. Take f,g € L} (1) and € > 0.
Suppose that || f +ig|l; =1 and that 1 —e < || f||; < 1. Then ||g|l; < V2e.

Proof. Take a,b > 0. Since

t
\/1+t§1+§, t>0,

we have

2

2 b2
2, 12 2 _ 2 12 Va2 L p2
a®+b°>a 1+a2+2—a\/a + b% + <:> a’+b >a+ P

Set h = It follows that

1
1= 2 2 d >/ d f/hd,
!\/f +g M_X | f] u+2X 1

and so [ h du < 2e. We then have
X

/lg!d /|g| f2+g£}1 u<(X/hdu)é(K/\/f“rggdu>é
X

and so ||gl; < V2e. [ |

Corollary 1.3.3. Let X be a compact space, and let p,v € Mr(X). Take € > 0, and suppose
that ||p+iv| =1 and that 1 — e < ||u|| < 1. Then ||v|| < V/2e.

g2
Vg

Proof. Consider the measure
A= |u|+|v] € M(X)T.

Then = f d\ and v = g d) for some f,g € Ly()) such that ||u| = ||f|l; and ||v| = ||lg||; and
the claim follows from Lemma 1.3.2. |
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Proposition 1.3.4. Let Z be a Banach space. Then 1(Z) is weak*-dense in Z".

Proof. Since Z" is endowed with the weak*-topology we have (Z”,0(Z",/(Z"))) = /(Z'). We
know from a corollary of the Hahn-Banach theorem [7, Corollary 5.2.6, p.79] that

uz) = ﬂ kerf.
fe(7')
(Z)Cker f

We have to show that 0 is the only element with +(Z) C ker f.

(D)) = u2)[f] = f(2) =0, V2 € Z
Hence f = 0. |

Proposition 1.3.5. Let X be a non-empty, compact space. Then the Banach space C(X)
is isometrically the dual of a Banach space if and only if the real Banach space Cg (X) is
isometrically the dual of a real Banach space.

Proof.
“<” Suppose Cg (X) is isometrically isomorphic to Y’ for a real Banach space Y, and regard
Y as a closed subspace of Cg (X)'. Now set

Yo=Y @iy
so that Y is a closed subspace of C'(X)" and we have
CX)2Yy"aiv" =Y

and Y is a Banach space. It must yet be shown that Y = C'(X):
Take f € C'(X) and set

Ay) = (f,y), y €Y
Then X € Y/ with ||A] < |||, and the map

g, C(X)—Y¢
R
is a linear contraction. Take A € Y{, and set
At =Ry, A =S|y

so that A1 and A9 are bounded real-linear functionals on Y with A\ = A1 +¢Ay. Thus there exist
unique elements x and z in Cg (X) such that

A(g) = (z,9), Xa(9) = (2,9)

for g €Y. Set h=x+ iz € C(X). Then for each g1,g2 € Y, we have

g1 +ig2) =(M1 +iX2)(g1 + ig2) = (x, 91) — (2, 92) +i({z, 1) + (@, g2))
=(z +iz, g1 +ig2) = (h, g1 + ig2)

and so A = S(h). Thus S is a surejection.
Now fix € > 0. By Proposition 1.3.4 we see, that Y¢ is weak*-dense in Y and there exists
k € Y with ||k|| = 1 and |(f, k)| > ||f|| — €, and hence ||A|| > || f|| —e. This holds for each € > 0,
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and so |[A|| > ||f||. So S is an isometric isomorphism.
“=" Now suppose C (X) = Y’ where Y is a Banach space. We regard Y as a closed subspace
of Y/ = M(X). Define

Y = {R(p) € Mp(X) |p €Y},

Then Yg is a real-linear subspace of Mg(X), and R(u),3(u) € Yr whenever p € Y, so that
Y = Yr @ iYg. For each X € Yy, define

Alp +iv) = Mp) +iA(v), p,v € Yr.
Then ) is a continuous, complex-linear functional on Y with
A< %] < vz

Thus there exist unique elements f, g € Cr (X) with

Mp+iv)=(f+ig,u+iv), p+ivey.
It follows that
Ap) = (f, 1) — (g,v) and A(v) = (f,v) + (g, 1) -
Define
T {Yﬂé — Cg (X)
A= f.

Then T is a continuous, real-linear map such that
TNl = AL (1.4)

Take f € Cr (X) and define
AMp) = (fop), peYr.

Then A € Y} is such that ||\ < || f||x and T(A\) = f. This shows T is a surjection. To show
injectivity we take A € Yg with T'(A\) = 0, and assume towards a contradiction that A # 0.

Then X # 0, and so we may suppose that HXH = 1. Now there exists g € Cg (X) with [|g]|yx =1
such that
Ap) = —(g,v) and A(v) = (g,p), p+iveY.

Choose © € X with |g(z)| = 1, without loss of generality g(x) = 1. Since the closed unit ball
BY (0) is weak*-dense in B{V[(X)(O), and so for each e > 0, there exists pg + ivg € BY (0) with
(g, 0z — po + ivp)| < e. Thus,

11— (g, p0)| < |1 — (g, p0 + irg)| < e.

Since
L—e<|lpol <1,

it follows from Corollary 1.3.3 that
1— €< (g, po)| = [A(m0)| < [[moll < V2e,

a contradiction for some € > 0. Thus A = 0 and 7' is injective. Finally we have to show that T
is an isometry and since Theorem 0.0.8, it remains to show that

ITMlx < IAMS A € Ya.
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Take f € Cg (X). Since X is compact there is zog € X with |f(zg)| = || f]|x. For each e > 0,
there exists u + iv € B (0) with

|f(zo) = (fip+ )| <e

We have p € Yg with ||u]] < 1. Take the unique A with T'(\) = f, so that, as above, A(u) =

(f, ). Then
A= [{f il > [f(zo)| —e = [Ifllx —e=[TWN)lx —e

and so ||[T(A)||x < [[A|l + €. This holds true for each € > 0, and so ||T'(A)||y < ||A|| and so T is
an isometry. |
1.4 Hyper-Stonean spaces

Definition 1.4.1. Let X be a non-empty, compact space. Then

Wx = U Supp (.
HEN(X)

The space X is hyper-Stonean if X is Stonean and Wx is dense in X.

Since the restriction of a normal measure to a Borel set is a normal measure, for each non-empty,
open subset U of X, there exists p € N(X) N P(X) with supp u C U.

The following theorem will characterize Hyper-Stonean spaces by a certain measure:

Definition 1.4.2. A positive measure y on the Borel sets of a Stonean space X is a category
measure if

(i) w is regular on closed subsets of finite measure;
(ii) every non-empty, clopen set in X contains a clopen set U with 0 < p(U) < oo;
(iii) every nowhere dense Borel set has measure zero.

Proposition 1.4.3. Let X be a Stonean space. Then X is hyper-Stonean if and only if there
exists a category measure on X.

Proof.
“=" Suppose that X is hyper-Stonean. Consider a maximal family (u;);c; of measures in
N(X)* with pairwise-disjoint supports, and set

K= Z,uz?

el
so that p is a positive measure on B x. Take C to be a clopen subset of X. Then
Co := C'Nsupp pi, # 0

for some ig because of the maximality of the family (u;);c; and the assumption that X is
hyper-Stonean. Since X is Stonean, supp p;, is clopen, and so C is a clopen subset of C' with

0 < p(Co) = pig(Co) < 0.

Clearly u(B) = 0 for each nowhere dense Borel set B because u;(B) = 0 for each such B and
each i. Thus, p is a category measure.
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“«<=" Conversely, suppose that p is a category measure on X. For an arbitrary clopen set C' in
X, take some clopen Cy C C with 0 < u(Cp) < oo, and set
pe = plc,-

By our characterization of normal measures, we have uc € N(X)" and supp puc C C. Since C
was arbitrary, X is hyper-Stonean. |

Remark 1.4.4. As we have seen in Example 1.2.14, the character space of a C*-algebra is an
interesting tool. To describe the character space of C'(X), let us remark that the kernel of a
character is a maximal modular ideal and on the other hand every maximal modular ideal is
the kernel of a character. Now in this case there is an easy description of those sets. Define

‘{C(X)—MC
e f@)

called the evaluation character at x, and
M, :={f e C(X)|f(z) =0} =ker ¢,.

It can be shown that these are all characters. Finally we can identify the character space of
C(X) with X:
Poxy = X.

So if X is Stonean and we take a normal measure p, we get by Corollary 1.2.21, that ®, = ®¢(x)
is homeomorphic to X. /

Definition 1.4.5. Let (Z;, |.]|;)
empty index set I. Then set

D Zi = {(zi)ier | (z)ierl = sup||ill; < oo}
g iel

;cr be a family of Banach spaces, defined for each i in a non-

and
P Zi = {(zi)ier | (zi)ietll = (Z |Zi|f> "< 0o}
P icl

These are Banach spaces.

Remark 1.4.6. Let ¢ be the conjugate index to p, then similar to the LP-spaces the duality
/!
P q

holds. /

Remark 1.4.7. As a preparation for Theorem 2.1.1 we want to sum up: Let X be a Stonean space
such that N(X) # {0}, and take (p;);er to be a maximal singular family in N(X)NP(X), where
the measures pu; are distinct. For each ¢ € I, set S; = supp pi, so that, each S; is Stonean, and
hence by Corollary 1.2.21, ®,, = ®¢(g,) is homeomorphic to S;. (S;)ics is a pairwise-disjoint
family of clopen subsets of X. We set

Uz = supp p.
el
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Then Uz is an open subset of X. In the case where X is hyper-Stonean, Uy is dense in X. For
the family of compact spaces (.S;);cr set

o =@PC(s).

Take j € I, and write J; for the element (f;);c; in & such that f; = 1g, and f; = 0 for j # i.
Take j € I and x € S;. Then the map

%:{M—MC

(fi)ier = fi(x)
is a character on &7, and the map
) fﬁ — QLy

is a homeomorphism onto a compact subspace of ®,, which we identify with S;. Clearly
SiNS; =0 when i,j € I with i # j. For each i € I, we have S; = {¢ € D | #(d;) = 1}, and so
S; is clopen in ®,. Further, Us , = U;c; Si and Ug, is a dense, open subspace of @, . /

We have to consider a generalization of o-finite measures:

Definition 1.4.8. A measure space (I',B, u) is decomposable if there is a subfamily U of B
that partitions X such that:

(i) 0<puU) <00, Uel.
(ii) w(B) = > pey n(U N B) for each B € B with u(B) < oo.
(iii) B € B for each B C T" such that BNU € B for U € U.

Not all properties that are true for o-finite measures hold true for decomposable measures. The
duality of the spaces L' and L, thus, still applies. The proof of the following can be found in
[3, Theorem 20.19, p. 351].

Theorem 1.4.9. Let (I',B, ) be a decomposable measure space. Then (LY(T,u), ||H1)/ is
isometrically isomorphic to (LT, ), |||l )-

Ezample 1.4.10. Let X be a non-empty, Stonean space and let (u;);e; be a maximal singular
family in N(X) N P(X) and set S; = supp p;. Now take I' to be the union of the family (S;)ier

and set
=y i
i€l
Then p is a decomposable measure as in De finition 1.4.8:

() Since p;(X) =1 for all ¢ € I, it follows that 0 < u(S;,) = piy (Sig) < iy (X) < 00.
(7i) The family (S;);c; consits of pairwise disjoint sets, so

p(B) = w(BNS;) =Y m(B).

el i€l

(#i7) This is trivial. /
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2 (C(X) as dual space of a Banach space

2.1 Dual space theorem

Theorem 2.1.1. Let X be a non-empty compact space. Then the following statements are
equivalent.

(i) C(X) is isometrically a dual space;
(7i) there is a C*-isomorphism

C(X)— @Lm(suui)

where (p;)icr is a mazimal singular family in N(X) N P(X) and we are setting S; =
supp pi, i € I;
(iii) the map T : C(X) — N(X)' defined by

(1)) = o) = [ f d
X

~

is an isometric isomorphism, and so C (X) = N(X)'.

(iv) X is Stonean and, for each f € C(X)" with f # 0, there exists u € N(X)* with
(f,m) #0;

(v) X is hyper-Stonean;
(vi) X is Stonean and there exists a category measure on X ;

(vii) there is a locally compact space I' and a decomposable measure p on ' such that C (X)
is C*-isomorphic to L>(T', p).

Proof.

We are going to establish the following implications:

1) = (¢)” This is trivial.

jit) = (2)” This is trivial.

i) = (iv)” By Proposition 1.3.5, there exists a real-linear subspace Y of Mr(X) with Y’ =
Cr (X). The space (BlcR(X)(O), o(Cr (X),Y)) is compact. Since the map

ol a0
B0 - BT 0
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is a bijection which is a homeomorphism with respect to the weak*-topology and so BIC(X) (0)T is
compact as the continuous image of a compact set. By the Krein-Smulian theorem [7, Theorem
6.3.4, p.121], the positive cone is closed. Take f € Cg (X)\C (X)". Then, by the Hahn-Banach
theorem, there exists

A€ (Cr(X),0(Cr(X) 7Y))/ =Y

with
It cannot be that

for some g € Cg (X )+: indeed this would imply that
/ ng d\ < / A
X X

for some n € N, a contradiction, and so

inf /g dA = 0.
QECR(X)+X

Thus A € Y. It follows that, for each f € Cgr (X), we have f > 0 if and only if

og/fdA, AeYt.
X

Let (fi)icr be an increasing net in BICR(X)+(O). Then (f;)icr has an accumulation point, say
fo, in the unit ball of Cg (X)" endowed with o(Cr (X),Y)). By passing to a subnet we may
suppose that limjecy fi; = fo with respect to the weak*-topology. For each A € Y, the net
([x fi d)\)ier is increasing and bounded. So it converges to the limit of the subnet, and hence

to [y fo dX, and so
/fid)\g/fod)\, iel.
X b

It follows that f; < fo for i € I. Suppose that g € C'(X)" with f; < g for all i € I. Then
/f,-dAg/gdA, AeYH,
X X

for each 7 € I, and so
/fod/\g/gd)\, AeYT.
X X

This implies that fy < g and hence that fo = sup;c; fi. Thus C'(X) is Dedekind complete, thus
X is a Stonean space.
Next suppose that g € Y and g; \, 0 in Cr (X). Then

1=sup(l—g)
iel
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and we know from the first part of the proof that 1 — g; N 1, hence we get
lim / gi dp = 0.
el
X

This shows that p is normal. Thus, Y € N(X). For each f € C(X)" with f # 0, there exists
w € YT with

[ duro.
X

since YT C N(X)*.
“(iv) = (v)” Let U be a non-empty, open subset of the Stonean space X. Then there exists
f e C(X)T with f # 0 such that supp f C U. By (iv), there exists u € N(X)* with

[ £ duo.
X

Clearly supp uNU # (). This shows that Wy is dense in X, and so X is hyper-Stonean.
“(v) < (i1)” Since X is Stonean and Ug, from Remark 1.4.7, is dense in X, the map

W fe flug
lex) = Ch(Us)

is a unital C*-isomorphism. The map

O CUS) > BC(S))

is clearly a unital C*-isomorphism. For each i € I, the measure y; is normal, and so L™ (S;, ;) =
C(Sy).
“(#i) = (i14)” Since (i) = (i) = (iv), the space X is Stonean, and the spaces S; are pairwise
disjoint. Set Y = @ L'(S;, i), so that Y/ = @ L>(S;, j1;). The map

1 00

T :Y" - M(X)

is an isometric isomorphism. We will show that 7/ maps Y onto N(X). Take y = (y;)ics in Y
and set
AN=Tye M(X).

Take f € C'(X), and, for each i, set f; = f|g,, so that
[ £ =0n=@ry = [ fige dus, (2.1
X iEISZ'

where we note that

/fiyj du; =0, i# 3.
S;

Take C' € #x. Then, for each i € I, we have CNS; € #x and p; € N(X), and so p;(CNS;) = 0.
By Equation (2.1) with f = 1¢, we have A(C) = 0. By Theorem 1.1.9, A € N(X).
Conversely, take A € N(X). Then || (X\;c;Si) = 0. For each i € I, it follows that A|g, < p;,
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and so, by the Radon-Nikodym theorem, there exists y; € L'(S;, ;) with Mg, = y; du; and
lvilly = [[Als;[I- Set y = (yi)ier- Then

> Ml =D Ml = [T

iel iel

so that y € Y, and

/f d)‘:Z/fiyi dpss,

X iGISZ'
whence T"y = . It follows that C'(X) = N(X)'. When we identify Y and N(X), we obtain
the formula.
“(v) < (vi)” This follows from Proposition 1.4.3.
“(vii) = (i)” This follows from Theorem 1.4.9 because L (T, u) = L}(T, u)'.
“(ii) = (vii)” We take I' to be the pairwise disjoint union of the family (5;)icsr, and set
= cr ti- We have seen in Example 1.4.10 that p is decomposable. It is clear that C'(X) is
C*-isomorphic to L>°(T', u). [ |

Definition 2.1.2. A C*-algebra Z is a von Neumann algebra if there is a Hilbert space H such
that Z is a C*-subalgebra of B(H) and Z closed in the weak operator topology.

Theorem 2.1.1 will help us proving, that every commutative C'*-algebra that is isometrically
isomorphic to a dual space is a von Neumann algebra.

Definition 2.1.3. Let Z be a subset of B(H), for a Hilbert space H. Then the commutant of
Z is

28 = {T e B(H)|TS = ST, Se Z}.
Theorem 2.1.4. Let H be a Hilbert space, and let Z be a C*-subalgebra of B(H). Then

Fwo

7" = 7%,
A proof of this can be found, e.g., in [1, Theorem 3.2.32].

Example 2.1.5. Let Z be a commutative C*-algebra which is isometrically a dual space. As
we have already seen Z is isometrically isomorphic to C' (X) for a compact space X. Now by
Theorem 2.1.1, there is a locally compact space I' and a decomposable measure 1 on I' such
that C' (X) is C*-isomorphic to L*(T', u). We show that L*(T', i) is a von Neumann algebra.
Take H to be the Hilbert space L?(T', 1), and for f € L>(T, ), define

My (g9) = fg. g€ L*(T,p).

Then My € B(L*(T', 1)) and the set N := {My| f € L>(T', )} is a C*-subalgebra of B(L?(T, u)).
The map
(LT, p) » N
v: f — Mf

is a C"*-isomorphism. N is a C*-subalgebra and if IV is closed in the weak operator topology
it is even a von Neumann algebra. To show this we will make use of Theorem 2.1.4. We even
show that N = NC.

Let T € NC with 7 # 0 and let f = T(1r) € L*T, ). We have to show that f belongs to
L>®(T, p) and T is My. We claim that the essential supremum of |f| is less than ||T']|. Assume
the contrary, then there exists a measureable set A C I of positive measure such that |f]| > |||

on A. Define a function
{F — C
g: L
T = ]lAi

f(=)
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Then g € L*°(T", u), so we have
T(g) = T(My(1r)) = My(T(1Ir)) = gT(1r) = gf. (2.2)
Now since gf = 1 4, we have

u(A) H(A).

(A) = 32000 = 1Tz < ITI lolace, <1717 10z =

A contradiction and so f € L*(T", u). Moreover, Equation (2.2) shows that T'(g) = gf for g in
the dense subset L>°(T', u) of L*(I', ) and we get T' = Mj.

So we see that L>°(I', u) satisfies the conditions of Definition 2.1.2 and is a von Neumann
algebra. /

2.2 Uniqueness of the predual

Definition 2.2.1. Let X be a Banach space with an isometric predual Y. Then X has a
strongly unique predual Y if, whenever Z is also a Banach space and T : Z/ — Y’ is an
isometric isomorphism, the map 7" : Y” — Z” carries vy (Y) onto tz(Z).

Y’ Y 2 (V) S Y
IIIZ
T X = T’ T’
IIIZ
VA A = 1z(Z) ¢ Z

Lemma 2.2.2. Let Y and Z be Banach spaces. A linear map T : Z' — Y' is weak*-weak*-
continuous if and only if T = S’ for some bounded operator S :Y — Z.

Proof.

“=" Since T is weak*-weak*-continuous, take y € Y, then ¢(y)oT is weak*-continuous on Z and
so it is of the form ¢(S(y)) for a unique S(y) € Y. Since S(y) is uniquely determined, it follows
that S is linear. Now S is continuous by the closed graph theorem. If y, — y and Sy, — =
then for each 2z’ on Z’' we have

<Z7ZI>Z,Z’ = ,}1_?30 <Syn=2/>z,2' = nh_{lc}o <yanZ/>Y,Y' = (v, TZ/>Y,Y’ = <Syaz’>z,Z'

and thus z = Sy. Hence S is bounded.
“«<” Conversely, to see that the dual of a bounded operator is weak*-weak*-continuous, we take

a net z, 3 2. Then we get
(y,Tz; —Tz")yy = (Sy,2; —2') ;5 = 0

and hence the claim follows.
[ |

The following proposition can be useful to see when isometric isomorphisms have dual operators
that take 1z(Z) onto ¢y (Y).
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Proposition 2.2.3. The dual of an isometric isomorphism T is weak* -weak”-continuous if and
only if T" maps 1y (Y) onto 1z7(Z).

Proof.
“=" We have

<Z/,T, © LY(?/»Z/,Z// = <Tzla LY(y)>y/,yﬂ = <y,Tz/>Yyy, :
By Lemma 2.2.2 there is a bounded operator S with S’ = T'. This leads to
(Z/,T o Ly(y)>Z,7Z/, = <y,S’z’>Yyy, = <Sy,z’>Z,Z, = (7, LZ(Sy)>Z/’Z,/-

Since S is bijective, T is a bijection between ¢y (Y') and tz(2).
“«<=” We define a map S by the diagram below, S = LEI oT ouy.

Ly

T

Y Y’ Y —— 1y (Y)

T T T

Z z' 7" —— 17(2)
ot

If we can show that S’ = T the statement follows by Lemma 2.2.2. We compute

2 S/Z/>Y,Y’ = (v, Zl>z,zf = <L§1 oT" oy (y), Z,>Z 7
= <ZI>T/ © LY(y)>Z/7Z// = <TZ/> LY(y)>Y’,Y“ = <y’ Tz/>Y,Y/ )
And T is weak*-weak*-continuous. |

Theorem 2.2.4. Let X be a non-empty, hyper-Stonean space. Then N(X) is a strongly unique
predual of C'(X).

Proof. Suppose that Y is an isometric predual of C'(X). Then we can regard Y as a closed
linear subspace of M(X), and we have noted in the proof of Theorem 2.1.1 in implication
“(i) = (iv)” that Y € N(X). Now assume that there is 4 € N(X)\Y. With the Hahn-Banach
theorem we get

AFENX) fY)<n << fw)=fY)=0

but Y operates seperating on C'(X) and so f = 0. Thus, we have f(u) # 0, a contradiction.
Hence, Y = N(X).
Next suppose that Z is a Banach space and that

T:N(X) = 2

is an isometric isomorphism. By Lemma 2.2.2, we know that T is weak*-weak*-continuous.
Now we endow Z' with o(Z’, Z) and C (X) with o(C (X), N(X)). It now follows that T"(¢z(Z)) C
tn(x)(N(X)). The first part of the proof now applies to show that T"(:1z(2)) = ty(x)(N(X)).
Thus N(X) is the strongly unique predual of C (X). [ |
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