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delians: How can we be rid of the plague?
delphic oracle: Construct a cubic altar having double the size of the existing one.
banach and tarski: Can we use the Axiom of Choice?
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Foreword

This book is motivated by the following theorem of Hausdorff, Banach, and
Tarski: Given any two bounded sets A and B in three-dimensional space R3, each
having nonempty interior, one can partition A into finitely many disjoint parts
and rearrange them by rigid motions to form B. This, I believe, is the most sur-
prising result of theoretical mathematics. It shows the imaginary character of the
unrestricted idea of a set in R3. It precludes the existence of finitely additive,
congruence-invariant measures over all bounded subsets of R3, and it shows the
necessity of more restricted constructions, such as Lebesgue measure.

In the 1950s, the years of my mathematical education in Poland, this result was
often discussed. J. F. Adams, T. J. Dekker, J. von Neumann, R. M. Robinson, and
W. Sierpiński wrote about it; my PhD thesis was motivated by it. (All this is refer-
enced in this book.) Thus it is a great pleasure to introduce you to this book, where
this striking theorem and many related results in geometry and measure theory,
and the underlying tools of group theory, are presented with care and enthusiasm.
The reader will also find some applications of the most recent advances of group
theory to measure theory: the work of Gromov, Margulis, Rosenblatt, Sullivan,
Tits, and others.

But to me the interest of mathematics lies no more in its theorems and theories
than in the challenge of its surprising problems. And, on the pages of this book,
you will find many old and new open problems. So let me conclude this fore-
word by turning your attention to one of them, from my teacher E. Marczewski
(before 1939, he published under the name Szpilrajn): Does there exist a finite
sequence A1, . . . ,An of pairwise disjoint open subsets of the unit cube and isome-
tries σ1, . . . , σn of R3 such that the unit cube is a proper subset of the topological
closure of the union σ1(A1) ∪ . . . ∪ σn(An)? This remarkable problem is discussed
in Chapters 3, 9, 11, and 13 of this book.

I wish you the most pleasant reading and many fruitful thoughts.

xi
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Addendum to the Foreword

Several spectacular results have been proved since the 1985 first edition of this
book. Two of them are particularly striking.

A. The answer to Marczewski’s problem mentioned earlier is yes. R.
Dougherty and M. Foreman have shown (Thm. 11.16) that any two bounded
nonempty open sets A and B in the Euclidean space Rn (n ≥ 3) are equiv-
alent in the following sense: A has finitely many disjoint regular-open sub-
sets whose union is everywhere dense in A and which can be moved by
isometries into disjoint subsets of B whose union is everywhere dense in B.
Similar results hold for spheres Sn and the hyperbolic spaces Hn (n ≥ 2).

B. The answer to Tarski’s “squaring the circle” problem is also yes. M.
Laczkovich proved that if a circle and a square in R2 have the same area,
then they are equivalent by finite decomposition, and the isometries of the
corresponding pieces are translations (i.e., simple vector addition). And the
same is true for many other pairs of sets in Rn. A proof of this is in Chapter
9.

Some outstanding problems are still open:

1. The Banach–Ulam problem 2 from the Scottish Book. Does every com-
pact metric space admit a finitely additive, congruence-invariant probability
measure on its Borel sets? (Question 3.13)

2. Exotic Borel measures. Is Lebesgue measure the only finitely additive,
isometry-invariant measure on the Borel sets of Rn that normalizes the unit
cube? (It is not the only translation-invariant one. In the minimal model
for set theory that contains all real and all ordinal numbers (usually called
L(R)), and assuming a certain large cardinal exists, all sets are Lebesgue
measurable and have the Property of Baire, and in this model the answer is
yes.) (Question 13.13)

xiii
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xiv Addendum to the Foreword

3. Borel circle-squaring. Can the pieces of the circle-squaring decomposition
of Laczkovich be taken to be Borel sets? (§9.3)

All these results and problems are presented in a penetrating and lucid way in
this new edition.

Jan Mycielski
Boulder, Colorado

August 2015
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Preface

Although many properties of infinite sets and their subsets were considered to be
paradoxical when they were discovered, the development of paradoxical decom-
positions really began with the formalization of measure theory at the beginning
of the twentieth century. The classic example (Vitali, 1905) of a non–Lebesgue
measurable set was the first instance of the use of a paradoxical decomposition
to show the nonexistence of a certain type of measure. Ten years later, Hausdorff
constructed a much more surprising paradox on the surface of the sphere (again,
to show the nonexistence of a measure), and this inspired some important work
in the 1920s. Namely, there was Banach’s construction of invariant measures on
the line and in the plane (which required the discovery of the main ideas of the
Hahn–Banach Theorem) and the famous Banach–Tarski Paradox on duplicating,
or enlarging, spheres and balls. This latter result, which at first seems patently
impossible, is often stated as follows: It is possible to cut up a pea into finitely
many pieces that can be rearranged to form a ball the size of the sun!

Their construction has turned out to be much more than a curiosity. Ideas aris-
ing from the Banach–Tarski Paradox have become the foundation of a theory of
finitely additive measures, a theory that involves much interplay between analy-
sis (measure theory and linear functionals), algebra (combinatorial group theory),
geometry (isometry groups), and topology (locally compact topological groups).
Moreover, the Banach–Tarski Paradox itself has been useful in important work on
the uniqueness of Lebesgue measure: It shows that certain measures necessarily
vanish on the sets of Lebesgue measure zero.

The purpose of this volume is twofold. The first aim is to present proofs that
are as simple as possible of the two main classical results—the Banach–Tarski
Paradox in R3 (and Rn, n > 3) and Banach’s theorem that no such paradox exists
in R1 or R2. The first three chapters are devoted to the paradox and are acces-
sible to anyone familiar with the rudiments of linear algebra, group theory, and
countable sets. (Background related to the Euclidean isometry groups is included
in Appendix A.) Chapter 12, which contains Banach’s theorem in R1 and R2, can
be read independently of Chapters 4–11 but requires a little more background in

xv
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xvi Preface

measure theory (Lebesgue measure) and general topology (Tychonoff Compact-
ness Theorem). Although isolated proofs use some special techniques, such as
transfinite induction or analytic functions, most of the material is accessible to a
first- or second-year graduate student.

The book’s other purpose is to serve as a background source for those inter-
ested in current research that has a connection to paradoxical decompositions.
The period since 1980 has been especially active, and several classic problems
in this area have been solved, some by using the deepest techniques of modern
mathematics. This volume contains a unified and modern treatment of the funda-
mental results about amenable groups, finitely additive measures, and free groups
of isometries and so should prove useful to someone in any field who is interested
in these modern results and their historical context.

The group theory connections arise from the difference between the isome-
try groups of R2 and R3, a difference that explains the presence of the Banach–
Tarski Paradox in R3 and its absence in the plane. This distinction led to the
study of the class of groups that are not paradoxical, that is, groups that cannot
be duplicated by left translation of finitely many pairwise disjoint subsets. This
class, denoted by AG for amenable groups, contains all solvable and finite groups
but excludes free non-Abelian groups. A famous problem is whether AG equals
NF , the class of groups not having a free non-Abelian subgroup. This was solved
in 1980 (Ol’shanskii [Ols80]), using ideas connected with growth conditions in
groups (Cohen [Coh82]) and the solution of Burnside’s Problem (Adian [Adi79]).
However, the classes AG and NF do coincide when restricted to linear groups (a
deep result of Tits [Tit72]) or to connected, locally compact topological groups
(Balcerzyk and Mycielski [BM57]). Growth conditions in groups, first studied in
depth by Milnor and Wolf [Mil68b, Mil68c, Wol68], also elucidate a weaker sort
of paradox, the Sierpiński–Mazurkiewicz Paradox, which exists in R2 but not in
R1. The class AG has also led to the study of (topological) amenability in topolog-
ical groups (where only Borel sets are considered). Amenability and the related
notion of an invariant mean have proven to be useful tools in the study of topolog-
ical groups (Greenleaf [Gre69]). Chapter 12 contains an introduction to the theory
of amenable groups, and Chapter 14 discusses the relevance of growth conditions
for the theory of amenability and paradoxical decompositions.

In analysis, important work solving the Ruziewicz Problem has its roots in
Banach’s results about R1 and R2. Banach showed that Lebesgue measure is not
the only finitely additive, isometry-invariant measure on the bounded, measur-
able subsets of the plane (or line) that normalizes the unit square (or interval).
The analogous problem for R3 and beyond was unsolved for over fifty years.
But using Kazhdan’s Property T and techniques of functional analysis, Margulis
[Mar80, Mar82], Sullivan [Sul81], Rosenblatt [Ros81], and Drinfeld [Dri85] set-
tled this question in the expected way: No “exotic” measures exist, except in the
cases Banach considered. The construction of exotic measures in R1 and R2 and
a discussion of the higher-dimensional situation are presented in Chapter 13.
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Preface xvii

Actions of free groups are central to the whole theory, and a general prob-
lem is to determine which naturally occurring groups have certain sorts of free
subgroups. Chapters 4, 6, 7, and 8 present the classical results on the isome-
try groups of spheres, Euclidean spaces. Some problems were solved relatively
recently. Until the work of Deligne and Sullivan [DS83], it was not known that
SO6(R) (or SO4n+2(R)) contained a free non-Abelian subgroup, no element of
which (except the identity) has +1 as an eigenvalue. And a similar problem about
locally commutative free subgroups was solved in all SOn(R), except SO5(R),
in 1956 (Dekker [Dek56b]), with the remaining case solved by A. Borel [Bor83]
in a paper generalizing the work of Deligne and Sullivan. Chapter 7 presents a
technique for improving this type of result to get uncountable free subgroups and
discusses the geometrical consequences of these larger free groups of isometries.

There has been a remarkable amount of progress on famous problems since
the first edition of this book appeared in 1985. The most striking discoveries are
the solutions to two very famous open questions. Laczkovich solved the famous
Tarski circle-squaring problem by showing that a disk and square in the plane hav-
ing the same area are equidecomposable; and Dougherty and Foreman proved that
a Banach–Tarski-type paradox exists with pieces having the Property of Baire.
Other noteworthy results are T. Wilson’s solution to the de Groot problem—he
showed that the pieces in the classic paradox could be chosen so that the moves
to the new positions preserve disjointness at every instant—and the work of Sher-
man and Just on bounded paradoxical sets in the plane. This new edition contains
all the essential details of the work of Laczkovich, Wilson, and Sherman. Another
addition is a presentation of Følner’s Condition and amenability through the use
of pseudogroups in Chapter 12.

Also new are Chapter 4, which collects diverse results about the hyperbolic
plane, and Chapter 8, which focuses on the Euclidean plane and the group of
area-preserving linear transformations. A main theme in many of these is that
counterintuitive paradoxes can be constructed without requiring the Axiom of
Choice.

The book is divided into two parts. The first deals with the construction of
paradoxical decompositions (which imply that certain sorts of finitely additive
measures do not exist), and the second deals with the construction of measures
(which show why certain paradoxical decompositions do not exist). Chapter 11
ties the two parts together by presenting a theorem of Tarski that asserts that the
existence of a paradoxical decomposition is equivalent to the nonexistence of an
invariant, finitely additive measure. The final chapter, Chapter 15, discusses some
technical and philosophical points relevant to the foundational discussion engen-
dered by the use of the Axiom of Choice in the Banach–Tarski Paradox and related
results.

Here is an observation of Bertrand Russell from 1918 [Rus10]: “The point
of philosophy is to start with something so simple as not to seem worth stating,
and to end with something so paradoxical that no one will believe it.” Although
paradoxes are by no means the point of the study of mathematics, there is no
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xviii Preface

question that counterintuitive results can clarify our understanding and provide
motivation for more detailed study. The Banach–Tarski Paradox certainly plays
such a role, and we both have found its study to be intensely rewarding. We hope
you enjoy learning about it.

The authors would like to express their gratitude to Jan Mycielski and Joseph
Rosenblatt for their support and advice during the preparation of this volume.
Moreover, a book such as this, touching on many mathematical disciplines, would
not have been possible without the willingness of many people to share their
expertise. The help of the following mathematicians is gratefully acknowledged:
Bill Barker, Curtis Bennett, Armand Borel, Rotislav Grigorchuk, Branko Grün-
baum, William Hanf, Joan Hutchinson, Victor Klee, Miklos Laczkovich, Rich
Laver, Robert Macrae, Dave Morris, Arlan Ramsay, Robert Riley, Robert Solo-
vay, Dennis Sullivan, Alan Taylor, and Trevor Wilson.

Grzegorz Tomkowicz Stan Wagon
Centrum Edukacji G2 Macalester College
Moniuszki 9 1600 Grand Avenue
41-902 Bytom, Poland St. Paul, Minnesota, USA
gtomko@vp.pl wagon@macalester.edu
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PART ONE

Paradoxical Decompositions, or the
Nonexistence of Finitely Additive Measures
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1

Introduction

It has been known since antiquity that the notion of infinity leads very quickly to
seemingly paradoxical constructions, many of which seem to change the size of
objects by operations that appear to preserve size. In a famous example, Galileo
observed that the set of positive integers can be put into a one-one correspon-
dence with the set of square integers, even though the set of nonsquares, and
hence the set of all integers, seems more numerous than the squares. He deduced
from this that “the attributes ‘equal,’ ‘greater’ and ‘less’ are not applicable to
infinite . . . quantities,” anticipating developments in the twentieth century, when
paradoxes of this sort were used to prove the nonexistence of certain measures.

An important feature of Galileo’s observation is its resemblance to a duplicat-
ing machine; his construction shows how, starting with the positive integers, one
can produce two sets, each of which has the same size as the set of positive inte-
gers. The idea of duplication inherent in this example will be the main object of
study in this book. The reason that this concept is so fascinating is that, soon after
paradoxes such as Galileo’s were being clarified by Cantor’s theory of cardinality,
it was discovered that even more bizarre duplications could be produced using
rigid motions, which are distance-preserving (and hence also area-preserving)
transformations. We refer to the Banach–Tarski Paradox on duplicating spheres
or balls, which is often stated in the following fanciful form: a pea may be taken
apart into finitely many pieces that may be rearranged using rotations and transla-
tions to form a ball the size of the sun. The fact that the Axiom of Choice is used
in the construction makes it quite distant from physical reality, though there are
interesting examples that do not need the Axiom of Choice (see Thm. 1.7, §§4.2,
4.3, 11.2).

Two distinct themes arise when considering the refinements and ramifications
of the Banach–Tarski Paradox. First is the use of ingenious geometric and alge-
braic methods to construct paradoxes in situations where they seem impossible
and thereby getting proofs of the nonexistence of certain measures. Second, and
this comprises Part II of this book, is the construction of measures and their use
in showing that some paradoxical decompositions are not possible.

3
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4 1 Introduction

We begin with a formal definition of the idea of duplicating a set using certain
transformations. The general theory is much simplified if the transformations used
are all bijections of a single set, and the easiest way to do this is to work in the
context of group actions. Recall that a group G is said to act on a set X if to
each g ∈ G there corresponds a function (necessarily a bijection) from X to X ,
also denoted by g, such that for any g, h ∈ G and x ∈ X , g(h(x)) = (gh)(x) and
e(x) = x, where e denotes the identity of G.

Definition 1.1. Let G be a group acting on a set X and suppose E ⊆ X
is a nonempty subset of X . Then E is G-paradoxical (or paradoxical with
respect to G) if, for some positive integers m, n, there are pairwise disjoint
subsets A1, . . . ,An,B1, . . . ,Bm of E and g1, . . . , gn, h1, . . . , hm ∈ G such that
E =⋃

gi(Ai) and E =⋃
h j(Bj ).

Loosely speaking, the set E has two disjoint subsets (
⋃

Ai,
⋃

Bj ) each of which
can be taken apart and rearranged via G to cover all of E. If E is G-paradoxical,
then the sets witnessing that may be chosen so that {gi(Ai)}, {h j(Bj )}, and {Ai} ∪
{Bj} are each partitions of E. For the first two, one need only replace Ai,Bj by
smaller sets to ensure pairwise disjointness of {gi(Ai)} and {h j(Bj )}, but the proof
that, in addition, {Ai} ∪ {Bj} may be taken to be all of E is more intricate and will
be given in Corollary 3.7.

1.1 Examples of Paradoxical Actions

1.1.1 The Banach–Tarski Paradox

Any ball in R3 is paradoxical with respect to G3, the group of isometries of R3.

This result, a paradigm of the whole theory, will be proved in Chapter 3.
More generally, we shall consider the possibility of paradoxes when X is a met-
ric space and G is a subgroup of the group of isometries of X (an isometry
is a bijection from X to X that preserves distance). In the case that G is the
group of all isometries of X , we shall suppress G, using simply, E is paradox-
ical. We shall be concerned mostly with the case that X is one of the Euclidean
spaces Rn.

1.1.2 Free Non-Abelian Groups

Any group acts naturally on itself by left translation. The question of which groups
are paradoxical with respect to this action turns out to be quite fascinating and is
discussed in Chapter 12. In this context, the central example is the free group
on two generators. Recall that the free group F with generating set M is the
group of all finite words using letters from {σ, σ−1 : σ ∈ M}, where two words
are equivalent if one can be transformed to the other by the removal or addition
of finite pairs of adjacent letters of the form σσ−1 or σ−1σ. A word with no such
adjacent pairs is called a reduced word, and to avoid the use of equivalence classes,
F may be taken to consist of all reduced words, with the group operation being
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1.1 Examples of Paradoxical Actions 5

Figure 1.1. The free group of rank 2. The small enclosed region represents W (σ−1),
and left translation of this by σ gives the words in the larger enclosed region.

Thus W (σ ) ∪ σW (σ−1) = F .

concatenation; the concatenation of two words is equivalent to a unique reduced
word. (From now on, all words will be assumed to be reduced.) The identity of
F , which is denoted by e, is the empty word. A subset S of a group is called free
if no nonidentity reduced word using elements of S gives the identity. Any two
free generating sets for a free group have the same size, which is called the rank
of the free group. Free groups of the same rank are isomorphic; any group that
is isomorphic to a free group will also be called a free group. See [MKS66] for
further details about free groups and their properties.

Theorem 1.2. A free group F of rank 2 is F-paradoxical, where F acts on itself
by left multiplication.

Proof. Suppose σ, τ are free generators of F . If ρ is one of σ±1, τ±1, let W (ρ)
be the set of elements of F whose representation as a word in σ, σ−1, τ, τ−1

begins, on the left, with ρ. Then F = {e} ∪W (σ ) ∪W (σ−1) ∪W (τ ) ∪W (τ−1),
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6 1 Introduction

and these subsets are pairwise disjoint. Furthermore, W (σ ) ∪ σW (σ−1) = F (see
Fig. 1.1) and W (τ ) ∪ τW (τ−1) = F. For if h ∈ F \W (σ ), then σ−1h ∈W (σ−1)
and h = σ (σ−1h) ∈ σW (σ−1). Note that this proof uses only four pieces.

The preceding proof can be improved so that the four sets in the paradoxical
decomposition cover all of F rather than just F \ {e}. The reader might enjoy
trying to find such a neat four-piece paradoxical decomposition of a rank 2 free
group (or see Fig. 3.2). When we say that a group is paradoxical, we shall be
referring to the action of left translation; this should cause no confusion with the
usage mentioned in Example 1.1.1.

1.1.3 Free Semigroups

We shall on occasion be interested in the action of a semigroup S (a set with
an associative binary operation and an identity) on a set X . Because of the lack
of inverses in a semigroup, the function on X induced by some σ ∈ S may not
be a bijection; thus it is inappropriate to apply Definition 1.1 to such actions.
Nonetheless, there are similarities between free semigroups and free groups, as
the following proposition shows. A free semigroup with free generating set T is
simply the set of all words using elements of T as letters, with concatenation being
the semigroup operation. The rank of a free semigroup is the number of elements
in T . A free subsemigroup of a group is a subset of the group that contains e and
is closed under the group operation such that the semigroup is isomorphic to a
free semigroup.

Proposition 1.3. A free semigroup S, with free generators σ and τ , contains two
disjoint sets A and B such that σS = A and τS = B. Any group having a free
subsemigroup of rank 2 contains a paradoxical set.

Proof. Let A be the set of words whose leftmost term is σ and B the same using
τ . Then σS = A and τS = B (see Fig. 1.2). If S is embedded in a group, then S
itself is a paradoxical subset of the group because σ−1(A) = S = τ−1(B).

Figure 1.2. A paradox in a group having a free subsemigroup S of rank 2. If A is the
set of words with σ on the left (gray background) and B are those with τ on the left

(not gray and not e), then σ−1(A) = S = τ−1(B). The thicker edges indicate left
multiplication by σ .
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1.1 Examples of Paradoxical Actions 7

Figure 1.3. The method of constructing the permutation f1 of X from two bijections f , g
from X to subsets of X .

1.1.4 Arbitrary Bijections

The following result, showing that any infinite set is paradoxical using arbitrary
bijections, is the modern version of Galileo’s observation about the integers. The
implications with (c) as hypothesis use the Axiom of Choice (AC). Recall that, in
the presence of AC, the cardinality of an infinite set X , |X |, is the unique cardinal
ℵα for which there is a bijection with X . In the absence of AC, |X | is used only in
the context of the equivalence relation: |X | = |Y | iff there is a bijection from X
to Y .

Theorem 1.4. The following are equivalent:

(a) |X | = 2|X |.
(b) X is paradoxical with respect to the group of all permutations of X , that

is, all bijections from X to X .
(c) X is infinite or empty.

Proof. We will show (a)⇒ (b)⇒ (c)⇒ (a).
(b)⇒ (c) is clear because finite sets do not admit paradoxes.
(a) ⇒ (b). This proof uses the classic back-and-forth idea of the Schröder–

Bernstein Theorem (see Thm. 3.6). We start with a partition of X into A and
B and bijections f : X → A and g: X → B. We need bijections f1 and f2 from
X to X so that f1 agrees with f on A and f2 agrees with f on B. To get f1,
let h = g ◦ f : X → B and let C = A ∪ h(A) ∪ h(h(A)) ∪ . . . , which is a disjoint
union because h is one-to-one (see Fig. 1.3). Let D = X \C. Then f maps C onto
f (C) ⊆ A, and g( f (C)) = C \A. Therefore g is a bijection from X \ f (C) to D.
So let f1 be f on C and g−1 on D.
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8 1 Introduction

The construction of f2 is similar. Let h = f ◦ f : X → A and C = B ∪ h(B) ∪
h(h(B)) ∪ . . . . Then f maps C to X \C bijectively and f −1 is a bijection of X \C
with C. So let f2 be f on C and f −1 on X \C.

A similar argument gets gi so that g1 agrees with g on A and g2 agrees with g
on B.

These functions now give us X = f −1
1 ( f (A)) ∪ f −1

2 ( f (B)). Similarly, X can
be realized as a union of permutations restricted to g(A) and g(B). Because f (A),
f (B), g(A), g(B) are pairwise disjoint, and this shows that X is paradoxical.

(c) ⇒ (a). This is a consequence of the Axiom of Choice. First, it is proved
for cardinals by transfinite induction, and then AC (in the form: every set may
be mapped bijectively onto a cardinal) is invoked (see [KM68, Chap. 8]). Alter-
natively, one can give a more direct proof using Zorn’s Lemma (see [End77,
p. 163]).

1.2 Geometrical Paradoxes

The first example of a geometrical paradox, that is, one using isometries, arose
in connection with the existence of a non–Lebesgue measurable set. The well-
known construction of such a set fits into our context if Definition 1.1 is modified
to allow countably many pieces. Thus E is countably G-paradoxical means that

E =
∞⋃

i=1

giAi =
∞⋃

i=1

hiBi,

where {A1,A2, . . . ,B1,B2, . . .} is a countable collection of pairwise disjoint sub-
sets of E and gi, hi ∈ G. Recall that S1 denotes the unit circle and SO2(R) denotes
the group of rotations of the circle.

Theorem 1.5 (AC).∗ S1 is countably SO2(R)-paradoxical. If G denotes the group
of translations modulo 1 acting on [0, 1), then [0, 1) is countably G-paradoxical.

Proof. Let M be a choice set for the equivalence classes of the relation on S1

given by calling two points equivalent if one is obtainable from the other by a
rotation about the origin through a (positive or negative) rational multiple of 2π
radians. Because the rationals are countable, these rotations may be enumerated as
{ρi : i = 1, 2, . . .}; let Mi = ρi(M ). Then {Mi} partitions S1 and, because any two
of the Mi are congruent by rotation, the even-indexed of these sets may be (indi-
vidually) rotated to yield all the Mi, that is, to cover the whole circle. The same
is true of {Mi : i odd}. This construction is easily transferred to [0, 1) using the
bijection taking (cos θ, sin θ ) to θ/2π , which induces an isomorphism of SO2(R)
with G.

Corollary 1.6 (AC). (a) There is no countably additive, rotation-invariant mea-
sure of total measure 1, defined for all subsets of S1.

∗ In the sequel, theorems whose proof uses the Axiom of Choice will be followed by (AC).
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1.2 Geometrical Paradoxes 9

(b) There is a subset of [0, 1] that is not Lebesgue measurable.
(c) There is no countably additive, translation-invariant measure* defined on

all subsets of Rn and normalizing [0, 1]n.

Proof. (a) Suppose μ is such a measure and let A and B be disjoint subsets of
the circle that witness the paradox of Theorem 1.5; then the properties of μ give
1 ≥ μ(A ∪ B) = μ(A)+ μ(B) = 2, a contradiction.

(b) This follows from (c); in fact, {α ∈ [0, 1) : (cosα, sinα) ∈ M} is not
Lebesgue measurable.

(c) For R1, such a measure cannot exist because its restriction to subsets of
[0, 1] would be invariant under translations modulo 1, contradicting Theorem 1.5.
Such a measure in Rn would induce one on the subsets of R, by the correspon-
dence A ↔ A× [0, 1]n−1.

The connection between the Axiom of Choice and the existence of nonmea-
surable sets is complex, involving the theory of large cardinals and forcing—
two branches of contemporary set theory. We consider these connections in more
detail in Chapter 15. For now, we note only that (without assuming Choice) the
following two assertions are not equivalent:

� All sets of reals are Lebesgue measurable.
� There is a countably additive, translation-invariant extension of Lebesgue mea-

sure to all sets of reals.

It is known that the second assertion does not imply the first.
It comes as a bit of a surprise that even with the restriction to finitely many

pieces, paradoxes can be constructed using isometries. The following construc-
tion, the first of its kind, does not require any form of the Axiom of Choice, which
adds some weight to the comment of Eves [Eve63] that the result is “contrary to
the dictates of common sense.” Recall that when no group is explicitly mentioned,
it is understood that the isometry group is being used.

Theorem 1.7 (Sierpiński–Mazurkiewicz Paradox). There is a paradoxical sub-
set of the plane R2.

The reason this paradox exists is that the planar isometry group G2 has a free
non-Abelian subsemigroup that acts in a particularly nice way (Thm. 1.8). The
single most important idea in constructing a paradoxical decomposition is the
transfer of an algebraic paradox from a group or semigroup (as in Prop. 1.3) to
a set on which it acts. This technique was first used, independently, by Hausdorff
and by Sierpiński and Mazurkiewicz. The next theorem shows that a free sub-
semigroup exists for plane isometries.

* Measures are allowed to have values in [0,∞].

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107337145.004
https:/www.cambridge.org/core


10 1 Introduction

Theorem 1.8. There are two isometries, σ , τ , of R2 that generate a free subsemi-
group of G2. Moreover, σ and τ can be chosen so that for any two words w1 and
w2 in σ , τ having leftmost terms σ , τ , respectively, w1(0, 0) 
= w2(0, 0).

Proof. Choose θ so that β = eiθ is transcendental; θ = 1 works, but it is simpler
just to use the fact that the unit circle is uncountable whereas the set of alge-
braic numbers is countable. Then let σ be rotation by θ and let τ be translation
by (1, 0). In C, σ is multiplication by β and τ is addition of 1. We need only
prove that σ and τ satisfy the second assertion, because freeness follows from
that. For if w1 = w2, where w1 and w2 are distinct semigroup words and one
of them is (the identity or) an initial segment of the other, then left cancellation
yields v = e for a nontrivial word v . If v has σ on the left, then vτ (0) = τ (0),
and if v has τ on the left, then vσ (0) = σ (0), contradicting the second assertion
in either case. And if neither is an initial segment of the other, then left can-
cellation yields w1 and w2, which are equal in G2 but have different leftmost
terms.

So, suppose w1 = τ j1ρ j2 · · · τ jm and w2 = ρk1τ k2 · · · τ k	 , where m, 	 � 1 and
each exponent is a positive integer; because ρ(0) = 0, it is all right to assume that
w1 and w2 both end in a power of τ , unless w2 is simply ρk1 . Then

w1(0) = j1 + j3u j2 + j5u j2+ j4 + · · · + jmu j2+ j4+···+ jm−1

and

w2(0) = k2uk1 + k4uk1+k3 + · · · + k	u
k1+k3+···+k	−1 (= 0 if w2 = ρk1 ).

If w1(0) = w2(0), these two expressions may be subtracted to yield a noncon-
stant polynomial with integer coefficients that vanishes for the value eiθ , and this
contradicts the choice of θ .

Using the isometries of Theorem 1.8 (and working in C), we can prove The-
orem 1.7 by directly constructing a paradoxical set in the plane. Let E be the
orbit of 0 under the free subsemigroup of Theorem 1.8. Then let A = σ (E ) and
B = τ (E ). Figure 1.4 shows the orbit of 0 in C, where σ is replaced by multipli-
cation by β and τ by addition of 1. The framed numbers form A, and the others
are B; we have E = A/β = B− 1.

Another way of saying this is that E is the set of complex numbers of the
form a0 + a1β + · · · + anβ

n where n and the coefficients are nonnegative inte-
gers. Then A is the set of such numbers for which a0 = 0, and B consists of the
others.

We can state this construction in a more abstract form as follows.

Proposition 1.9. Suppose a group G acting on X contains σ , τ such that for
some x ∈ X , any two words in σ , τ beginning with σ , τ , respectively, disagree
when applied to x. Then there is a nonempty G-paradoxical subset of X.

Proof. Let S be the subsemigroup of G generated by τ and ρ, and let E be
the S-orbit of x. Then E ⊇ τ (E ), ρ(E ), and the hypothesis on x implies that
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1.2 Geometrical Paradoxes 11
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E all
A framed numbers;

B unframed numbers;
E A B 1

Figure 1.4. The Sierpiński–Mazurkiewicz paradox in the plane, where β = ei. The set of
numbers at the vertices arises from the right half of Figure 1.1, with each word replaced

by what it does to 0.

τw1(x) 
= ρw2(x) for any words w1,w2 ∈ S. Hence τ (E ) ∩ ρ(E ) = ∅. Because
τ−1(τE ) = E = ρ−1(ρE ), this shows that E is G-paradoxical.

The fact that the plane admits a paradoxical set E is by no means contradictory.
After all, E is countable and so has measure 0; the fact that E is paradoxical
implies only that 2 · 0 = 0. Still, this construction raises many questions about
the sorts of planar sets that are paradoxical and about the possibilities in other
dimensions. To give some flavor of what is to come, we list some of these related
results:

� No nonempty subset of R1 is paradoxical (Thm. 14.25).
� There are uncountable paradoxical subsets of R2 (Thm. 7.14; see also Thm.

14.15).
� Any bounded subset of R3 (or Rn, n � 3) with nonempty interior is paradoxi-

cal (Thm. 3.12). This is a generalization of the Banach–Tarski Paradox.
� No subset of R2 with nonempty interior is paradoxical (Cor. 14.9).
� There are bounded subsets of R2 that are paradoxical, but none can be para-

doxical using two pieces (Thms. 14.16, 14.18).
� The subgroups G of G2 such that a nonempty G-paradoxical subset of the plane

exists are precisely the subgroups having a free non-Abelian subsemigroup
(Thm. 14.30).

The ideas of the Sierpiński–Mazurkiewicz construction form the foundation of
much of the early history of geometrical paradoxes, though more in the context
of groups rather than semigroups. The analogue of Proposition 1.9 is that a para-
doxical decomposition of a group is easily lifted to a set on which the group acts
without nontrivial fixed points (by which is meant that no nonidentity element of
the group fixes a point of the set). The conclusion of the following proposition is
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M

XG

g1
e

g2

g3

g1 M
g2 M
g3 M

Figure 1.5. A choice set M for the group orbits allows structures in the group to be lifted
to the set on which the group acts.

stronger than that of Proposition 1.9 because it states explicitly which set is para-
doxical, namely, the whole set upon which the group acts. Unlike Proposition 1.9,
the Axiom of Choice is required.

Proposition 1.10 (AC). If G is paradoxical and acts on X without nontrivial
fixed points, then X is G-paradoxical. Hence X is F-paradoxical whenever F, a
free group of rank 2, acts on X with no nontrivial fixed points.

Proof. Suppose Ai,Bj ⊆ G and gi, h j witness that G is paradoxical. By the Axiom
of Choice, there is a set M containing exactly one element from each G-orbit in
X . Then {g(M ) : g ∈ G} is a partition of X (see Fig. 1.5, which shows each g(M )
as a horizontal array); pairwise disjointness of the family is an easy consequence
of the lack of fixed points in G’s action. Now this partition serves as a way to
transform any subset S of G to a subset of X by S∗ = {g(M ) : g ∈ S}. When we
transform the sets of the paradox in G, they yield a paradox in X . For example,
G =⋃

giAi becomes X =⋃
gi(S∗), and disjointness is preserved; similarly for

Bj. So the sets A∗i ,B∗j form a paradoxical decomposition of X . The assertion about
F follows from Theorem 1.2. Note that the number of sets used for X is the same
as the number of Ai,Bj originally given for G.

If the action of G on X is transitive (as is the case if, as in Prop. 1.9, X is
replaced by a single G-orbit in X ), then the Axiom of Choice is not needed to
define M . As an exercise, the reader can show that the converse of Proposition
1.10 is valid for all actions: If X is G-paradoxical, then G is G-paradoxical (trans-
fer the paradoxical decomposition of a single orbit to G). This result has an impor-
tant measure-theoretic interpretation (see Thm. 10.3).

The main example of a paradoxical group is a free group of rank 2. Theorem
1.2 and constructions such as the Banach–Tarski Paradox are based on the real-
ization of such a group as a group of isometries of Rn. But actions of isometries
on Rn have, in general, many fixed points, and so the main applications of Propo-
sition 1.10 involve figuring out some way to deal with them. Nonetheless, the idea
of lifting a paradox from a group to a set upon which it acts is, by itself, sufficient
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Notes 13

to obtain interesting pseudo-paradoxical results that have important implications
in measure theory (see Thm. 2.6).

Notes

Galileo’s observations on the problems of infinity can be found in [Gal14]. For
more information on nineteenth-century thoughts on these sorts of paradoxes,
see [Bol50]. The definition of G-paradoxical appears in [Sie54], but has its
roots in earlier work of Hausdorff, Banach and Tarski, and of Sierpiński and
Mazurkiewicz. Banach and Tarski [BT24] published their paradoxical construc-
tion in R3 in 1924, and many papers discussing or simplifying their work have
appeared since. The initial discovery that free groups (actually, free products)
bear paradoxes that can be given a geometric interpretation is due to Hausdorff
(see notes to Chap. 2; also §4.2).

The question of whether the assertion of Theorem 1.4(a) (or (b)) implies the
Axiom of Choice was posed by Tarski [Tar24] and solved by Sageev [Sag75]. The
classical construction of a non-Lebesgue measurable subset of the circle in Theo-
rem 1.5 was given by Vitali [Vit05] in 1905. The slightly more general Corollary
1.6 was pointed out by Hausdorff [Hau14b].

Sierpiński raised the possibility of a paradoxical subset of the plane (Thm.
1.7), and the existence of such a set was initially proved by Mazurkiewicz, whose
proof was, in turn, simplified by Sierpiński (see [MS14]). The results in this chap-
ter related to semigroups (Thm. 1.8 and Props. 1.3 and 1.9) are derived from
their work. The Sierpiński–Mazurkiewicz Paradox is discussed in [Eve63, p. 277],
[HDK64, p. 26], and [Mes66, p. 155]. These three books contain discussions of
the Banach–Tarski Paradox as well. Generalizations of the choiceless Sierpiński–
Mazurkiewicz Paradox are discussed in Chapter 7.
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The Hausdorff Paradox

It was shown in Chapter 1 (Prop. 1.10) how free non-Abelian groups can be used
to generate paradoxes. The first opportunity for such a free group to appear among
the Euclidean isometry groups is in 3-space. This is because G1 and G2 are solv-
able (App. A; see also Thm. 12.4) and hence cannot contain any free non-Abelian
subgroup. In this chapter we explicitly construct a free non-Abelian subgroup of
G3 and describe a paradoxical decomposition that this causes. A subset S of a
group G will be called independent if S is a free set of generators of H , the sub-
group of G generated by S; H is then a free group of rank |S|.

There are many ways of getting a pair of independent rotations of S2, the unit
sphere in 3-space. We present a simple pair found by K. Satô. Let

σ = 1

7

⎡
⎣ 6 2 3

2 3 −6
−3 6 2

⎤
⎦ and τ = 1

7

⎡
⎣ 2 −6 3

6 3 2
−3 2 6

⎤
⎦ ,

which we call the Satô rotations. They will reappear in Theorem 2.8. We use Fn

to denote the free group of rank n.

Theorem 2.1. The two Satô rotations are independent. Hence, if n ≥ 3, SOn(Q)
has a free subroup of rank 2.

Proof. We wish to show that no nontrivial reduced word in σ±1, τ±1 equals the
identity. Assume w is such a word and w equals the identity. Conjugating by a
sufficiently high power of σ and, if necessary, inverting, we can assume that w

has σ as its rightmost term.
Define four matrices by

Mσ =
⎡
⎣ 6 2 3

2 3 −6
−3 6 2

⎤
⎦ , Mτ =

⎡
⎣ 2 −6 3

6 3 2
−3 2 6

⎤
⎦ ,

M−
σ =

⎡
⎣6 2 −3

2 3 6
3 −6 2

⎤
⎦ , M−

τ =
⎡
⎣ 2 6 −3
−6 3 2
3 2 6

⎤
⎦ .

14
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2 The Hausdorff Paradox 15

It is simpler to work with these matrices instead of the true matrices corre-
sponding to the rotations; the only difference is an integer power of 7 that would
be added at the end. We will analyze w(1, 0, 0), the first column of the matrix
Mkn

σ Mkn−1
τ · · ·Mk2

τ Mk1
σ Mσ , where k1 ≥ 0, kn ∈ Z, and the other ks are nonzero. A

negative power refers to a power of M−
σ or τ . We will work modulo 7 throughout,

which suffices because an integer that is not divisible by 7 is nonzero. Define four
sets of vectors:

Vσ = {(3, 1, 2), (5, 4, 1), (6, 2, 4)},
V−
σ = {(3, 2, 6), (5, 1, 3), (6, 4, 5)},
Vτ = {(3, 5, 1), (5, 6, 4), (6, 3, 2)},

V−
τ = {(1, 5, 4), (2, 3, 1), (4, 6, 2)}.

To start, we have Mσ (1, 0, 0) = (6, 2,−3) ≡ (6, 2, 4) (mod 7), and this vector is
Vσ . The following four properties, which show that the V -sets act as invariants,
are easily verified by simple matrix computations:

1. For any v ∈ Vσ ∪Vτ ∪V−
τ , σv ∈ Vσ .

2. For any v ∈ V−
σ ∪Vτ ∪V−

τ , σ−v ∈ V−
σ .

3. For any v ∈ Vτ ∪Vσ ∪V−
σ , τv ∈ Vτ .

4. For any v ∈ V−
τ ∪Vσ ∪V−

σ , τ−v ∈ V−
τ .

Now work left through the word. By (1), because the first step gives us (6, 2, 4),
Mk1

σ leaves the vector in Vσ . By (3) or (4) (depending on the sign of k2), the second
power Mk2

τ places the vector in Vτ ∪V−
τ . And (1) and (2) (depending on the sign

of k3) mean that the third power leaves the vector in Vσ ∪V−
σ . This alternation

continues as we move left through the word. Therefore the vector ends up in one
of the V -sets and so is not (1, 0, 0).

The preceding proof is just one of many constructions of a free non-Abelian
group of rotations in R3. Hausdorff gave the first such construction in 1914; he
showed that if φ and ρ are rotations through 180◦ and 120◦, respectively, about
axes containing the origin, and if cos 2θ is transcendental where θ is the angle
between the axes, then φ and ρ are free generators of Z2 ∗ Z3. Because Z2 ∗ Z3

has a free subgroup of rank 2 (ρφρ, φρφρφ freely generate such a subgroup), this
leads to an F2 within the rotation group. In 1978, Osofsky simplified Hausdorff’s
approach by showing that φ and ρ generate Z2 ∗ Z3 even if θ = 45◦.

There are other results that yield specific independent pairs of rotations. We
omit the proof of the following theorem (see [Gro56, Swi58]), because from the
point of view of paradoxical decompositions of S2, the additional information it
provides is not necessary. (However, a special case of part (b) is implicit in the
proof of Thm. 6.7.)

Theorem 2.2. Suppose φ and ρ are rotations of S2 with the same angle, θ , of
rotation. Then φ and ρ are independent if either (a) the axes are perpendicular
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16 2 The Hausdorff Paradox

and cos θ is a rational different from 0,± 1
2 ,±1 or (b) the axes are distinct and

the cosine of the angle formed by the axes is transcendental.

This theorem yields the nicely simple pair of independent rotations given by

1

5

⎡
⎣3 −4 0

4 3 0
0 0 1

⎤
⎦ and

1

5

⎡
⎣1 0 0

0 3 −4
0 4 3

⎤
⎦ .

One can prove directly, using a mod-5 argument in a similar way to the proof
of Theorem 2.1, that these two matrices are independent (see [Tao04]). Theorem
2.2 leads to the following problem: Do there exist two independent rotations of
the rational sphere S2 ∩Q3 such that the group they generate acts on the rational
sphere is without fixed points? The existence of such a group would lead to a
paradoxical decomposition without requiring the Axiom of Choice. In this chapter
we will see that the answer for this question is positive.

While Theorems 2.1 and 2.2 give specific examples of free groups, it turns
out that, from a topological point of view, almost any pair of rotations is inde-
pendent. More precisely, if SO3(R)× SO3(R) is given the product topology, then
{(φ, ρ) ε SO3(R)× SO3(R) : φ and ρ are independent} is comeager (and hence
dense); this is a consequence of the discussion following Corollary 7.6.

It was pointed out that the properties of being solvable and of containing a
free non-Abelian group are mutually exclusive. Because of nonsolvable finite
groups, the two conditions are not exhaustive, but one can ask whether every
group either has a solvable subgroup of finite index or has a free non-Abelian
subgroup. Though not true for all groups, it is valid for a wide class of groups.
This is a deep result proved by Tits in 1972 (see Thm. 12.6 for a fuller discussion).
In particular, Tits showed the property to be valid for all subgroups of GLn(R),
the nonsingular linear transformations of Rn, from which it follows for all groups
of Euclidean isometries. Thus the fact that as soon as SOn(R) loses its solvability,
it gains a free non-Abelian subgroup, is a special case of a far-reaching result in
the theory of matrix groups.

Later on we shall see that the existence of larger free groups has implications
for paradoxical decompositions. Thus, despite the power of Tits’s Theorem, we
shall investigate (in Chaps. 6, 7, and 8) other sorts of free groups of isometries.
Of particular interest will be the fact that there is an independent set of rotations
in SO3(R) with the same cardinality as the continuum; in fact, the free product of
any sequence of continuum many cyclic groups is representable in SO3(R). Also,
there are continuum many independent isometries of R3 such that the group they
generate acts on R3 without nontrivial fixed points (see Thm. 7.4).

Each element of the free group of rotations (call it F ) constructed in Theo-
rem 2.1 fixes all points on some line in R3, and so Proposition 1.10 cannot yet
be applied. A naive approach to this difficulty turns out to be fruitful. Each non-
identity rotation in F has two fixed points on S2, the unit sphere, namely, the
intersection of the rotation’s axis with the sphere. Let D be the collection of all
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2 The Hausdorff Paradox 17

such points; because F is countable, so is D. Now, if P ∈ S2 \D and g ∈ F ,
then g(P) lies in S2 \D as well: If h fixed g(P), then P would be a fixed point of
g−1hg. Hence F acts on S2 \D without nontrivial fixed points, and Proposition
1.10 may be applied to this action to obtain the following result.

Theorem 2.3 (Hausdorff Paradox) (AC). There is a countable subset D of S2

such that S2 \D is SO3(R)-paradoxical.

A countable subset of the sphere can be dense, and so the paradoxical nature
of Theorem 2.3 is not immediately evident. Still, countable sets are very small
in size compared to the whole (uncountable) sphere. We shall see in the next
chapter how the smallness of D allows it to be eliminated completely, yielding the
Banach–Tarski Paradox: S2 is SO3(R)-paradoxical. But even without eliminating
D, Hausdorff’s Paradox has an important measure-theoretic consequence.

The fact (1.6) that there is no countably additive, isometry-invariant measure
on P (Rn) normalizing the unit cube naturally leads to the question of whether
measures exist satisfying a weaker set of conditions. The usual approach is to
allow the measure to assign values to a smaller collection of sets, that is, use
Lebesgue measure and live with the fact that some sets are not Lebesgue mea-
surable. Finitely additive measures had been studied prior to Lebesgue, and it is
natural to ask whether there might be a finitely additive, isometry-invariant mea-
sure defined for all subsets of Rn. It was this question that motivated Hausdorff to
carry out his groundbreaking construction on S2, because he was able to use it to
provide an answer in all dimensions except one and two. First we give a definition
and proposition that state precisely the fundamental connection between paradox-
ical decompositions and the nonexistence of finitely additive measures. Suppose
a group G acts on a set X , and E ⊆ X .

Definition 2.4. E is called G-negligible if μ(E ) = 0 whenever μ is a finitely addi-
tive, G-invariant measure on P (X ) with μ(E ) <∞.

Proposition 2.5. If E is G-paradoxical, then E is G-negligible.

Proof. Suppose μ is a finitely additive, G-invariant measure on P (X ) and
μ(E ) <∞. Let the fact that E is G-paradoxical be witnessed by Ai, gi,Bj, h j.
Then μ(E ) �

∑
μ(Ai)+

∑
μ(Bj ) =

∑
μ(giAi)+

∑
μ(h jB j ) � μ(

⋃
giAi)+

μ(
⋃

hjB j ) = μ(E )+ μ(E ) = 2μ(E ). Because μ(E ) <∞, this means
μ(E ) = 0.

One of the more noteworthy results of the theory of finitely additive measures
is Tarski’s theorem that the converse of Proposition 2.5 is valid: If E is not G-
paradoxical, then a finitely additive, G-invariant measure on P (X ) normalizing E
must exist. This will be proved in §11.1.

The next theorem deduces the SO3(R)-negligibility of S2 from the Hausdorff
Paradox by proving that countable sets are negligible with respect to finite mea-
sures on P (S2).
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18 2 The Hausdorff Paradox

Theorem 2.6 (AC). The sphere S2 is SO3(R)-negligible. Hence there is no finitely
additive, rotation-invariant measure on P (S2) having total measure one. More-
over, for any n � 3, there is no finitely additive, isometry-invariant measure on
P (Rn) normalizing the unit cube.

Proof. Suppose μ is a finitely additive, SO3(R)-invariant measure on P (S2) with
μ(S2) <∞. If D is the countable set in the Hausdorff Paradox then, by Proposi-
tion 2.5, μ(S2 \D) = 0. Hence it suffices to show that μ(D) = 0. Let 	 be a line
through the origin that is disjoint from D. For each point P ∈ D, let A(P) be the set
of angles θ such that the rotation of P around 	 through θ j radians, for any posi-
tive integer j, takes P to another point in D. The countability of D and the set of
possible j implies that A(P) is countable and hence that A =⋃{A(P) : P ∈ D} is
countable. If ρ is chosen to be a rotation around 	 through one of the uncountably
many angles not in A, then ρ has the property that, for any j, ρ j(D) is disjoint from
D. It follows that D ∪ ρ(D) ∪ ρ2(D) ∪ . . . is a pairwise disjoint union. Now sup-
pose that μ(D) > 0. Then we can choose an integer k so that kμ(D) > 1. This
means μ(D)+ μ(ρ(D))+ · · · + μ(ρk (D)) > 1 = μ(S2), a contradiction. So
μ(D) = 0.

To prove the assertion about Rn, it suffices to consider n = 3, because a mea-
sure in a higher dimension induces one in R3 as described in the proof of Corol-
lary 1.6. Now, if μ is an isometry-invariant measure on R3 normalizing the unit
cube, then μ must vanish on singletons. This is because any two singletons are
congruent and so receive the same measure; hence, if a singleton’s measure were
positive, then the measure of the unit cube would be infinite. Moreover, transla-
tion invariance implies that any cube has finite, nonzero measure, and it follows
that 0 < μ(B) <∞, where B denotes the unit ball. Define a measure ν on P (S2)
by the adjunction of radii, that is, ν(A) = μ{αP : P ∈ A, 0 < α � 1}. Because
μ({0}) = 0, ν(S2) = μ(B). Moreover, ν is finitely additive and SO3(R)-invariant
because μ is. This contradicts the SO3(R)-negligibility of S2.

The Hausdorff Paradox in Theorem 2.3 uses the Axiom of Choice, and that
cannot be avoided when working in S2. But the two rotations underlying the
paradox—the Satô rotations of Theorem 2.1—have the pleasing property that they
take rational points on the sphere to rational points on the sphere; that is, they act
on the rational sphere, S2 ∩Q3. And, even nicer, the group generated by the two
rotations acts on the rational sphere with no fixed points. This nice property is not
essential for the classic Banach–Tarski Paradox to be presented in Chapter 3, but
we give the proof here because it immediately yields a paradoxical decomposition
of the rational sphere that does not require the Axiom of Choice.

First we point out that the rational sphere does indeed look just like the real
sphere.

Proposition 2.7. The rational sphere S2 ∩Q3 is dense in the unit sphere S2.
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2 The Hausdorff Paradox 19

Proof. Let F : R2 → S2 be stereographic projection: F (P) is the point on the unit
sphere that is on the line connecting P to the north pole, (0, 0, 1). Easy algebra
shows that F (p, q) = (2p, 2q, p2 + q2 − 1)/(p2 + q2 + 1)) and so F takes ratio-
nal points in the plane to rational points on the upper hemisphere. Because F is
continuous, the rational points that arise are dense in the hemisphere, and hence
the rational points in the complete sphere are dense in the sphere.

Theorem 2.8. The Satô rotations of Theorem 2.1 act on the rational sphere with
no nontrivial fixed points.

Proof. An eigenvector computation shows that the axis of σ (resp., τ ) is (2, 1, 0)
(resp., (0, 1, 2)). Suppose the result is false and w is a nontrivial word in
{σ±1, τ±1} (the atoms) of minimal length that has a rational fixed point. Because
the axes just given strike the unit sphere in the nonrational point (2,1,0)√

5
or (0,1,2)√

5
, w

cannot be a pure power of an atom. Because the fixed-point property is preserved
under conjugation, w must be of the form τ±1 . . . σ±1 or σ±1 . . . τ±1. Then inver-
sion allows us to assume that w = τ±1 . . . σ±1.

The key tool is the quaternion representation of rotations as (c, ⇀s ). Here c =
cos(θ/2), ⇀s determines the rotation axis, and c2 + |⇀s |2 = 1. Working out the
axes (by eigenvectors) and the angles (by looking at the image of (1, 0, 0)) yields
that the representation of σ±1 is 1√

14
(3,±(2, 1, 0)) and τ± has the representation

1√
14

(3,±(0, 1, 2)).
Any quaternion (c, ⇀s ) determines a unique (up to sign) quaternion of norm 1.

So we can think of any quaternion as representing a unique rotation. This allows
us to use, say, (3,±(2, 1, 0)) to reperesent σ , and this transformation to inte-
gers simplifies the algebra. So when looking at the quaternion representation of
a word w of length k, we will always multiply by

√
14

k
, thus making all com-

ponents of quaternion integers. The key point is that quaternion multiplication
(c1,

⇀s 1) · (c, ⇀s ) gives the representation of the composition of the two underlying
rotations. That multiplication formula is (c1c− ⇀s 1 · ⇀s , c⇀s 1 + c1

⇀s + ⇀s 1 × ⇀s ),
where the dot and cross are the usual dot and cross products, respectively (see
App. A).

Let q denote the integer-valued quaternion for the rotation correspond-
ing to a word: q(w) = (cw, (Xw,Yw,Zw )). The rotation axis intersects S2 at
±(Xw,Yw,Zw )/

√
X 2

w + Y 2
w + Z2

w, so it suffices to prove that X 2
W + Y 2

W + Z2
W is not

a perfect square. This will be done by showing that X 2
W + Y 2

W + Z2
W ≡ 3 or 5 or 6

(mod 7); these values are not squares modulo 7, so the unreduced sum of squares
will be proved to be not a perfect square.

So now we will reduce all integers modulo 7, letting q(w) be the mod-7 reduc-
tion of q(w). But we need to make one more critical reduction. If we multiply a
reduced representation q(w) by some integer 1, 2, 3, 4, 5 or 6, reducing mod 7,
the result is the same as far as the quadratic character of X 2 + Y 2 + Z2 goes.
This is because, for any such scalar m, X 2 + Y 2 + Z2 is a mod-7 square iff
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20 2 The Hausdorff Paradox

m2(X 2 + Y 2 + Z2) is. So when working with q(w), we may always assume, by
appropriate multiplication by a modular inverse, that c = 1; and we will use ∼
to denote the underlying equivalence relation. This reduction allows us to show
that any power of an atom is the same as the atom itself, as far as the quadratic
character of X 2 + Y 2 + Z2 (mod 7).

Claim. For k a positive integer, q(σ k ) ∼ (1, (3, 5, 0)), q(σ−k ) ∼ (1, (4, 2, 0)),
q(τ k ) ∼ (1, (0, 5, 3)), and q(σ−k ) ∼ (1, (0, 2, 4)).

Proof of claim. The base case is q(σ ) ∼ (3, (0, 1, 2)) ∼ (1, (3, 5, 0)). It suffices
to show that q(σ ) · q(σ ) = (1, (3, 5, 0)), which is easily verified by one quater-
nion multiplication and reduction modulo 7. This equation means that inductively
moving up through the powers leads to no change. The other three cases are
identical.

The claim means that any power of an atom in a word may be replaced by
the corresponding atom without affecting the mod-7 quadratic character we care
about. So we may assume w = τ±1σ±1 . . . τ±1σ±1.

Define V = {((1, (1, 1, 5)), (1, (5, 1, 1)), (1, (4, 3, 4)), (1, (6, 5, 6))}. This is
an invariant set for words of the form τ±1σ±1. By this we mean q(τ±1σ±1V ) ⊆ V .
This concludes the proof, because inductively moving left through w, we have
that q(w) ∈ V . The sums of squares of the four vectors from V are all 6 (mod 7).
Because we are using∼-equivalence classes, the actual sum of squares that arises
from a given word w will be one of 3, 5, or 6, because the quadratic character
does not change.

To prove invariance, observe first that it holds for the four basic words of the
form τ±1σ±1. For example, consider τσ−1:

q(τ ) · q(σ−1) = (1, (0, 5, 3)) · (1, (4, 2, 0)) = (10, (−4,−4, 8))

≡ (3, (3, 3, 1)) ∼ (1, (1, 1, 5)).

The other three are similar. So it remains only to show that application of any
of the four words of length two leaves V invariant. This requires 16 quaternion
multiplications for the four possibilities in V and four words of length two. A
simple computation shows that the set is invariant as claimed.

Corollary 2.9. The rational sphere is paradoxical.

Proof. By Theorem 2.1 and Proposition 1.10.

As observed at the beginning of this chapter, there are no free non-Abelian
subgroups in the lower-dimensional Euclidean isometry groups. This is why the
ideas of the Hausdorff Paradox cannot be used to decide the existence of isometry-
invariant, finitely additive measures defined on P (R1) or P (R2). In Chapter 12 we
shall show that invariant measures always exist with respect to groups satisfying
certain abstract conditions. Because these conditions include solvability, it will
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Notes 21

follow that isometry-invariant, finitely additive measures defined on P (R) and
P (R2) exist.

Notes

The matrices that Satô used in Theorem 2.1 are from [Sat95]. The proof presented
here was found with the help of Mathematica. There are many ways to get an
independent pair of rotations; but the ones of Satô also yield the stronger rational
result of Theorem 2.8.

Hausdorff’s original embedding of Z2 ∗ Z3 in a rotation group appears in
[Hau14b, Hau14a, p. 469]; for a modern treatment, see [Str79]. Osofsky’s sim-
pler construction appears as a problem in the American Mathematical Monthly
[Oso76, Oso78] (see also [Har83]). The fact that Z2 ∗ Z3, and hence SO3(R),
contains a free subgroup of rank 2 is first stated in [Neu29, p. 80n22]. In fact,
G ∗ H always has a free subgroup of rank 2 unless one of G or H is trivial, or
each of G, H has order 2 (see [MKS66, p. 195, Ex. 19]). In an addendum to
[Oso78], Lyndon shows, using quaternions, that the three rotations through 120◦

around the three orthogonal axes in R3 freely generate Z3 ∗ Z3 ∗ Z3.
It is curious that Hausdorff’s embedding of a free product in SO3(R) appeared

in the same year as the Sierpiński–Mazurkiewicz Paradox (Thm. 1.7) that involves
the embedding of a free semigroup in G2. Perhaps Hausdorff was motivated by
Felix Klein’s representation of Z2 ∗ Z3 as linear fractional transformations and
hence as isometries of the hyperbolic plane [KF90]; see the discussion of the
hyperbolic plane in Chapter 4.

Many papers on the representation of free groups using rotations or isome-
tries [BM61, Bot57, Gro56, GD54, Dek58b, Dek59b, MS58] appeared in the
Netherlands and Poland in the 1950s, largely inspired by work of Sierpiński and
de Groot, and many results were obtained independently in both countries. Thus
part (b) of Theorem 2.2, originally conjectured by de Groot [Gro56], was proved
by Dekker [Dek59b], while a similar result was proved by Balcerzyk and Myciel-
ski [BM61]. Part (a) of Theorem 2.2 is stated in [Swi58]. The existence of a
free group of rotations of rank 2ℵ0 was essentially proved by Sierpiński [Sie45b]
in 1945 and rediscovered by de Groot and Dekker [Gro56, GD54] in 1954. De
Groot [Gro56] conjectured that any free product of continuum many subgroups of
SO3(R), each of size strictly less than 2ℵ0 , is also a subgroup of SO3(R). This was
proved by Balcerzyk and Mycielski [BM61], although Dekker [Dek59b] indepen-
dently proved the special case where all the groups are cyclic. The existence of
free groups of isometries acting on R3 without nontrivial fixed points was proved
independently by Mycielski and Świerczkowski [MS58] and Dekker [Dek59b].
Dekker also studied the isometry groups of higher-dimensional Euclidean and
non-Euclidean spaces (see Chap. 6).

The result of Tits on matrix groups, which answered a conjecture of Bass and
Serre, appears in [Tit72].
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22 2 The Hausdorff Paradox

The Hausdorff Paradox (Thm 2.3) is, of course, due to Hausdorff [Hau14b,
Hau14a, p. 469], who used it to prove Theorem 2.6. Hausdorff’s formulation of
Theorem 2.3 was slightly different though. He showed that, modulo a countable
set of points, a “half” of a sphere could be congruent to a “third” of a sphere, rather
than that a near-sphere could be duplicated. From the point of view of disproving
the existence of measures, this is all that is required.

Theorem 2.8 and the corollary that follows are due to Satô [Sat95].
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3

The Banach–Tarski Paradox: Duplicating
Spheres and Balls

The idea of cutting a figure into pieces and rearranging them to form another fig-
ure goes back at least to Greek geometry, where this method was used to derive
area formulas for regions such as parallelograms. When forming such rearrange-
ments, one totally ignores the boundaries of the pieces. The consideration of a
notion of dissection in which every single point is taken into account, that is, a
set-theoretic generalization of the classical geometric definition, leads to an inter-
esting, and very general, equivalence relation. By studying the abstract proper-
ties of this new relation, Banach and Tarski were able to improve on Hausdorff’s
Paradox (Thm. 2.3) by eliminating the need to exclude a countable subset of the
sphere. Because geometric rearrangements will be useful too, we start with the
classical definition in the plane.

Definition 3.1. Two polygons in the plane are congruent by dissection if one of
them can be decomposed into finitely many polygonal pieces that can be rear-
ranged using isometries (and ignoring boundaries) to form the other polygon.

It is clear that polygons that are congruent by dissection have the same area.
The converse was proved in the early nineteenth century, and a simple proof can
be given by efficiently making use of the fact that congruence by dissection is an
equivalence relation (transitivity is easily proved by superposition, using the fact
that the intersection of two polygons is a polygon (see Boltianskii [Bol78] or Eves
[Eve63, p. 233]).

Theorem 3.2 (Bolyai–Gerwien Theorem). Two polygons are congruent by dis-
section if and only if they have the same area.

Proof. To prove the reverse direction, it suffices, because of transitivity, to show
that any polygon is congruent by dissection into a single square. We do this first
for a triangle. Figure 3.1(a) shows that any triangle is congruent by dissection to
a rectangle. Figure 3.1(b) shows how a rectangle whose length is at most 4 times
its width can be transformed to a square: The triangles to be moved are clearly
similar to their images, and the fact that the area of the square equals that of the

23
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24 3 The Banach–Tarski Paradox: Duplicating Spheres and Balls

Figure 3.1. The steps needed to get a square from a triangle. The Pythagorean step is
done by translations only, a fact that will be important in the circle-squaring work of

Chapter 9 (see Lemma 9.24).

rectangle implies that they are, in fact, congruent. The figure does not correctly
describe the situation when the length is greater than four times the width, but
any such unbalanced rectangle can be transformed to one of the desired type by
repeated halving and stacking, as illustrated in Figure 3.1(c). Hence any triangle
is congruent by dissection with a square.

The proof is concluded by observing that the Pythagorean Theorem can be
proved in a way that can be used to transform two (or more) squares into one by
dissection. Consider Figure 3.1(d), which proves that c2 = a2 + b2 by showing
how the squares on a and b can be transformed by dissection into one on c; this
Pythagorean proof is due to physicist George Airy.

Used repeatedly, this construction shows how any finite set of squares can be
transformed by dissection to a single square. So the last step is to show that any
polygon can be divided into triangles. A simple way to do this is to draw a vertical
line through every vertex; this divides the polygon into trapezoids, and each such
splits along a diagonal into two triangles. Another approach to triangulation, one
that avoids adding any new vertices, can be found in [DR11, p. 233]. Squaring
the triangles and combining the squares by the specific construction given earlier
yields one square that is congruent by dissection to the original polygon.

This efficient proof does not lead to particularly efficient or beautiful dissec-
tions. For several interesting examples, such as a four-piece squaring of an equi-
lateral triangle, see [Eve63, Chap. 5]. One can ask about restricting the group.
The most important result in this area is the Hadwiger–Glur Theorem from 1951
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3 The Banach–Tarski Paradox: Duplicating Spheres and Balls 25

[Bol78, §10]. That gives a criterion for congruence by dissection of polygons
using translations only and has this important consequence.

Theorem 3.3 (Hadwiger–Glur). A convex polygon is congruent by dissection to
a square using translations if and only if the polygon is centrally symmetric.

The theory of geometrical dissections in higher dimensions, or other geome-
tries, is not at all as simple as in the plane. In fact, the third problem on Hilbert’s
famous list from 1900 asks whether a regular tetrahedron in R3 is congruent by
dissection (into polyhedra) with a cube. All proofs of the volume formula for a
tetrahedron were based on a limiting process of one sort or another, such as the
devil’s staircase [Hea56, p. 390] or Cavalieri’s Principle [Moi74]. Hopes for an
elegant dissection proof were dashed when Dehn proved, in 1900, that a regu-
lar tetrahedron is not congruent by dissection with any cube (see [Bol78] for a
proof). But it is possible that for a suitable generalization of dissection where a
wider class of pieces is allowed, a regular tetrahedron is piecewise congruent to
a cube. Indeed, one consequence of the Banach–Tarski Paradox is that a regular
tetrahedron can be cubed if arbitrary sets are allowed as pieces (see Thms. 3.11
and 9.28).

The set-theoretic version of congruence by dissection may be stated in the
context of an arbitrary group action.

Definition 3.4. Suppose G acts on X and A,B ⊆ X . Then A and B are G-
equidecomposable (sometimes called finitely G-equidecomposable or piecewise
G-congruent) if A and B can each be partitioned into the same finite number of
respectively G-congruent pieces. Formally,

A =
n⋃

i=1

Ai, B =
n⋃

i=1

Bi,

Ai ∩ Aj = ∅ = Bi ∩ Bj if i < j � n, and there are g1, . . . , gn ∈ G such that, for
each i � n, gi(Ai) = Bi.

The notation A ∼G B will be used to denote the equidecomposability relation,
but the G will be suppressed if X is a metric space and G is the full isometry
group, or if it is obvious which group G is meant. Thus, for sets in Rn, equide-
composability means Gn-equidecomposability. We say A is G-equidecomposable
with B using n pieces (denoted A ∼n B) if the disassembly can be effected with n
pieces.

It is straightforward to verify that ∼G is an equivalence relation. Transitiv-
ity of ∼G is proved in the same way as for congruence by dissection, yielding
that if A ∼m B and B ∼n C, then A ∼ C, using at most mn pieces. Not surpris-
ingly, then, the relation ∼n is not transitive. A simple counterexample is A =
{1, 2, 3, 4},B = {1, 2, 5, 6}, and C = {1, 5, 9, 13};A ∼2 B ∼2 C, but A ∼4 C and
the 4 cannot be lowered. We may now rephrase more succinctly the notion of a
set being G-paradoxical. E is G-paradoxical if and only if E contains disjoint sets
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26 3 The Banach–Tarski Paradox: Duplicating Spheres and Balls

A,B such that A ∼G E and B ∼G E. One can then obtain immediately the follow-
ing easy but useful fact, which shows that the property of being G-paradoxical is
really a property of the ∼G-equivalence classes in P (X ).

Proposition 3.5. Suppose G acts on X and E,E ′ are G-equidecomposable sub-
sets of X . If E is G-paradoxical, so is E ′.

It is not immediately apparent that there is any connection between equidecom-
posability and congruence by dissection. Indeed, they differ in a most fundamental
way. Because there is no restriction on the subsets that may be used to verify that
A ∼ B, there is no guarantee that A and B have the same area (or n-dimensional
Lebesgue measure, if A,B ⊆ Rn). For if the pieces are non-Lebesgue measurable,
then the straightforward proof that works in the case of congruence by dissection
cannot be used, because it involves summing the areas of the pieces. Thus it is
conceivable that all polygons in the plane are equidecomposable or that all poly-
hedra in R3 are equidecomposable. In fact, the latter assertion is true (see Cor.
3.10), whereas the former is not! The preservation of a given (G-invariant) mea-
sure under G-equidecomposability is related to the existence of a finitely additive,
G-invariant extension of the measure to all subsets of X , and this, in turn, depends
on abstract properties of the group G (and of G’s action on X ). The second part
of this book deals extensively with the question of which groups have the prop-
erty that invariant measures on an algebra of subsets of X may be extended to
invariant, finitely additive measures on all subsets of X .

In a different vein, one can ask whether polygons that are congruent by dissec-
tion are necessarily equidecomposable. The problem is that, somehow, the bound-
aries of the pieces in a geometrical dissection must be accounted for in a precise
way. In a typical dissection, such as those in Figure 3.1, the boundaries do double
duty and so cannot simply be assigned to one of the pieces. This problem can be
solved though, and the main tool is a very important property of the equivalence
relation ∼G.

Whenever one has an equivalence relation on the collection of subsets of a set,
one may define another relation, �, by A � B if and only if A is equivalent to a
subset of B. Then � is really a relation on the equivalence classes and, in fact, is
reflexive and transitive. The Schröder–Bernstein Theorem of classical set theory
states that if the cardinality relation is used—A and B are equivalent if there is
a bijection from A to B—then � is antisymmetric as well; that is, if A � B and
B � A, then A and B have the same cardinality. Thus � is a partial order on the
equivalence classes. (Under the Axiom of Choice, every set is equivalent to an
ordinal, so � is a well-ordering.) Banach realized that the proof of the Schröder–
Bernstein Theorem could be applied to any equivalence relation satisfying two
abstract properties; in particular, it applies to G-equidecomposability. From now
on we use the notation A � B only in the context of equidecomposability: A � B
means A is G-equidecomposable with a subset of B.
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Theorem 3.6 (Banach–Schröder–Bernstein Theorem). Suppose G acts on X
and A,B ⊆ X . If A � B and B � A, then A ∼G B. Thus � is a partial ordering of
the ∼G-classes in P (X ).

Proof. The relation ∼G is easily seen to satisfy the following two conditions:

(a) if A ∼ B, then there is a bijection g : A → B such that C ∼ g(C) whenever
C ⊆ A, and

(b) if A1 ∩ A2 = ∅ = B1 ∩ B2, and if A1 ∼ B1, and A2 ∼ B2, then A1 ∪ A2 ∼
B1 ∪ B2.

The rest of the proof assumes only that ∼ is an equivalence relation on P (X )
satisfying (a) and (b).

Let f : A → B1, g: A1 → B, where B1 ⊆ B and A1 ⊆ A, be bijections as guar-
anteed by (a). Let C0 = A \A1 and, by induction, define Cn+1 to be g−1 f (Cn); let
C =⋃∞

n=0 Cn. Then it is easy to check that g(A \C) = B \ f (C), and hence the
choice of g implies that A \C ∼ B \ f (C). But, by the choice of f ,C ∼ f (C) and
property (b) yields (A \C) ∪C ∼ (B \ f (C)) ∪ f (C), or A ∼ B as desired.

It is clear from the proof that m+ n pieces suffice for the final decomposi-
tion if m, n, respectively, are used in the hypothesized decompositions. This proof
serves as a proof of the classical Schröder–Bernstein Theorem as well, because
the cardinality relation satisfies properties (a) and (b).

This theorem eases dramatically the verification of equidecomposability. As
an illustration, suppose a subset E of X is G-paradoxical, say, A,B are dis-
joint subsets of E with A ∼ E ∼ B. Then E ∼ B ⊆ E \A ⊆ E, so the Banach–
Schröder–Bernstein Theorem implies that E \A ∼ E. This proves the following
result.

Corollary 3.7. A subset E of X is G-paradoxical if and only if there are disjoint
sets A,B ⊆ E with A ∪ B = E and A ∼ E ∼ B.

A consequence of Corollary 3.7 is that F2 is paradoxical in a more complete
fashion than shown in Figure 1.1. We can split F2 into two disjoint sets A and
B with each of these sets being equidecomposable to F2. Figure 3.2 illustrates
such a paradox in F2, where A = A1 ∪ A2 and B = B1 ∪ B2, and A1 ∪ σA2 = F2 =
B1 ∪ τB2.

Another application of the theorem is the following counterintuitive result, the
underlying idea of which will appear later (Cor. 3.11 and Thm. 9.3). It yields, for
example, that a given disk and a given square may each be split into two Borel
sets, such that corresponding pieces are similar; as an exercise, the reader can
construct explicitly the four pieces in this special case. Recall that the group of all
similarities of Rn is the group generated by all isometries and all magnifications
from the origin, where the latter refers to a function of the form f (P) = αP, where
α 
= 0.
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28 3 The Banach–Tarski Paradox: Duplicating Spheres and Balls

Figure 3.2. An improved paradoxical decomposition of F2. If A = A1 ∪ A2 and
B = B1 ∪ B2, then each of A,B is equidecomposable with F2.

Corollary 3.8. Any two subsets X ,Y of Rn, each of which is bounded and
has nonempty interior, may be partitioned as follows: X = X1 ∪ X2,Y = Y1 ∪ Y2,
where X1 is similar to Y1, and X2 is similar to Y2. If X and Y are Borel sets, so are
the four sets in the decomposition.

Proof. The hypotheses on X and Y guarantee the existence of similarities g1, g2

such that g1(X ) ⊆ Y and g2(Y ) ⊆ X ; simply shrink X so that it fits into Y , and
vice versa. Therefore X � Y and Y � X with respect to equidecomposability
using similarities, and because m+ n = 1+ 1 = 2, the result now follows from
Theorem 3.6. If X and Y are Borel, then the sets introduced by the proof of
Theorem 3.6 will also be Borel.

The following application of Theorem 3.6 is important in that it shows
that polygons that are congruent by (geometric) dissection are also equide-
composable, that is, congruent by set-theoretic dissection.

Theorem 3.9. If the polygons P1 and P2 are congruent by dissection, then they
are equidecomposable.

Proof. Let Q1,Q2 be the open sets obtained by forming the union of all the interi-
ors of the polygonal subsets of P1,P2, respectively, arising from the hypothesized
dissection. Then Q1 ∼ Q2, and so the proof will be complete once it is shown that
P1 ∼ Q1 and P2 ∼ Q2, that is, that the boundary segments can be absorbed. This
follows from the following fact (by setting A = Q1, and T = P1 \Q1): If A is a
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bounded set in the plane with nonempty interior and T is a set, disjoint from A,
consisting of finitely many (bounded) line segments, then A ∼ A ∪ T.

To prove this fact, let D be a disc contained in A, and let r be its radius. By
subdividing the segments in T , we may assume that each one has length less
than r. Let θ be any rotation of D about its center having infinite order, let R be
any radius of D (excluding the center of D), and let R = R ∪ θ (R) ∪ θ2(R) ∪ . . . .
Now, if s ∈ T , then D ∪ s � D. This is because θ (R) is disjoint from R and
D \R, so D ∪ s = (D \R) ∪ R ∪ s ∼ (D \R) ∪ θ (R) ∪ σ (s) ⊆ D, where σ is any
isometry taking s to a subset of R. Because, obviously, D � D ∪ s, the Banach–
Schröder–Bernstein Theorem implies that D ∼ D ∪ s. Because each of the seg-
ments in T may thus be absorbed, one at a time, into D, we have that D ∼ D ∪ T .
Adding A \D to both sides and applying Theorem 3.6(b) yields A ∼ A ∪ T , as
required.

Because of the Bolyai–Gerwien Theorem (Thm. 3.2), the preceding theorem
implies that any two polygons of the same area are equidecomposable. The con-
verse is true, though much harder to prove, because it follows from the existence
of a Banach measure (a finitely additive, G2 -invariant measure on all subsets of
R2 that extends Lebesgue measure (see Cor. 12.9)).

In 1924, Tarski asked his famous circle-squaring question: Is a disk equide-
composable with a square of the same area? This was resolved in 1990 by Miklos
Laczkovich, who showed, surprisingly, that the answer is yes, and only translations
were needed. Also, he showed that Theorem 3.9 can be done with translations only
(see Thm. 9.22).

The proof of Theorem 3.8 might be called a proof by absorption, because it
shows how a troublesome set (the boundary segments) can be absorbed in a way
that, essentially, renders it irrelevant. Now, we have seen that free groups of rank
2 cause paradoxes when they act without fixed points, and so situations where the
fixed points can be absorbed will be especially important. The following proof
is typical of the absorption proofs and immediately yields the Banach–Tarski
Paradox.

Theorem 3.10. If D is a countable subset of S2, then S2 and S2 \D are SO3(R)-
equidecomposable (using two pieces).

Proof. We seek a rotation, ρ, of the sphere such that the sets D, ρ(D), ρ2(D), . . .
are pairwise disjoint. This suffices, because then S2 = D∗ ∪ (S2 \D∗) ∼ ρ(D∗) ∪
(S2 \D∗) = S2 \D, where D∗ =⋃{ρn(D) : n = 0, 1, 2, . . .}. The construction of
ρ is similar to the proof of Theorem 2.6. Let 	 be a line through the origin that
misses the countable set D. Let A be the set of angles θ such that for some n > 0
and some P ∈ D, ρ(P) is also in D, where ρ is the rotation about 	 through nθ
radians. Then A is countable, so we may choose an angle θ not in A; let ρ be
the corresponding rotation about 	. Then ρn(D) ∩ D = ∅ if n > 0, from which it
follows that whenever 0 � m < n, ρm(D) ∩ ρn(D) = ∅ (consider ρn−m(D) ∩ D);
therefore ρ is as required.
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Corollary 3.11 (The Banach–Tarski Paradox) (AC). The sphere S2 is SO3(R)-
paradoxical, as is any sphere centered at the origin. Moreover, any solid ball in
R3 is G3-paradoxical and R3 itself is paradoxical.

Proof. The Hausdorff Paradox (Thm. 2.3) states that S2 \D is SO3(R)-
paradoxical for some countable set D (of fixed points of rotations). Combining
this with the previous theorem and Proposition 3.4 yields that S2 is SO3(R)-
paradoxical. Because none of the previous results depends on the size of the
sphere, spheres of any radius admit paradoxical decompositions.

It suffices to consider balls centered at 0, because G3 contains all transla-
tions. For definiteness, we consider the unit ball B, but the same proof works
for balls of any size. The decomposition of S2 yields one for B \ {0} if we use
the radial correspondence: P → {αP : 0 < α � 1}. Hence it suffices to show that
B is G3-equidecomposable with B \ {0}, that is, that a point can be absorbed.
Let P = (0, 0, 1

2 ), and let ρ be a rotation of infinite order about the axis that
is the horizontal line in the x-z plane containing P. Then, as usual, the set
D = {ρn(0) : n � 0} may be used to absorb 0 : ρ(D) = D \ {0}, so B ∼ B \ {0}.
If, instead, the radial correspondence of S2 with all of R3 \ {0} is used, one gets a
paradoxical decomposition of R3 \ {0} using rotations. Because, exactly as for the
ball, R3 \ {0} ∼G3 R3,R3 is paradoxical via isometries.

Because of its use of Theorem 3.9, this proof of the Banach–Tarski Paradox
seems to depend on having uncountably many rotations available. But, as a conse-
quence of a more general approach in the next chapter, we shall see (Thm. 13.21)
that for subgroups G of SO3(R), S2 is G-paradoxical if and only if G has a free
subgroup of rank 2. In fact, it follows from Theorem 5.5 that S2 is paradoxical
with only the rotations φ and ρ of Theorem 2.1 being used to move the pieces of
the decomposition.

The version of the Banach–Tarski Paradox in Corollary 3.11 does not add any-
thing to our knowledge of finitely additive measures not already derivable from the
Hausdorff Paradox (see Thm. 2.6), but the result is much more striking, indeed,
more bizarre, than Hausdorff’s. A ball, which has a definite volume, may be taken
apart into finitely many pieces that may be rearranged via rotations of R3 to form
two, or even a million, balls, each identical to the original one! Or, more whimsi-
cally, the unit ball may be decomposed into finitely many pieces, forming a three-
dimensional jigsaw puzzle with the following property: For each n � 1,000,000,
the pieces of the puzzle may be arranged using rotations to form n disjoint unit
balls. Of course, because the Axiom of Choice is used to produce the pieces, the
jigsaw would have to be inconceivably sharp!

Rotations preserve volume, and this is why the result has come to be known
as a paradox. A resolution is that there may not be a volume for the rotations to
preserve; the pieces in the decomposition may be (indeed, will have to be) non-
Lebesgue measurable. In fact, we have already seen (Thm. 2.6) that S2 is SO3-
negligible, that is, there is no rotation-invariant, finitely additive measure defined
for all subsets of S2 (or of the unit ball).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.006
https://www.cambridge.org/core


3 The Banach–Tarski Paradox: Duplicating Spheres and Balls 31

The proof of the Banach–Tarski Paradox, like all proofs of the existence of a
nonmeasurable set, is nonconstructive in that it appeals to the Axiom of Choice.
It has been argued that the result is so counterintuitive, so patently false in the
real world, that one of the underlying assumptions must be incorrect; the Axiom
of Choice is usually selected as the culprit. We discuss this argument more fully
in Chapter 15, where the role that Choice plays in the foundations of measure
theory will be examined in detail. For now, let us mention two points. First, strange
results that do not require the Axiom of Choice abound in all of mathematics. In
particular, there are several striking paradoxes whose construction does not use
AC:

� Sierpiński–Mazurkiewicz Paradox in R2 (§1.2)
� Mycielski–Wagon Paradox in H2 (§4.3)
� Satô Paradox in S2 ∩Q3 (Chap. 2)
� Dougherty–Foreman Paradox (§11.2)

These paradoxes are as startling as the duplication of the sphere. Second, the
Axiom of Choice is consistent with the other axioms of set theory; as shown by
Gödel, the axiom is true in the “constructible universe.” Hence, independent of
its truth in any individual’s view of the set-theoretic universe, the Banach–Tarski
Paradox is, at the least, consistent.

Though volume is not one of them, there is one simple property that is pre-
served by equidecomposability in R3: If A is bounded, then so is any set equide-
composable with A. Banach and Tarski were able to show that any two bounded
sets, each having nonempty interior, are equidecomposable. The condition on inte-
rior is used to get started, because the basic Banach–Tarski Paradox is for a solid
ball. Thus they generalized their already surprising result so that it applies to
solids of any shape. It is a consequence of this strengthening that any bounded
subset of R3 with nonempty interior is paradoxical; in fact, the unit ball is equide-
composable with any other ball, no matter how large or small. Another conse-
quence is that any two polyhedra in R3 are equidecomposable; this should be
contrasted with the result (Thm. 3.8 and remarks following) that two polygons are
equidecomposable if and only if they have the same area.

Theorem 3.12 (Banach–Tarski Paradox, Strong Form) (AC). If A and B are
any two bounded subsets of R3, each having nonempty interior, then A and B are
equidecomposable.

Proof. It suffices to show that A � B, for then, by the same argument, B � A,
and Theorem 3.6 yields A ∼ B. Choose solid balls K and L such that A ⊆ K and
L ⊆ B, and let n be large enough that K may be covered by n (overlapping) copies
of L. Now, if S is a set of n disjoint copies of L, then using the Banach–Tarski
Paradox to repeatedly duplicate L, and using translations to move the copies so
obtained, yields that L � S. Therefore A ⊆ K � S � L ⊆ B, so A � B.

This remarkable result usually is viewed negatively because it so forcefully
illustrates Hausdorff’s Theorem (Thm. 2.6) that certain measures do not exist.
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Not all consequences of the Banach–Tarski Paradox are negative, however. Tarski
used it to prove a result on finitely additive measures on the algebra of Lebesgue
measurable subsets of R3, and this result was used in work on the uniqueness of
Lebesgue measure (see Lemma 11.9 and remarks following Thm. 13.13).

There are some interesting problems of a topological nature regarding the
Banach–Tarski Paradox. As pointed out, the pieces into which the sphere S2 is
decomposed in order to be duplicated cannot be Lebesgue measurable and hence
cannot be Borel sets. There is another family of subsets of Rn or Sn that shares
many of the properties of the measurable sets. A set is said to have the Property
of Baire if it differs from a Borel set by a meager set; that is, the symmetric dif-
ference X � B (= (X \B) ∪ (B \X )) is meager for some Borel set B. (Recall that
a set is meager—often said to be of first category—if it is a countable union of
nowhere dense sets.) In fact (see [Oxt71, p. 20]), the set B in the preceding defi-
nition can be taken to be open. Not all sets have the Property of Baire: Using the
representation using open sets just mentioned, it is not hard to see that the set M
of the proof of Theorem 1.5 (whose construction used the Axiom of Choice) fails
to have the Property of Baire. See [Oxt71] for more on this family of sets.

There are many similarities between the σ -algebras of measurable sets and sets
with the Property of Baire; for instance, a set is Lebesgue measurable if and only
if it differs from a Borel set (in fact an Fσ set) by a null set (meaning a set of
measure zero). But the two notions do not coincide. Every subset of Rn may be
split into a null set and a meager set [Oxt71, p. 5], and if a nonmeasurable set is
so divided, the meager part cannot by measurable.

While the measurable subsets of S2 carry a finitely additive (in fact, count-
ably additive) SO3(R)-invariant measure of total measure 1—namely, Lebesgue
measure—it was for many years not known whether such a measure exists on the
sets having the Property of Baire.

This was known as Marczewski’s Problem and was listed as Open Problem 1
in the first edition of this book. It was expected that the result would be yes; that is,
that such a measure would exist. But in a stunning piece of work in 1994, Randall
Dougherty and Matt Foreman proved [DF94] that the Banach–Tarski Paradox can
be constructed in such a way that the pieces have the Property of Baire. There-
fore there is no finitely additive, rotation-invariant measure on the Property of
Baire subsets of the sphere. A discussion of their work is given in §11.2. The
work of Dougherty and Foreman has many surprising consequences. For example
(Thm. 11.7), any cube, no matter how small, has pairwise disjoint open subsets
U1,U2, . . . ,Um such that, for suitable isometries, ∪ρiUi is dense in the unit cube.

Another old problem on the topology of pieces concerns more general metric
spaces. No paradoxical decomposition of the sphere can use only Borel pieces,
as previously pointed out. How general is this fact? If N is given the discrete
metric, then any permutation is an isometry, and because N is countable, all sub-
sets are Borel; hence (see Thm. 1.4), N is Borel paradoxical. Because of this, and
other examples, we restrict our attention to compact metric spaces. Now, any com-
pact metric space bears a countably additive, G-invariant Borel measure of total
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measure one, where G is the group of isometries of the space. (To prove this, put
a metric on G by defining the distance between g1 and g2 to be the supremum
of the distance between g1(x) and g2(x), for x ∈ X . One can check that this turns
G into a compact topological group, and therefore G bears a left-invariant Borel
measure, ν, of total measure one, namely Haar measure (see [Coh80]). We may
use ν to define the desired Borel measure, μ, on X by fixing some x ∈ X and
setting μ(A) = ν({g ∈ G : g(x) ∈ A}).) The existence of such a Borel measure,
even if it were only finitely additive, means that a compact metric space is never
paradoxical using Borel pieces.

But a rather different problem arises if we relax the definition of isometry by
considering partial isometries rather than global isometries. Let us reserve the
term congruent for two subsets A and B of a metric space to mean that there is
a distance-preserving bijection from A to B, that is, σ (A) = B for some partial
isometry σ . For Rn, this leads to nothing new, because partial isometries extend
to isometries of Rn, but in more general spaces, such extensions may not exist. In
compact metric spaces, however, it is easy to see that any isometry on A extends
uniquely to one on A, the closure of A (see [Lin26, p. 215]). This congruence rela-
tion does not arise from a group action, but the definition of paradoxical decom-
position is easily modified to apply. Simply replace the sets gi, (Ai) and h j(Bj ) by
sets congruent to Ai,Bj, respectively. Note that if A is Borel and congruent to B,
it is not obvious that B also is Borel; in general, continuous images of even closed
sets need not be Borel. But for complete, separable spaces (sometimes called Pol-
ish spaces; compact spaces are Polish), a one-to-one, continuous image of a Borel
set is Borel (see [Kur66, p. 487]), and hence the Borel sets are, indeed, closed
under congruence.

Question 3.13. Is it true that no compact metric space is paradoxical (with respect
to congruence) using Borel pieces?

Of course, an affirmative answer would follow from the existence of a finitely
additive, congruence-invariant Borel measure on the space, having total measure
one. This problem, in the (possibly stronger) measure-theoretic form just given,
is an old one; it was posed by Banach and Ulam in 1935 as the second problem in
the famous collection of primarily Polish problems known as The Scottish Book
[Mau81]. There are three interesting partial results. Mycielski [Myc74] showed
that any compact metric space admits a countably additive, Borel measure of total
measure one that assigns congruent open sets the same measure; hence there are
no paradoxical decompositions using just open sets. Because Mycielski’s con-
struction yields a countably additive measure, the existence of countable, com-
pact metric spaces (e.g., {0, 1, 1

2 ,
1
3 , . . .}) shows that it cannot be modified to work

for closed sets. Nevertheless, Davies and Ostaszewski [DO79] have shown how
to construct finitely additive, congruence-invariant measures of total measure one
for all countable compact metric spaces. Moreover, Bandt and Baraki [BB86]
have shown that under the additional assumption that the metric space is locally
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34 3 The Banach–Tarski Paradox: Duplicating Spheres and Balls

homogeneous (any two points have congruent neighborhoods), Mycielski’s mea-
sure does indeed assign congruent Borel sets the same measure.

The strong form of the Banach–Tarski Paradox implies that a regular tetrahe-
dron in R3 is equidecomposable with a cube. This is not in the spirit of the sort
of dissection Hilbert asked for in his third problem, because any cube will do; the
cube need not have the same volume as the tetrahedron. But this raises the possi-
bility of cubing a regular tetrahedron using pieces restricted to some nice collec-
tion of sets more general than polyhedra (the context of Hilbert’s Third Problem),
but not so general that paradoxes exist and volume is not preserved.

A natural choice is to restrict the pieces to be Lebesgue measurable, for then
equidecomposable sets must have the same measure. Recently Grabowski, Máthé,
and Pikhurko [GMP∞a, GMP∞b] have proved that this is possible.

Theorem 3.14. Any tetrahedron in R3 is equidecomposable with a cube using
isometries and pieces that are Lebesgue measurable.

See Theorem 9.28 for more on this result. R. J. Gardner Gar85 has shown that
such a result is not possible if the group is assumed to be discrete. There are
related questions and results in R1 and R2 (see Chap. 9).

Finally, a different, rather more bizarre question arises if one asks whether the
pieces in a paradoxical duplication can be moved physically to form the two new
copies of, say, the sphere. Because the pieces do not exist physically, this calls
for some clarification. Consider the equidecomposability of a unit ball with two
disjoint unit balls. Can the motions of the pieces, assuming the latter somehow to
be given, be actually carried out in R3 in such a way that the pieces never overlap?
This was a long-standing open question of de Groot but was settled positively
by Trevor Wilson in 2005, while he was an undergraduate at CalTech. Loosely
speaking, a ball in R3 can be partitioned into sets that can be rearranged into two
balls of the same radius in such a way that the piece can be simultaneously moved
into their new positions so that, at any particular time, the pieces are disjoint. A
proof is given in Corollary 10.15.

In the rest of Part I, we show how versions of the Banach–Tarski Paradox
can be constructed in other spaces, such as higher-dimensional spheres and non-
Euclidean spaces. As pointed out at the end of Chapter 2, the Banach–Tarski Para-
dox does not exist in R1 or R2, but other constructions are possible that have sim-
ilar measure-theoretic implications. And we also study refinements of the original
construction in R3, showing, for example, how to duplicate a ball using the small-
est possible number of pieces.

Notes

The use of dissection to derive area formulas dates at least to Greek geometry, but
the converse idea (Theorem 3.2) was not considered until the nineteenth century.
F. Bolyai and P. Gerwien discovered Theorem 3.2 independently around 1832
(see [Ger33]), but apparently William Wallace of England had proved the result
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already in 1807 ([Pla31]; see also [Emc46, p. 225] and [Jac12]). Gerwien also
proved [Ger83] that Theorem 3.2 is valid for spherical polyhedra. A complete
treatment of the Bolyai–Gerwien Theorem, including a discussion of the smallest
possible group of isometries with respect to which it is true, may be found in
[Bol78]. For a treatment of the Bolyai–Gerwien Theorem in both Euclidean and
hyperbolic geometry, see [MP81, §10.4].

For an exposition of the solution, due to Dehn, of Hilbert’s Third Problem,
[Bol78]. More advanced topics related to this problem may be found in [Sah79].

The definition of G-equidecomposability is due to Banach and Tarski [BT24,
Tar24a], and [BT24] contains many elementary properties of ∼G. The example
showing that ∼2 is not transitive is from Sierpiński’s monograph [Sie54], which
contains a fairly complete discussion of equidecomposability, including the Haus-
dorff and Banach–Tarski Paradoxes.

Banach’s version of the Schröder–Bernstein Theorem (Thm. 3.6) is proved in
[Ban24] (see also [Kur66, p. 190]). Theorem 3.9 on the equidecomposability of
polygons is due to Tarski [Tar24a] and appears in [BT24] as well. The application
of Theorem 3.6 to similarities (Cor. 3.8) is due to Klee [Kle79, p. 139].

Theorem 3.10 and its use in deriving the Banach–Tarski Paradox (Cor. 3.11)
from the Hausdorff Paradox are due to Sierpiński [Sie48a, Sie54, pp. 42, 92]. The
original derivation that appeared twenty years earlier in [BT24] is slightly differ-
ent. Theorem 3.12, the strong form of the Banach–Tarski Paradox, appears in the
original paper [BT24]. For an exposition of the paradox that includes miscella-
neous other dissection results, see [Wap05].

For the reader interested in pursuing the foundations of set theory, modern
proofs of Gödel’s famous theorem that the Axiom of Choice is consistent with
Zermelo–Fraenkel Set Theory may be found in [Kri71] and [Kun80].

Question 3.13, in the form asking about invariant, finitely additive, Borel mea-
sures in compact metric spaces, is Problem 2 of The Scottish Book [Mau81] and
is due to Banach and Ulam. It is also mentioned in [BU48] and [Ula60, p. 43].
De Groot’s question about continuous equidecomposability was raised in
[Dek58a, p. 25].
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Hyperbolic Paradoxes

The Banach–Tarski paradox helps us understand the extra richness that arises as
we move from two Euclidean dimensions to three. For the line and plane, the
isometry group is solvable; this means that certain measures exist and there are no
paradoxes of the Banach–Tarski type. But when we leave Flatland for 3-space, we
enter a world with a much richer group of geometric transformations. In R3 there
are two independent rotations, and that is the key ingredient for the Hausdorff
and Banach–Tarski Paradoxes. Perhaps coincidentally, the move from two to three
dimensions is also the point at which geometrical dissections break down: The
Bolyai–Gerwien Theorem holds in the plane, but in 3-space, one cannot transform
a regular tetrahedron to a cube by geometrical dissection.

In non-Euclidean space, things are different, and we explore the situation in
this chapter, focusing on the hyperbolic plane, H2, where several types of unusual
and constructive paradoxes exist.

4.1 The Hyperbolic Plane

The hyperbolic plane can be modeled several ways by Euclidean objects. Simplest
is to use the (open) upper half of the complex plane, where hyperbolic lines are
semicircles or vertical lines orthogonal to the real axis; this model is denoted H+.
Another useful model is the Poincaré disk, denoted D, where the hyperbolic lines
are again arcs arising from circles orthogonal to the boundary (and also the disk’s
diameters).

Working in H+, the orientation-preserving isometries are given by lin-
ear fractional transformations z �→ (az+ b)/(cz+ d ), where ad − bc > 0 and
a, b, c, d ∈ R (see [Gre80, Leh64, MP81]). The composition of two such transfor-
mations corresponds to matrix multiplication of the corresponding 2× 2 matri-
ces. Because a transformation is unchanged if each entry is divided by the same
constant, we may assume ad − bc = 1; therefore the group is isomorphic to
PSL2(R) = SL2(R) \ {±I}, where I is the identity matrix (SL2 refers to the spe-
cial linear group: matrices of determinant 1). The orientation-reversing motions
are given by z �→ (az+ b) / (cz+ d ), where ad − bc = 1.

36
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4.1 The Hyperbolic Plane 37

There is a useful classification of the orientation-preserving isometries using
the 2× 2 matrix of the linear fractional transformation. Let T be a nonidentity
element of PSL2(R), and let tr denote the trace of a matrix (sum of the diagonal
elements).

� If |tr(T )| < 2, then T has a fixed point and is called a hyperbolic rotation; these
are also called elliptic.

� If |tr(T )| = 2, then T fixes one point on the boundary of H+ and can be rep-
resented as a conjugation by a linear fractional transformation of the trans-
formation z �→ z+ a, where a ∈ R. The transformation is called a Euclidean
translation; these are also called parabolic.

� If |tr(T )| > 2, then T has two fixed points on the boundary of H+ and is called
a hyperbolic translation; these are also called simply hyperbolic.

Simple algebra shows that only the elliptics fix a point in H2 (see [Leh66,
§1.1]). While a free subgroup of PSL2(R) might contain an elliptic element, such
elements can never appear in a free subgroup of PSL2(Z). This is because any
elliptic element of PSL2(Z) has finite order: If tr(σ ) = 0, then σ = [

a b
c −a

]
and

σ 2 = [ −1 0
0 −1

]
, the identity of PSL2(Z), and if tr(σ ) = ±1, then σ = [

a b
c ±1−a

]
and σ has order 3. This shows that any independent pair in SL2(Z), such as

[
1 2
0 1

]
and its transpose (Prop. 4.4), induces an independent pair of isometries of H2

such that the group they generate has no nontrivial fixed points. In fact, the lack
of elliptic elements in free subgroups holds if PSL2(Z) is replaced by any discrete
subgroup of PSL2(R); see Theorem 7.7.

A useful fact is that the orientation-preserving transformations are locally com-
mutative on H2, meaning that the subgroup that fixes a point is commutative.

Proposition 4.1. The orientation-preserving isometries are locally commutative
on H2.

Proof. If σ1 and σ2 are nonidentity elements that fix z, then, because of the
quadratic nature of the fixed-point relation, they fix z as well. Choose ρ to be
a linear fractional tranformation (complex coefficients allowed) of C ∪∞ that
takes z to 0 and z to ∞; then τi = ρ σiρ

−1 has {0,∞} as its fixed-point set in
C ∪∞ and so there must be complex ai such that τi(z) = aiz. But then τ1 and τ2

commute, and so σ1 and σ2 commute as well.

The preceding result also follows from the fact that the set of isometries fixing
a specified point is isomorphic to the commutative group SO2(R).

There are two important examples of pairs of hyperbolic isometries that we
will use.

The first is
[

1 2
0 1

]
and

[
1 0
2 1

]
. These are parabolic, and the proof of indepen-

dence is given in Proposition 4.4; thus they generate the free group F2 and act
without fixed points. A second example is σ = [

0 1
−1 0

]
and τ = [

0 −1
1 1

]
; here σ 2

and τ 3 are the identity, and they generate the free product Z2 ∗ Z3 (Prop. 4.2).
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38 4 Hyperbolic Paradoxes

The parabolic pair just mentioned gives an action of F2 on H2 with no nontrivial
fixed points. So all the ideas of the Banach–Tarski Paradox can be applied and we
can, assuming the Axiom of Choice, get a paradoxical decomposition of the whole
plane, H2. In this chapter we improve this in two ways:

1. The Banach–Tarski paradox based on AC uses nonmeasurabe pieces, but
there is no reason that there cannot be a paradox using measurable pieces,
so long as the set has measure 0 or ∞. In fact, there is such a thing using
very simple pieces built up from squares or triangles (§§4.2, 4.3).

2. There is a paradox for a bounded set in H2 (§4.6).

Two unexpected bonuses of these investigations are as follows:

� a paradox that mixes the ideas of Banach and Tarski with those of M. C. Escher
� a set in the plane that is congruent to some of its subsets in a way that cannot

happen in Euclidean space

4.2 A Hyperbolic Hausdorff Paradox

Recall that whenever G is a discrete subgroup of PSL2(R) (meaning the set of
matrices corresponding to the elements in G contains no convergent sequence of
distinct matrices), there is a fundamental polygon for the action of G on H2. That
is, there is a hyperbolic (open) polygon P such that {ρ(P) : ρ ∈ G} are pairwise
disjoint and

⋃{ρ(P) : ρ ∈ G} = H2 (see [Leh66, §1.4]). In other words, H2 can
be tiled by pairwise interior-disjoint copies of the fundamental polygon, one copy
for each transformation in G. The classic example of such a tiling is due to Klein
and Fricke [KF90] (see [Leh66, p. 29] or [Mag74, p. 174]) and comes from letting
G be PSL2(Z) (known as the modular group). This group, whose elements can be
viewed as linear fractional transformations, is isomorphic to 〈σ, τ : σ 2 = τ 3 =
e〉, and hence to Z2 ∗ Z3, where σ (z) = −1/z and τ (z) = −1/(z+ 1); see [Kur56,
App. B] or [Leh64 pp. 140, 234] for a proof. Here is a proof that σ and τ generate
the free product.

Proposition 4.2. The matrices S = [
0 1
−1 0

]
and T = [

0 −1
1 1

]
generate the free

product Z2 ∗ Z3.

Proof. First note that S and T have order 2 and 3, respectively. Let R = T 2. Sup-
pose w is a nonempty string in S,T,R, with no adjacencies of the form SS, T T ,
T R, or RT , that equals the identity. Conjugating by S, T S, or RS if necessary, we
may assume that w = Sy . . . yS yS, where each y ∈ {T,R}. We have ST = [

1 1
0 1

]
and SR = [

1 0
1 1

]
. Now start with (−1, 0); the rightmost S in w gives (0, 1), and

further applications of ST or SR cannot decrease the entries and so never produce
(−1, 0), a contradiction.

The tiling of H2 corresponds to the action of the modular group as illustrated in

Figure 4.1, where the triangle with vertices at 0 and ± 1
2 +

√
3

2 i is the fundamental
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4.2 A Hyperbolic Hausdorff Paradox 39

Figure 4.1. The tiling of the hyperbolic plane corresponding to the group generated by σ
(order 2) and τ (order 3).

polygon and several copies of this triangle are labeled with the appropriate group
elements from the modular group.

Now, as observed by Hausdorff (see Chap. 2 Notes; this was the first example
of a paradoxical group), the abstract group Z2 ∗ Z3 is paradoxical (Z2 ∗ Z2 has a
cyclic commutator subgroup and so is solvable; such groups are not paradoxical
(§12.4)). In fact, there is a partition of the group into A ∪ B ∪C such that the
Hausdorff relations

(∗) τ (A) = B, τ 2(A) = C, σ (A) = B ∪C

hold, where σ and τ are the generators. In short, A is simultaneously a half of
the group and a third of the group. This is of course a paradoxical situation: One
can use G = A ∪ B ∪C and σA = B ∪C to partition G into four sets, each G-
congruent to A; the first two such sets then give A and B ∪C, as do the last two.
So G is a paradoxical group (easy exercise; see [TW14]). Hausdorff constructed
the sets inductively in a way that gives preference to B when there is a choice.
Here are the placement rules:

Start with A = {e}, B = C = ∅ and consider τ 2 as an atom when dealing with
the length of a word (so the word τ 2 has length 1). Working inductively by length,
any unassigned word w has the form σu, τu, or τ 2u, where u has been placed.

� If w has τ or τ 2 on the left, place w as forced by the first two relations of (∗)
(i.e., if u ∈ A, place τu into B and τ 2u into C, and similarly moving cyclically
if u is in B or C).

� If w has σ on the left, place w into A if u ∈ B ∪C (forced) and into B if u ∈ A.

Note that the last clause is where the B-preference arises. One could just as
easily change this clause so that w is put into C when u ∈ A to get a C-preferred
set of rules. These rules lead to sets that satisfy the Hausdorff relations, but in fact
there is a simpler way to get the sets, as we show in the next proof.
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40 4 Hyperbolic Paradoxes

Table 4.1. The three sets of the Hausdorff Paradox in the
group Z2 ∗ Z3 = 〈σ, τ : σ 2 = τ 3 = e〉

e

Note: The assignments of the powers of τσ and their τ -translates shaded
in gray.

Theorem 4.3 (Hausdorff Paradox). The group Z2 ∗ Z3 is paradoxical. There
is a partition of the group into A ∪ B ∪C such that τ (A) = B, τ 2(A) = C and
σ (A) = B ∪C.

Proof. For L ∈ {σ, τ, τ 2}, let WL be the set of words having L has the leftmost term
(recall that we consider τ 2 as an atom, so it is in Wτ 2 , not Wτ ). One first tries the
naive approach A =Wσ , B =Wτ , and C =Wτ 2 . This almost works, but e is unas-
signed. To address this, we absorb e into A as follows, where j runs through N:

A = {all (τσ ) j and all of Wσ , except τ 2(τσ ) j};
(∗∗) B = {all τ (τσ ) j and all of Wτ , except (τσ ) j};

C = {all τ 2(τσ ) j and all of Wτ 2, except τ (τσ ) j}.
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4.2 A Hyperbolic Hausdorff Paradox 41

In short, powers of τ σ and their translates by τ or τ 2 are assigned directly,
with all other words assigned according to the naive scheme, that is, by their
leftmost term. Table 4.1 shows some elements of the three sets.

Verification that the sets satisfy (∗) is routine and left as an exercise. A key
point is that σ (τσ ) j−1 = τ 2(τσ ) j, which means that the step placing τ 2 of the
powers of τσ into C is also placing σ of those powers into C.

The sets A,B,C of the preceding proof are not the same as Hausdorff’s sets.
However, they are the same as the sets arising from Hausdorff’s method with the
preference changed from B to C. Furthermore, if the method of getting the sets
in the proof of Theorem 4.1 is changed so that powers of τ 2σ are used in (∗∗)
instead of powers of τσ , then the three sets do agree with Hausdorff’s original
three sets. We leave the proofs as an exercise.

Because of the isomorphism of Z2 ∗ Z3 with PSL2(Z) and the correspondence
between elements of the modular group and tiles in the tiling of Figure 4.1, this
immediately gives subsets (also called A,B,C) of H2 that provide a Hausdorff
decomposition of H2 \N , where N is the measure zero and nowhere dense set
consisting of the boundaries of all the polygons. The subset A is just the union
of the images of the fundamental triangle using transformations in the subset
A of G, and similarly for B and C. One can visualize this in the upper half-
plane model: The three sets are shown in Figure 4.2. We have τ (A) = B, τ (B) =
C, and σ (A) = B ∪C. Note (see Fig. 4.1) that τ corresponds to a clockwise
rotation.

The use of the half-plane makes it easy to compute the tiling, but the picture
is much more pleasing when we transform it to the Poincaré disk. This can be
done by a single linear fractional transformation. First we move to the disk model

with center corresponding to − 1
2 +

√
3

2 i. In that model, τ is an exact clockwise
Euclidean rotation through 120◦, and τ 2 through 240◦. The three sets are shown
in Figure 4.3, and it is clear even to a Euclidean observer that each set is a third
of the plane.

When we adjust the projection as in Figure 4.3(b) so that the center of the disk
is i, then σ is just a 180◦ rotation, and one sees that A is one-half of the hyperbolic
plane: σ (A) = B ∪C. So this provides a view of the basic idea of the Hausdorff
paradox that is completely geometric and uses nice sets; because the fundamen-
tal triangle serves as a choice set, the Axiom of Choice is never needed! For an
animation showing how sets change when the viewpoint changes, see [Wag07].

The connection to the classical yin-yang motif (Fig. 4.4(a)), with three regions
instead of two, is a surprising coincidence of this construction. That motif is not
paradoxical in the same way, because moving the viewpoint as done earlier to put
i at the center makes the red region take up less than half of the disk (Fig. 4.4(b));
rotation of the red region through 180◦ will pick up all of blue-and-green, except
for a small lens around the origin. The red area in Figure 4.4(b) is 99.7% that of
the half-disk. A small surprise, easily explained by reference to Figure 4.2, is that
all the cusp points in Figure 4.3(a) lie exactly on the semicircles of Figure 4.4(a).
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42 4 Hyperbolic Paradoxes

A

C
i

B

2 1 0 1 2

Figure 4.2. The Hausdorff paradox in the upper half-plane.

A nice exercise is to see what the triple yin-yang figure and also the central lens
in Figure 4.4(b) look like in the upper half-plane [TW14].

One can also visualize the original Hausdorff paradox which, in the context of
Theorem 4.3 and its proof, arises from using powers of τ 2σ to absorb the identity
as opposed to powers of τ σ . This is shown in Figure 4.5, where we see that the
sets are not connected as nicely as they are when τσ is used. In fact, the proof of
Theorem 4.3 works with any word of infinite order used instead of τσ .

4.3 A Banach–Tarski Paradox of the Whole Hyperbolic Plane

The paradox of §4.2 is not of the whole hyperbolic plane, because we have not
tried to account for the boundaries of all the triangles. Rather, it is a paradox on
H2 \D, where D is the set consisting of the boundaries of all the tiles. And because
σ and τ of §4.2 are elliptic (and hence have fixed points), we cannot use them to
get a Hausdorff Paradox that accounts for every last point. To address this point,
we consider the nonelliptic subgroup of PSL2(Z) mentioned in §4.1, namely, let
σ (z) = z/(2z+ 1) and τ (z) = z+ 2 (using the upper half-plane model), and let
F be the group they generate. Then, in matrix form, F consists of all matrices
in PSL2(Z) that are congruent to the identity matrix modulo 2 and is called the
principal congruence subgroup of the modular group of level 2 (see [Leh66, p.
60]). As already shown (§4.1), F , being a subgroup of PSL2(Z), has no elliptic
elements and hence acts without fixed points. Moreover, σ and τ are independent,
and so F = F2. Here is a proof that reduces the issue to the earlier result about
Z2 ∗ Z3.

Proposition 4.4. The two transformations in SL2(Z) defined by A = [
1 0
2 1

]
and

B = [
1 2
0 1

]
are independent and act on H2 without fixed points.

Proof. Let S,T,R be as in Proposition 4.2; then ST ST = A and SRSR = B.
Any nontrivial reduced word in A = SRSR, A−1 = RSRS, B = ST ST , and B−1 =
T ST S, viewed as a word in S,T,R, is a nontrivial reduced word in Z2 ∗ Z3.
This is because of the eight possible adjacencies AA, BB, AB, BA, AB−1, BA−1,
A−1B, and B−1A, only the last two have any reduction. The first of these is
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1

1

2

1 2

0

a

i
11

0

b

Figure 4.3. The Hausdorff Paradox in the hyperbolic plane. (a) If the sets, reading
clockwise from red, are A,B,C, then this shows that A is congruent to B via τ and to C

via τ 2. (b) This shows that A is congruent to B ∪C via σ . The labels refer to the
corresponding points in the upper half-plane.

RSRS SRSR = RST SR; it still ends in R and so leads to no other cancellation.
The other case is the same, with T and R switched. Proposition 2 showed that any
such word in S,T,R is not the identity. And as shown in §4.1, using only integers
means there will be fixed points.
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44 4 Hyperbolic Paradoxes

(a) (b)

Figure 4.4. (a) A triple yin-yang motif. (b) The transformation of the motif so that i is at
the center makes the red region larger than half the disk, unlike the situation in Figure

4.3(b), where it is exactly half.

Figure 4.5. A view of Hausdorff’s original paradox. The three sets of the upper image are
congruent by a rotation. Changing the viewpoint as was done in Figure 4.3 shows that the

red set is congruent to the union of the other two.
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1
3

1
21 10

1
3

1
2

e

i1

1
1 1

1
1

2
2

Figure 4.6. A tiling of H2 by hyperbolic quadrilaterals, with tiles corresponding to
elements of a free group of rank 2.

One can also prove this geometrically, working in H+. Induction on word
length can be used to show that Re(w(i)) < −1, Re(w(i)) > 1, |w(i)+ 1

2 | < 1
2 , or

|w(i)− 1
2 | < 1

2 , according as w’s leftmost term is τ−1, τ , σ−1, or σ . This implies
that w(i) 
= i, so w 
= e.

The following result does not require the Axiom of Choice.

Theorem 4.5. There is a paradoxical decomposition of H2 using isometries in
F.

Proof. Because F is a subgroup of PSL2(Z), F is discrete, and a fundamental
polygon for F ’s action on H2 exists. To get a choice set for the orbits of F ’s action
on H2—without using the Axiom of Choice—we use the fact that the boundary
of the fundamental polygon consists of a countable number of sides (open hyper-
bolic segments) and vertices, and F maps vertices to vertices and sides to sides

1
3

1
2

1 1

B1A1B2

A2

i

0

Figure 4.7. A paradoxical decomposition of the hyperbolic plane: H2 = B1 ∪ τ (B2) =
B1 ∪ (B2 + 2) and H

2 = A1 ∪ σ (A2). The set A2 is shown in gray; the sets include
boundaries as indicated by arrows.
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E

Vρ
3

ρ
2

ρ
1

Figure 4.8. The hyperbolic tiling arising from the reflections ρi in the sides of the triangle.

(see [Leh66, §§I.4E, F]). It follows that there is a choice set M for the F -orbits
that consists of the interior of the fundamental polygon together with some of its
vertices and some of the sides. Clearly, M is a Borel set. To summarize, F is a
rank 2 free group of hyperbolic isometries acting on H2 without nontrivial fixed
points, and there is a Borel choice set for the orbits of this action. This allows the

Figure 4.9. The tiling of H2 using 〈σ, τ 〉.
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Figure 4.10. A Hausdorff Paradox based on Escher’s Angels and Devils.

standard paradox for F2 (Theorem 1.2) to be lifted to all of H2, taking every single
point into account.

We can give an explicit construction of such a paradox by using a tiling as
before. The labeled tiling is shown in Figure 4.6. Note that the geometric arrange-
ment of words is quite similar to the tree representation of F2 given in Figure 1.1.
Now, if the paradoxical decomposition of the group is transferred to H2 via the
labeling of tiles, one gets the four sets A1, A2, B1, B2 in Figure 4.7. Arrows indi-
cate which sets get the boundary segments. Thus H2 is divided into four sets such
that H2 = B1 ∪ τ (B2) = A1 ∪ σ (A2); that is, H2 is paradoxical using four Borel
sets. Such Borel sets in Rn do not exist, although this is not obvious since the fact
that Rn (and Hn) has infinite Lebesgue (or hyperbolic) measure means that a Borel
Paradox would yield only the harmless equation ∞ = 2∞. The Euclidean cases
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E

Figure 4.11. A set E such that σE = E \ {σ } and τE = E \ {τ }.

and the measure-theoretic consequences of the hyperbolic paradox are discussed
in Chapter 13.

4.4 Paradoxes in an Escher Design

The hyperbolic paradox in §4.2 is based on a direct construction of hyperbolic
isometries that generate Z2 ∗ Z3. Curtis Bennett [Ben00] saw how to get similar
paradoxes using the group that underlies M. C. Escher’s famous woodcut Circle
Limit IV, also known as Angels and Devils. The tiling in Figure 4.8 is the one
on which that piece of art is based. It starts with the triangle having angles 60◦,
45◦, 45◦, and then repeatedly reflects that triangle in the edges. In the group the-
ory sense, it arises from the group generated by ρ1, ρ2, ρ3, the three reflections
in the sides of the basic triangle. Each of these has the form z �→ τi(z), where
τi is the appropriate rotation and the bar is complex conjugation. Because we
are in the disk, τi will be given by a matrix with complex entries. Moving to
the upper half-plane, the representations of τ1, τ2, τ3 are given by the following
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Figure 4.12. A tiling of the hyperbolic plane by squares using the free group generated by
σ and τ (see Fig. 4.7 for the upper half-plane version of this tiling). The tiles in the four
quadrants are defined by words beginning on the left with τ , τ−1, σ , σ−1, respectively.

Figure 4.13. The set X of red or blue tiles (each of which is a hyperbolic square) contains
two tiles whose removal leaves the set geometrically unchanged. If the lower light red

square is removed to leave Y , then σ (X ) = Y ; the same holds using τ and the
upper light blue square.
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elements of SL2(R)):
[

0 −1
1 1

]
,
[

1 1
−1 0

]
,
[

1−√2 0
0 −√2−1

]
. Note that the first two

matrices are inverses, but when viewed in the disk, they have nonreal entries, and
so the corresponding orientation-reversing isometries, which use conjugation, are
not inverses.

The group for this tiling is known as the triangle group T (3, 4, 4); its generator-
and-relation form is 〈ρ1, ρ2, ρ3 : ρ2

i = e, (ρ1ρ2)3 = (ρ1ρ3)4 = (ρ2ρ3)4 = e〉. Let
G be the subgroup generated by σ = ρ3ρ1ρ3ρ1 and τ = ρ1ρ2. We will show that
G is the free product Z2 ∗ Z3. Note that σ and τ are orientation preserving and so
are in the subgroup known as the von Dyck group D(3, 4, 4); in the upper half-

plane, we have the forms τ = [
0 −1
1 1

]
and σ =

[
−1 2(1+√2
−√2 1

]
; τ is the familiar

order-3 isometry used in §4.2 and Proposition 4.2; but σ differs from the order-2
rotation used earlier.

Proposition 4.6. The group 〈σ, τ 〉 is the free product Z2 ∗ Z3.

Proof. Consider Figure 4.8, where the origin is the fixed point of the order-3
clockwise rotation τ and σ is the order-2 rotation about V . Suppose a nontrivial
word w in the abstract free product is the identity, where atoms s and t are used.
We may assume, by conjugation, that w has the form s . . . s or s . . . t. We will
show that w(0) 
= 0, where 0 is the origin in Figure 4.8. Because τ (0) = 0, we
can remove t or t2 from the right end of w to get w = st . . . ts. Now, the rightmost
s leads to σ , which moves 0 into the closed region E. But then each subsequent
phrase στ or στ 2 takes the point outside of E by the rotation τ or τ 2 and then, via
σ , back into E. So the final location is inside E and is therefore not 0.

Next we need the fundamental domain for G, which we will obtain by the
classic technique of taking the orbit of a point, and then looking at the Voronoi
region of the initial point: the set of points closer to the initial point than to any
other point of the orbit. We’ll use P = V/2 as the initial point; see Figure 4.9. Let
D be the gray region in Figure 4.9; we will prove that D is the desired fundamental
domain. Let L be the line separating D from σ (D); observe that σ (L) = L. An easy
induction (using, e.g., the fact that σ maps the complement of E in Fig. 4.8 into
E) shows that the orbit points in the first quadrant are P and those of the form
σu(P), the ones in the fourth quadrant, are τuP, and the others are τ 2uP.

In the next discussion, concatenation of points refers to hyperbolic distance,
and the term Voronoi line refers to the perpendicular bisector of two points. It is
easy to check that the Voronoi line for R and τR is the line bisecting the angle at
the origin formed by the two points.

Theorem 4.7. For any X ∈ L and any word w ∈ 〈σ, τ 〉, X P ≤ X wP.

Proof. By induction on word length; it is clear for w = e. Note that σ (L) = L.

Case 1. w = σu. Because σX ∈ L, we have σX σP = σX P ≤ σX uP, the last
by the inductive hypothesis. Applying σ gives X P ≤ X σuP.
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4.5 The Disappearing Hyperbolic Squares 51

Case 2. w = τσu. We want X P ≤ X τσuP. We know that σuP is in region E.
Because the line bisecting the angle formed by σuP, 0, and τσuP lies outside
of E (see dashed lines in Fig. 4.9), X σuP ≤ X τσuP; but X P ≤ X σuP by the
inductive hypothesis.

Case 3. w = τ2σu. Similar to Case 2.

Corollary 4.8. The fundamental domain for 〈σ, τ 〉 is the region D in Figure 4.8.

Proof. For any orbit point σuP, the Voronoi line for P and σuP lies above or
equals arc L and so has no impact on the domain. We next show that the Voronoi
line for P and τuP (where u = σv . . .) lies completely below the x-axis. Let Y be
a point on the positive x-axis. The Voronoi line for τP and τuP is a rotation of the
corresponding line for P and uP, which we know is in region E by the theorem.
So Y τP ≤ Y τuP, because Y , on the x-axis, is above this line. But Y τP = Y P. So
Y , and hence the entire positive x-axis, is closer to P than τuP, as desired. The
case of P and τ 2uP is essentially identical to the preceding case.

Now we can use D to generate a Hausdorff Paradox in H2 that allows a para-
doxical decomposition of the angels and devils. The result is shown in Figure
4.10, where the red set is evidently a third of the plane in one image but a half in
the other, where the viewpoint has been moved to the point V of Figure 4.9.

4.5 The Disappearing Hyperbolic Squares

The hyperbolic plane allows the visualization of an interesting phenomenon
related to the Banach–Tarski Paradox. The basic absorption technique shows the
importance of sets X , whether in a group or a metric space, having a point p so
that X is congruent to X \ {p}. Of course, it is easy to find such sets in many infi-
nite objects; for example, in the group of integers Z, we have that N is congruent
to N \ {0} by addition of 1. But what if we ask, as Sierpiński did, about sets con-
taining two distinct points p, q so that X is congruent to the result of removing
either one?

Definition 4.9. A weak Mycielski set in a group or metric space is a set X con-
taining distinct points p, q so that each of X \ {p} and X \ {q} is congruent to
X .

These are called weak because of the stronger notion, discussed in §7.3, of sets
that are invariant under the removal of any finite set.

Theorem 4.10. There is no weak Mycielski set in R1 or R2.

Proof. The proof for the plane, due to E. G. Straus, is a little complicated,
and we refer the reader to [Str57]. For the line, suppose σ (X ) = X \ {p} and
τ (X ) = X \ {q}, where σ, τ ∈ G1 and p 
= q. Because reflections have order 2,
σ and τ must be translations, say, by the nonzero values a, b, respectively.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.007
https://www.cambridge.org/core


52 4 Hyperbolic Paradoxes

Then q ∈ X \ {p} = X + a, so q− a ∈ X \ {q} = X + b and q ∈ X + a+ b =
(X \ {p})+ b ⊆ X + b = X \ {q}, a contradiction.

Finding a weak Mycielski set in a free group is not difficult.

Proposition 4.11. A free non-Abelian group has a weak Mycielski set.

Proof. Suppose σ1 and σ2 generate F2. Let Si be the set of words whose rightmost
term is a positive power of σi, and let X = S1 ∪ S2. Then σi Si = Si \ {σi}, while
σi S2−i = S2−i, yielding σi X = X \ {σi}, as desired.

The set of the proof is easily visualized in the Cayley diagram of F2 from
Chapter 1, provided we change how the diagram is formed to build up words by
multiplication on the left as opposed to the right. That is done in Figure 4.11,
which shows the free group on σ and τ : The two lobes form the weak Mycielski
set, E.

As usual, the construction in the group yields geometric objects in cases where
the group acts without fixed points. So using two independent rotations of the
sphere S2 (Thm. 2.1), we can find a weak Mycielski set on the unit sphere with
the set of fixed points deleted. Or we can use the Satô rotations (Thm. 2.1) to get
such a set using only rational points on the unit sphere. These sets are not discrete
and so are difficult to visualize.

But we can use our knowledge of hyperbolic isometries and tilings to construct
a discrete visual representation of a weak Sierpiński in the hyperbolic plane. As in
§4.3, we will use the free generators σ (z) = z/(2z+ 1) and τ (z) = z+ 2. There
is a subtle point here because the tree of Figure 4.11 forms words by adding letters
on the left, while the tree inherent in the tiling for σ and τ adds letters on the right
(Fig. 4.12). A consequence is that the ultimate picture is more interesting than the
two lobes of a tree!

Now we can interpret the set of Figure 4.11 in the tiling and so visualize a
hyperbolic weak Mycielski set. While we could work with single points, we will
instead focus on the tiles (viewed as open sets) corresponding to the points, as that
is much easier to see. So in Figure 4.13, we have a set X of hyperbolic squares
shown in red and blue; the two lighter squares are such that the removal of either
leaves a set congruent to X (using σ or τ ). For example, σ moves each red square
in the path starting at the large red square down to its neighbor. By Theorem 4.10,
such a set cannot exist in the Euclidean plane.

In R3 there do exist Mycielski sets (§7.3), but it seems that such a set cannot
be discrete. It is known that there is no discrete free group of isometries in R3,
which means that the obvious route to constructing a discrete weak Mycielski set
fails. But we still have the following question.

Question 4.12. Is there is a discrete weak Mycielski set in R3?

As we will see (§7.3), there is a set X in the hyperbolic plane that is invariant
under the deletion of any finite subset. And much more is possible: There is a
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subset of S2 or H2 that is invariant under the deletion or addition of any countable
subset.

4.6 A Bounded Hyperbolic Paradox

The earlier work in this chapter concerns paradoxes of all of H2. But a proper
analog of the Banach–Tarski result is a paradox of a bounded set, such as a disk.
In 1989, Jan Mycielski devised a way to get such a paradox. The construction in
[Myc89] is fundamentally sound, but contained some gaps, which were repaired
in [MT13]. We make further modifications here.

The Bolyai–Gerwien Theorem (Thm. 3.2) showing geometric equidecompos-
ability of polygons having the same area is valid in the hyperbolic plane. A nice
treatment that proves the hyperbolic and the classic case in a uniform way can
be found in [MP81, §10.4]. It is, however, unresolved in H3 or higher hyperbolic
dimensions [Kel00].

4.6.1 Preliminaries

The main idea is to obtain a free non-Abelian group of piecewise isometries acting
on a bounded set Q in the hyperbolic plane such that the set of fixed points of
group elements is countable. We work in D, the Poincaré disk model for H2:
{z ∈ C : |z| < 1}. The hyperbolic distance between two points in D is as follows,
where ‖ · ‖ is the standard Euclidean norm:

arccosh

(
1+ 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
.

Recall the classification of isometries at the beginning of the chapter. In this
section the main transformation tool will be the hyperbolic translations.

The Cayley transformation z �→ (z− i)/(z+ i) maps H+ to D, and so conju-
gation by this transformation turns the representations using PSL2(R) into repre-
sentations of isometries of D. Working in D, the simplest cases are the rotations
ρθ (z) = eiθ z and the hyperbolic translations τa(z) = z+a

az+1 , where |a| < 1; for our
work here we need only the translations τa, where a is either real or purely imag-
inary. Translations do not commute in general, but they do when the parameters
are both real or both purely imaginary; in that case the composition formula is
τατβ = τ(α+β )/(αβ+1).

We will use the concept of an equidistant arc, which will be equidistant from
the real or imaginary axis. Such a hyperbolic arc—it is not a geodesic in H2—is
the set of all points whose minimum distance from, say, the imaginary axis is a
fixed value b. The arc will usually refer to just one of the pair of arcs defined.

There is a countably additive, isometry-invariant measure defined on the
Lebesgue measurable subsets of D: Define it by μ(E ) = ∫

E (1− x2 − y2)−2dλ.
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Figure 4.14. The four equidistant lines defining the Mycielski barrel Q = ABCD. The
exterior labels refer to points in the plane containing the disk.

Therefore, as in the classic case, the Axiom of Choice is necessary, as the para-
doxical sets must be nonmeasurable.

4.6.2 The Mycielski Barrel

To start, we need a bounded subset Q of D with certain nice properties with
respect to translations. To get the set, fix α with 0 < α < 1/

√
2 and let bα =

1
2 arccosh(1/(1− 2α2)). Consider the four arcs equidistant at distance bα from
one of the two axes (see Fig. 4.14, where α is chosen to be e2−1√

2(1+e4 )
, about 0.606, so

that bα = 1). The quadrangle Qα , called a Mycielski Barrel, is defined to be the set
of points whose minimum distance to either axis is at most bα; because we care
about individual points when forming decompositions, we define Qα to include its
left and bottom boundary arcs, but only one of the four corners, the intersection
of those two boundary arcs (point A in Fig. 4.14). We will usually suppress α and
just use Q. Note that if α ≥ 1/

√
2, then bα is infinite or nonreal, and so Qα does

not exist.
We let A,B,C,D be the four corners of Q. One can work out symbolic expres-

sions for the bounding arcs and these points. A key property is that the translation
τα , where α is real, preserves any horizontal equidistant arc. Therefore such trans-
lations carry A to points on AB. The formula for bα used to define Q was chosen
so that the translation that takes A to B is exactly τα .

The set Q will play the role of the unit ball in R3 in the classic paradox. We
need two independent transformations (ϕ and ψ , bijections of Q), and to that end,
we divide Q into three pieces, as follows. Let M and M ′ be the extreme points of
the real axis in Q; these values are given by ± tanh( 1

4 arcsech(1− 2α2)). Choose
a value β < α and consider the translation τβ of Q’s left boundary. This defines
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Q
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Figure 4.15. The decomposition of a region Q to allow the construction of a bijection
using three piecewise translations (the indicated τ s) on a quadrangle, a lens, and an

hourglass.

arc EV ′G in Figure 4.15. Define arc FV H similarly on the positive side. Use τα
of the left boundary to define arc BUC, and similarly on the negative side to get
AU ′D.

These arcs define a partition of Q into the quadrangle AEFHGDM ′ (excluding
right and top borders), the lens BMCU (including only the left border), and the
hourglass BUCHV F (including only the left border). And these three sets allow
us to define our first transformation ϕ as a piecewise translation, as follows:

ϕ(z) =
⎧⎨
⎩
τβ (z) if z ∈ quadrangle,
τ−α (z) if z ∈ lens,
τβ−α if z ∈ hourglass.

The second bijection is essentially identical to ϕ, but working vertically instead
of horizontally; thus ψ = ρ−1

π/2ϕρπ/2. We want arc FV H to be fully left of arc

BUC, and that means that β must be larger than 2M−α−αM2

M2−2αM+1 , the β-value for which
V = U (here M denotes the real coordinate of point M); this lower bound simpli-
fies to α(1−√1− α2)/(

√
1− α2 − α2). This lower bound on β is greater than

the upper bound β = α when α >
√

2
√

3− 3 = 0.681 . . . , so we will restrict α
to lie under this value when constructing Qα (see Fig. 4.16). For the strong form of
the Banach–Tarski Paradox, we need to know that this construction is sound even
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Figure 4.16. The shaded region shows values of α and β that yield Mycielski barrels that
might work as the basis of a paradox.

when α is very small. In that case, the quadrangle Qα looks more like a Euclidean
square, but the bijections work in exactly the same way.

4.6.3 A Free Group of Piecewise Isometries

The next mission is to interpret the action of the bijections on Q in a way that
relates to integers and so allows an analysis of how ϕ and ψ interact.

Lemma 4.13. For every positive integer n, Q decomposes into finitely many
regions Ri, symmetric about the real axis, so that for each i, there are nonneg-
ative integers n1 and n2 (not both 0) such that, on Ri, ϕn(z) = τ

n1
β τ

n2−α . The same
is true for ψ , with regions having horizontal symmetry and ψn(z) = τ

n1
iβ τ

n2
−iα .

Proof. Induction on n. The case n = 1 uses the regions that define ϕ (Fig. 4.17,
upper left). Each inductive step will yield new regions based on applying ϕ−1 to
the regions for the previous case. Precisely, suppose R is a region for ϕn, which
equals τ

n1
β τ

n2−α in that region, and let R ′ be ϕ−1(R). Subdividing if necessary,
assume that R ′ lies entirely within one of the three sets: quadrangle, hourglass,
or lens. Then R ′ becomes one of the regions for ϕn+1, with the pair of integers
defined as follows:

R ′ ⊆ quadrangle: use the pair (n1 + 1, n2);
R ′ ⊆ hourglass: use the pair (n1 + 1, n2 + 1);
R ′ ⊆ lens: use the pair (n1, n2 + 1).

For example, in the decomposition for ϕ2 in Figure 4.17, the region R ′ marked
(2, 0) is contained in ϕ−1(quadrangle). Because ϕ on the quadrangle is τβ , in
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0,11,0

1,1

 

1,11,12,0

2,12,1
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2,12,12,1
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3,1 3,1

4,2 4,2
3,2

3,2

2,2

4,1

4

Figure 4.17. The breakdown of ϕ, ϕ2, ϕ3, and ϕ4, where the integer pairs refer to powers
of τβ and τ−α .

this region, ϕ2 = τ 2
β . In the image for ϕ3, the various pairs in the ϕ2 image are

incremented by 1 in one or both coordinates, and the same again for ϕ4.

Next comes the delicate step: how to choose parameters α and β so that the
two bijections ϕ and ψ of the set Qα are independent. This is tricky because
τα and τβ commute: They are never independent. The key to Mycielski’s clever
approach is to first look at the case β = iα and consider α values that cannot occur
geometrically (where α < 0.6813 is required) but make sense algebraically.

Lemma 4.14. If α = 1/
√

2, then any nontrivial word in the translations τα and
τiα does not fix 0 (and so the two translations generate a free group of rank 2).

Proof. This is a classic geometric argument. Refer to Figure 4.18, where the four
hyperbolic lines are drawn so that τα maps L1 to L2, with similar behavior for τiα

in the other direction. Let R denote the central region. Then it is easy to prove
by induction that w(R) ⊆ S1 ∪ S2 or w(R) ⊆ T1 ∪ T2, depending on the leftmost
term of w. Therefore w(0) 
= 0.
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Figure 4.18. A quadruply asymptotic hyperbolic square yields a proof that two orthogonal
translations are independent.

The preceding proof, which goes back to Klein and Fricke [KF90], works for
1/
√

2 ≤ α < 1; the method can also be used to show more: No nontrivial word
has any fixed point. For smaller values of α, the conclusion of the lemma can fail:

If α =
√√

2− 1 ≈ 0.64 . . . , then (τ−iατ−ατiατα ) 2 is the identity.
Now, the theorem we want is the following.

Theorem 4.15. There are parameters α, β so that the region Qα and bijections
ϕ, ψ are properly defined and

(a) ϕ, ψ are independent
(b) any nonidentity word in ϕ and ψ has at most finitely many fixed points in

Qα

The proof requires this next technical lemma.

Lemma 4.16. Let X be the set of points (α, β ) in the real square (−1, 1)2 such
that for some k ≥ 1 and finite sequences of integers p j, q j, r j, s j having length
k − 1 or k and with p j + q j 
= 0 and r j + s j 
= 0,

(∗) τ
p1
−ατ

q1

β τ
r1
−iατ

s1
iβ ...τ

pk−1
−α τ

qk−1

β τ
rk−1
−iα τ

sk−1

iβ τ
pk
−ατ

qk

β (0) = 0.

Then X is meager.

Proof. Let fα,β be the expression on the left in (∗). Consider the subset S of the
open square (−1, 1)2 defined by

S = {(α, β ) : ∃k ∃ sequences p j, q j, r j, s j such that fα,β (0) = 0}.
Letting β = −α in the word defining fα,β gives

τ
p1+q1
−α τ

r1+s1
−i α . . . τ

pk−1+qk−1
−α τ

rk−1+sk−1
−i α τ

pk+qk
−α ;

the hypothesis on the sums guarantees that this is a nontrivial word w in τ−α and
τ−iα . Now if w(0) = 0, then when α = −1/

√
2, this contradicts Lemma 2; note
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that when k = 1, w is just τ−p1−q1
α , and this cannot fix 0 regardless of α. Therefore

the point (−1/
√

2,−1/
√

2) is not a member of S, and so S is not the full square.
But S is a union of countably many algebraic sets, as each collection of sequences
p, q, r, s determines an algebraic set in the variables α, β. Each such algebraic set
is closed and therefore nowhere dense (for if it contained a nonempty open set, it
would have to be all of the square); therefore S is meager.

A more constructive approach to the case of τ p
α τ

q
β comes from the isomor-

phism tanh from the additive group of reals R to the interval (−1, 1) under the
operation ∗ given by x ∗ y = x+y

xy+1 . The operation ∗ satisfies τατβ = τα∗β . Thus we
can use this isomorphism to reduce the issue to the additive group of reals. Sup-
pose τ p

α τ
q
β is the identity. Then α′ = arctanhα and β ′ = arctanhβ are such that

pα′ + qβ ′ = 0. The solutions to this form a line in R2, which is nowhere dense in
the plane. Because tanh is continuous, the corresponding set of pairs of translation
parameters (α, β ) is nowhere dense in the square (−1, 1)2, and the union over all
p, q is meager.

Lemma 4.16 yields pairs (α, β ) in the gray region of Figure 4.16 that will lead
to a free group, as we prove in a moment. It is natural to ask if there is such a pair
on the lower boundary of the region, that is, of the form (α, βα ), where βα is the
lower bound of allowable β-values. Possibly there is a transcendental choice of α

that leads to such pairs, but that is not known. Note that if α =
√

2
√

3− 3, the
largest possible value, then βα = α, and the cube of the commutator of τα and τβα
is the identity.

We can now prove Theorem 4.15; part (a) follows from (b), so we deal only
with the fixed point issue.

Proof of Theorem 4.15. Choose (α, β ) to avoid the meager set of Lemma 4.16.
Therefore we may assume (conjugating by a large power of ϕ, if necessary) the
given word w = ϕm1ψm2 . . . ϕmk , with k ≥ 1 and nonzero exponents. By repeated
refinement of the regions provided by Lemma 4.13, get a partition {Ri} of Qα such
that every power of ϕ and ψ in w has the form τ

n1−α τ
n2
β for some integer exponents

when restricted to Ri. Now suppose w fixed infinitely many points in Qα; then
it would fix infinitely many points within one of the regions Ri. But on Ri, w’s
action is that of the following isometry:

τ
p1
−ατ

q1

β τ
r1
−iατ

s1
iβ . . . τ

pk−1
−α τ

qk−1

β τ
rk−1
−iα τ

sk−1

iβ τ
pk
−ατ

qk

β .

If k = 1, this is simply τ
p1
−ατ

q1

β . Because an isometry is determined by three
points, this means that this isometry is the identity on all of D, contradicting the
choice of parameters α, β.

These arguments show that, for the choice of α and β as in Theorem 4.15,
the group generated by ϕ and ψ is the free product of two copies of the free
Abelian group of rank 2: (Z ⊕ Z) ∗ (Z ⊕ Z). A natural question is whether one
can get the same results by choosing a pair (α, βα ); that is, by choosing parameters
on the lower boundary of the legal region in Figure 4.16. Then the hourglass
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Q

A B

CD

A

Figure 4.19. Point Aβ is a fixed point of the commutator τ−1
iβ τ−1

β τiβτβ and hence a fixed
point of ψ−1ϕ−1ψϕ.

in Figure 4.15 would shrink to a point at its waist. Possibly this works if α is
transcendental and not one of the countably many points excluded by the equation
p arctanh α + q arctanh βα = 0.

Theorem 4.17 (AC). For suitable choice of α, there is a paradoxical decompo-
sition of the corresponding Mycielski barrel Qα . Any two bounded subsets of H2

with nonempty interior are equidecomposable.

Proof. Choose α and β as in Theorem 4.15. Then the set Q′ of points fixed by
a nontrivial word in the free group 〈ϕ,ψ〉 is countable. So the free group 〈ϕ,ψ〉
acts on Q \Q ′ without fixed points, and so leads to a paradoxical decomposition
of Q \Q ′. The standard method of absorption to handle the fixed points shows
that Q \Q′ ∼ Q, so Q is paradoxical. Because there is no problem choosing α

to be arbitrarily small, standard techniques using the Banach–Schröder–Bernstein
Theorem (as in Thm. 3.11) yield the strong version of the paradox.

The piecewise isometries used here do not act without fixed points. For con-
sider the smaller Mycielski barrel Qβ inside Qα , with lower-left corner Aβ ; then
Aβ is a fixed point of the commutator in ϕ and ψ (see Fig. 4.19). In [MT13] it
is observed that for small values of α and β, there is a fixed point for the com-
mutator of τα and τiβ , and therefore this commutator is a rotation. In fact, this is
true so long as α2 + β2 < 1: The commutator τ−iβτ−ατiβτα has the fixed point

1
α2+β2 (

√
1− (α2 + β2)− 1)(α, β ).

When α = β, this fixed point is just A, the lower left corner of the Mycielski
barrel. So the bound of 1/

√
2 is sharp for the fixed-point result, because for any

smaller value, the preceding, with β = α, gives a nontrivial word with a fixed
point. As observed by Mycielski, Lemma 2 implies that for any transcendental
α ∈ (0, 1), τα and τiα are independent; this is because any nontrivial word w yields
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a formula for |w(0)| that is a polynomial in α, and this polynomial cannot be
degenerate because it does not vanish when α = 1/

√
2.

Question 4.18. Is there a subset X of the hyperbolic plane that is bounded and
has nonempty interior, and for which two piecewise isometries can be found that
are bijections of X and act on X without nontrivial fixed points?

Notes

A good general reference for various properties of isometries in the hyperbolic
plane is [Bea83] or [Leh64].

Dekker showed that the group of orientation-preserving isometries of the
hyperbolic plane is locally commutative [Dek57]. He considered the hyperbolic
plane as points on the hyperboloid x2 + y2 − z2 = −1 and showed that the group
of orientation-preserving isometries is locally commutative and has two indepen-
dent elements. He obtained the latter by using cosh and sinh for cos and sin in the
rotation φ and ψ given in the proof of Theorem 7.4.

The independence of the two matrices in Proposition 4.4 is due to Sanov
[San47].

The inductive method of placing words into sets to get a Hausdorff Paradox in
Z2 ∗ Z3 is due to Hausdorff [Hau14a, Sie54]. The detailed analysis here showing
how to avoid induction and place words in a direct fashion is due to Tomkow-
icz and Wagon [TW14]. The idea of using the Klein–Fricke tesselation to gener-
ate a constructive and visual Hausdorff Paradox is due to Mycielski and Wagon
[MW84]. Theorem 4.5 is by Mycielski and Wagon [MW84].

The combining of ideas of Escher and Banach–Tarski is due to Curtis Bennett
[Ben00], whose success in obtaining a paradoxical version of Angels and Devils
solved a problem raised by Wagon.

The use of the hyperbolic plane to visualize a Mycielski set is due to Tomkow-
icz and Wagon [TW14].

The work in §4.6 on a bounded paradox in H2 stems from the results of Myciel-
ski [Myc89] in this area, though our approach is quite different. A gap in [Myc89]
was fixed in [MT13].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.007
https://www.cambridge.org/core


5

Locally Commutative Actions: Minimizing
the Number of Pieces in a Paradoxical

Decomposition

5.1 A Minimal Decomposition of a Sphere

A careful analysis of the proof presented in Chapter 3 that a sphere may be dupli-
cated using rotations shows that the proof used ten pieces. More precisely, S2 =
A ∪ B, where A ∩ B = ∅ and A ∼4 S2 and B ∼6 S2. By Corollary 3.7, Theorem
2.6, and Proposition 1.10, S2 \D splits into A′ and B′ with A′ ∼2 S2 \D ∼3 B′;
Theorem 3.9 shows that S2 ∼2 S2 \D, whence A′ and B′ yield A,B ⊆ S2 with the
properties claimed. It is easy to see that at least four pieces are necessary whenever
a set X , acted upon by a group G, is G-paradoxical. For if X contains disjoint A,B
with A ∼m X ∼n B and m+ n < 4, then one of m or n equals 1. If, say, m = 1,
then X = g(A) for some g ∈ G, whence A = g−1(X ) = X and B = ∅. It turns out
that an interesting feature of the rotation group’s action on the sphere allows the
minimal number of pieces to be realized: There are disjoint sets A,B ⊆ S2 such
that A ∼2 S2 ∼2 B. Moreover, the techniques used to cut the number of pieces
to a minimum lead to significant new ideas on how to deal with the fixed points
of an action of a free group, adding to our ability to recognize when a group’s
action is paradoxical. First, we state precisely the way in which the pieces will be
counted.

Definition 5.1. Suppose G acts on X and E ⊆ X . Then E is G-paradoxical using
r pieces if there are disjoint A, B with E = A ∪ B, A ∼m E ∼n B, and m+ n = r.

Note that this definition is stronger than merely adding to Definition 1.1 the
condition that m+ n = 4, because Definition 5.1 requires E = A ∪ B rather than
just E ⊇ A ∪ B. In fact, if r pieces are used in Definition 1.1, then by virtue of
Corollary 3.7 and its proof, E is paradoxical using r + 1 pieces, in the sense
of Definition 5.1. This distinction is strikingly illustrated by the free group, F ,
of rank 2, which we will here take as being generated by σ , τ . The simple
proof of Theorem 1.2 uses four pieces, but because the identity of F does not
appear in any of the pieces, it yields only that F is paradoxical using five pieces.
To do it with four pieces, one uses the construction of Figure 3.2. The following
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5.1 A Minimal Decomposition of a Sphere 63

theorem shows how this construction can be modified to yield an important addi-
tional condition that is satisfied by the decomposition.

Theorem 5.2. The free group F can be partitioned into A1, A2, A3, and A4 such
that σ (A2) = A2 ∪ A3 ∪ A4 and τ (A4) = A1 ∪ A2 ∪ A4; therefore F is paradoxical
using four pieces. Moreover, for any fixed w ∈ F, the partition can be chosen so
that w is in the same piece as the identity of F.

Proof. The first part was done in Figure 3.2. For the second part, note that the two
desired equations are equivalent to four containment relations:

σ (A2) ⊆ A2 ∪ A3 ∪ A4,

σ−1(A2 ∪ A3 ∪ A4) ⊆ A2,

τ (A4) ⊆ A1 ∪ A2 ∪ A4,

τ−1(A1 ∪ A2 ∪ A4) ⊆ A4.

We shall use domain of σ to denote A2, range of σ to denote A2 ∪ A3 ∪ A4, and
so on.

Suppose that w = ρn · · · ρ1 is given, where each ρi, is one of σ±1, τ±1. Before
assigning arbitrary words to the four sets, we show how to successfully place
e, ρ1, ρ2ρ1, . . . ,w. Place e and w in A2, A1, A4, or A3 according as ρ1 is σ , σ−1, τ ,
or τ−1. To see how to place the other end segments of w, assume, for definiteness,
that ρ1 is σ . Consider first u = ρn−1 · · · ρ1, which equals ρ−1

n w. If w is in the
domain of ρ−1

n , u is placed in the range of ρ−1
n ; if w is not in the domain of ρ−1

n ,
place u in one of the Ai disjoint from ρ−1

n ’s range. Then ρn−2 . . . ρ1 is considered
as ρ−1

n−1u and placed appropriately, and so on, until only ρ1 = σ remains to be dealt
with. Because σ = σe and e ∈ A2, σ must be placed in A2 ∪ A3 ∪ A4, and because
σ = ρ1 = ρ−1

2 (ρ2ρ1), σ must be placed to also satisfy the equation involving ρ−1
2

with respect to the location of ρ2ρ1. But, for each of the three possibilities, σ−1,
τ , τ−1 for ρ−1

2 , A2 ∪ A3 ∪ A4 intersects both the range of ρ−1
2 and its complement,

so a successful placement of σ is possible. The other cases, ρ1 = σ−1 or τ±1,
proceed in an identical manner.

Now, an arbitrary word u ∈ F may be written uniquely as vt, where t is one of
e, ρ1, ρ2ρ1, . . . ,w. Such words can now be assigned by induction on the length
of v . If v = e, then u is an end segment of w and has already been assigned. If v

does not begin with σ−1, put σvt in A2 ∪ A3 ∪ A4 or A1 according as v is, or is not,
in A2; this ensures that vt satisfies the first containment. The other noncanceling
extensions of vt are dealt with similarly.

Corollary 5.3. If F , a free group of rank 2, acts on X without nontrivial fixed
points, then X is F-paradoxical using four pieces. Hence any group having a free
non-Abelian subgroup is paradoxical using four pieces.

Proof. Theorem 5.2 gives the four-piece decomposition of F , and it lifts to X by
the method of Proposition 1.10.
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64 5 Locally Commutative Actions

Although from a geometrical point of view, it is nicer to have decompositions
into as few pieces as possible, such efficient decompositions do not have any new
implications for the existence of finitely additive measures. If X is G-paradoxical,
then X is G-negligible (Def. 2.4) no matter how many pieces are needed. But
Theorem 5.2, in its entirety, can be used to provide a way of dealing with fixed
points of action of free groups that is entirely different from the method used in
Chapter 3. This, in turn, yields the G-negligibility of X for a wider class of actions
than we have yet identified.

If G acts on X and x ∈ X , let Stab(x), the stabilizer of x, denote {σ ∈ G :
σ (x) = x}; Stab(x) is a subgroup of G.

Definition 5.4. An action of a group G on X is called locally commutative if
Stab(x) is commutative for every x ∈ X ; equivalently, if two elements of G have a
common fixed point, then they commute.

Of course, any action without nontrivial fixed points is locally commutative. A
more interesting example is the action of the rotation group SO3(R) on the sphere
S2. If two rotations of the sphere share a fixed point, they must have the same
axis, and therefore they commute; in this case, each Stab(x) is isomorphic to the
Abelian group SO2(R).

The technique used earlier (Prop. 1.10, Cor. 5.3) for transferring a decompo-
sition from a group to a set is based on having a unique representation of each
y ∈ X as g(x), where x is some representative of the orbit of y. If the action has
fixed points, then such representations are not unique, but in the case of a locally
commutative action, there is an intricate way around this difficulty.

Theorem 5.5 (AC). If the action of F on X is locally commutative, where F is
freely generated by σ and τ , then X is F-paradoxical using four pieces.

Proof. We shall use Theorem 5.2 to partition X into A∗1, A∗2, A∗3, and A∗4 satisfy-
ing σ (A∗2 ) = A∗2 ∪ A∗3 ∪ A∗4 and τ (A∗4 ) = A∗1 ∪ A∗2 ∪ A∗4, which suffices to prove the
theorem. However, we shall not use a single partition of F into A1, A2, A3, A4 but
rather many such partitions. More precisely, divide X into orbits with respect to
F ; then the sets A∗i will be defined orbit by orbit, appealing to possibly different
partitions of F in each orbit.

Each orbit consists entirely of nontrivial fixed points or contains no such points
(if w(x) = x and u ∈ F , then u(x) is fixed by uwu−1). For an orbit containing no
nontrivial fixed points, the assignment of points to the A∗i is straightforward, and
the same partition of F into A1, A2, A3, A4 may be used for all such orbits, namely,
the one illustrated in Figure 3.2. For each orbit without fixed points, choose any
representative point x in the orbit. Then any y in the orbit may be written uniquely
as v (x), and y is placed in A∗i if Ai is the subset of F containing v . Then the
equations for the A∗i (as far as they have yet been defined) follow from the corre-
sponding equations for the Ai.

For the assignment of points in an orbit, O, of fixed points, the choice of
x cannot be as arbitrary. Choose a nontrivial word w in F of shortest length
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5.1 A Minimal Decomposition of a Sphere 65

fixing an element of O, and let x be one of w’s fixed points in O. Let ρ denote
whichever of σ±1, τ±1 is the leftmost term of w. Note that w does not end in
ρ−1, for if it did, ρ−1wρ, which fixes ρ−1(x), would be shorter than w. Now,
use Theorem 5.2 to partition F into A1, A2, A3, A4 satisfying the two equations
and having the additional property that e and w lie in the same piece of the
partition.

We claim that every point y in O may be written uniquely as v (x), where v

does not end in w and does not end in ρ−1. The existence of such a representation
is proved by considering a word v of minimal length such that y = v (x). Then v

does not end in w±1, so in case v does end in ρ−1, we may replace v by vw. The
uniqueness of this representation depends on the following important aspect of
local commutativity. The only elements of F that fix x are the powers of w. To
prove this, note that if u fixes x, then local commutativity implies that uw = wu,
whence by an elementary property of free groups (see [MKS66, p. 42]), u = t j

and w = tk for some t ∈ F and j, k ∈ Z. But then the minimality of w implies
that | j| > |k|, so j may be written as 	k + r, where 	, r ∈ Z, and 0 ≤ r < |k|.
Then x = u(x) = tr(tk )	(x) = tr(x), and, again using the minimality of w, this
means r must be 0. Therefore k divides j, and u is a power of w, as claimed.
Now, if y = v (x) = u(x) are two representations of y in the desired form, then
u−1v (x) = x, so one of u−1v or v−1u is a positive power of w. Assume it is u−1v

(the other case is similar); then either u−1 begins with a ρ, contradicting the fact
that u does not end in ρ−1, or all of u−1 cancels with v , implying that v ends in a
w, again a contradiction.

With this representation in hand, we may assign points in O to the sets A∗i . Place
y in A∗i if Ai is the subset of F containing v , where v (x) is the unique representation
of y defined earlier. To show that this assignment works, consider first the relation
σ (A∗2 ) ⊆ A∗2 ∪ A∗3 ∪ A∗4. Suppose y ∈ A∗2—therefore y has the representation v (x),
with v ∈ A2—and consider σ (y). If σv (x) is the correct representation of σ (y),
then because v ∈ A2 implies σv ∈ A2 ∪ A3 ∪ A4, σ (y) is properly placed in A∗2 ∪
A∗3 ∪ A∗4. But it is possible that σv ends in w or ρ−1. In the former case, because
v does not end in w, σv must equal w, so σ (y) = w(x) = x. Because σv lies in
A2 ∪ A3 ∪ A4, so does w, and by our choice of a partition of F , so does e. And
because e(x) is the unique representation of x, this implies that x, and hence σ (y),
is in A∗2 ∪ A∗3 ∪ A∗4. If σv ends in ρ−1, then because v does not, v must equal e,
and so y = x, σv = σ , ρ−1 = σ , and w begins with σ−1. Now, e = v ∈ A2, so w

is in A2 and hence σw ∈ A2 ∪ A3 ∪ A4. But σw(x) is the unique representation of
σ (x), so σ (y) = σ (x) ∈ A∗2 ∪ A∗3 ∪ A∗4. An identical treatment works for the other
three containments involving σ−1(A∗2 ∪ A∗3 ∪ A∗4 ), τ (A∗4 ), and τ−1(A∗1 ∪ A∗2 ∪ A∗4 ),
completing the proof.

Regardless of the number of pieces used, the fact that any locally commutative
action of a non-Abelian free group is paradoxical is interesting by itself, because
it implies that no invariant, finitely additive measure of total measure one exists;
that is, X is F -negligible. There is in fact a simpler proof of this result that, though
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66 5 Locally Commutative Actions

not efficient in its use of pieces, avoids the rather involved reasoning of Theorem
5.5; see Corollary 10.6.

Corollary 5.6 (AC). The sphere S2 is SO3(R)-paradoxical using four pieces, and
the four cannot be improved.

Proof. Because the action of the rotations on the sphere is locally commutative,
and because SO3(R) has a free subgroup of rank 2 (Thm. 2.1), this follows from
Theorem 5.5. It was explained at the beginning of this chapter why four is the best
possible number of pieces.

There are other naturally occurring locally commutative actions to which
Theorem 5.5 applies. For instance, SL2(R), the group of area-preserving and
orientation-preserving linear transformations of R2, is locally commutative in its
action on R2 \ {0}. If σ1 and σ2 fix P, then, choosing a basis that contains P, σi

may be represented by
[ 1 ai

0 bi

]
. Because det(σi) = 1, bi must equal 1, so σ1 and

σ2 commute. Moreover, SL2(Z) has two independent elements (Props. 4.2, 4.4).
By Theorem 5.5, then, R2 \ {0} is SL2(Z)-paradoxical using four pieces. Actually,
with more work, one can produce two independent elements of SL2(Z) such that
the group they generate has no nontrivial fixed points in R2 \ {0} (see remarks at
beginning of Chap. 8).

A similar situation arises with the isometries of the hyperbolic plane, H2.
Proposition 4.1 showed that the full group is locally commutative. And again,
a little more work (Prop. 4.2) yielded a free non-Abelian subgroup that has no
fixed points in its action.

5.2 A Minimal Decomposition of a Solid Ball

The preceding work on the sphere may also be applied to decompositions of a
solid ball with respect to G3, the isometry group of R3. This situation differs from
the sphere in two ways: (1) G3’s action is not locally commutative (consider two
noncommuting rotations about axes containing the origin), and (2) G3 does not
act on B, the unit ball in R3. We have already seen (Thm. 3.9) that despite the
lack of local commutativity, B is G3-paradoxical. But the second point means
that it is not clear what the minimal number of pieces is, as the necessity of four
pieces depends on having a group of transformations from a set to itself. For
instance, in the Sierpiński–Mazurkiewicz Paradox (Thm. 1.7), a set is constructed
that is paradoxical using two pieces. Nevertheless, a geometric argument can be
used to show that five pieces are necessary for the ball, while the finer analysis
available for the sphere allows a five-piece paradoxical decomposition of a ball to
be constructed.

Theorem 5.7 (AC). A solid ball in R3 does not admit a paradoxical decomposi-
tion using fewer than five pieces, and five-piece decompositions of any ball exist.
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5.2 A Minimal Decomposition of a Solid Ball 67

Proof. The theorem will be proved for B, the unit ball of R3 centered at the origin,
but the proof applies to any ball. Let S be the unit sphere that is the surface of B. To
see that at least five pieces are necessary, suppose B = B1 ∪ B2 ∪ B3 ∪ B4, where
the Bi are pairwise disjoint and σ1B1 ∪ σ2B2 = B = σ3B ∪ σ4B4 for isometries σi;
this is the only possibility for a decomposition using fewer than five pieces. Not
all of the σi can fix the origin; otherwise, one copy of B would be missing the
origin, so suppose σ4(0) 
= 0. Then σ4(B) is a unit ball different from B, and it
follows that there is a closed hemispherical surface H ⊆ S that is disjoint from
σ4(B). (Let H be the hemisphere of S symmetric about the point of intersection
of S with the extension of the directed line segment from σ4(0) to 0.) Because
σ3(B3) must contain H , B3 must contain σ−1

3 (H ), a closed hemisphere of S. This
means that (B1 ∪ B2) ∩ S is contained in an open hemisphere of S, namely, the
complement of σ−1

3 (H ). Because, therefore, neither B1 nor B2 contains a closed
hemisphere, the argument used on σ4(B) yields that each of σ1, σ2 fix 0 and hence
map S to S. But then (σ1(B1) ∪ σ2(B2)) ∩ S = σ1(B1 ∩ S) ∪ σ2(B2 ∩ S), which is
contained in the union of two open hemispheres and hence is a proper subset of
S. This contradicts the fact that σ1(B1) ∪ σ2(B2) = B.

To construct a five-piece decomposition, we shall work separately on each Sr,
the sphere of radius r, 0 < r ≤ 1. Use Theorem 2.1 to select two independent
rotations σ and τ of B, and let F be the free group they generate. By Theorem 5.5,
we may partition each Sr, for 0 < r < 1, into Ar

1, Ar
2, Ar

3, Ar
4 satisfying σ (Ar

2) =
Ar

2 ∪ Ar
3 ∪ Ar

4 and τ (Ar
4) = Ar

1 ∪ Ar
2 ∪ Ar

4. For S1, however, we need a partition into
five sets, A1

1, A1
2, A1

3, A1
4, and a single point {P}, satisfying σ (A1

2) = A1
2 ∪ A1

3 ∪
A1

4 ∪ {P} and τ (A1
4) = A1

1 ∪ A1
2 ∪ A1

4 ∪ {P}. Such a partition can be constructed by
examining the proof of Theorem 5.5 and selecting a single orbit, O, of nonfixed
points. There must be such an orbit because F has only countably many fixed
points on S, so only countably many points lie in orbits of fixed points. We may
now select P to be any point in O and assign other points Q ∈ O to A1

1, A1
3, A1

3,
A1

4 according as w begins with a σ , σ−1, τ , or τ−1, where w is the unique word
in F \ {e} such that Q = w(P). Because σW (σ−1) = F \W (σ ) and τW (τ−1) =
F \W (τ ) (see proof of Thm. 1.2), this partition is as desired. Now, B may be
partitioned into B1, B2, B3, B4 and {P}, where B1 = {0} ∪

⋃{Ar
1 : 0 < r ≤ 1} and

for i = 2, 3, 4, Bi =
⋃{Ar

i : 0 < r ≤ 1}. Letting ρ be the translation taking P to
the origin, we see that this partition works because B1 ∪ σ (B2) = B and B3 ∪
τ (B4) ∪ {ρ(P)} = B.

By partitioning spheres of arbitrary positive radius as in the previous proof, and
stealing a point from S in the same way, we can get a paradoxical decomposition of
all R3 using five pieces. But this decomposition is not the simplest possible. Later
we shall construct two independent isometries of R3 such that the free group that
they generate acts on R3 without nontrivial fixed points (Thm. 6.7). Corollary 5.3
then yields a (best possible) four-piece paradoxical decomposition of R3.

Although it took more than twenty years (1924–1947), it is remarkable that
the original Banach–Tarski duplication of the ball, which was somewhat more
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68 5 Locally Commutative Actions

complicated than the approach presented in Chapter 3, could be modified and
refined to yield a duplication requiring only five pieces, the minimal number pos-
sible. In general, optimization along these lines is quite difficult. For instance, if
we apply, with minor modification, Theorem 3.8 to the simple two-piece geomet-
ric rearrangement of a square into an isosceles right triangle (cut along a diag-
onal), then five pieces are used to prove these polygons equidecomposable. No
lower bound for this problem (except the trivial one, 2) is known.

There is as yet no criterion that can be used to tell, in general, whether an action
is paradoxical. But Theorem 5.5 allows such a criterion to be given for the special
case of actions of a group of rotations on the sphere. Because the entire action
of SO3(R) on S2 is locally commutative, it follows from Theorem 5.5 that S2 is
G-paradoxical whenever G is a subgroup of SO3(R) containing two independent
rotations. We shall see in Part II (Thm. 13.23) that these are the only subgroups
for which the sphere is paradoxical: If G is a subgroup of SO3(R) not containing
a free subgroup of rank 2, then a finitely additive, G-invariant measure on P (S2)
of total measure 1 exists, whence S2 is not G-paradoxical.

Another situation in which paradoxical actions may be characterized arises if
we restrict consideration to decompositions using four pieces. This is because, as
we now prove, the converse of Theorem 5.5 is valid, so if G acts on X , then X
is G-paradoxical using four pieces if and only if G has a free subgroup of rank 2
whose action on X is locally commutative.

Theorem 5.8. If G acts on X and X is G-paradoxical using four pieces, then
G has two independent elements σ , τ such that the action of F, the group they
generate, on X is locally commutative.

Proof. A four-piece paradoxical decomposition can only arise from a partition of
X into A1, A2, A3, A4 such that for suitable gi ∈ G, g1(A1) and g2(A2) partition X ,
as do g3(A3) and g4(A4). Let σ = g−1

1 g2, τ = g−1
3 g4; then the pair A1, σ (A2) and

A3, τ (A4) each partitions X , yielding the four familiar equations:

σ (A2) = X \A1, σ
−1(A1) = X \A2, τ (A4) = X \A3, τ

−1(A3) = X \A4.

We shall use the terms domain of σ , range of τ−1, and so on, with respect to
these equations as in the proof of Theorem 5.2.

To prove that σ and τ are independent, suppose w is a nontrivial word in σ ,
σ−1, τ , τ−1; say, w = ρn . . . ρ1, where each ρi is one of σ±1, τ±1. Choose x ∈ X
so that x is not in the domain of ρ1 but is in the range of ρn. These two conditions
eliminate at most two of the Ai, so a suitable x exists. But if x is not in the domain
of ρ1, then ρ1(x) is not in the range of ρ1, and hence because ρ2 
= ρ−1

1 , ρ1(x) is
not in the domain of ρ2. Continuing through w in this way yields that w(x) is not
in the range of ρn. By the choice of x, then, w(x) 
= x, so w is not equal to the
identity, and the independence of σ , τ is proved.

Suppose the action of F , the free subgroup of G generated by σ and τ , on X
is not locally commutative. First we prove the claim that whenever u, v ∈ F \ {e}
have a common fixed point x in X , then one of the rightmost terms of u or u−1
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5.3 General Systems of Congruences 69

equals one of the same for v or v−1. For suppose u = ρn · · · ρ1 and v = φm · · ·φ1

where each ρi, φ j is one of σ±1, τ±1. If ρ1 
= φ1, then x cannot be in the domains
of both ρ1 and φ1. Suppose x is not in the domain of ρ1. Then, as proved in the first
part of this theorem, u(x) = x is not in the range of ρn. If ρn 
= φm, then because
v (x) = x = u(x), v (x) cannot be in the complement of φm’s range too, and so as
before, x must be in the domain of φ1. But the domain of φ1 is contained in the
range of ρn, unless ρn = φ−1

1 , as sought. Finally, if x is not in the domain of φ1,
then the same proof yields φm = ρ−1

1 .
Now, let u, v be a noncommuting pair in F that shares a fixed point, such

that the sum of the lengths of u and v is as small as possible with respect to
all other noncommuting pairs that share a fixed point. Suppose u = ρn · · · ρ1 and
v = φm · · ·φ1 (ρi, φ j ∈ {σ±1, τ±1}), and let x ∈ X be one of the fixed points of
both u and v . Then ρn 
= ρ−1

1 ; otherwise, by the claim of the previous paragraph,
the pair ρ1uρ−1

1 , ρ1vρ
−1
1 , which fixes ρ1(x) and does not commute, would have

total length smaller, by 2, than that of u, v . Similarly, φm 
= φ−1
1 . Now, by the

same claim, we may assume φ1 = ρ1; otherwise, replace one, or both, of u, v by
its inverse. Consider uv−1 and v−1u, both of which fix x. The minimality of u, v

implies that there cannot be so much cancellation in uv−1 or v−1u as to affect any
of the end terms. For if, say, the u of uv−1 was completely absorbed, then the pair
uv−1, u−1, which fixes x and does not commute, would have a smaller total length
than u, v. But because ρ−1

1 
= ρn, φ−1
1 
= φm, and ρ1 = φ1, the end terms of uv−1

and v−1u contradict the claim of the previous paragraph.

The characterization provided by the theorem just proved and its converse,
Theorem 5.5, is especially succinct for actions without nontrivial fixed points: If
G acts on X in such a way, then X is G-paradoxical using four pieces if and only
if G has a free non-Abelian subgroup. In particular, this applies to the action of a
group on itself by left translation, yielding the following corollary.

Corollary 5.9 (AC). A group G is paradoxical using four pieces if and only if G
has a free subgroup of rank 2.

Proof. By Corollary 5.3 and Theorem 5.8.

5.3 General Systems of Congruences

Theorem 5.5 and the group theory result upon which its proof is based (Thm. 5.2)
are really special cases of a much more general result on partitioning a set or group
into subsets satisfying a given system of congruences. Because the derivation of
Theorem 5.5 from Theorem 5.2 is independent of the system of congruences,
we seek to characterize the sort of systems for which Theorem 5.2, including the
assertion about a fixed word w, remains valid. An example for which Theorem 5.2
is false is the single congruence σ (A) = B, with respect to a partition of F into A
and B. For if w is taken to be σ , then if e is in A, w is in B, and if e is not in A,
w is not in B, whence e and w cannot be placed together. In fact, this example is
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essentially the only one for which the sought-after generalization fails, for as we
now show, Theorems 5.2 and 5.5 are valid for any system of congruences, except
those that, explicitly or implicitly, yield that a set is congruent to its complement.
If D ⊆ {e, . . . , r}, then Dc denotes {1, . . . , r} \D.

Definition 5.10. Consider an abstract system of m relations involving set-
variables A1, . . . ,Ar, each relation having the form⋃

{Aj : j ∈ Li} ∼=
⋃
{Aj : j ∈ Ri},

where Li and Ri are subsets of {1, . . . , r}. Because it is intended that the relations
be witnessed by isometries, each relation in the system is called a congruence.
Only congruences where Li and Ri are nonempty proper subsets of {1, . . . , r} are
of interest, and a system where each congruence has that form will be called a
proper system. Suppose that when we add to a proper system the m complemen-
tary congruences, that is, the one referring to Lc

i and Rc
i instead of Li and Ri, and

then consider all congruences obtainable from these 2m ones by transitivity, we
do not obtain a congruence of the form

⋃{Aj : j ∈ D} ∼=⋃{Aj : j ∈ Dc}. Then
the original system of congruences is called a weak system.

The system that we considered in Theorems 5.2 and 5.5 is certainly weak, for
if we close A2

∼= A2 ∪ A3 ∪ A4, A4
∼= A1 ∪ A2 ∪ A4 under complementation and

transitivity (and ignore the ones of the form Ai
∼= Ai), only the congruences A1

∼=
A1 ∪ A3 ∪ A4 and A3

∼= A1 ∪ A2 ∪ A4 are added. Another interesting example is
the set of r − 1 congruences involving A1, . . . ,Ar given by A1

∼= A2, A1
∼= A3, . . . ,

A1
∼= Ar. If r = 2, then A1

∼= A2 already shows that the system is not weak. But
if r > 2, then the closure of this system consists of all congruences of the form
Ai
∼= Aj and its complement,

A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ar
∼= A1 ∪ · · · ∪ Aj−1 ∪ Aj+1 ∪ · · · ∪ Ar.

Thus, provided r > 2, this system, which is satisfied by a partition of a set into
r congruent pieces, is a weak system. As a final example, consider the Hausdorff
paradoxical partition into three sets satisfying A1

∼= A2, A1
∼= A3, A1

∼= A1 ∪ A2.
Clearly this system is not weak, because it implies A3

∼= A1 ∪ A2. We now general-
ize Theorem 5.2 by proving a purely group theoretic result about the satisfiability
of proper and weak systems of congruences in free groups.

Theorem 5.11. Suppose
⋃{Aj : j ∈ Li} ∼=

⋃{Aj : j ∈ Ri}, i = 1, . . . ,m, is a
proper system of congruences involving A1, . . . ,Ar and F is the free group gener-
ated by σ1, . . . , σm. Then F may be partitioned into A1, . . . ,Ar satisfying the sys-
tem, with σi witnessing the ith congruence. If, in addition, the congruences form
a weak system, then it can be guaranteed that any fixed word w ∈ F is placed in
the same piece of the partition as e, the identity of F.
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Proof. We shall show how the proof of Theorem 5.2 must be modified to yield this
generalization. As in Theorem 5.2, we replace the m congruences by the equiva-
lent set of 2m containments:

σi

(⋃
{Aj : j ∈ Li}

)
⊆
⋃
{Aj : j ∈ Ri}

σ−1
i

(⋃
{Aj : j ∈ Ri}

)
⊆
⋃
{Aj : j ∈ Li},

where i = 1, . . . ,m. Because each Li, Ri is nonempty and proper, a straightfor-
ward induction exactly as in the last part of Theorem 5.2’s proof (taking w = e
there) yields the partition of F for an arbitrary system. The stronger result for
weak systems is, as in Theorem 5.2, a bit more complicated.

Suppose w = ρn · · · ρ1, with each ρk ∈ {σ±1
i : i = 1, . . . ,m}. As in Theorem

5.2, it is sufficient to assign the end-segments e, ρ1, ρ2ρ1, . . . ,w successfully to
sets Aj of the partition, for then the rest of F may be placed by induction. Note
that any of the m congruences is equivalent to the one obtained by replacing Li, Ri

by Lc
i , Rc

i , respectively. We use the terms domain or range of σ±1
i as in the proof

of Theorem 5.2.

Case 1. For some k = 1, . . . , n, the range of ρk (or its complement) intersects
both the range of ρ−1

k+1 and its complement (arithmetic on the index k is assumed
to be modulo n; thus n+ 1 represents 1, etc.).

This case is handled in essentially the same way as the proof of Theorem 5.2.
Replacing the congruence for ρk by its complementary one if necessary, we may
assume that the hypothesis of this case applies to the range of ρk rather than
its complement. Now, place ρk−1 · · · ρ1 in the domain of ρk , and then place the
segments ρk−2 · · · ρ1, ρ2ρ1, . . . , ρ1, e, w, ρn−1 · · · ρ1, . . . , ρk+1 · · · ρ1 in order to
satisfy the appropriate containments, and with w in the same piece as e. This
leaves the last end-segment, ρk · · · ρ1, which must be placed in the range of ρk and
in either the range of ρ−1

k+1 or its complement. By the hypothesis on k, a successful
placement of ρk · · · ρ1 is possible.

Case 2. The hypothesis of Case 1 fails.

The failure of Case 1’s hypothesis implies that for each k = 1, . . . , n, the range
of pk equals the range of ρ−1

k+1 or its complement. But the range of ρ−1 equals the
domain of ρ, so we have that the range of ρk equals the domain of ρk+1 or its
complement. Now, place e into the domain of ρ1, place ρ1 into the range of ρ1,
place ρ2ρ1 into the range of ρ2 or its complement according as the range of ρ1

equals the domain of ρ2 or its complement, and continue in this way until w must
be placed. Then w is forced to be in either the range of ρn or its complement, and
hence either in the domain of ρ1 or its complement. But the latter cannot occur,
for otherwise the condition

w(domain of ρ1) = complement of the domain of ρ1
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72 5 Locally Commutative Actions

is a consequence of the system of congruences, contradicting the weakness of the
system. Hence w can be placed in the domain of ρ1 and in the same set containing
the identity, completing the proof of this case, and of the theorem.

Corollary 5.12 (AC). Suppose G acts on X and a proper system of m congru-
ences involving A1, . . . ,Ar is given. If G has m independent elements such that
the group F that they generate acts on X without nontrivial fixed points, then X
may be partitioned into sets Ai satisfying the system. If the action of F is merely
locally commutative, then the partition is possible provided the congruences form
a weak system.

Proof. This follows from the previous theorem in exactly the same way that
Corollary 5.3 and Theorem 5.5 follow from Theorem 5.2.

Now, a free group of rank 2 contains m independent elements for any m < ℵ0;
indeed, if σ and τ are independent, then {τ, στσ−1, σ 2τσ−2, . . .} is an infinite
set of independent elements, as is {στ, σ 2τ 2, σ 3τ 3, . . .} (see [MKS66, p. 43]).
Hence, by Theorem 2.1, SO3(R) contains a free locally commutative subgroup of
any finite rank, and therefore by Corollary 5.12, any weak system of congruences
is solvable, using rotations, by a partition of S2. Infinite, even uncountable systems
of congruences are discussed in the next chapter.

The general theory of systems of congruences has some interesting, nonpara-
doxical, geometric consequences concerning partitions of a set into congruent
pieces.

Definition 5.13. A set X is m-divisible with respect to a group G acting on X if
X splits into m pairwise disjoint, pairwise G-congruent subsets. Each of the m
subsets is then called an mth part of X . If no group is mentioned, it is understood
that the isometry group of X is being used.

As examples, note that for m <∞ a half-open interval on the real line is m-
divisible with respect to translations. Similarly, the circle S1 is m-divisible. Also,
each Rn is m-divisible: An mth part of R1 is given by

⋃{[mk,mk + 1) : k ∈ Z},
and this extends easily to Rn. On the other hand, S2 is not 2-divisible using rota-
tions, because any rotation has a fixed point on the sphere. Of course, the antipo-
dal map (x �→ −x) yields that S2 is 2-divisible if arbitrary isometries are allowed:
One-half of S2 is given by the open northern hemisphere together with one-half
of the equator.

The m-divisibility of X is equivalent to the existence of a partition of X sat-
isfying the system {A1

∼= Aj : 2 ≤ j ≤ m}. This system is weak if (and only if)
m ≥ 3, so Corollary 5.12 yields divisibility results when locally commutative free
groups of rank 2 (and hence rank ℵ0) are present. Applying this to the locally
commutative action of SO3(R) on S2 yields the following result.

Corollary 5.14 (AC). For any m with 3 ≤ m <∞, S2 is m-divisible.
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Unlike the decompositions of the Banach–Tarski Paradox, it is not clear
whether the pieces in a three-piece splitting of the sphere as in Corollary 5.14
can be Lebesgue measurable. This leads to Question 5.15. Because it is consis-
tent with Zermelo–Fraenkel set theory that all sets are Lebesgue measurable (see
Thm. 15.1), a negative answer to part (a) implies an affirmative answer to part (b).

Question 5.15. (a) Can S2 be split into three Lebesgue measurable pieces, any
two of which are congruent by a rotation? (b) Is the Axiom of Choice necessary
in Corollary 5.14?

In fact, a much stronger result than Corollary 5.14—one that necessitates non-
measurable pieces—is possible. By considering a more complicated system of
congruences, we shall prove (see remarks following Corollary 6.9) that there is a
subset of S2 that is simultaneously a third, a quarter, a fifth, and so on, part of S2;
such a set must be nonmeasurable; otherwise, its measure would be equal to both
1/3 and 1/4. Chapter 6 contains a discussion of simultaneous m-divisibility for Rn

and for hyperbolic spaces. See also the discussion of Hausdorff decompositions
at the end of this chapter.

There are other scattered results on m-divisibility where only one m at a time
is considered, but by no means a general theory. Corollary 5.14 can be extended
to show that S2 (and higher-dimensional spheres) is m-divisible using rotations
for any m with 3 ≤ m ≤ 2ℵ0 (see Cor. 7.11); indeed, simultaneous m-divisibility
is possible here too (see remarks following Cor. 7.11). As pointed out, S1 is m-
divisible for any finite m using half-open arcs; moreover, Vitali’s classical example
of a non-Lebesgue measurable subset of the circle yields the ℵ0-divisibility of
S1 (see the proof of Thm. 1.5), and this can be extended to all larger cardinals
m ≤ 2ℵ0 (Cor. 7.11). In short, if arbitrary isometries, rather than just rotations, are
allowed, then all spheres are m-divisible for all possibilities for m: m ≤ 2ℵ0 .

The situation for intervals on the line is a little more complex. The ℵ0-
divisibility of S1 yields in a straightforward manner the existence of ℵ0 pair-
wise disjoint subsets of a half-open interval, any two of which are equidecom-
posable (via translations) using two pieces. The extra piece is needed to account
for the problem of addition mod 1, if [0, 1) is the interval. Steinhaus [Maz21, p.
8] raised the question whether an interval is, in fact, ℵ0-divisible, and this was set-
tled by von Neumann [Neu28], who proved that all intervals—half-open, open, or
closed—are ℵ0-divisible via translations. This result too has been generalized to
all m with ℵ0 ≤ m ≤ 2ℵ0 . Because the finite case for a half-open interval is obvi-
ous, such intervals are m-divisible via translations for all possible m. On the other
hand, it is known that open or closed intervals are not m-divisible using isometries
for any finite m ≥ 2.

For higher-dimensional balls, it is known that the n-dimensional ball is not
m-divisible if 2 ≤ m ≤ n; thus it is unresolved whether the disk in the plane is 3-
divisible. Kiss and Laczkovich [KL11] proved that the ball in R3 is m-divisible
whenever m ≥ 22. Thus, in this case, it is unresolved whether the ball is m-
divisible for 4 ≤ m ≤ 21. They showed also that for every d divisible by 3, the
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74 5 Locally Commutative Actions

ball is m-divisible when m is sufficiently large. So we have the following open
question:

Question 5.16. Is there any m ≥ 2 so that the unit ball in R4 is m-divisible?

There are examples of Banach spaces in which the unit ball is 2-divisible; here
the definition is widened to allow distance-preserving functions from one subset
of the Banach space to another, rather than only bijections from the Banach space
to itself that preserve distance. An example is the space of all real sequences con-
verging to 0, with the sup norm. But for a wide class of Banach spaces (reflexive
and strictly convex), the unit ball is not 2-divisible (see [Ede00]).

It should be noted that the idea of splitting a set into congruent pieces is, like
equidecomposability, a generalization of an older geometric problem: Given a
figure (usually in the plane), divide it using finitely many cuts (straight or along
curves) into m congruent pieces, where the boundaries of the pieces are ignored.
Unlike geometric equidecomposability, for which the Bolyai–Gerwien Theorem
(Thm. 3.2) controls what can be done with polygons, this problem is usually
attacked on an ad hoc basis. Here is one attractive unsolved problem in this area:
If p is an odd prime, is there any way of cutting a square into p congruent pieces
other than the obvious way into horizontal (or vertical) rectangles? Note that a
polygon is a countable part (in the geometric sense) of R2 if and only if R2 can be
tiled using ℵ0 copies of the polygon. For a survey of results and questions about
such tilings, see [GS86].

Theorem 5.8 and Corollary 5.12 yield necessary and sufficient conditions for
the solvability of all weak systems of congruences, namely, the group G acting
on X must have a free, locally commutative subgroup of rank 2. The fixed-point
condition of the first part of Corollary 5.12, however, is sufficient but not neces-
sary for the solvability of all proper systems. For consider the sphere, S2, acted
upon by its full group, O3(R), of isometries, including orientation-reversing ones.
Any of the latter, when squared, yields an orientation-preserving isometry that
can only be a rotation; therefore any subgroup of O3(R) has nonidentity elements
with fixed points on S2. Nevertheless, a judicious use of the antipodal map shows
that all proper systems of congruences are solvable with respect to O3(R).

Theorem 5.17 (AC). A proper system
⋃{Aj : j ∈ Li} ∼=

⋃{Aj : j ∈ Ri} of con-
gruences involving A1, . . . ,Ar is solvable via a partition of S2 provided arbitrary
isometries of the sphere may be used to witness the congruences.

Proof. Let ζ : S2 → S2 denote the antipodal map, ζ (x) = −x, and choose
σ1, . . . , σm to be independent rotations of S2. Choose any two-coloring of the
subsets of 1, . . . , r such that the color of any set differs from the color of its com-
plement. Then define τi to be either σi or σiζ , according as Li and Ri do, or do not,
have the same color.

Note that because each rotation of S2 is also a linear transformation of R3, ζ
commutes with each σi. It follows from this and the fact that ζ 2 = e that the τi

are independent, for if a word involving the τi equals the identity, then the square
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of the corresponding word in the σi does too, contradicting the independence of
the σi. Note also that for any rotation θ , ζθ has a fixed point on S2 if and only if
θ is a rotation of order 2. Because there are no such rotations in the free group
generated by the σi, the local commutativity of that group implies the same for F ,
the group generated by the τi.

We may now proceed as we did for weak systems in Corollary 5.12, that is,
use the method of proof of Theorem 5.5, except that a problem will arise when
it comes to partitioning an orbit of fixed points. If w is the chosen short word
fixing a point in the orbit, then because the given system of congruences is not
necessarily weak, Theorem 5.11 as stated does not yield the required partition of
F with e and w in the same piece. Nevertheless, the only spot where Theorem
5.11’s proof appeals to the weakness of the system is in Case 2, where each Rk ,
the range of ρk , equals either Lk+1 or its complement (where n+ 1 cycles back to
1). So assume that that is the case and consider the sequence of colors assigned to
the sequence of sets:

L1,R1,L2,R2, . . . ,Ln,Rn.

Because w has a fixed point, w cannot equal θζ for a rotation θ , and so w must
contain an even number of ζ s, that is, an even number of τis that equal σiζ . This
means that there is an even number of color switches in the steps from L to R in
the sequence of sets just displayed. The parity of the number, K, of color switches
from R-to-L acts like a color operator, transforming the color of L1 into the color
of Rn. That is, if K is odd, then the colors of L1 and Rn are different, while if K is
even, then the colors are the same. Also the parity of K determines whether w is
in Rn or its complement.

To be precise, if K is odd, then there is an odd number of switches in the R-to-L
steps and the placement of e in L1 = domain(ρ1) forces w to be in the complement
of Rn; because the total number of color switches is odd, the complement of Rn

must be L1. Therefore w may be placed in the same piece as e.
If K is even, then w is forced to be in Rn, which has the same color as, and

therefore equals, L1. Again, this allows a successful placement of w. Thus there is
a partition of F that can be used to assign the points of the orbit to the appropriate
sets. This can be done for each orbit of fixed points, yielding the desired partition
of S2.

The solution of all proper systems involving A1, . . . ,Ar is equivalent to the
solution of the single, all-encompassing system of ( 2r− 2

2 ) congruences:
⋃{Aj :

j ∈ Li} ∼=
⋃{Aj : j ∈ Ri}, where L, R vary over all pairs of nonempty, proper sub-

sets of {1, . . . , r}. A partition of S2 satisfying this universal system, which exists
by the preceding theorem, is surely a striking object. For S2 is divided into r
pieces such that if someone gathers a nonempty, proper collection of these pieces
into one pile, and then gathers another such collection into another pile (a piece
may appear in both piles), then the union of the pieces in one pile is congruent to
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the union of the other pile. In particular, each of the r sets is, simultaneously, a
half, a third, . . . , an rth part of S2.

This theorem has one application that is interesting from a historical point of
view. Hausdorff’s original decomposition of the sphere (§4.2) showed that, except
for a countable set, the sphere could be partitioned into A1, A2, and A3, satis-
fying A1

∼= A2
∼= A3

∼= A1 ∪ A2, where the congruences are realized by rotations.
These congruences do not form a weak system, and because rotations have fixed
points, it is impossible to eliminate the countable subset of the sphere excluded
at the outset. The Banach–Tarski Paradox eliminates this countable set but con-
structs a partition satisfying a different paradoxical system of congruences. It is
a consequence of Theorem 5.16 that if all isometries of the sphere are allowed,
then a Hausdorff decomposition of the entire sphere is possible. For a version
of the Hausdorff Paradox that retains the restriction to rotations but weakens the
assumption that a countable set of points on the sphere must be deleted, see the
appendix to [Rob47]. For a constructive geometric realization of the Hausdorff
Paradox, that is, one that does not require the Axiom of Choice, see Chapter 4.

Notes

Von Neumann was apparently the first to consider the problem of counting the
number of pieces in a paradoxical decomposition; in [Neu29, p. 77] he states,
without proof, that nine pieces suffice for the duplication of a solid ball. Sierpiński
[Sie45a] was able to improve this to eight, but it was Raphael Robinson [Rob47]
who had the idea of first trying to optimize the situation for the sphere and then
extending the analysis to the ball.

In fact, most of the main ideas of this chapter stem from Robinson’s paper,
which contains the proof that five pieces are necessary and sufficient for the ball,
and the consideration of arbitrary weak systems of congruences and the applica-
tion in Corollary 5.14. Question 5.15 was raised by Mycielski [Myc57a, Myc57b].

The generalization of Robinson’s work from the special context of a sphere to
general locally commutative actions is due to Dekker [Dek56a, Dek58a], who was
responsible for the definition of local commutativity and its applications Theorem
5.5 and Corollary 5.12. A special case of these aspects of local commutativity was
rediscovered by Akemann [Ake81, Prop. 4]. Dekker also considered the converse
problem, proving Theorem 5.8, and investigated higher-dimensional Euclidean
and non-Euclidean spaces [Dek56b, Dek57]; these generalizations are treated in
Chapters 6 and 7. The part of Theorem 5.8 that yields the independence of σ and
τ is similar to a result known as MacBeath’s Lemma (see [LU68, LU69]).

Actually, the special case of Dekker’s converse that deals solely with groups
acting on themselves, Corollary 5.9, had been considered earlier. While a student
of Tarski in the 1940s, B. Jónsson proved Corollary 5.9, but because the result did
not lead to any progress on the question whether paradoxical groups necessarily
had free subgroups of rank 2 (see §12.2), it was never published.
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The idea of weaving the antipodal map into strings of rotations to solve all
proper systems of congruences on S2 is due to Adams [Ada54], who proved The-
orem 5.16 and derived the Hausdorff Paradox without the exclusion of a countable
set.

The m-divisibility of S2 with respect to rotations for m satisfyingℵ0 ≤ m ≤ 2ℵ0

is due to Mycielski [Myc55b], who also proved simultaneous m-divisibility (see
remarks following Cor. 7.9). The m-divisibility of S1 for ℵ0 < m < 2ℵ0 is due
to Ruziewicz [Ruz24]. Von Neumann’s proof [Neu28] of the ℵ0-divisibility of
intervals is simplified and extended to larger cardinals by Mycielski [Myc57a].
The nondivisibility of an open or closed interval into finitely many congruent
pieces is due to Gustin [Gus51] although special cases of this result have been
rediscovered by Sierpiński [Sie54, p. 63], Schinzel (see [Myc57a]), and Cater
[Cat81]. Van der Waerden [Wae49] asked whether a disk in R2 is 2-divisible, and
a negative answer was provided by Gysin [Gys49]. Puppe (see [HDK64, pp. 27,
81]) extended this to apply to any bounded, closed, convex subset of R2. R. M.
Robinson (see [Wag83]) showed that a ball in Rn is not m-divisible for any m
with 2 ≤ m ≤ n. The results on divisibility in Banach spaces are due to Edelstein
[Ede88].
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6

Higher Dimensions

6.1 Euclidean Spaces

Because paradoxical decompositions depend on free groups, and because the
group of rotations of S2 is contained in higher-dimensional rotation groups,
it comes as no surprise that paradoxical decompositions exist for higher-
dimensional spaces. This generalization is not completely obvious, though,
because the fixed point set of an isometry does expand when the isometry is
extended to a higher dimension by fixing additional coordinates. Nevertheless,
the basic results on the existence of paradoxical decompositions do extend without
requiring any new techniques (see Thm. 6.1). For example, we have already seen
that the unit ball in Rn is Gn-negligible if n ≥ 3 (Thm. 2.6), and by the theorem
of Tarski alluded to just prior to Theorem 2.6, it follows that such balls are para-
doxical. But it is useful to see how the decompositions in higher dimensions may
be obtained quite directly from the construction on S2, as is done in Theorem 6.1.

The expansion of the fixed point set is a crucial impasse to generalizing the
finer analysis of Chapter 5, however. This is because new fixed points completely
destroy the local commutativity of a group when it is viewed as acting on a higher-
dimensional space. Nonetheless, locally commutative free groups of isometries
(and, where possible, free groups without fixed points) do exist; hence there are
minimal paradoxical decompositions in all higher dimensions (Cor. 6.5).

Theorem 6.1 (AC). Assume n ≥ 3.

(a) Any sphere in Rn is paradoxical with respect to its group of rotations.
(b) Any solid ball in Rn is Gn-paradoxical, as is Rn itself.
(c) Any two bounded subsets of Rn with nonempty interior are equidecompos-

able.

Proof. (a) The result is true for n = 3 (Cor. 3.10), and we proceed from there by
induction. We consider Sn, the unit sphere in Rn+1 centered at 0, but the same
proof applies to all spheres. Now, suppose Ai, Bj ⊆ Sn−1 and σi, τ j ∈ SOn(R)

78
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6.1 Euclidean Spaces 79

witness the fact that Sn−1 is paradoxical. Define A∗i , B∗j to partition Sn, excluding
the two poles (0, . . . , 0,±1), by putting (x1, . . . , xn, z) in A∗i or B∗j according to
which of the Ai, Bj contains (x1, . . . , xn)/|(x1, . . . , xn)|. Extend σi, τ j to σ ∗i , τ ∗j ∈
SOn+1(R) by fixing the new axis. In matrix form, this is

σ ∗i =

⎡
⎢⎢⎢⎣

0

σi

...
0

0 · · · 0 1

⎤
⎥⎥⎥⎦ .

Then A∗i , B∗j , σ ∗i , τ ∗j provide a paradoxical decomposition of Sn \
(0, . . . , 0,±1). But any two-dimensional rotation of infinite order, viewed as
rotating the last two coordinates and fixing the first n− 1 coordinates, can be
used as usual (see proof of Cor. 3.10) to show that Sn \ (0, . . . , 0,±1) ∼ 2Sn;
by Proposition 3.4 this proves part (a). The rest of the theorem follows from (a)
exactly as it does in R3 (Cor. 3.10, Thm. 3.11).

As pointed out earlier, we must make a bit of a fresh start to solve arbitrary
weak systems of congruences, and hence obtain minimal paradoxical decompo-
sitions, for S3 and beyond. We first consider S3, where a free non-Abelian group
of rotations with no nontrivial fixed points can be constructed directly. Then this
group will be combined with the free subgroup of SO3(R) constructed in Chap-
ter 2 to obtain free subgroups in all higher-dimensional rotation groups, except
SO5(R), which requires special treatment.

Theorem 6.2. The group SO4(R) has a free subgroup of rank 2 whose action on
the sphere S3 is without nontrivial fixed points.

Proof. Choose θ to be an angle whose cosine is transcendental (e.g., θ = 1
radian), and let σ , τ be the rotations in SO4 given, respectively, by⎡

⎢⎢⎣
cos θ −sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ −sin θ
0 0 sin θ cos θ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos θ 0 0 −sin θ
0 cos θ −sin θ 0
0 sin θ cos θ 0

sin θ 0 0 cos θ

⎤
⎥⎥⎦ .

We shall prove that no nontrivial word in σ±1, τ±1 has any fixed points on
S3, which implies both the independence of σ , τ and the lack of fixed points for
elements of the group they generate.

A nontrivial word w has one of the four forms σ±1 · · · τ±1, τ±1 · · · σ±1,
σ±1 · · · σ±1, or τ±1 · · · τ±1. The second form reduces to the first by consider-
ing w−1, and repeated conjugation reduces the last two cases to one of the first
two, unless w is simply a power of σ or τ . Because cos θ is not algebraic, θ is not
a rational multiple of π , and therefore powers of the rotation

[
cos θ −sin θ
sin θ cos θ

]
, and

hence powers of σ or τ , do not have any fixed points. Thus it remains to prove
that the same is true for a word, w, of the form σ±1 · · · τ±1. This will be done by
showing that 1 is not an eigenvalue of the matrix corresponding to such a word w.
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Each of σ±1, τ±1 has the form⎡
⎢⎢⎣

P −Q R −S
Q P −S R
R S P −Q
S −R Q P

⎤
⎥⎥⎦ ,

where P and R are polynomials in cos θ (with integer coefficients), and Q and
S are the products of such polynomials with sin θ . An obvious induction yields
that the same is true for any word w in σ±1, τ±1. Computing the determinant of
w − λI then yields that the characteristic equation for w is

λ4 − 4Pλ3 + (6P2 + 2(Q2 + R2 + S2))λ2 − 4P(P2 + Q2 + R2 + S2)λ

+ (P2 + Q2 + R2 + S2) = 0.

But w is orthogonal, so P2 + Q2 + R2 + S2 = 1 and the characteristic equation
is λ4 − 4P λ3 + (4P2 + 2)λ2 − 4P λ+ 1 = 0. If 1 is an eigenvalue of w, then
4P2 − 8P+ 4 = 0. Because cos θ is transcendental, this will be a contradiction
once it is shown that P, a polynomial in cos θ , is not just a constant.

Because σ comes from two two-dimensional rotations, for positive integers m,
we have that ⎡

⎢⎢⎣
cos mθ ∓sin mθ 0 0
±sin mθ cos mθ 0 0

0 0 cos mθ ∓sin mθ
0 0 ±sin mθ cos mθ

⎤
⎥⎥⎦ .

Because of the identities

cos(mθ ) = 2m−1 cosm θ + terms of lower degree in cos θ

and

sin(mθ ) = (sin θ )(2m−1 cosm θ + terms of lower degree in cos θ ),

σ±m has the following form, where
.= denotes that only the term of highest degree

in cos θ is retained in each entry:

σ±m .= 2m−1 cosm−1 θ

⎡
⎢⎢⎣

cos θ ∓sin θ 0 0
±sin θ cos θ 0 0

0 0 cos θ ∓sin θ
0 0 ±sin θ cos θ

⎤
⎥⎥⎦ .

There is a similar representation for τ±k . Multiplying the two representations
and substituting 1− cos2 θ for sin2 θ yields the following (where ε, δ = ±1):

σ εmτ δk .= 2m+k−2 cosm+k−1 θ

⎡
⎢⎢⎣

cos θ −ε sin θ −εδ cos θ −δ sin θ
ε sin θ cos θ −δ sin θ εδ cos θ
εδ cos θ δ sin θ cos θ −ε sin θ
δ sin θ −εδ cos θ ε sin θ cos θ

⎤
⎥⎥⎦ .
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Now, we claim that if w = σ εnmnτ δnkn · · · σ ε1m1τ δ1m1} and � denotes |k1| +
|m1| + · · · + |kn| + |mn|, then

w
.= 2�m−n−1+ cos�−1 θ

⎡
⎢⎢⎣
ξ cos θ −μ sin θ −ζ cos θ −ν sin θ
μ sin θ ξ cos θ −ν sin θ ζ cos θ
ζ cos θ ν sin θ ξ cos θ −μ sin θ
ν sin θ −ζ cos θ μ sin θ ξ cos θ

⎤
⎥⎥⎦ ,

where ξ, μ, ν, ζ = ±1. To prove this claim, assume inductively that w has the
correct form (with ξn, μn, ζn, and νn), and consider σ εmτ δk . Multiplying yields
the desired form, with

ξn+1 = ξn + εμn + δνn − εδζn,

μn+1 = μn + εξn + δζn − εδνn,

νn+1 = νn − εζn + δξn + εδμn,

ζn+1 = ζn − ενn + δμn + εδξn,

but with one less power of 2 than desired. It follows easily from these equations
that the equation μν = ξζ , which is true in σ εmτ δk , remains true. Hence

ξn+1 = ξn + εμn + δνn − εδ
μnνn

ξn
= ξn + εμn + δνn − ξn(εμn)(δνn),

which, because all terms are±1, equals one of±2. The same holds true for μn+1,
νn+1, ζn+1. Factoring out a 2 yields the correct power of 2 and the correct form,
±1, for the coefficients, completing the proof of the claim.

This claim shows that P is a polynomial of degree � in cos θ and, as explained,
it follows that 1 is not an eigenvalue of w.

Corollary 6.3. If n ≥ 3 and n 
= 5, then SOn(R) has a free subgroup of rank 2 that
is locally commutative in its action on Sn−1. If n is a multiple of 4, then SOn(R)
has a free subgroup of rank 2 without any nontrivial fixed points on Sn−1.

Proof. Any n ≥ 3, except n = 5, may be written as 3 j + 4k for some positive
integers j, k. Letting σ3, τ3, and σ4, τ4 denote, respectively, pairs of independent
elements in SO3(R) and SO4(R), as constructed in Theorems 2.1 and 6.2, we
can define σ, τ ∈ SOn(R) by using these pairs on the three- and four-dimensional
subspaces of Rn as specified by the decomposition of n into 3 j + 4k. Thus the
matrix of σ is block diagonal, with j 3× 3 blocks (σ3) and k 4× 4 blocks (σ4).
Assume the 3× 3 blocks precede the 4× 4 ones. It is clear that σ and τ are
independent. If j = 0, then the lack of fixed points in the group generated by σ4

and τ4 implies the same for the group generated by σ and τ , proving the assertion
of the corollary regarding multiples of 4.

Now, suppose k > 0 and w, u are two words in σ±1, τ±1 that share a fixed
point. Note that w and u are ordinary three-dimensional rotations when restricted
to a three-dimensional subspace on which they act as if they were the correspond-
ing words in σ±1

3 , τ±1
3 . Because they share a fixed point on Sn−1, they must share
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a nonzero fixed point in one of these k three-dimensional subspaces. But then u
and w commute when considered as words in σ±1

3 , τ±1
3 . By the independence of

σ3 and τ3, this implies that u and w are commuting words in σ±1, τ±1.

K. Satô [Sat97] has shown that some of the results of the preceding corollary
can be achieved using orthogonal matrices with rational entries.

This corollary leaves two possibilities outstanding: SO4n+2(R) and SO5(R). In
SOm(R), m odd, every element has +1 as an eigenvalue, and hence has a fixed
point on Sn−1. Dekker, who discovered the groups of Theorem 6.2 and Corol-
lary 6.3, conjectured [Dek56b] that free groups of rank 2 without nontrivial fixed
points exist in the other half of the possible cases, that is, in SO4n+2(R), n ≥ 1. He
also conjectured that SO5(R), which did not yield to his techniques, has a locally
commutative free subgroup of rank 2. Deligne and Sullivan [DS83] settled the
SO4n+2(R) case, using relatively deep techniques of algebraic number theory, as
well as the theorem of Tits (Thm. 12.6). Their work was significantly extended by
A. Borel [Bor83], who showed how to get locally commutative, non-Abelian free
subgroups of each SOn(R), n ≥ 3; in particular, such subgroups of SO5(R) exist,
as conjectured by Dekker. In fact, Borel’s pair of independent rotations of S4 is
similar to the earlier examples in S2 and S3. The rotations are defined using angles
with a transcendental cosine, and each is built from two 2-dimensional rotations.
Borel also showed how fixed-point free, rank-2 free subgroups of SO4n+2(R)
could be constructed without using Tits’s Theorem. These results, whose proofs
use methods from the theory of Lie groups, provide a complete solution to the
problem of the existence of these types of free rotation groups: Free non-Abelian
subgroups of SOn(R) that act on Sn−1 without nontrivial fixed points, or are
locally commutative, exist in all cases, except those excluded for algebraic rea-
sons (solvability or eigenvalues). Moreover, we shall see in Chapter 7 that the
set of pairs from SOn(R) that serve as generators of these groups is dense in
SOn(R)× SOn(R).

Theorem 6.4. For any even n ≥ 4, SOn(R) has a free subgroup of rank 2 having
no nontrivial fixed points on Sn−1. For any n ≥ 3, SOn(R) has a free subgroup of
rank 2 whose action on Sn−1 is locally commutative.

Corollary 6.5 (AC). If n ≥ 2, then Sn (and Rn+1 \ {0)) may be partitioned to sat-
isfy any weak system of congruences with respect to the rotation group SOn+1(R).
In particular, Sn is paradoxical using four pieces. If n is odd, n ≥ 3, then all proper
systems of congruences may be solved with respect to the action of SOn+1(R) on
Sn. The same is true for even n ≥ 2 if we enlarge the group witnessing the con-
gruences from SOn+1(R) to On+1(R).

Proof. Because a free group of rank 2 contains m independent elements for any m,
the parts of this corollary that deal with SOn+1(R) follow from Corollary 5.12 and
the free groups of Corollaries 6.3 and 6.4. The result about On+1(R) follows by
closely analyzing the technique of Theorem 5.16, which showed how the presence
of the antipodal map could be combined with a locally commutative free group
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to solve all proper systems of congruences. The essential feature of the locally
commutative group used in that proof is that no group element sends any point P
on Sn to its antipode, −P; that is, no group element has−1 as an eigenvalue. This
is easily seen to be the case for any free subgroup of SO3(R) and for the subgroup
of SO4(R) constructed in Theorem 6.2; for the latter, note that if w(P) = −P,
then w2 would fix P. Hence this property holds for all the locally commutative
groups of Corollary 6.3, that is, all relevant cases except SO5(R).

For SO5(R) (and this is also true for SO3(R) and SO4(R)), one can show that,
in fact, any locally commutative free subgroup of rank 2 has no element with
−1 as an eigenvalue. In particular, then, this is true of Borel’s group mentioned
prior to Theorem 6.4, completing the proof of Corollary 6.5. To prove this fact
about SO5(R), suppose G is a locally commutative subgroup of SO5(R) freely
generated by σ , τ , and some word u ∈ G has−1 as an eigenvalue. It follows from
the orthogonality of u that its real eigenvalues include +1, −1, −1, whence u2

is the identity on a three-dimensional subspace of R5. Suppose, without loss of
generality, that u, and hence u2, begins with σ . Then u2 and w = τu2τ−1 have
different leftmost terms and so are not powers of a common word in G. It follows
from G’s freeness that u2 and w do not commute (see proof of Thm. 5.5) and
hence, by local commutativity, that they do not share a fixed point on S4. But
this contradicts the fact that u2 and w each fix (pointwise) a three-dimensional
subspace of R5 (because w is a conjugate of u2), and two such subspaces must
have a point in common on S4.

The proof in the last paragraph breaks down in SO6(R) and beyond, and it is
not known whether a locally commutative, non-Abelian free subgroup of SOn(R)
(n ≥ 6) can contain an element having −1 as an eigenvalue. This gap did not
affect the proof of Corollary 6.5, because this eigenvalue does not appear among
the specific locally commutative groups of Corollary 6.3.

Note that, for n odd, the antipodal map has determinant +1 and so lies in
SOn+1(R). Hence the technique of the preceding proof, which uses the antipodal
map and Theorem 5.16, yields another proof of the part of Corollary 6.5 that deals
with n odd, n ≥ 3. This approach does not require the fixed-point free groups of
Theorem 6.4 but uses only the simpler locally commutative groups of Corollary
6.3.

Corollary 6.5 gives a complete answer to the question of m-divisibility of
spheres for finite m. But there is a simpler approach that yields a more construc-
tive solution, at least for spheres of odd dimension. For now we consider only
finite m, but in the next chapter we shall consider infinite m, showing that any Sn

(except S1) has a subset that is, simultaneously, a half, a third, . . . , a 2ℵ0 th part of
Sn (see Cor. 7.11 and remarks following).

Theorem 6.6. Assume m is an integer and m ≥ 2.

(a) If n is odd, then Sn is m-divisible with respect to SOn+1(R).
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(b) (AC) If n is even, then Sn is m-divisible with respect to SOn+1(R) if and
only if m ≥ 3.

(c) (AC) For any n, Sn is m-divisible with respect to On+1(R).

Proof. First, observe that the m-divisibility of Sn can be deduced from that
of S j and Sk if j + 1+ k + 1 = n+ 1. For we may partition Sn by consid-
ering a point P = (x1, . . . , xn+1) ∈ Sn and seeing how the m-division of Sk

treats (x1, . . . , x j+1)/‖(x1, . . . , x j+1)‖; if x1 = · · · = x j+1 = 0, consider instead
(x j+2, . . . , x j+2+k )/‖(x j+2, . . . , x j+2+k )‖, which is in Sk . Now, for (a) simply write
n+ 1 as 2 j and use the preceding approach on the j pairs of coordinates, con-
sidering a pair as a point on S1, which is m-divisible for all m. For (b) write
n+ 1 as 2 j + 3 and use the m-divisibility of S1 and S2; recall that the latter uses
the Axiom of Choice (see Cor. 5.14). The failure of 2-divisibility arises because
every rotation in SOn+1(R) has a fixed point when n+ 1 is odd. Because the
antipodal map, which yields 2-divisibility, is in On+1(R), (c) follows from (a)
and (b).

Because orthogonal maps all fix the origin, the detailed study of such maps
leaves unanswered the question of solving congruences by partitions of Rn and
using the isometry group, Gn. For instance, it was shown following Theorem 5.7
how to get a five-piece paradoxical decomposition of R3 from the four-piece one
of S2 (and the same exists for Rn if n ≥ 3 by the four-piece decomposition of
the corresponding sphere that exists by Corollary 6.5). But, in fact, four-piece
decompositions are possible, because it follows from Theorem 6.7 that any proper
system of congruences can be solved by a partition of Rn, provided n ≥ 3. Note
that the particular system asserting that Rn is m-divisible is trivial to solve for all
m, n (see remarks following Def. 5.13).

Theorem 6.7. There are two independent isometries in G3 such that the group
they generate has no nontrivial fixed points in R3. The same is true for Gn and Rn

if n ≥ 3.

Proof. Let φ and ψ be the rotations in SO3(R) given by⎡
⎣cos θ −sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ and

⎡
⎣1 0 0

0 cos θ −sin θ
0 sin θ cos θ

⎤
⎦ ,

respectively, where the common rotation angle θ is chosen so that cos θ is tran-

scendental. Letting T⇀v denote the translation of R3 by the vector ⇀
v , and

⇀
i ,

⇀
k the

vectors (1, 0, 0), (0, 0, 1), respectively, define σ to be T⇀
k
φ and τ to be T⇀

i
ψ ; σ

and τ will be the independent isometries we seek. These two isometries are each
screw motions (or glide rotations) of R3, that is, a rotation followed by a transla-
tion in the direction of the rotation’s axis. Note that if the translation component
of a screw motion is not the identity, then the motion has no fixed points.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.009
https://www.cambridge.org/core


6.1 Euclidean Spaces 85

We will need to know that the matrix of a word φn1ψm1 · · ·φnsψns has the form

⎡
⎣P cos θ −sgn(n1) sin θ −sgn(m1ns) Q cos θ

P sin θ Q cos θ −sgn(ms) Q sin θ
P cos θ P sin θ P cos θ

⎤
⎦ ,

where Q stands for a polynomial in cos θ (possibly different in each entry) of
degree d = � − 1 (� = |n1| + |m1| + |n2| + |ms|) with leading coefficient 2�−2s,
and P represents (possibly different) polynomials in cos θ of degree strictly less
than d. We omit the details as this may be easily proved by induction in exactly
the same manner as the analogous fact proved in Theorem 6.2. (It follows from
this representation that φ and ψ are independent; see Thm. 2.2.)

Now, it must be shown that no nontrivial word in σ±1, τ±1 has any fixed points
in R3; the independence of σ , τ follows. Because the existence of a fixed point is
invariant under conjugation and inversion, it follows as in the proof of Theorem
6.2 that we need only consider pure powers of σ or τ and words of the form w =
σ n1 τm1 · · · σ nsτ ns , with each exponent a nonzero integer. Because σ n = T

n
⇀
k
φn

and τm = T
m
⇀
i
ψm, the pure powers of σ and τ have no fixed points.

It follows easily from the fact that rotations are linear transformations that
for any rotation ρ, ρT⇀v = Tρ(

⇀v )
ρ, and hence w = T⇀

t ŵ, where ŵ is the result of
replacing σ , τ in w by φ, ψ , respectively, and

⇀
t will be computed in a moment.

For 1 ≤ r ≤ s, let ŵr represent the left segment of ŵ: φn1ψm1 · · ·φnrψnr . Then
using the rule for moving translations left across a rotation, and using the fact that

ψ (
⇀
i ) = ⇀

i , it is easy to see that

⇀
t = n1

⇀
k + n2ŵ1(

⇀
k )+ · · · + nsŵs−1(

⇀
k )+ m1ŵ1(

⇀
i )+ m2ŵ2(

⇀
i )

+ · · · + msŵs(
⇀
i ).

Let ⇀a be a unit vector in the direction of the axis of ŵ, oriented so that the
rotation obeys the right-hand rule with respect to ⇀a . Now,

⇀
t is not necessarily

in the same direction as ⇀a , but as long as
⇀
t is not perpendicular to ŵ’s axis,

w = T⇀
t ŵ will have no fixed points. Thus the proof will be complete once it is

shown that
⇀
t · ⇀a 
= 0; in fact, this condition is equivalent to the nonexistence of

a fixed point of a screw motion.
Consider the expansion of

⇀
t · ⇀a using the formula for

⇀
t just given. There

are two sorts of terms in this expansion. The first sort is njŵ j−1(
⇀
k ) · ⇀a . By

the invariance of inner product under orthogonal transformations (see App. A),
each such term equals n j

⇀
k · ŵ−1

j−1(⇀a ). Because the rotation of ρ1’s axis by ρ2

(ρi are rotations) yields the axis of ρ2ρ1ρ
−1
2 , this last expression is the dot

product of n j
⇀
k with the appropriately oriented unit vector along the axis of

the rotation ŵ−1
j−1ŵŵ j−1 = σ n j τmj · · · τms σ n1 · · · σ n j−1 τmj−1 . Recall that if (Ai j )

represents a rotation of R3 with unit axis vector
⇀
b and rotation angle ξ ,

then 2
⇀
b sin ξ = (A32 − A23,A13 − A31,A21 − A12) (see App. A). Also proved in
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86 6 Higher Dimensions

Appendix A is the fact that the angle of a rotation is the same as the angle of a con-
jugate of that rotation by another rotation. Hence, if ξ is the angle of rotation of

ŵ, then the term of
⇀
t · ⇀a being considered equals n j(A21 − A12)/(2 sin ξ ), where

(Ai j ) is the matrix of ŵ−1
j−1ŵŵ j−1. Using the representation of words in φ, ψ given

at the beginning of the proof, this equals (n j/(2 sin ξ ))(P sin θ + sgn(nj )Q sin θ )).
A similar analysis of the other sort of term in

⇀
t · ⇀a , mjŵ j(

⇀
i ) · ⇀a , yields a contri-

bution having the form (mj/(2 sin ξ ))(P sin θ + sgn(mj )Q sin θ )). It follows that
(sin ξ/ sin θ )(

⇀
t · ⇀a ) is a polynomial in cos θ with leading coefficient 2d−2s(|n1| +

|m1| + · · · + |ms|). Therefore, because of the transcendence of cos θ ,
⇀
t · ⇀a can-

not vanish.
Extending the isometries σ and τ to higher dimensions by simply fixing the

additional coordinates yields the desired independent isometries of Rn for any
n ≥ 3.

Corollary 6.8 (AC). If n ≥ 3, then any proper system of m congruences may be
solved by a partition of Rn, where isometries are used to realize the congruences.
In particular, for n ≥ 3, Rn is paradoxical using four pieces.

Proof. Because a free group of rank 2 contains one of rank m (see remarks fol-
lowing Cor. 5.12), this corollary is an immediate consequence of the preceding
theorem and Corollary 5.12. Note that none of the machinery for dealing with
weak systems is needed, only the proof of the first part of Theorem 5.11, which is
relatively straightforward.

6.2 Non-Euclidean Spaces

The theory so far has been applied only to spheres and Euclidean spaces and
their respective isometry (or rotation) groups, and also to the hyperbolic plane
in Chapter 4. Because the matrix computations of this chapter can be applied to
elliptic spaces, we can look also at elliptic geometry. If we take RPn (real pro-
jective n-space: Sn with antipodal points identified) as our model of Ln, ellip-
tic n-space, with the distance from P to Q defined to be the smaller of the two
spherical distances P to Q and −P to Q (equivalently, cos−1 |P · Q|), then the
isometry group is just the group of rotations of Sn, viewed as acting on RPn.
Because the only orthogonal transformation that collapses to the identity when
viewed as acting on RPn is the antipodal map, the isometry group of Ln coin-
cides with SOn+1(R) if n is even and is SOn+1(R)/{±I} if n is odd. It follows that
two independent rotations φ, ρ of Sn remain independent when viewed as rota-
tions of Ln. Moreover, local commutativity (or lack of nontrivial fixed points) of
the group generated by φ, ρ is preserved, for if u and w both fix P in Ln, then
u(P) = ±P and w(P) = ±P, so u2 and w2 share a fixed point on Sn. Hence u2

and w2 commute, and this implies the same for u and w (see [MKS66, p. 41]).
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6.2 Non-Euclidean Spaces 87

Combining these remarks with Theorem 6.4, we see that Corollary 6.5 holds in
elliptic space. For each n ≥ 2, all weak systems of congruences are satisfiable by
a partition of Ln, and for odd n ≥ 3, all proper systems are satisfiable. Note that
the antipodal map on Sn becomes the identity in Ln, so the method of proof of the
last part of Corollary 6.5 cannot be used; rather, we use Theorem 6.4’s free groups
without fixed points directly.

The hyperbolic plane was discussed in depth in Chapter 4, and the results there
easily extend to higher dimensions. The work of that chapter allows us to satisfy
any collection of congruences because of Corollary 5.12, Proposition 4.4, and the
proof method for Proposition 4.5 (which is what allows the next result to hold for
Borel sets and without using the Axiom of Choice).

Theorem 6.9. For any proper system of congruences involving r set-variables,
there is a partition of H2 into Borel sets A1, . . . ,Ar that satisfy (using isometries)
the given system. In particular, H2 is paradoxical using Borel sets. Moreover, there
is a Hausdorff decomposition of H2 using Borel sets; that is, there is a Borel set
in H2 that is, simultaneously, a half and a third of H2. These results all hold in
higher-dimensional hyperbolic space as well.

Proof. Only the assertion about Hn remains to be proved. Using the upper half-
space {(x1, . . . , xn−1, t ) : t, x j ∈ R, t > 0} as a model for Hn, an isometry of H2

may be extended to Hn by letting it act on (x1, t ), leaving the other coordinates
fixed. Moreover, any Borel subset A of H2 extends to one, A∗, of Hn by putting
a point in A∗ if and only if (x1, t ) is in A. It follows that a partition of H2 that
satisfies a given system of congruences induces one of Hn satisfying the same
system. Note that it also follows that the isometry group of Hn contains a free
subgroup of rank 2 that acts without nontrivial fixed points.

The hyperbolic case differs from the spherical and Euclidean cases in another
way. We will see (following Cor. 7.6) that for Sn (n ≥ 3, n odd) and R3, the set
of independent pairs of isometries that generate a free group without nontrivial
fixed points is dense in SO2

n+1(R) and G2
3, respectively. But in H2, this is false.

The elliptics, which correspond to matrices whose trace is strictly between −2
and 2, form an open subset of PSL2(R), and therefore the set of independent pairs
generating a fixed-point free group is certainly disjoint from the open set of pairs
whose first coordinate is elliptic. Therefore the set of pairs is not dense. As we
shall see in Corollary 7.9, H3 does have this denseness property.

A summary of results about free groups and paradoxical decompositions in
spheres and in Euclidean and non-Euclidean spaces appears in Table 6.1. In Chap-
ter 7 these results will be extended still further, to free groups of larger rank and to
infinite systems of congruences. With the exception of the hyperbolic plane, these
generalizations will resemble closely the results just proved about finite systems
of congruences.
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88 6 Higher Dimensions

Table 6.1. Decompositions and free groups in various spaces

Note: The table is complete in that the nonappearance of a certain dimension means that the phe-
nomenon is known not to exist. The results of the table hold if “countable” is replaced by “continuum”
and “rank 2” by “rank 2ℵ0 ” in all cases except one instance of H2 (the values in parentheses indicate
the situation in this case).

6.3 Tetrahedral Chains

To conclude this chapter, we discuss a geometric problem raised by Steinhaus
that has nothing to do with systems of congruences, but its solution uses free
groups and the sort of matrix computations that we have been considering. We
shall show that the four reflections in the faces of a regular tetrahedron in R3

are free generators of Z2 ∗ Z2 ∗ Z2 ∗ Z2; that is, the reflections satisfy no relation
except those derivable from the fact that each has order 2. This is false for an
equilateral triangle in the plane, because φψφ = ψφψ for two reflections φ, ψ in
the triangle’s sides, but is true for higher-dimensional simplices.

This property of tetrahedral reflections can be used to solve the following geo-
metric problem. Let us call a sequence of regular tetrahedra in R3 a Steinhaus
chain if two consecutive tetrahedra share exactly one face, and each tetrahedron
is distinct from its predecessor’s predecessor. In 1956, Steinhaus asked; Can the
last tetrahedron in a Steinhaus chain equal the first one? The answer is clearly yes
if cubes are used in place of tetrahedra, but it is also possible using octahedra or
dodecahedra or icosahedra [EW15]. A negative answer to the problem for tetra-
hedra is related to a result on free groups, which we now prove. The problem was
originally solved by Świerczkowski [Swi58]; the approach here is due to Dekker
[Dek59a].

Theorem 6.10. (a) Let φ1, φ2, φ3, φ4 be the four reflections in the faces of a
regular tetrahedron in R3. Then no word of the form φi1φi2φi3 · · ·φis , where
s ≥ 1 and adjacent terms are distinct, equals the identity; that is, the φi are
generators of Z2 ∗ Z2 ∗ Z2 ∗ Z2. This same result, with n+ 1 copies of
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V1

V2

V4

V3

C

1 V1

Figure 6.1. Reflection in a side of a regular tetrahedron.

Z2, holds for the n+ 1 reflections in the faces of a regular n-dimensional
simplex, provided n ≥ 3.

(b) The last tetrahedron in any Steinhaus chain cannot equal the first.

Proof. We prove (b) first, using the notation of (a). Any point in R3 may be repre-
sented uniquely as x1V1 + x2V2 + x3V3 + x4V4, where the Vi are the vertices of
a regular tetrahedron T and

∑
xi = 1; these are barycentric coordinates with

respect to T . Each φi may be represented by a 4× 4 matrix acting on barycen-
tric coordinates, where the columns of the matrix are the vectors φi(Vi). Then
composition corresponds to matrix multiplication.

Because the reflection φi in the face xi = 0 sends Vi to C + (C −Vi) = 2C −
Vi = 2( 1

3� j 
=iVj )−Vi, where C is the centroid of the face opposite Vi (see Fig.
6.1), the matrices for the reflections are

M1 =

⎡
⎢⎢⎢⎢⎣
−1 0 0 0

2
3 1 0 0
2
3 0 1 0
2
3 0 0 1

⎤
⎥⎥⎥⎥⎦ , M2 =

⎡
⎢⎢⎢⎢⎣

1 2
3 0 0

0 −1 0 0

0 2
3 1 0

0 2
3 0 1

⎤
⎥⎥⎥⎥⎦ ,

M3 =

⎡
⎢⎢⎢⎢⎣

1 0 2
3 0

0 1 2
3 0

0 0 −1 0

0 0 2
3 1

⎤
⎥⎥⎥⎥⎦ , M4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 2
3

0 1 0 2
3

0 0 1 2
3

0 0 0 −1

⎤
⎥⎥⎥⎥⎦ .
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90 6 Higher Dimensions

Figure 6.2. A tetratorus using 174 tetrahedra; if the side length is taken to be 1 cm, then
the gap at the end is about the diameter of a proton.

Now suppose the last tetrahedron agrees with the first. Then there is a sequence
φi1 , . . . , φis with no consecutive pair the same so that Mi1 Mi2 · · ·Mi2 is a permu-
tation matrix. We can and will assume that i1 = 1. The next claim shows that one
cannot get a 0-1 matrix from such a word.

Claim. Consider the matrix product M1Mi2 · · ·Mis with 2/3 replaced by x. The
polynomials in the second row have x-degree less than s, except for the one in
position (2, is), which has degree s. And they all have leading coefficient +1.

Proof. By induction; it is clear for s = 1. Consider what happens when the matrix
of a word that ends in Mj, assumed to have the claimed form, is multiplied on the
right by Mn, where n 
= j. The multiplications by x preserve the claimed property,
as the degree rises from s to s+ 1 in position (2, n) and does not rise at all in the
other spots. And the leading coefficient’s sign is affected only by the x multipliers.

Now look at the polynomial in the (2, is) position; suppose it is xs + a1xs−1 +
· · · + as, where ai ∈ Z. Setting x = 2/3 and taking a common denominator yields
(2s + 3a12s−1 + · · · + 3s−1as)/3s, the numerator of which is not divisible by 3;
the fraction is therefore not 0 or 1, as required. The proof for higher dimensions
is identical, with 2/3 replaced by 2/n.

(a) The result follows from the preceding proof because the identity is one of
the permutation matrices excluded by the proof.

A natural question, something that Świerczkowski also wondered about
[Swi07, last chapter], is how small the gap at the end of a Steinhaus chain having
no self-intersections can be; such a chain is called embedded. Intensive searching
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by M. Elgersma and S. Wagon led to many examples where the gap at the end is
very small. See [EW15] for a complete discusson of the methods. The example
of Figure 6.2 has 174 tetrahedra; if the edge length is 1 cm, then the gap at the
end is less than 1.4 · 10−13 cm, about the diameter of a proton. The example was
obtained by multiplying the matrices Mi together, where the indices i are defined
by the 58-length string S4Sp(S4S), where S = 12342342321423, S is the reversal
of S, and p is the 3-cycle permutation (134). The product K of those 58 matrices
has eigenvalues (1, 1, z, z), where z is very close to e2iπ/3, and so K3 is close to
the identity matrix. In fact, it is within about 10−13 of the identity matrix and so
leads to the nearly closed chain in Figure 6.2. For example, the (1, 1)th entry of
the product is the exact rational

1290070078170121821411284741400916807763294706729406374116071699400046975423053339

1290070078170102666248196035845070394933441741644993085810116441344597492642263849
.

A complication is that the chain corresponding to the word just described has a
collision at the end, as opposed to a gap, and so is not embedded. But if one shifts
the string 17 characters to the left, then the resulting chain is embedded, with a
gap at the end of size about 1.3 · 10−13. Further work by Elgersma and Wagon led
to a chain of 540 tetrahedra for which the gap at the end has size about 6 · 10−18.
The many examples found in [EW15] provide strong evidence that the following
conjecture is true.

Conjecture 6.11. For any positive ε, there is an embedded Steinhaus chain such
that the last tetrahedron is within ε of coinciding with the first.

Notes

The first extensive investigation into the situation for higher-dimensional and non-
Euclidean spaces was made by Dekker [Dek56b, Dek57, Dek58a], who discov-
ered the free subgroup of SO4(R) given in Theorem 6.2 and derived Corollary
6.3. He also derived Corollary 6.5 for all cases except SO5(R) and provided the
application to elliptic spaces at the start of §6.2. Dekker [Dek57] also raised the
question whether free non-Abelian subgroups of Gn, n ≥ 3, without nontrivial
fixed points in Rn exist. An affirmative solution was announced by Mycielski
[Myc56], but this was premature, and the independent isometries of Theorem 6.7
were discovered shortly thereafter, independently, by Dekker [Dek58b] and by
Mycielski and Świerczkowski [MS58]. The two rotations of R3 at the beginning
of Theorem 6.7’s proof were first considered by de Groot [Gro56], who proved
their independence.

Dekker [Dek56b] conjectured that the cases he could not settle were similar
to the ones he could, and this was confirmed, albeit twenty-five years later, by
Deligne and Sullivan [DS83], who constructed free non-Abelian groups with-
out fixed points in SOn(R) for all even n ≥ 4. And Borel [Bor83] confirmed that
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92 6 Higher Dimensions

SO5(R) is not an exception as far as locally commutative free groups are con-
cerned by providing such a free group of rank 2 in SO5(R). More generally, Borel
deals with actions of Lie groups, and he obtains results relating the size of the set
of fixed points to the Euler characteristic.

The problem on chains of tetrahedra is due to H. Steinhaus. It was originally
solved by Świerczkowski. Dekker [Dek59a] simplified Świerczkowski’s approach
by proving Theorem 6.10 and deriving from it the solution to the problem in all
dimensions greater than or equal to three. These results were later rediscovered by
Mason [Mas72]. Elgersma and Wagon [EW15], using different patterns to search
for legal chains, found the examples in §6.3 having very small error.
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7

Free Groups of Large Rank: Getting a
Continuum of Spheres from One

7.1 Large Free Groups of Isometries

The Banach–Tarski Paradox shows how to obtain two spheres, or balls, from one,
and it is clear how to get any finite number of balls: Just duplicate repeatedly,
lifting the subsets of the new balls back to the original. After all, the joy in owning
a duplicating machine is being able to use it more than once. Alternatively, one
need only consider the weak system of congruences:

A2 j
∼=
⋃
{Ai : 1 ≤ i ≤ 2n, i 
= 2 j − 1}, j = 1, . . . , n.

By the remarks following Corollary 5.12, there is a partition of the sphere
into sets Ai that satisfy this system with respect to rotations, and therefore
A2 j ∪ A2 j−1 ∼ S2. Need we stop at just finitely many copies? What about infinitely
many, even uncountably many? Using the existence of infinitely many indepen-
dent rotations σ iτ i, i = 0, 1, 2, . . . , where σ , τ are independent, it is not hard
to see how the results of Chapter 5 on systems of congruences can be made to
yield the solvability of any countably infinite weak system by a partition of S2.
Hence S2 can be partitioned into countably many sets, each of which is SO3(R)-
equidecomposable (using just two pieces) with S2. But even stronger transfi-
nite duplications are possible. One can get a continuum of spheres from one:
The sphere can be partitioned into sets Bα , as many sets as there are points on the
sphere (i.e., 2ℵ0 ), such that each Bα is SO3(R)-equidecomposable with the sphere.

Although transfinite duplications do not add to our knowledge of finitely addi-
tive measures, these results do lead to a deeper understanding of free groups of
rotations. Moreover, as in previous chapters, the techniques necessary for transfi-
nite duplications lead to interesting geometrical applications of a different sort.

The first step is to generalize the results of Chapter 5 on general actions of free
groups. Because those results do not depend on the finiteness of the system of
congruences, this generalization is quite straightforward.

Theorem 7.1 (AC). Let κ be any cardinal, and suppose F, a group acting
on an infinite set X , is free of rank κ , with free generators σα , α < k. Let

93
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94 7 Free Groups of Large Rank: Getting a Continuum of Spheres from One

⋃{Aβ : β ∈ Lα} ∼=
⋃{Aβ : β ∈ Rα}, α < κ , be any proper system of κ congru-

ences involving at most |X | sets Aβ . If F has no nontrivial fixed points on X , then
X may be partitioned into sets Aβ satisfying the system, with σα witnessing the
αth congruence. If the system is weak, then a solution exists provided only that
F’s action on X is locally commutative.

Proof. The technique by which Theorem 5.5 was derived from Theorem 5.2, and
Corollary 5.12 from Theorem 5.11, makes no use of the finiteness of the system;
thus it suffices to show that the generalization of Theorem 5.11 is valid. The proof
that F can be partitioned to satisfy the system can be done exactly as in Theorem
5.11, that is, by induction on the length of words in F . To put e and some given
word w in the same piece, assuming the system is weak, just consider the group
F0 generated by the finitely many σα that appear in w. By Theorem 5.11, F0 can
be partitioned to satisfy the congruences to be witnessed by its generators (the
finiteness of r in Thm. 5.11 is unimportant), and e and w will be in the same
piece. Then words u in F \F0 can be assigned inductively so that all congruences
are satisfied, starting the induction with the longest terminal string of u that is
in F0.

It should be pointed out that in the proof of Theorem 7.1, as in the proofs of the
corresponding results of Chapter 5, there is no guarantee that each of the sets of
the constructed partition is nonempty. Indeed, the proof never really uses the fact
that there are no more than |X | sets Aβ , and if there were more, some would have
to be empty. This is not a serious problem though, because most of the particu-
lar systems of interest imply that the sets are nonempty (for example, the system
asserting m-divisibility or the one asserting the existence of a paradoxical decom-
position using four pieces). Moreover, if one weakens the conclusion of Theorem
7.1 slightly by not insisting that the congruences be witnessed by the specific gen-
erators σα , then a partition can be found that solves the system and contains only
nonempty sets. This can be proved by using the local commutativity of F to find
a free subgroup, F0, of the same rank such that there are |X | many F0-orbits in
X , each consisting of nonfixed points of F0 \ {e] (for details, see [Dek56b, Thm.
2.9]).

There is a partial converse to Theorem 7.1 in the style of Theorem 5.8, which
showed that if one particular weak system is solvable, then the group must have a
locally commutative free subgroup of rank 2. The proof of the following theorem
is essentially identical to that of Theorem 5.8, with σα , α < κ , defined just as σ ,
τ are, and replacing σ , τ in the proof.

Theorem 7.2. If G acts on X and X splits into κ (κ ≥ 2) sets, each of which is
G-equidecomposable with X using only two pieces, then G has a free subgroup of
rank κ that is locally commutative on X .

The rotation groups SOn(R) all have size 2ℵ0 , so a free group of rota-
tions cannot have greater rank. In fact, locally commutative free groups of this
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7.1 Large Free Groups of Isometries 95

maximum possible rank exist in SOn(R) if n ≥ 3, and combined with
Theorem 7.1, this fact will yield the desired generalizations of our earlier results
on systems of congruences to continuum-sized systems. In Theorem 7.4(a) we
shall construct very explicitly a set of 2ℵ0 independent rotations of S2. Then we
shall introduce a different approach, more general but also less direct, that yields
large locally commutative free subgroups of SOn(R) for all n ≥ 3. We have seen
how transcendental numbers can be used to get two independent rotations of S2

(see first part of Theorem 6.7’s proof); to construct 2ℵ0 independent rotations, we
need a large set of algebraically independent numbers. Recall that a set X of reals
(or complex numbers) is algebraically independent if P (x1, . . . , xn) 
= 0 for any
x1, . . .xn ∈ X and nontrivial polynomial P with rational coefficients.

Theorem 7.3. There is a set {vt : t ∈ (0,∞)} of algebraically independent
numbers.

Proof. If M is an infinite set of real numbers, then the set of reals that are alge-
braic over M , that is, the set of all x ∈ R for which P (x1, . . . , xn, x) = 0 for some
nontrivial rational polynomial P and xi ∈ M , has the same size as M . This follows
from the countability of the number of possibilities for P. Hence an algebraically
independent set that is smaller than the continuum can always be extended to a
larger algebraically independent set. This allows a continuum-sized set of alge-
braically independent reals to be constructed by transfinite induction, although
this assumes the existence of a well-ordering of the reals. Alternatively, it fol-
lows that a maximal algebraically independent set of reals (which exists by Zorn’s
Lemma) has cardinality 2ℵ0 .

These approaches use the Axiom of Choice and, while it is true that that axiom
will be used in the application of this result to paradoxical decompositions, it
is noteworthy that the desired set can be constructed in a much more effective
manner that does not require Choice. Letting �x� denote the greatest integer less
than or equal to X , define, for any real t > 0,

vt =
∞∑

n=1

2(2�tn�−2n2
).

The series is dominated by a geometric series with ratio 1/2 once n > t, so vt is
a well-defined real; the numbers vt are sometimes called von Neumann numbers,
after their discoverer. To get some feeling for vt , consider its binary expansion:
When n is large enough, the 2n2

term dominates the exponent, and so the tail of
vt ’s binary expansion has its 1s spaced very far apart. This is enough to guarantee,
in the same way that the transcendence of the Liouville number,

∑∞
n=1 10−n!, is

proved (see [Niv67]), that each vt is transcendental. Moreover, if s < t, then as
can easily be seen by choosing two rationals in (s, t ), �tn� − �sn� → ∞ as n →
∞; hence the nth 1 in vs’s expansion occurs exponentially sooner than the nth
1 in vt’s expansion. This implies that vt is much more closely approximable by
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rationals than any vs, s < t, and as proved by von Neumann [Neu61], this yields
the algebraic independence of the vt .

In [Myc64], Mycielski proved a general theorem, without the Axiom of
Choice, about relations in separable metric spaces; this yields an alternative, more
abstract, proof of the previous result of von Neumann, which is simpler in that the
number theory details are avoided. Mycielski’s theorem will be discussed further
in Theorem 7.5. One application of von Neumann numbers is to answer the ques-
tion, Can one prove the existence of an uncountable, proper subfield of R without
using the Axiom of Choice? The subfield generated by {vt : 0 < t < 1} is such a
field. We now show how algebraically independent numbers can be used to con-
struct a continuum of independent rotations.

Theorem 7.4. (a) For any n ≥ 3, there are independent rotations ρt , 0 < t < 1,
in SOn(R) such that the free group they generate is locally commutative on
Sn−1. If n is even, then the group has no nontrivial fixed points on Sn−1.

(b) If n ≥ 3, there are independent isometries ρt , 0 < t < 1, of Rn such that
the subgroup of Gn that they generate has no nontrivial fixed points in Rn.

(c) For any n ≥ 2, there are independent isometries ρt , 0 < t < 1, of hyper-
bolic n-space, Hn, that generate a locally commutative group.

Proof. (a) We shall use von Neumann numbers to prove (a) when n = 3. Although
this approach works for larger n, a different proof for the general case will be given
following Theorem 7.5. Let vt , 0 < t ≤ 1, be the algebraically independent von
Neumann numbers of Theorem 7.3. Because SO3(R) is locally commutative, it is
sufficient to construct 2ℵ0 independent rotations.

To do this, let θ t = 2 arctan vt ; then sin θ t = 2vt/(1+ v2
t ) and cos θ t = (1−

v2
t )/(1+ v2

t ). For any θ , let σ (θ ), τ (θ ) denote the two independent rotations in
SO3(R) as defined at the beginning of Theorem 6.7’s proof. Now, the desired
independent rotations ρt may be defined by ρt = σ (θ t )τ (θ 1)σ (θ t )−1. To prove
the independence of the ρt , suppose w = ρ

m1
t1 · · · ρms

ts = e. Each entry of w’s
matrix representation, ai j, is a rational polynomial in sin θ 1, cos θ 1 and those
sin θ t , cos θ t occurring in w, that is, with t equal to one of the tk . We want to
show that at least one ai j or aii − 1 is not the zero polynomial for arbitrary values
of t. Suppose otherwise; then the matrix would remain the identity when each of
these θ t is replaced by kθ 1, k being the least index such that tk = t. Because this
substitution transforms each ρ

mk
tk in w to σ (kθ 1)τ (θ 1)mkσ (kθ 1)−1, which equals

σ (θ 1)kτ (θ 1)mkσ (θ 1)−k , w is transformed to a nontrivial word in σ (θ 1)±1, τ (θ 1)±1

that, by the choice of σ , τ , cannot equal the identity. Hence at least one entry ai j

of w is a rational polynomial in 2v1/(1+ v2
1 ), (1− v2

1 )/(1+ v2
1), 2vt/(1+ v2

t ),
and (1− v2

t )/(1+ v2
t ), where t ∈ {t1, . . . ts}, that does not vanish (or equal 1, if

i = j) for arbitrary values of the vt . It follows that when the equation ai j = 0
(or 1) is turned into P = 0 by taking a common denominator, P is a nontrivial
polynomial in finitely many of the vt , contradicting the algebraic independence of
the von Neumann numbers.
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7.1 Large Free Groups of Isometries 97

(b) The proof of this case can be derived from Theorem 6.7 in a way similar
to part (a), that is, using von Neumann numbers and conjugation. We omit the
details because this will be proved following Theorem 7.5 in a more abstract, but
overall simpler, way.

(c) It suffices to consider H2, for the natural embedding of H2 into Hn

(see Thm. 6.9) induces an embedding of isometry groups that never adds fixed
points and hence preserves local commutativity. Moreover, because the action
of PSL2(R) on the upper half-plane is locally commutative (Prop. 4.1), it suf-
fices to produce a continuum of independent (orientation-preserving) isometries.
The construction is simpler if we change the model of the hyperbolic plane
from the upper half-plane in C to points on the upper sheet (z > 0) of the
hyperboloid x2 + y2 − z2 = −1 in R3. This model has as its metric d(P,Q) =
arccosh(−g(P,Q)), where g denotes the inner product p1q1 + p2q2 − p3q3 and
isometries may be represented by nonsingular 3× 3 matrices A such that

AT

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ A =

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ ,

and A sends the upper sheet of the hyperboloid to itself rather than to the lower
sheet (see [Bea83, §3.7]). Now it may be proved essentially in the same way as in
Theorem 6.2 that φ and ψ are independent, orientation-preserving isometries of
H2, where

φ =
⎡
⎣1 0 0

0 cosh θ sinh θ
0 sinh θ cosh θ

⎤
⎦ , ψ =

⎡
⎣cosh θ 0 sinh θ

0 1 0
sinh θ 0 cosh θ

⎤
⎦ ,

and cosh θ is transcendental [Dek57]. We may now use exactly the same technique
as in part (a) (i.e., von Neumann numbers and conjugation), using the hyperbolic
trigonometric functions and their identities to define a continuum of matrices that
correspond to isometries and are independent.

We now outline an entirely different approach to the construction of large free
groups that is more modern and less computational. This approach can be applied
to all the cases of Theorem 7.4. The key is the following theorem of Mycielski.

Theorem 7.5. Let X be a complete, separable metric space with no isolated
points, and let R = {Ri : i <∞} be a set of relations on X , that is, each Ri ⊆ X mi

for some positive integer mi. Suppose further that each Ri is a meager subset of
X mi . Then there is a subset F of X such that |F | = 2ℵ0 (in fact, F is perfect, i.e.,
closed and without isolated points), and for each sequence of mi distinct elements
x1, . . . , xmi of F, x1, . . . , xmi /∈ Ri.

Proof. Because each Ri is a union of countably many nowhere dense sets, we may
reindex and so assume that each Ri is nowhere dense. We shall construct a tree
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98 7 Free Groups of Large Rank: Getting a Continuum of Spheres from One

of nonempty open subsets of X having the following form and satisfying items
(1)–(4):

.

1. V si ⊆ Vs for each sequence s and i = 0, 1.
2. Vs0 ∩Vs1 = ∅ for each sequence s.
3. If 	(s) is the length of the sequence s, then the diameter of Vs is at most

1/	(s).
4. If s1, . . . , smj are mj distinct sequences of the same length r, where r ≥ j,

then Vs1 ×Vs2 × · · ·Vsm j
∩ Rj = ∅.

The existence of such a tree yields the desired set F as follows. For each infinite
binary sequence b, completeness of X implies that

⋂{V s : s ⊆ b} is nonempty
and condition (3) yields that this intersection must contain but a single point xb.
Let F = {xb : b is an infinite binary sequence}; F is perfect and has size 2ℵ0 . Any
mj-tuple of distinct elements of F comes from distinct nodes at a level past the
jth, whence condition (4) implies that the mj-tuple is not in Rj.

To construct the tree, use induction on levels. Suppose Vs is defined for all s
of length n. Because X has no isolated points, Vs contains at least two points,
which can be separated by open balls V ′

s0 and V ′
s1, chosen small enough so that

conditions (1)–(3) are satisfied. We shall thin these two balls repeatedly to satisfy
(4). Consider each j ≤ n+ 1 in turn. If mj > 2n+1, do nothing; (4) is vacuously
satisfied with respect to Rj. Otherwise, consider each of the mj-sized subsets of
the 2n+1 sequences of length n+ 1 in turn. If A is such a subset, then

∏{V ′
si : si ∈

A} is open and so must contain an mj-tuple not in Rj. There must be an open set U
containing this mj-tuple that remains disjoint from Rj, and so we may replace each
V ′

si by a smaller nonempty open set so that
∏{V ′

si : si ∈ A} ⊆ U . This guarantees
that (4) is satisfied with respect to Rj and A, the set of distinct sequences. Because
we may repeat the thinning process to take care of all sets A and all j ≤ n+ 1,
this yields the next level of the tree as desired.

The preceding theorem is valid for all complete metric spaces, but this assumes
the Axiom of Choice. For separable spaces, AC is avoided because there is a
countable basis of open sets that can be well-ordered; hence the choices in the
proof of Theorem 7.5 can be made by using this well-ordering and choosing the
first basic open set that works. This theorem can be strengthened to show that
most (i.e., a comeager set in an appropriate topology) perfect subsets of X sat-
isfy the conclusion (see [Myc73]). Note that Theorem 7.5 yields an alternative
proof of Theorem 7.3. For each nonzero polynomial p(x1, . . . , xn) with integer
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7.1 Large Free Groups of Isometries 99

coefficients, let Rp be the subset of Rn consisting of all zeros of P. Then Rp is
closed and contains no nonempty open set (otherwise P is identically zero), so
Rp is nowhere dense. Because there are only countably many polynomials with
integer coefficients, we may apply Theorem 7.5 to the collection of all the sets Rp

to get an algebraically independent set of size 2ℵ0 .
Now, SOn(R) is a complete, separable metric space, but to apply Theorem 7.5,

we must view SOn(R) as a real analytic manifold (of dimension n(n− 1)/2). In
fact, SOn(R) is an analytic submanifold of Rn2

under the embedding induced by
considering the entries of the matrix corresponding to an element of SOn(R).
Furthermore, the product SOm

n (R) is an analytic submanifold of Rmn2
. Hence the

mn2 real-valued functions on SOm
n (R), each of which gives the i jth entry in the

kth rotation, are analytic. Moreover, SOn(R) is connected (and path-connected).
Now, let n be even and consider the problem of getting large free groups in

SOn(R) without fixed points (as in Thm. 6.4(a)). Let w denote a reduced group
word (w 
= e) in m variables x1, . . . , xm. Define Rw ⊆ SOm

n (R) to consist of those
m-tuples (σ1, . . . , σm) such that w (σ1, . . . , σm) has 1 as an eigenvalue (i.e., has a
fixed point on Sn−1), and let R be the (countable) collection of all such sets Rw. It
remains only to show that each Rw is nowhere dense; for then Theorem 7.5 may
be applied to R to obtain a set F , which clearly will be a set of free generators
for a subgroup of SOn(R) without nontrivial fixed points. We need the following
claim:

Claim. For any word w as in the preceding paragraph, there is an analytic
f : SOm

n (R) → R such that Rw = f −1({0}).
Proof. First we observe that (σ1, . . . , σm) ∈ Rw if and only if det(w(σ1, . . . ,

σm)− I ) = 0. Because the inverse of a matrix in SOn(R) equals its transpose,
w (σ1, . . . , σm) may be expressed as n2 polynomials (with integer coefficients) in
the mn2 entries of the σi. Because the determinant is also a polynomial function
in the entries of a matrix, the vanishing of the determinant is equivalent to the
vanishing of a single polynomial in the mn2 entries of the σi. Finally, because the
functions giving the entries are analytic, it follows that Rw is the zero-set of a
single analytic function on SOm

n (R).

This claim immediately yields that Rw is closed, so all that remains is to prove
that Rw has empty interior. But it is an easy consequence of the connectedness
of SOm

n (R) that if an analytic function vanishes on a nonempty open set, then it
vanishes on all of SOm

n (R). Hence if Rw contains a nonempty open set, Rw must
equal SOm

n (R). But this is a contradiction to Theorem 6.4, which yields indepen-
dent σ , ρ such that no word in σ , ρ has a fixed point on Sn−1. It follows that
(ρ, σ ρ σ−1, σ 2 ρ σ−2, . . . , σm−1 ρ σ−(m−1)) lies in SOm

n (R) \Rw. (Alternatively,
one can avoid Thm. 6.4 and obtain a contradiction by using Thm. 1 of [Bor83];
see [MW84].)

The case of odd n, where large locally commutative free groups are sought, can
be handled in two ways. First observe that the preceding technique easily solves

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.010
https://www.cambridge.org/core


100 7 Free Groups of Large Rank: Getting a Continuum of Spheres from One

the SO3(R) case. Because SO3(R) is locally commutative on S2, all that is needed
is a perfect set of free generators, and the technique yields such a set if Rw is
defined to be the set of m-tuples (σ1, . . . , σm) ∈ SOm

n (R) such that w (σ1, . . . , σm)
is the identity. Now, one can obtain the higher-dimensional result by appealing to
[Bor83, p. 162], where it is shown that SO3(R) may be represented as a subgroup
H of SOn+1(R) (n ≥ 2) where H ’s action on Sn is locally commutative. The result
then follows from the existence of the perfect set in SO3(R).

Alternatively, one can imitate the proof for even n. Let Rw consist of those
m-tuples (σ1, . . . , σm) ∈ SOm

n (R) such that w (σ1, . . . , σm) is the identity. Now,
let u, v be any two reduced group words in variables x1, . . . , xr that do not com-
mute as abstract words. Then let Ru,v consist of all r-tuples (σ1, . . . , σr) such that
u (σ1, . . . , σr) and v (σ1, . . . , σr) have a common fixed point on Sn−1. Let R con-
sist of all these sets Rw and Ru,v . Then R is countable, and so as in the previous
case, it remains to show that each Rw and Ru,v is nowhere dense. For then Theo-
rem 7.5 yields a subset F of SOn(R) that avoids Rw and Ru,v . The avoidance of
Rw means that F is a set of free generators. Hence noncommuting words in F
correspond to abstract noncommuting words u, v used to define Ru,v . Because F
avoids Ru,v , this means that two noncommuting rotations in the group generated
by F cannot share a fixed point; that is, this group is locally commutative. By
Theorem 6.4, locally commutative free groups of finite rank exist, and it follows
that each Rw and Ru,v is not equal to all of SOm

n (R). Therefore, as in the previous
case, the fact that these sets are nowhere dense is an immediate consequence of
the following claim and the fact that an analytic function that vanishes on an open
set vanishes everywhere.

Claim. The sets Rw and Ru,v previously defined are of the form f −1({0}) for some
analytic F .

Proof. The condition w(σ1, . . . , σm) = 1 is equivalent to the simultaneous van-
ishing of n2 polynomials in the mn2 entries of the σi. This condition is equivalent
to the vanishing of a single polynomial by using the trick of summing squares:
�p2

i = 0 if and only if each Pi = 0. The claim for Rw then follows as in the previ-
ous case. Finally, membership of (σ1, . . . , σm) in Ru,v is equivalent to the existence
of a nonzero solution to a homogeneous system of 2n equations in n unknowns;
the system is the one expressing the fact that u and v have a common eigenvector
for the eigenvalue 1. Now, such a system has a nontrivial solution if and only if
the determinant of the coefficients in each subsystem of size n vanishes (easy lin-
ear algebra exercise). Hence membership in Ru,v is equivalent to the simultaneous
vanishing of ( 2n

n ) polynomials in the entries. As before, this is equivalent to the
vanishing of a single polynomial, which proves the claim.

The general technique just discussed can also be used to prove Theorem 7.4(b).
We need to work in SG3, the connected subgroup of G3 consisting of those isome-
tries whose linear part has determinant +1. An element of SG3 may be viewed as
an element of SL4(R) as follows. If (ai j ) represents the linear part of σ ∈ SG3
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7.1 Large Free Groups of Isometries 101

and (v1, v2, v3) is the vector corresponding to the translational part, then σ may
be identified with ⎡

⎢⎢⎣
a11 a12 a13 v1

a21 a22 a23 v2

a31 a32 a33 v3

0 0 0 1

⎤
⎥⎥⎦ .

Hence SG3 may be viewed as an analytic submanifold of R12 and a proof along
the same lines as for spheres can be carried out. The key point is that an element
σ of SG3 has a fixed point if and only if a certain polynomial in the entries of
the matrix vanishes. To see that such a polynomial exists, recall that σ has a fixed
point if and only if the translation vector is perpendicular to the axis of the rotation
given by (ai j ). But it is shown in Appendix A (Thm. A.6) that the rotation axis of
(ai j ) is parallel to (a32 − a23, a13 − a31, a21 − a12). Hence σ has a fixed point if
and only if

v1(a32 − a23)+ v2(a13 − a31)+ v3(a21 − a12) = 0.

All the groups of Theorem 7.4 have rank 2ℵ0 , and using the Axiom of Choice,
they all have free subgroups of any smaller rank. Hence, by applying Theorem
7.1, we get the following corollary. The elliptic spaces are handled by viewing the
groups of 7.4(a) as groups of isometries of Ln, as in §6.2. Part (a) of Corollary 7.6
for the pair (Sn,On+1(R)) is proved by combining the locally commutative group
of Theorem 7.4(a) with the availability of the antipodal map as in Theorem 5.16
and Corollary 6.5 That technique requires that no element of the group sends a
point P to−P; that is, no element has−1 as an eigenvalue. Because this condition
is satisfiable for groups of finite rank (see the proof of Cor. 6.5), it may be built into
the proof of Theorem 7.4(a) that uses Theorem 7.5. Simply add to R the relations
R′w, consisting of m-tuples such that w (σ1, . . . , σm) has −1 as an eigenvalue.
Because membership in R′w may be expressed as a polynomial, the crucial claim
remains valid.

Corollary 7.6 (AC). (a) Let (X ,G) be any of the following pairs:
(Sn, SOn+1(R) ), where n ≥ 3 and n is odd; (Sn,On+1(R)), where n ≥ 2;
(Rn,Gn), where n ≥ 3; Ln and its isometry group, where n ≥ 2 and n is
odd. Then any proper system of at most 2ℵ0 congruences involving at most
2ℵ0 sets is solvable, using G, by a partition of X .

(b) The same is true when restricted to weak systems in the following cases:
(Sn,On+1(R)), Ln and its isometry group, and Hn and its isometry group,
where n ≥ 2.

(c) In all the cases of (a) and (b), X may be partitioned into {Aα : α < 2ℵ0}
such that Aα ∼G X using two pieces.

For spheres and Euclidean, hyperbolic, and elliptic spaces, this corollary shows
that in all cases where the set or space is paradoxical, one can get a continuum of
copies of the set from one.
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A consequence of the analysis of the sets Rw in the preceding approach to
large free groups is finer information about free groups of finite rank. Consider
the case of SOn(R), n ≥ 4 and n even. Theorem 6.4 shows that free non-Abelian
subgroups without nontrivial fixed points exist, but in fact the set of pairs that
generate such subgroups is dense in the space of all possible pairs. This is because
each Rw (see comments after claim following Thm 7.5), where w is a word in two
variables, is nowhere dense. Hence the union of these Rw is meager in SO2

n(R) and
the complement of this union is comeager and, by the Baire Category Theorem,
dense. Similarly, the fact that Rw and Ru,v are nowhere dense yields that for any
n ≥ 3, the set of pairs (σ, τ ) in SO2

n(R) such that σ and τ freely generate a locally
commutative subgroup of SOn(R) is comeager. So, while the specific examples
of independent pairs of isometries constructed by Hausdorff et al. are necessary
to establish these results, we see that such pairs are quite abundant.

While the remarks of the previous paragraph are valid in R3 as well, the situa-
tion in R4 and beyond is less clear. The proof of Theorem 7.4(b) uses the fact that
the existence of a fixed point of an element of SG3 is a polynomial condition; it
is not clear that this is true for SG4. Thus Theorem 7.4(b) is valid for all n ≥ 3,
but it is not known that the set of pairs from G4 that freely generate a group with-
out nontrivial fixed points is comeager. Moreover, the technique used by Borel
[Bor83] does not apply, because his results are for semisimple groups.

The hyperbolic case provides an interesting counterpoint as far as large free
groups without nontrivial fixed points are concerned, as well as for the related
question on the density of independent pairs. Returning to the upper half-plane
model of hyperbolic 2-space, H2, recall that the orientation-preserving isometries
correspond to linear fractional transformations that we identify with PSL2(R)
and that may be classified as parabolic, hyperbolic, or elliptic according as the
trace is < 2, = 2, or > 2; the latter are the only ones with fixed points in H2.
Because matrices A and −A are identified in PSL2(R), we can ignore negative
traces. Another useful classification is the discrete/nondiscrete classification of
subgroups of PSL2(R). A subgroup G of PSL2(R) is discrete if the collection of
matrices corresponding to elements of G contains no convergent sequence of dis-
tinct matrices. An easy fact [Leh66, p. 12] is that a cyclic subgroup of PSL2(R)
is discrete if and only if it contains no elliptic element of infinite order. Also, note
that a discrete subgroup must be countable.

If a free subgroup of PSL2(R) is discrete, it can have no elliptic elements, for
such an element would be of infinite order and so would generate a nondiscrete
subgroup. It is essentially this fact that was used in §4.1 to show that any free
subgroup of PSL2(Z) has no elliptic elements. It follows from work of Siegel
[Sie50] that the converse of this fact holds too.

Theorem 7.7. A free subgroup of PSL2(R) is discrete if and only if it has no ellip-
tic elements. Hence any group of isometries of H2 generated by an uncountable
set of independent elements contains an isometry fixing a point in H2.
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7.1 Large Free Groups of Isometries 103

Proof. The forward direction was already proved and the reverse direction for
cyclic free groups is a consequence of the fact about cyclic subgroups of PSL2(R)
previously stated. We prove the remaining case, noncyclic free groups, guided by
some algebraic computation (we use Mathematica). Suppose G is nondiscrete,
has no elliptic elements, and has independent elements σ and τ . We use [x, y]
for the commutator of two group elements. In this proof, the norm of a matrix
is the standard induced norm: ||A|| = max{||A · x|| : ||x|| = 1}; we will use the
well-known inequality (for the 2× 2 case)

||A||max ≤ ||A||Euclidean ≤
√

2 ||A|| ,
where the first norm is the maximum absolute value of the entries and the second
is the Euclidean length of the 4-vector. We also use the fact that ||A|| = ||A−1||
when det A = 1; this holds because (a) the norm is the largest singular value of
A (the square root of the largest eigenvalue of AT A) and (b) the eigenvalues of
a 2× 2 matrix of determinant 1 are λ and 1/λ. Note also that ||σ || ≥ 1 because
|σ11 + σ22| ≥ 2 so that σ · (1, 0) or σ · (0, 1) is not inside the unit circle. Because
G is nondiscrete, there are elements in G that are arbitrarily close to the identity
matrix.

Claim 1. For any ε > 0, G has two independent elements ρ and φ that are con-
jugate and within ε of the identity.

Proof of claim. Choose ρ within ε||σ ||−2||τ ||−2 of the identity. Conjugate at most
once to get ρ = σ i . . . σ j where i, j ∈ Z; this leaves ρ within ε

/||τ ||2 of the iden-
tity, because

‖σρσ−1x‖
‖x‖ = ‖σρσ−1x‖

‖ρσ−1x‖
‖ρσ−1x‖
‖σ−1x‖

‖σ−1x‖
‖x‖ ≤ ‖σ‖‖ρ‖‖σ−1‖ = ‖σ‖2‖ρ‖.

Then let φ = τρτ−1, which is within ε of the identity. Then ρ and φ are inde-
pendent because there is no nontrivial cancellation when words in ρ±1 and φ±1

are formed.

Claim 2. For any ε > 0, G has a hyperbolic element within ε of the identity.

Proof of claim. Assume ε < 1 and take ρ and φ from Claim 1 using ε/
√

2.
Assume both are parabolic, because otherwise either satisfies the claim. Then ρ φ
is hyperbolic. If not, then tr(ρ) = tr(ρ φ) = 2. Conjugate ρ to ρ∗ = [

1 b
0 1

]
(with

b 
= 0) and conjugate all of G the same way. Then φ∗ = [
a d
c 2−a

]
. The trace of

ρ φ (same as tr(ρ∗φ∗)) is then 2+ bc, and so we have c = 0 , which means a = 1
and φ ρ = ρ φ, a contradiction. Because the induced norm is submultiplicative
(||A|| ||B|| ≤ ||AB||), ρ φ satisfies the ε condition.

To finish, use Claim 2 to get a hyperbolic u close enough to the identity so
that the largest eigenvalue is 1+ ε, where 0 < ε < 1/7; the explicit eigenvalue
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formula shows that being within 1/115 of the identity in each coordinate suffices.
Diagonalize u, inverting if necessary, to get

[ 1+ε 0
0 (1+ε)−1

]
(which we still call u),

and similarly conjugate all of G so that we now work in G∗, the conjugated group,
which has all the same properties as G. Choose ρ ∈ G∗ as in Claim 1, with each
entry within 1 of the identity matrix entry, but also so that ρ has no zero elements.
This can be done by using Claim 1 to get ρ and φ within 1/2 of the identity
in each coordinate and observing that one of ρ, φ, ρ φ has the desired no-zero
property; the last will be within 1 of the identity. The details are an exercise, a key
point being that if ρ and φ are both upper triangular, then [[ρ, φ], [ρ, φ−1]] is the
identity, contradicting independence.

So we have ρ11ρ22 
= 1. Let w = ρuρ−1 and δ = w11 − 1. The goal is to show
that one of γ , ζ is elliptic, where γ = [u,w] and ζ = [u, γ ]. To prove that neither
is parabolic, we will need two conditions: δ 
= ε and δ 
= −ε/(1+ ε). It turns
out that δ − ε = (ρ11ρ22 − 1)ε(ε + 2)/(ε + 1), which is nonzero. If the second
condition fails, redefine w using ρ2 instead of ρ. This changes w11 by the nonzero
quantity ε(ε + 2)(ρ11ρ22 − 1)(ρ2

11 + ρ2
22 + 1) and so changes δ. The two bounds,

1/7 on ε and 1 on ||ρ − I||max, imply that |δ| < 1. The two inequations for δ show
that tr(γ ) 
= 2 and, using also δ < 1, that tr(ζ ) 
= 2. The proof then concludes by
showing that the ratio (tr(ζ )− 2)/(tr(γ )− 2) must be negative. The product of
this ratio with (1+ δ)−1(1+ ε)3(ε (2+ ε))−2 is −(1− δ)(ε + 1)− ε2, which is
negative when ε > 0 and δ < 1. Thus one of the two commutators is the elliptic
we seek.

If M is a set of independent isometries of H2, then so is {σ 2 : σ ∈ M}, and
each σ 2 is orientation preserving. This reduces the second assertion to a state-
ment about PSL2(R), which follows from the first part of the theorem because an
uncountable subgroup of PSL2(R) is necessarily nondiscrete.

With more work one can improve Theorem 7.7: A nonsolvable, nondiscrete
subgroup of SL2(R) is dense in SL2(R). This result yields (the reverse direction
of) Theorem 7.7 as a corollary because the elliptics (|trace| < 2) form a nonempty
open subset of SL2(R) and because a free group of rank 2 is not solvable. The
stronger theorem, which was pointed out to the authors by A. Borel and D. Sulli-
van, is proved as follows. Let F be the subgroup in question, let F denote the clo-
sure of F in SL2(R), and let H be the component of the identity in F . Assume, to
get a contradiction, that F 
= SL2(R). Because F is nondiscrete, H 
= {e}, whence
H is a one- or two-dimensional Lie subgroup of SL2(R). Using Lie algebras, it
can be shown that H is conjugate to either SO2(R) or a subgroup of the group
of upper triangular matrices. In either case, it is easy to check that the normalizer
of H in SL2(R) is solvable, contradicting the fact that the nonsolvable group F
normalizes H .

Theorem 7.7 is in direct contrast to the cases of Theorem 7.4(a) and (b), where
uncountable free groups without fixed points are constructed for other spaces.
The general technique, using nowhere dense sets and analytic functions, used to
deduce Theorem 7.4(a) and (b) from the corresponding results about free groups
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7.1 Large Free Groups of Isometries 105

of rank 2 might lead one to expect that whenever there is a pair of indepen-
dent elements generating a group without fixed points, there is in fact continuum
many such elements. But this is false in the case of H2. Where does the gen-
eral proof break down? The elliptic transformations in PSL2(R) form an open
set (trace2 < 4) and are therefore not nowhere dense. Unlike the spherical and
Euclidean cases, the (orientation-preserving) isometries of H2 with a fixed point
are not the zero set of an analytic function. The statement that

[
a b
c d

]
corre-

sponds to an isometry with a fixed point is expressed by a polynomial inequal-
ity ((a+ d )2 < 4), not a polynomial equality, as happens in SOn(R) and in the
group of orientation-preserving isometries of R3. As pointed out following The-
orem 6.9, this difference is also reflected in the fact that the set of pairs from
PSL2(R) that generate a free group without nontrivial fixed points in H2 is not
dense.

Concerning higher-dimensional hyperbolic spaces, it is easy to see that in the
isometry group of Hn, n ≥ 4, there do exist free groups of continuum rank without
nontrivial fixed points in Hn. This is because the action of the Euclidean isometry
group Gn−1 on Rn−1 can be mimicked in Hn. If σ ∈ Gn−1, then send the point
(x1, . . . , xn−1, t ) of Hn (using the upper half-space model) to (σ (x1, . . . , xn−1), t ).
This yields an isometry of Hn that, assuming σ fixes no point of Rn−1, has no
fixed point. Hence the assertion about Hn, n ≥ 4, follows from Theorem 7.4(b),
the corresponding result about Rn, n ≥ 3.

The case of H3, however, requires a more subtle approach. The action of
PSL2(C) on C ∪ {∞} as linear fractional transformations can be extended to
R3 ∪ {∞} by identifying C ∪ {∞} with R2 ∪ {∞} and using some geometry
related to the fact that each linear fractional transformation is a Möbius trans-
formation of R2 ∪ {∞}. Such an extension preserves H3 and corresponds to the
group of orientation-preserving isometries of H3. Alternatively, one can use an
approach based on quaternions; see [Bea83] for both approaches. It turns out that
the orientation-preserving isometries of H3 with a fixed point correspond (except
for the identity) to matrices whose trace is real and lies in the interval (−2, 2).
Such elements of PSL2(C) are called elliptic.

Theorem 7.8. There is a free subgroup of PSL2(C) of rank 2ℵ0 that contains no
elliptic element. Hence there is a rank 2ℵ0 free group of isometries of H3 whose
action on H3 is without nontrivial fixed points.

Proof. There is no loss in working in SL2(C) rather than PSL2(C). For a noniden-
tity reduced word w, let

Rw = {(σ1, . . . , σm) ∈ SL2(C)m : w(σ1, . . . , σm) is elliptic}.
As in the previous proofs using Theorem 7.5, it is sufficient to prove that Rw

is nowhere dense. The complication is that Rw is not the zero-set of a polynomial
function of the 8m real numbers giving the entries of the σi. Rather, if a1, . . . , a8m

are these reals, then (σ1, . . . , σm) ∈ Rw if and only if p(a1, . . . , a8m) = 0 and
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106 7 Free Groups of Large Rank: Getting a Continuum of Spheres from One

q(a1, . . . , a8m) < 4, where the polynomial p is an expression for the imaginary
part of the trace, while q equals the square of the real part of the trace.

Now, suppose Rw fails to be nowhere dense. Then the closed set {(σ1, . . . , σm) :
p(a1, . . . , a8m) = 0}, which contains Rw, must contain a nonempty open set.
Because SL2(C)m is a connected, real analytic submanifold of R8m, this means
that p must be identically zero on SL2(C)m. But this means that the trace of
w(σ1, . . . , σm) is real for all choices of σ1, . . . , σm, which leads to a contradic-
tion, as follows.

We shall need the fact, due to Magnus and Neumann (see Thm. 8.1(a)), that
the two matrices ρ = [

1 1
1 2

]
and τ = [

5 2
2 1

]
are free generators of a subgroup of

SL2(R) that, except for the identity, consists only of hyperbolic elements; in other
words, the absolute value of the trace of any nontrivial word in ρ, τ is greater than
2. Returning to the problem at hand, define for each z ∈ C

ρz = 1

1+ z− z2

[
1 z
z 1+ z

]
and τz = 1

1+ 4z− 4z2

[
1+ 4z 2z

2z 1

]
.

Then define the complex function

f (z) = tr(w(ρz, τzρzτ
−1, . . . , τm−1

z ρzτ
−(m−1))).

Then f (z) is a rational function, whose denominator has four zeros. Let � be
a region containing 0 and 1 but excluding these four zeros. Then f is analytic
in �, so by the Open Mapping Theorem, f (�) either is just a single point or
contains a nonempty open set. If the trace of w(σ1, . . . , σm) is always real, only
the first possibility can hold. But this is the desired contradiction because f (0) =
trace(I ) = 2, while f (1) is the trace of a reduced nonidentity word in ρ and τ ,
whence f (1) 
= 2.

Corollary 7.9. The set of pairs of isometries of H3 that generate a free group of
elliptic elements is dense in the isometry group PSL2

2(C).

Proof. The preceding proof shows that each Rw is nowhere dense. And the argu-
ment following Corollary 7.6 then shows that the set of pairs in the assertion is
comeager.

Tomkowicz [Tom∞] generalized Theorem 5.17 and applied this generalization
to H2, obtaining the following result.

Theorem 7.10 (AC). In H2, any proper system of at most 2ℵ0 congruences using
at most 2ℵ0 sets is solvable.

His proof uses Theorem 7.5 and the aforementioned generalization of Theorem
5.17 to get a free locally commutative subgroup of orientation-preserving hyper-
bolic isometries with some additional properties. Table 6.1 summarizes this sort
of result about large free groups.

Corollary 7.6(b) yields the κ-divisibility of S2 with respect to SO3(R) when-
ever 3 ≤ κ ≤ 2ℵ0 , and this can be combined with splittings of S1 to obtain the
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κ-divisibility of higher-dimensional spheres, without having to use free locally
commutative groups in the higher-dimensional rotation groups.

Corollary 7.11 (AC). For any cardinal κ satisfying 3 ≤ κ ≤ 2ℵ0 and any n ≥ 1,
Sn is κ-divisible with respect to SOn+1(R).

Proof. For S2, this follows by applying Corollary 7.6(b) to the weak system A0
∼=

Aα , α < κ . Once the case of S1 is handled, the divisibility of Sn, n > 2, follows by
combining the partitions of S1 and S2, as was done in Theorem 6.6 (or, apply Cor.
7.6(b) for larger n). For S1, the result is obvious if κ < ℵ0, and the ℵ0-divisibility
of S1 is implicit in the classical construction of a non-Lebesgue measurable sub-
set of the circle: The sets Mi in the proof of Theorem 1.5 are pairwise rotationally
congruent. For ℵ0 < κ < 2ℵ0 , the same proof as for κ = ℵ0 works, except that the
countable subgroup of rotations through rational multiples of π must be replaced
by a κ-sized subgroup of SO2(R). Such a subgroup is easily obtainable by tak-
ing any collection of κ rotations of the circle and considering the group they
generate.

This result seems to indicate that all spheres have the same divisibility prop-
erties (into three or more pieces), but in fact each Sn, n ≥ 2, has a divisibility
property that S1 does not. It is a consequence of Corollary 7.6(a) that if n ≥ 2,
then Sn has a subset E such that, for each cardinal κ with 2 ≤ κ ≤ 2ℵ0 , Sn is
divisible into κ pieces, each of which is On+1(R)-congruent to E. In other words,
E is a half of Sn and a third of Sn and . . . and a 2ℵ0 th part of Sn! To obtain E,
simply choose a partition of Sn into sets Aα , 1 ≤ α ≤ 2ℵ0 , satisfying the following
proper system of congruences:

A1
∼= Aα, 1 ≤ α < 2ℵ0

A1
∼=
⋃
{Aβ : κ ≤ β ≤ 2ℵ0}, κ a cardinal and 2 ≤ κ ≤ 2ℵ0 .

Then let E = A1. For any κ in [2, 2ℵ0 ], Sn splits into the sets Aα , where 1 ≤
α < κ , and the set

⋃{Aβ : κ ≤ β ≤ 2ℵ0}, all of which are congruent to E. If one
deletes the single congruence A1

∼= A2 ∪ A3 ∪ · · ·, the resulting system is weak
(see [Myc55b]) and is therefore solvable in all the cases of Theorem 7.4. Hence
there is a subset of S2, for example, that is simultaneously a third, a quarter, . . . , a
2ℵ0 th part of S2 with respect to the group of rotations. Because a finitely additive,
O2(R)-invariant measure on S1 of total measure one exists (Cor. 12.9), such a
subset of the circle cannot exist: For n <∞, an nth part of S1 would have to
have measure 1/n, and for κ ≥ ℵ0 a κth part would have measure zero. Hence S1

does not have this simultaneous divisibility property that the higher-dimensional
spheres do.

7.2 Large Free Semigroups of Isometries

The isometry group of the Euclidean plane, being solvable, does not contain any
free non-Abelian subgroup, but we have seen that free subsemigroups of rank 2
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108 7 Free Groups of Large Rank: Getting a Continuum of Spheres from One

exist. In the Sierpiński–Mazurkiewicz Paradox (Thms. 1.7–1.9), such a subsemi-
group was used to construct a nonempty paradoxical subset of the plane. The von
Neumann numbers (or any set of algebraically independent numbers) allow us to
define a free semigroup of isometries of much larger rank, obtaining a refinement
of the Sierpiński–Mazurkiewicz Paradox that still avoids the Axiom of Choice.
First, we give the straightforward generalization of Proposition 1.9.

Proposition 7.12. Suppose a group G acts on X and G contains a (necessarily
free) semigroup S generated by σα , α ∈ I, with the following property: for some
x ∈ X , any two elements of S with different leftmost terms yield different points
when applied to X . Then some nonempty subset E of X contains pairwise disjoint
sets Aα , α ∈ I, such that σ−1

α (Aα ) = E.

Proof. Let E be the S-orbit of x. Then the hypothesis guarantees that the sets
σα (E ) are pairwise disjoint subsets of E, and σ−1

α (σα (E )) = E. The fact that
the hypothesis on the σα implies freeness is proved in the same way as in
Theorem 1.8.

Theorem 7.13. (a) There are isometries of R2, {σt : 0 < t ≤ 1}, such that the
subsemigroup of G2 that they generate satisfies the hypothesis of Proposi-
tion 7.12, with x = (0, 0).

(b) There is a nonempty subset E of R2 that may be partitioned into a contin-
uum of sets, each of which is congruent to E.

Proof. (a) As usual, let θt = 2 arctan vt , 0 < t ≤ 1, where the vt are the von Neu-
mann numbers. Let ut be the complex number eiθt ; we identify R2 with C. Note
that the ut are algebraically independent. For if P = 0, where P is a rational poly-
nomial in finitely many of the ut , then because ut = (1− v2

t + 2vt i)/(1+ v2
t ), we

may take a common denominator to get Q = 0, where Q is a polynomial over Q(i)
in the corresponding vt . Then Q cannot be identically 0, for otherwise P would
vanish when each of its variables is set equal to u1, contradicting the transcen-
dence of u1 (which follows from the transcendence of its real part). Hence the vt

satisfy an algebraic relation over Q(i) and, because i is algebraic, over Q as well,
a contradiction.

For 0 < t < 1, let σt (z) = utz+ ut , and let σ1(z) = u1z; these complex func-
tions correspond to isometries of R2. Suppose w1 = σt1 · · · σtr and w2 = σs1 · · ·
σsm are nontrivial words in σt , 0 < t ≤ 1, with t1 
= s1; hence we may assume
t1 
= 1. Then w1(0) and w2(0) are polynomials in the uti , usi , respectively, and
w1(0) has but a single term of degree 1, ut1 , while w2(0) has no such term, if
s1 = 1, or also a single such term, us1 . Therefore if w1(0) = w2(0), subtraction
would yield a polynomial relation among finitely many of the algebraically inde-
pendent numbers ut , a contradiction.

(b) Apply Proposition 7.12 to the semigroup of part (a). The sets σα (E ) form,
in general, a partition of E \ {x}. But in this particular case, σ1(0, 0) = (0, 0), so
(0, 0) ∈ σ1(E ), and we really do have a partition of E.
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7.3 Sets Congruent to Proper Subsets 109

Another question raised regarding the Sierpiński–Mazurkiewicz Paradox was
whether there could be an uncountable subset of the plane that is paradoxical
using two pieces; the example in Theorem 1.7 is countable. Here too von Neu-
mann numbers allow the desired extension to be obtained without the Axiom of
Choice.

Theorem 7.14. There is a subset of the plane, with the cardinality of the contin-
uum, that is paradoxical using two pieces. Assuming the Axiom of Choice, such
sets exist having any infinite cardinality not exceeding 2ℵ0 .

Proof. Let ut , 0 < t ≤ 1, be the algebraically independent complex numbers of
modulus 1 defined from the von Neumann numbers in Theorem 7.13(a); let u
denote u1. Let σ (z) = uz and τ (z) = z+ 1, and let S be the subsemigroup of G2

(again, R2 is identified with C) generated by σ and τ . Then the desired set E may
be defined as

E = {w(z) : w ∈ S and z = σ−k (ut ), 0 < t < 1, k = 0, 1, 2, . . .}.

Clearly E ⊇ σ (E ) ∪ τ (E ) and σ−1(σ (E )) = E = τ−1(τ (E )). Moreover,
because each σ−k (ut ) = σ (σ−(k+1)(ut )) ∈ σ (E ), E = σ (E ) ∪ τ (E ). It remains to
prove that σ (E ) and τ (E ) are disjoint, but it is easy to see, because words w corre-
spond to polynomials with coefficients of the form mun, m, n ∈ N, that an equality
σw1σ

− j(ut ) = τw2σ
−k (us) implies a nontrivial polynomial relation among u, ut ,

and us (or just u, ut if s = t), in violation of their algebraic independence. Assum-
ing Choice, (0, 1) may be well ordered in type 2ℵ0 , and so we need only replace
{ut : 0 < t < 1} by any κ-sized subset (κ infinite) to get an example of size κ .

7.3 Sets Congruent to Proper Subsets

To conclude this chapter, we discuss some geometric problems whose solutions
are closely connected with free groups of isometries. These problems arise from
the possibility of a set being congruent to a proper subset. To summarize some
background about this notion, recall that we have already seen, and made much
use of, the fact that a subset of the circle can be congruent to a proper subset:
D = {ρn(1, 0) : n ∈ N} is congruent to D \ {(1, 0)} if ρ is a rotation about the
origin of infinite order. In general, call a set in any metric space compressible if
it is congruent to a proper subset. Recall that congruence may be witnessed by
partial isometries: A is congruent to B if there is a distance-preserving bijection
from A to B. In any compact metric space, an isometry from A to B can always be
extended uniquely to one from A to B.

Now, it is easy to see that no bounded subset of the real line is compress-
ible although, of course, N is congruent to N \ {0}. As for the plane, we have
the bounded compressible set D. An interesting result of Lindenbaum shows that
topologically, the example D is as simple as possible. Because D is countable, it
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is an Fσ set. But it is not a Gδ , because if Dc = S1 \D were an Fσ then, because
D is dense, any closed set in the union would be nowhere dense; so Dc would
be meager and therefore D ∪ Dc would be meager, a contradiction. In fact, no
bounded compressible set can be both an Fσ and a Gδ . Following the notation of
descriptive set theory for the Borel hierarchy, let �0

2 denote sets that are in both Fσ
and Gδ .

Theorem 7.15. Any �0
2 subset of a compact metric space is noncompressible;

hence any bounded �0
2 subset of Rn is noncompressible.

Proof. First we prove that closed sets in a compact space X are not compressible.
Suppose σ (A) ⊆ A, where σ is a distance-preserving function on A. For a ∈ A,
let σ (a) = {σ n(a) : n ∈ Z and σ n(a) is defined}. If σ (a) is finite, then a = σ n(a)
for some n > 0, whence a ∈ σ (A). If σ (A) is infinite, then by compactness of X ,
σ (a) has a limit point. It follows that for any ε > 0, there are distinct m, n ∈ Z
with d(σm(a), σ n(a)) < ε, whence, assuming m < n, d(a, σ n−m(a)) < ε. This
yields that a is a limit point of {σ n(a) : n > 0}, and because σ (A), which is
congruent to a closed set, must itself be closed, a ∈ σ (A). We have proved that
A ⊆ σ (A), and therefore that A is not compressible.

For any subset A of X define the residue of A, AR, to be A ∩ B \A. If σ (A) =
B ⊆ A, where σ is a distance-preserving function on A (which, by compactness,
is assumed to be defined on A), then we claim that σ (AR) ⊆ AR and A \B ⊆
AR \ σ (AR). By the result on closed sets just proved, σ (A) = B cannot be a proper

subset of A; therefore A = B and B \B = A \B ⊇ A \A, whence B \B ⊇ A \A. But

σ takes A \A to B \B, and hence also takes A \A to B \B; because these sets are

closed, this means B \B = A \A. The fact that σ is a homeomorphism from A to

B yields that σ (AR) = (σ (A))R, whence σ (AR) = BR = B ∩ B \B ⊆ A ∩ A \A =
AR. For the second part of the claim, A \B ⊆ A \B = B \B ⊆ B \B = A \A, so
A \B ⊆ AR. This proves the claim because A \B is disjoint from σ (A), and hence
from σ (AR). (In fact, it can be shown that A \B = AR \ σ (AR).)

Now, for any set A, we may define a sequence of residues: A0 = A, Aα+1 =
(Aα )R, and Aγ =

⋂
α<γ Aα for limit ordinals γ . There must be some ordinal β

such that Aβ = Aβ+1 = . . . . The Baire Category Theorem, which is valid in com-
plete, and hence in compact, metric spaces, can be used to show that if A is �0

1,
then Aβ = ∅ (see [Hau57, §30] or [Kur66, §§12, 34]). (The converse is true in
all metric spaces. If Aβ vanishes, then A ∈ �0

1 (see [Hau57, §30]). The claim
shows that a compressible set A can be carried through the successor stages of the
sequence of residues, and it is easy to cross the limit stages as well. Because the
empty set is obviously incompressible, A must be too.

The compressible sets N and D led Sierpiński to wonder if a set could contain
two or more points, each of whose deletion, separately, leaves a set congruent to
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the original. He proved the following result for the line, and a proof was given in
Theorem 4.10; the case of R2, which is somewhat more complicated and whose
proof we omit, was proved by Straus [Str57].

Theorem 7.16. There is no subset E of either R1 or R2 such that for two distinct
points P and Q in E, E is congruent to E \ {P} and to E \ {Q}.

The proof for R1 (§4.6) uses the commutativity of translations or, more pre-
cisely, the fact that the equation x2y2x−2y−2 = e is universally satisfied in G1. The
proof for R2 likewise uses a universal equation, namely, [[x2, y2], [x2, y2]] = e
(see App. A), but also uses the geometric form of elements of G2. That the exis-
tence of a universal equation does not suffice is shown by the following example.
Let G be the group generated by

[
2 0
0 1

]
and

[
1 0
0 2

]
, and let E = {(0, 2n), (2n, 0) :

n ∈ N}. Then E \ {(0, 1)} and E \ {(1, 0)} are G-congruent to E despite the fact
that G is Abelian.

Nonetheless, in free groups of rank 2 or more, where of course no nontrivial
equation is universally satisfied, sets congruent to any maximal proper subset do
exist. This fact was used by Mycielski to construct a subset of R3 that is congruent
to the remainder after the deletion of any finite set of points. This construction is
similar to that of paradoxical decompositions, although the Axiom of Choice is
not needed; first show that the set exists in a free group, and then transfer it to a
set on which the group acts without fixed points.

Definition 7.17. If G acts on X , then a nonempty subset E of X is a Mycielski
set if, for any p ∈ E, there is σ ∈ G such that σ (E ) = E \ {p}.

If E is a Mycielski set, then for any finite subset D, there is σ so that σ (E ) =
E \D: Just deal with the points in D in sequence. A weaker notion, where E
is G-congruent only to two specified point-deleted sets E \ {p} and E \ {q}, was
discussed in §4.6.

Theorem 7.18. (a) A free group F of rank 2 has a Mycielski set (with respect
to its action on itself by left multiplication), as does any group with a sub-
group isomorphic to F.

(b) If F , as in (a), acts on X without nontrivial fixed points, then X has a
Mycielski set.

(c) Any sphere in R3 contains a Mycielski set with respect to its group of
rotations.

Proof. (a) If F is freely generated by τ and ρ, let σi = ρ iτ i for i ∈ N; the σi are
independent. Let Fω be the subgroup of F generated by the σi, and let {dn : n ∈ N}
enumerate the elements of Fω. Do it by taking more generators and increasing
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length, as follows:

e,

σ−1
0 , σ0,

σ−1
1 , σ1,

σ−1
0 σ−1

1 , σ−1
0 σ1, σ0σ

−1
1 , σ0σ1, σ

−1
1 σ−1

0 , σ−1
1 σ0, σ1σ

−1
0 , σ1σ0,

σ−1
2 , σ2,

words of length 2 in σ±1
0 , σ±1

1 , σ±1
2 (and not in any previous level)

words of length 3 in σ±1
0 , σ±1

1 , σ±1
2 (and not in any previous level)

σ−1
3 , σ3, etc.

Now let

Vn =
{
φ σ−m

n dn : n = 0, 1, 2, . . . ;m = 1, 2, . . . ;
φ ∈ Fω and φ does not end in σn on the right}

Because no dn has σn on its left, the form φ σ−m
n dn is always a reduced word.

Then σnVn = Vn ∪ {dn}, while σkVn = Vn if k 
= n. It follows that E =
Fω \

⋃
n Vn is the desired Mycielski set, as it is easy to verify that for any n,

σn(E ) = E \ {dn}.
(b) Let E be a Mycielski set in F and let x be any element of X . Then the set

{w(x) : w ∈ E} is a Mycielski set in X .
(c) Let σ , τ be the Satô rotations of the unit sphere, S2 (Thm. 2.1). They

act without fixed points on S2 less a countable set, so by (b), there is a subset of
the sphere that is a Mycielski set. To get the set on some other sphere, use the
appropriate affine transformation of the set in the unit sphere.

The preceding proof works just as well if we use finite sets directly instead of
singletons. See §4.6 for a concrete visualization of a weak Mycielski set in the
hyperbolic plane. And the preceding proof also extends easily to larger cardinals:
If F is a free group of rank κ , and λ any cardinal satisfying κλ = κ , then F has
a subset E such that for any ≤λ-sized subset D of E, there is some σ ∈ F with
σ (E ) = E \D. But Mycielski [Myc58b] showed that much more is possible. First
of all, the action of the free group need only be assumed to be locally commuta-
tive. And, more strikingly, one can arrange things so that small sets can be added
as well as deleted. We omit the proof (see [Myc258]), which involves an inductive
construction more intricate than in Theorem 7.18.

Theorem 7.19 (AC). Suppose F, a free group of rank κ , is locally commutative
in its action on X and λ is a cardinal satisfying κλ = κ . Then there is a subset E
of X such that for any two sets, D1,D2 ⊆ X with |Di| ≤ λ, there is some σ ∈ F
with σ (E ) = (E \D1) ∪ D2.
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Corollary 7.20 (AC). Each of Sn, Ln, Hn (n ≥ 2), or Rn (n ≥ 3) has a subset
that, from the point of view of isometries, is unchanged by adding or deleting
countably many points.

The corollary is an immediate consequence of Theorems 7.19 and 7.4.
The techniques of the preceding results are limited to groups with free non-

Abelian subgroups, because such groups are the only ones containing Mycielski
sets (compare this with Thm. 12.5).

Theorem 7.21. If G has a Mycielski set E with respect to its left action on itself,
then G has a free subgroup of rank 2.

Proof. If σ ∈ E, then Eσ−1 is also a Mycielski set; thus we may assume that E
contains the identity e. Let σ ∈ G map E to E \ {e}; then σ = σe ∈ E, so there is
some τ ∈ G (τ 
= σ ) with τE = E \ {σ }. We claim that σ and τ are independent.
Because σ and τ cannot have finite order, any nontrivial vanishing word in σ±1,
τ±1 can be transformed by inversion and conjugation into one of the form w =
σm1τ n1σm2 · · · τ nk , where k ≥ 1, m1 > 0, and all exponents are nonzero integers.
Choose such a w such that k is as small as possible and, given k,

∑k
i=1 mi + ni, is

minimal as well.
We shall prove by induction that each right-hand end-segment of w belongs to

E. The first such segment is simply τ or τ−1, both of which belong to E by τ E =
E \ {σ }. Assume that the proper end-segment u of w belongs to E. Then, clearly,
σu and τu lie in E. Moreover, by the minimality of w, u 
= e; hence σ−1 u ∈ E.
Finally, if τ−1 u is the next subword and does not lie in E, then u = σ , and it
may easily be checked that σu−1, which equals the identity, is shorter than w with
respect to one of the two minimality conditions on w. This covers all four cases,
completing the induction. But this means σ−1 = σm1−1 τ n1 · · · τ nk ∈ E, violating
σE = E \ {e}.

The preceding proof assumed only that left translates of E give the point-
deleted subsets; in fact, it is sufficient to assume that left or right translates
are used in each case [Str59]. The proof leaves open the question of what hap-
pens when E is a weak Mycielski set: has two points so that σE = E \ {p} and
τE = E \ {q}.
Question 7.22. If a group G has a weak Mycielski set with respect to its left
action on itself, must G contain a free subgroup of rank 2?

Notes

Infinite sets of congruences were first investigated for partitions of S2, indepen-
dently by Dekker and de Groot [DG54, DG56] and by Mycielski [Myc55b]. The-
orem 7.1, in its generality, was formulated and proved by Dekker [Dek56]. The
extension of Theorem 7.1 ensuring that the sets Aα are all nonempty is due to
Dekker [Dek56b], as is its converse, Theorem 7.2 [Dek56a].
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Lebesgue and Steinitz had realized that 2ℵ0 algebraically independent reals
exist, but Mazurkiewicz [Maz20] asked if the existence of a proper uncountable
subfield of the reals could be proved without using the Axiom of Choice. Von
Neumann [Neu61] answered this question affirmatively by giving a constructive
proof of Theorem 7.3. The alternative, less computational approach using Theo-
rem 7.5 is due to Mycielski [Myc64].

Sierpiński [Sie45b] was the first to construct an uncountable free group of
isometries; he used algebraically independent numbers to prove Theorem 7.4
for SO3(R). Earlier, Nisnewitsch [Nis40] had proved that any free group is iso-
morphic to a subgroup of GL2(K ) for some field K. Mycielski [Myc55b] used
Sierpiński’s large free group to solve large sets of congruences on S2 (Cor. 7.6 for
S2). Simultaneously, Dekker and de Groot obtained these results for S2 [Gro54,
Gro56, DG54, DG56], and Dekker [Dek56b, Dek57] carried out the extension to
the other spaces of Corollary 7.6, in those cases where he had solved the problem
for finite systems of congruences (see Notes to Chap. 6). The idea of using The-
orem 7.5 to obtain large free groups (thus generalizing the results of Deligne and
Sullivan for SOn(R), n even, and Borel for SO5(R) given in Chapter 6) is due to
Mycielski [MW84]. The fact, stated after Corollary 7.6, that the set of pairs gen-
erating certain free subgroups of SOn(R) is comeager follows from Borel’s work
[Bor83]; he used a different technique to show that the sets Rw are nowhere dense.

Theorem 7.7 on uncountable free subgroups of PSL2(R) is due to Siegel
[Sie50]; the proof presented here uses some ideas of R. Riley. For extensions of
Siegel’s result, see [Jor77]. Theorem 7.8 is due to Mycielski and Wagon [MW84].
The observation that free groups in G3 can be used to prove Theorem 7.8 in H4

and beyond is due to A. Borel.
Steinhaus first raised the question of whether the set E of the Sierpiński–

Mazurkiewicz Paradox (Thm. 1.7) could be taken to be uncountable. This was
answered affirmatively by Ruziewicz [Ruz21], but he needed the Axiom of
Choice. Still using Choice, Lindenbaum [LT26, p. 327] proved that there is a
nonempty subset of the plane that is equidecomposable with κ many copies of
itself, for any κ ≤ 2ℵ0 . This was all prior to the discovery of von Neumann num-
bers. Von Neumann [Neu61] deduced from these numbers a result that elimi-
nated the Axiom of Choice from Ruziewicz’s work, and Sierpiński [Sie47] refined
Ruziewicz’s result even more, giving the proof of Theorem 7.14. Moreover,
Sierpiński [Sie47] saw how von Neumann numbers could be used to eliminate
choice from Lindenbaum’s theorem (Theorem 7.13).

The definition of incompressible sets (also known as monomorphic sets) is due
to Lindenbaum [Lin26], who proved Theorem 7.15. The example of a subset of
the circle that is congruent to a proper subset of itself is due to Tarski [Tar24a];
see [Lin26, p. 217]. The Scottish Book [Mau81, p. 67] contains a weaker version
of Theorem 7.15 due to Banach and Ulam.

In [Sie50a] and [Sie54, pp. 7–10] (see also [Sie50b]), Sierpiński proved The-
orem 7.16 for R1 and gave an erroneous construction of a set E in the plane con-
gruent to E \ {P} and E \ {Q} for distinct P,Q ∈ E. The error was discovered by
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Mycielski (see [Sie55, Sie54, p. 116]), who went on to show [Myc54, Myc55a]
that Mycielski sets exists in R3 (Thm. 7.18). The proof of Theorem 7.18 given
here is from [Str57], where Straus settled the question for R2 (Thm. 7.16). The
extensions of these results contained in Theorem 7.19 and Corollary 7.20 are due
to Mycielski [Myc58b], although the existence of a Mycielski set in the hyper-
bolic plane was proved earlier by Viola [Vio56]. Mycielski [Myc56, Myc58a] also
investigated these types of questions in more general analytic manifolds. Theorem
7.21, which shows that the collection of groups that do not contain Mycielski sets
coincides with groups not having a free non-Abelian subgroup, is due to Straus
[Str59].
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8

Paradoxes in Low Dimensions

The isometry group of the plane does not contain a free noncommutative sub-
group, and so the construction of the Banach–Tarski Paradox does not work in
the plane, or in the line. Moreover, G1 and G2 are solvable, so we can construct
Banach measures (isometry-invariant, finitely additive measures on all subsets of
R1 or R2; Cor. 12.9) showing that no bounded set with interior is paradoxical (an
unbounded paradoxical subset of the plane was constructed in Thm. 1.7). But an
enlargement of the group, to the area-preserving affine transformations SA2(R),
does yield free groups and the resulting paradoxes. In this chapter we study in
detail the sorts of paradoxes that arise from SA2(R) and SA2(Z), as well as the
related linear groups acting on the punctured plane. In addition, we show how a
slightly different type of paradox can be given for the line using contractions.

8.1 Paradoxes in the Plane

8.1.1 Paradoxes of R2 and Z2

Recall that the group An(R) of affine transformations of Rn consists of transfor-
mations of the form σ = τL, where τ is a translation and L is a linear transfor-
mation. Moreover, σ magnifies area by the factor | det σ |, where the determinant
of σ is defined to be det L. Thus SAn(R), the group of affine transformations of
determinant +1, consists of the affine transformations that preserve area and ori-
entation. The group SA2(R) is quite a bit larger than the subgroup of orientation-
preserving isometries, as we shall see in a moment, but in dimension 1, nothing
new appears. Any affine transformation, ax+ b, of determinant ±1 is, in fact, an
isometry. We use SA2(Z) for the analogous group using integers for all the entries,
including the translations. Here we identify the group of integer translations with
the additive Z2.

We know that the two transformations in SL2(Z) given by
[

1 2
0 1

]
and

[
1 0
2 1

]
are

independent (Prop. 4.4). This holds also when 2 is replaced by any number larger
than 1. In fact, independence holds for a wider class of matrices, as follows. Say

116
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8.1 Paradoxes in the Plane 117

that a matrix entry is dominant if it is strictly greater in absolute value than all
other entries. Then A = (ai j ) and B = (bi j ), two members of SL2(Z), are inde-
pendent if a12 dominates A and b21 dominates B. This result is due to K. Goldberg
and M. Newman [GN57].

The next theorem describes some useful free groups in two dimensions. The
group of the previous paragraph (in fact, all of SL2(R)) is locally commutative on
R2 \ {0} (proved following Cor. 5.6), so part (a) improves that. Part (d) shows that
we avoid the solvability issue of (c) when we restrict the action to integer points.

Theorem 8.1. (a) SL2(Z) has a rank-2 free subgroup with no fixed points in
R2 \ {0}.

(b) SA2(R) has a subgroup that is locally commutative on R2 and is free on
2ℵ0 generators.

(c) A subgroup of SA2(R) whose action has no fixed points is solvable; in fact,
such a subgroup is nilpotent.

(d) SA2(Z) has an F2-subgroup that acts on Z2 without fixed points.

Proof. (a) Magnus and Neumann [Mag73, Neu33] showed that the two matrices[
1 1
1 2

]
,
[

5 2
2 1

]
work.

(b) Satô [Sat03] proved that the following two transformations are as required:[ x
y
] �→ [

2 θ
0 1/2

] [ x
y
]− [ 1

0

]
and

[ x
y
] �→ [

2 0
θ 1/2

] [ x
y
]− [ 0

1/2

]
, where θ is any tran-

scendental number. Then he was able to extend this to get a group of continuum
rank. His construction relies on the fact that the set {σ = (σ1, . . . , σn) ∈ SA2(R) :
σ fails to generate a free locally commutative group} is contained in a countable
union of proper algebraic subsets of SA2(R). Because such a union is a meager
set and SA2(R) is a complete separable metric space, we can apply a theorem of
Mycielski (see remarks after Thm. 7.5).

(c) Suppose G is a group as hypothesized; using τ to denote a translation and
L a linear transformation, if τ L ∈ G, then det(L− I ) = 0, where I is the identity
matrix, and therefore L has+1 as eigenvalue. Now suppose σ = τL and ρ = τ ′L′

are in G. Then (see App. A) στ = τ ∗L L′, and each of L, L′, LL′ has +1 as an
eigenvalue, and so all three matrices have trace 2. Hence, choosing an appropri-
ate basis, L = [

1 b
0 1

]
, L′ = [

α β
γ 2−α

]
, and LL′ = [

α+bγ ∗
∗ 2−α

]
. The trace of the last

being 2 implies that bγ = 0. Now, if b 
= 0, then γ = 0, and because determi-
nants are 1, α = 1 and L′ = [

1 β
0 1

]
. If instead b = 0, then L is the identity, and

we can use a basis change to get L′ into the form
[

1 β
0 1

]
. So, in either case, σ

and ρ, viewed as 3× 3 matrices (App. A), have the form
[ 1 B t1

0 1 t2
0 0 1

]
. Matrix alge-

bra on these matrices shows that σρσ−1ρ−1 is a pure translation; therefore any
commutator of commutators is the identity, and the group is solvable.

To go further, let τ ′′L′′ be a third element of G. Case 1: One of L, L′, L′′ is
the identity. Then use a change of basis to get the three matrices to be, in some
order

[
1 0
0 1

]
,
[

1 b
0 1

]
,
[
α β
γ 2−α

]
. As before, bγ = 0, and the matrices extend in the

same way to upper diagonal 3× 3 forms with 1s on the main diagonal. Matrix
multiplication then shows that xyzyx = yxzxy holds. Case 2: None of the three
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118 8 Paradoxes in Low Dimensions

linear transformations is the identity. Then L = [
1 b
0 1

]
, L′ = [

1 β
0 1

]
, L′′ = [

1 δ
0 1

]
,

and the corresponding 3× 3 forms are as before and the identity holds. So the
group satisfies xyzyx = yxzxy, which means the group is nilpotent [NT63].

(d) Satô [Sat99] found two transformations that work:
[ x

y
] �→ [

7 3
9 4

] [ x
y
]+[

1
−1

]
and

[ x
y
] �→ [

94 39
147 61

] [ x
y
]+ [ 3

2

]
.

Theorem 8.1(c) implies that there is no free subsemigroup in this special affine
group, and therefore (by Thm. 14.30) the existence of SA2(R)-paradoxical sets in
the plane requires transformations having a fixed point. Theorem 5.12 yields the
following application of the groups of Theorem 8.1. For the second assertion of
(c), use Theorem 8.1(a) to get a paradox of the punctured plane, and then absorb
the origin by a translation of one unit in the x-direction.

Corollary 8.2 (AC). (a) All countable, proper systems of congruences are solv-
able by a partition of R2 \ {0} using SL2(Z).

(b) All weak systems of congruences are solvable by a partition of R2 using
SA2(R). So R2 is SA2(R)-paradoxical using four pieces.

(c) All countable, weak systems of congruences are solvable by a partition of
Z2 using SA2(Z). Also R2 is SA2(Z)-paradoxical.

Even though Theorem 8.1(b) cannot be improved to avoid all fixed points,
that does not settle the question of solving all congruences. Recall that a similar
situation held for S2: Theorem 5.16 showed how to solve all systems despite the
lack of an F2 without fixed points.

Question 8.3. Are all (possibly uncountable) proper systems of congruences
solvable by a partition of R2 using area-preserving affine transformations, and
not necessarily restricted to the orientation-preserving ones?

8.1.2 Paradoxes of Bounded Sets in the Plane

Our next goal is to obtain a paradoxical decomposition of a set of positive finite
area, such as the unit square. We shall show (Thm. 8.5) that this can be done using
any independent pair in SL2(Z) and translations, thus staying within SA2(R).

Let J be the half-open unit square [0, 1)× [0, 1). The general results of Chap-
ter 5 apply to a group acting on a set, but SL2(Z) does not act on the square.
This difficulty can be handled by using a planar version of arithmetic modulo 1;
because all translations are affine, this will not take us out of SA2(R). More pre-
cisely, let ≈ denote the equivalence relation on R2 determined by the lattice Z2:
P ≈ Q if and only if Q = P+ (m, n) for integers m, n. For any P ∈ R2, let P̂ be
the unique point in J such that P̂ ≈ P. Let H denote the group of affine transfor-
mations τL, where τ is any real translation and L ∈ SL2(Z); H = π−1(SL2(Z))
where π : A2 → GL2(R) is the canonical homomorphism. For any σ ∈ H , let σ̂

be the function with domain J defined by σ̂ (P) = σ̂ (P).
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8.1 Paradoxes in the Plane 119

Proposition 8.4. The mapping σ �→ σ̂ is a homomorphism from H to the group
of area-preserving, piecewise affine bijections from J to J. When restricted to
SL2(Z), this homomorphism is an isomorphism onto its image.

Proof. Clearly σ̂ : J → J . The following property of ≈, which follows easily
from the fact that L(Z2) ⊆ Z2 for L ∈ H , is the crux of the proof: If P ≈ Q and
σ ∈ SL2(Z), then σ (P) ≈ σ (Q). It follows that σ̂ is one-to-one on J . Moreover,
any P ∈ J equals σ̂ (Q̂) where Q = σ−1(P), so σ̂ (J ) = J . Because σ (J ) is a paral-
lelogram, σ̂ decomposes into finitely many functions τiσ , where τi is a translation
by a point in Z2; hence σ̂ is piecewise in H and so preserves area.

Now, if P ∈ J , then again using the crucial property of ≈,

σ̂1σ̂2(P) = σ̂1σ̂2(P) = ̂
σ1(σ̂2(P)) = ̂σ1(σ2(P)) = σ̂1σ2(P).

This shows that σ �→ σ̂ is a homomorphism. To see that the transformation
L �→ L̂, λ ∈ SL2(Z), is an isomorphism, it is sufficient to check that the only
transformation of SL2(Z) that gets taken to eJ , the identity on J , is e, the iden-
tity in SL2(Z). Suppose L̂ = eJ . There is some translation τ such that on a poly-
gon, L̂ = τL. Hence τL is the identity on three noncollinear points; because τL is
affine, this means that τL = e. But then L = τ−1, which is impossible unless L is
the identity, as required.

If F is any free subgroup of SL2(Z), then by this proposition, F̂ = {L̂ : L ∈ F}
is a free group of the same rank, acting on J . Each element of F fixes the origin,
and may fix other points as well. But because the fixed point sets are not too large,
they may be absorbed analogously to the way a similar problem was handled in
the Banach–Tarski Paradox (Thm. 3.9, Cor. 3.10). To do this, we need to bring in
translations.

Theorem 8.5 (The von Neumann Paradox for the Plane) (AC). If σ1, σ2 are any
two independent elements of SL2(Z) and G is the subgroup of SA2(Z) generated
by σ1, σ2, and T , the group of all translations, then J is G-paradoxical. Moreover,
any two bounded subsets of R2 with nonempty interior are G-equidecomposable.

Proof. Let F be the group generated by σ1 and σ2, and let F̂ and T̂ be the images
of F and T under the reduction modulo Z2. If D is the set of points in J that
are fixed by some nonidentity element of F̂ , then F̂ acts without nontrivial fixed
points on J \D. Because F̂ is freely generated by σ̂1, σ̂2 (Prop. 8.4), it follows
from Proposition 1.10 that J \D is F̂ -paradoxical. Each element of F̂ is piece-
wise in G (because T ⊆ G), which implies that J \D is G-paradoxical. By Propo-
sition 3.4, then, the proof will be complete once we show that J and J \D are
T -equidecomposable.

Because every point in D is a fixed point of an affine map, and hence is con-
tained in an affine subspace, and because F is countable, D splits into D0 ∪ D1,
where D0 is a countable set of points in J and D1 is a countable set of line seg-
ments. Now, the technique of Theorem 3.9 shows that for any countable subset
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120 8 Paradoxes in Low Dimensions

C of J , J ∼T J \C using two pieces. For it suffices to find a translation τ such
that C ∩ τ̂ n(C) = ∅ for any n ≥ 1, and this may easily be done once C is enumer-
ated as {P0,P1,P2, . . .}. For each i, discard the countably many translations τ such
that τ (Pi) ≈ Pj for some j ≥ i; a nondiscarded translation is as required. We shall
reduce the general case, J \D, to the case of a deleted countable set by finding
a countable set C such that J \D ∼T J \C. It will then follow that J \ D ∼T J ,
whence J \D ∼T J , completing the proof that J is G-paradoxical.

We claim that there is some translation τ such that D ∩ τ̂ n(D) is countable for
any integer n 
= 0. Enumerate the segments in D1 as S0, S1, S2, . . . . Suppose n, as
well as i, j with 0 ≤ i, j are given integers. If Si and S j are not parallel, we do noth-
ing. For then, no matter what τ is, τ̂ n(S j ) intersects Si in at most a single point. But
if they are parallel, choose a point P on Sj and discard all translations τ such that
for some (m1,m2) ∈ Z2, τm(P) lies on the straight line containing the segment
Si + (m1,m2). This guarantees that if τ is not discarded, then τ̂ n(S j ) ∩ Si = ∅.
For each of the countably many triples n, i, j, at most countably many lines of
translations (where T is identified with R2) are discarded, and hence altogether
only countably many lines of translations are discarded. Therefore, on any nondis-
carded line, only countably many translations are discarded, and so there must be
one, call it τ , left over. Now, τ is as desired; for if D ∩ τ̂ n(D) is uncountable,
then some segment in D1 must overlap with one in τ̂ n(D1), and any translation for
which this could happen was discarded.

Let C =⋃{D ∩ τ̂ n(D) : n = ±1,±2, . . .}. Then C is a countable subset of D
and it follows from the claim about τ that the sets τ̂ n(D \C), n ≥ 0, are pairwise
disjoint, and disjoint from C. If A is the complement, in J \C, of the union of this
sequence of sets, then

J \C =
( ∞⋃

n=0

τ̂ n(D \C)

)
∪ A ∼T

( ∞⋃
n=1

τ̂ n(D \C)

)
∪ A = J \D,

as required.
The G-equidecomposability of any two bounded sets with nonempty interior

follows from the Banach–Schröder–Bernstein Theorem exactly as in the proof of
Theorem 3.11, using squares instead of balls. Note that for any transformation s
of the form s(x, y) = (αx, αy), where α > 0, sGs−1 ∈ G. It follows that a square
of any size is G-paradoxical if the unit square is, and this allows the method of
Theorem 3.11 to be used.

The proof of Theorem 8.5 is much simpler if the free generators σ1 and σ2 are
such that F has no nontrivial fixed points in R2 \ {0} (e.g., the matrices of Thm.
8.1(a)). For then D, the set of fixed points of F̂ \ {e}, consists only of a count-
able set of points, and the last half of the proof is unnecessary. Furthermore, if
one restricts σi to be the two Magnus–Neumann matrices, then there is a simple
alternate route to the conclusion of Theorem 8.5. One needs only the group gen-
erated by the two Magnus–Neuman matrices, the translations Z2, and a single real
translation τ such that τ (Q2) ∩Q2 = ∅; see [Myc98].
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8.1 Paradoxes in the Plane 121

The von Neumann Paradox shows how paradoxical decompositions in the
plane completely analogous to the Banach–Tarski Paradox can be obtained if we
are willing to step outside the isometry group. In fact, adjoining a certain single
linear transformation to the isometry group G2 is sufficient. More precisely, let
σ be the shear of the plane defined by σ (x, y) = (x+ y, y); σ = [

1 1
0 1

] ∈ SL2(Z).
Let G∗

2 be the group generated by G2 and σ ; then Theorem 8.5 holds with respect
to G∗

2. Because
[

1 2
0 1

]
and its transpose are both in G∗

2 (the former is σ 2, the latter
is ρσ−2ρ−1, where ρ is the rotation

[
0 −1
1 0

]
), and because G∗

2 ⊇ T , the hypothesis
and hence the conclusion of Theorem 8.5 are valid.

Next we focus on the situation where only linear transformations are used;
we first sketch a proof (Cor. 8.10) that any square not containing the origin is
SL2(R)-paradoxical and then provide all details of Laczkovich’s Theorem (Thm.
8.15) that any two bounded sets that have nonempty interior and positive distance
from the origin are SL2(R)-equidecomposable.

In §4.6.3 we proved that the strong form of the Banach–Tarski Paradox holds
in the hyperbolic plane. The construction used a free group of piecewise isome-
tries: The group acts on a bounded subset of H2 and has a countable set of
fixed points. Here we present a similar technique for the action of SL2(R) on
R2 \ {0}. Namely, developing an idea suggested by Mycielski [Myc98], Tomko-
wicz [Tom11] showed that there is a free non-Abelian group of piecewise lin-
ear, orientation- and area-preserving transformations that acts on the punctured
disk D = {(x, y) ∈ R2 : 0 < x2 + y2 < 1} without fixed points. Here we sketch
the main idea, giving an idea how the piecewise isometries are found, and derive
a paradox.

We start with an easy lemma. Let ρθ denote counterclockwise rotation by θ ,
with ρ reserved for the 90◦ case. Let us say that an element of SL2(R) has orthog-
onal eigenvectors if it has two real eigenvalues and their eigenvectors are orthog-
onal.

Lemma 8.6. For any φ ∈ SL2(R) having orthogonal eigenvectors, ρφ−1(D) =
φ(D).

Proof. We have that, for real λ, φ = A−1
[
λ 0
0 1/λ ] A, where A is orthogonal. The

result is then a consequence of the fact that φ(D) and φ−1(D) are ellipses centered
at the origin and congruent by ρ (Fig. 8.1).

For any φ ∈ SL2(R), define a piecewise linear transformation φ̂ : D → D by

φ̂(X ) =
{
φ(X ) if X ∈ D ∩ φ−1(D)
ρ(X ) if X ∈ D \φ−1(D)

.

Then φ̂ is a bijection of D.

Proof. If Y ∈ φ(D), then φ̂(φ−1Y ) = φ(φ−1(Y )) = Y , while if Y /∈ φ(D), then
let X = ρ−1(Y ); then ρX /∈ φ(D), and so by Lemma 8.6, X /∈ φ−1(D), and so
φ̂(X ) = ρ(X ) = Y . The function is one-one because it is easy to define an inverse
using inverses of φ and ρ.
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122 8 Paradoxes in Low Dimensions

D

1 D D

Figure 8.1. If φ has orthogonal eigenvectors, the two ellipses are congruent
by a 90◦ rotation.

Let φ1 =
[ 3/2 0

0 2/3

]
and θ1 = 0, θ2 = π/3, and θ3 = 2π/3. Consider the trans-

formations φ2 = ρθ2φρ−θ2 and φ3 = ρθ3φρ−θ3 . Let � = φ̂1φ̂2φ̂3. Then, because
3/2 <

√
3, we have D ⊂ φ−1(D) ∪ φ−1

2 (D) ∪ φ−1
3 (D) (Fig. 8.2), and this gives

property (∗).

(∗) For every X ∈ D, �(X ) = f1 f2 f3(X ), where fi is one of {φi, ρ} and not all
the fi are ρ.

An eigenvalue computation shows that this particular � fixes no nonorigin
point in D and is of infinite order. So this is the starting point: It is shown in
[Tom11] how to define two piecewise bijections � and �, each using a triple

2
1 D3

1 D

1
1 D

Figure 8.2. Covering a disk with three copies of an ellipse.
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8.1 Paradoxes in the Plane 123

(φ1, φ2, φ3) as earlier, but with a particular choice of matrix
[
κ 0
0 1/κ

]
and rotation

angles θi, so that they each satisfy (∗) and yield the next theorem.

Theorem 8.7. There are two bijections � and � of D, each of which is a piece-
wise linear transformation in the style of the definition of �, that generate a free
group that acts on D without fixed points. The basic functions φi can all be defined
using the same value of κ , which can be taken arbitrarily close to 1.

This theorem means that any punctured disk is paradoxical under the action
of SL2(R). One wonders about a version of the strong Banach–Tarski Paradox. A
proof would follow from a version of Theorem 8.7 for bijections of an annulus
centered on the origin, but the methods of [Tom11] do not easily lead to such
an extension. However, applying some results from graph theory and the fact
that the action of SL2(R) on the punctured plane is locally commutative, Mik-
los Laczkovich [Lac99] proved that a version of the strong Banach–Tarski Para-
dox is possible. Namely, he proved that any two bounded subsets of the plane
that have nonempty interior and are bounded away from the origin are SL2(R)-
equidecomposable. We present his proof at the end of this section.

As a simple application of Theorem 8.7, we show that the unit square less the
origin is SL2(R)-paradoxical. For the rest of this section, G denotes SL2(R). The
next results will use one result from Chapter 10.

Lemma 8.8 (AC). Let T be an open triangle with a vertex at the origin. Then T
is G-equidecomposable with any punctured disk centered at the origin.

Proof. Theorem 8.7 implies that any two punctured disks centered at the origin
are equidecomposable. For suppose D1 and D2 are such disks, with D1 ⊆ D2.
Then for some φ ∈ G and rotation ρ, D2 ⊆

⋃
ρkφ(D1). But D1 is paradoxical, so

the union is G-equidecomposable to a subset of D1, and the Banach–Schröder–
Bernstein theorem applies.

Now let T0 be a sector of a punctured disk lying inside T ; let D0 be the
punctured disk with the same radius as T0. Because D0 is paradoxical and
T0 ⊆ D0, Corollary 10.22 yields T  T0 ∼G D0. But D0 ∼G D1  T . So T is
G-equidecomposable with D0 and hence with any punctured disk around the
origin.

Theorem 8.9 (AC). Let A, B be bounded subsets of the punctured plane such that
each contains an open triangle as in the preceding lemma. Then A ∼G B.

Proof. Choose punctured disks D1 and D2 containing A and B, respectively. Let
T1 and T2 be the triangles contained in A and B, respectively. By Lemma 8.8, we
have T1 ∼G D2 and T2 ∼G D1. Then A ⊆ D1 ∼G T2 ⊆ B ⊆ D2 ∼G T1 ⊆ A, so the
Banach–Schröder–Bernstein theorem yields A ∼G B.

Corollary 8.10 (AC). Any square, open or closed, that does not contain the origin
is G-paradoxical.
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124 8 Paradoxes in Low Dimensions

Laczkovich [Lac99] strengthened the preceding work, at least for sets that are
bounded away from the origin, and we present his proof now. The key is relating
decompositions to certain results of graph theory, so we begin with two lemmas
that do that. For a family H of functions mapping a set X to itself and sets A,B ⊆
X , define the bipartite graph �H (A,B) on parts A and B by including edge x � y
when f (x) = y for some f ∈ H .

Lemma 8.11. (a) Let G act on X and let A,B ⊆ X . Then A ∼G B iff there is a
finite subset H of G such that �H (A,B) admits a perfect matching.

(b) Let � be a connected bipartite graph that has at most one cycle and is such
that every vertex has finite degree that is at least 2. Then � has a perfect
matching.

Proof. (a) Immediate from the definitions.
(b) The cycle (if it exists) has even length and so admits a matching. Delete

the cycle and all incident edges and view the remainder as a forest whose roots
are vertices that were neighbors of a cycle-vertex. Each branch in the forest must
be infinite, and an infinite branch has a perfect matching via alternate edges. So
proceed by matching one maximal branch at a time, removing it and dealing with
the residue in the same way. Strictly this is a countable induction always using the
branch containing the first unused vertex.

Using Lemma 8.11, Laczkovich showed that any two bounded subsets of R2

with nonempty interior and each of positive distance from the origin are SL2(R)-
equidecomposable. In particular, any annulus in the plane that is centered at the
origin is SL2(R)-paradoxical. We first need a general lemma that relates equide-
composability to local commutativity.

Lemma 8.12 (AC). Suppose F, a free group generated by the elements
{ f1, . . . , fn}, acts in a locally commutative way on a set X . Let A,B ⊆ X be such
that

(i) for any x ∈ A, fi(x) ∈ B for at least two is
(ii) for any y ∈ B, f −1

i (y) ∈ A for at least two is

Then A and B are F -equidecomposable.

Proof. Define Ai = A ∩ f −1
i (B) and let H = { fi�Ai : i = 1, . . . , n} and � =

�H (A,B). By Lemma 8.11(a), we have to show that � admits a perfect match-
ing. It is enough to show that any connected component �1 of � satisfies the
hypothesis of Lemma 8.11(b). The maximum degree of vertices in � is n, and
conditions (i) and (ii) imply that every vertex has degree at least 2. It remains to
show that �1 contains at most one cycle.

For every edge x � y of �1 with x ∈ A and y ∈ B, choose i so that fi(x) =
y, and then define φ(x � y) = fi ∈ F . Note that φ(x � y)(x) = y. If W =
(p0, . . . pn) is a simple path or cycle in � that starts in A, then we define a word
α ∈ F , which we associate to W , by

α = φ(pn−1 � pn)−1 . . . φ(p2 � p3)φ(p2 � p1)−1φ(p0 � p1).
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8.1 Paradoxes in the Plane 125

Then α(p0) = pn. For W as before, we have that for each i = 1, . . . , n− 1,
pi−1 
= pi+1 and hence φ(pi−1 � pi) 
= φ(pi � pi+1); this implies that α is a
reduced word in the group.

Suppose now that there are two distinct simple cycles in �1: C1 =
(p0, . . . , pn−1, pn = p0) and C2 = (q0, q1, . . . , qk−1, qk = q0); shifting, if neces-
sary, assume that if the cycles share a vertex, then p0 = q0 and p1 
= q1. Because
�1 is connected, there is a path from C1 to C2; choose P to be the shortest such
path, and assume that it connects p0 to q0 (if the cycles are not disjoint, take
P = ∅). Then P = p0 � t � . . .� q0, where t, if it exists, is not in C1 ∪C2. Let
α, β, γ be the group words associated to C1, C2, P, respectively. Then p0 is a
common fixed point of α and γ−1βγ , and so the two words commute. Because
we are in a free group, the words must be powers of a common word, and so
there are nonzero integers j and m with αm = (γ−1βγ ) j. Now, in the disjoint
case, φ(p0 � p1) differs from φ(first edge in P), while in the other case, it differs
from φ(first edge in C2). Therefore the rightmost term of α is not the rightmost
term of βγ , which, because the group is free, contradicts the preceding equality of
powers.

We need two more lemmas that will also be useful in the one-dimensional work
in §8.2.

Lemma 8.13. Suppose ai, bi, ci, and di are algebraically independent and con-
sider matrices fi = 1√

aidi−bici

[ ai bi
ci di

] ∈ SL2(R). The matrices are independent and

so are free generators of a free subgroup of SL2(R).

Proof. Suppose a nontrivial reduced word w = f n1
1 · · · fnk

k is the identity. Then
w = [

A B
C D

]
, where the entries are polynomials in ai, bi, ci, di having integer coef-

ficients. The hypothesis then implies that A = D = 1 and B = C = 0, as polyno-
mial identities. This means that substituting any matrices hi in place of fi into
w yields the identity. Now let f and g be

[
1 0
2 1

]
and

[
1 2
0 1

]
, respectively. They

are independent (Prop. 4.4), and therefore { f kgk}k≥1 are independent too. Let
hi = f igi; then hn1

1 · · · hnk
k is not the identity, a contradiction.

Lemma 8.14. There is a dense set of real numbers consisting of algebraically
independent numbers.

Proof. By induction on the set of rational intervals, using the fact that the set
of numbers that are algebraic over a given finite set is countable, and so cannot
exhaust an interval.

Theorem 8.15 (AC). If A,B are bounded subsets of R2 \ {0} with nonempty inte-
rior and having distance from the origin that is positive, then A and B are SL2(R)-
equidecomposable.

Proof. Assume A and B are closed. This suffices, because the Banach–Schröder–
Bernstein Theorem then yields the general result (for general A, B, use the special
case on a closed superset of A and a closed subset of B, and vice versa). Clearly
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126 8 Paradoxes in Low Dimensions

any x ∈ R2 \ {0} is mapped by some αx ∈ SL2(R) into the interior of B. Because
any linear function and the entire action are continuous, there is εx > 0 such that,
for any number z and any α ∈ SL2(R), |z− x| < εx and ‖α − αx‖ < εx imply that
α(z) is in the interior of B, where || · || denotes the norm that is the maximum
absolute value of the four entries.

Because A is compact, there is a finite K ⊂ A such that the open disks B(x, εx),
for x ∈ K, cover A. Working in the other direction is the same: There are trans-
formations βy for each y ∈ B and positive numbers ηy so that B is covered by
the disks B(y, ηy), for y in some finite subset L of B, and for any w and β

so that |w − y| < ηy and ‖β − βy‖ < ηy, we have that β(w) is in the interior
of A.

Lemma 8.14 gives algebraically independent reals ax
i j, bx

i j, cy
i j, dy

i j (i, j = 1, 2,
x ∈ K, y ∈ L) such that the as and bs are within εx of the corresponding coeffi-
cients in αx, and similarly for the cs and ds with respect to βy. Consider the ele-

ments of SL2(R) obtained by normalizing
[ ax

11 ax
12

ax
21 ax

22

]
, and similarly using b, c, and

d. By Lemma 8.13, these transformations generate a free subgroup F of SL2(R),
whose action on the punctured plane is locally commutative (proved following
Cor. 5.6). The hypotheses of Lemma 8.12 are satisfied, and so A and B are SL2(R)-
equidecomposable.

Theorem 8.15 is a variation on the strong form of the Banach–Tarski paradox;
a similar result holds in hyperbolic space (Thm. 4.17). So we have the general
problem of when a metric space is “strongly paradoxical” in the sense that all
bounded sets with interior are equidecomposable using isometries (or, more gen-
erally, area-preserving transformations). Are there conditions on a metric space
and its isometry group that yield such a result about strong paradoxes?

8.2 Paradoxes of the Real Line

The idea of allowing affine maps, so fruitful in the plane, does not help with the
line because the measure-preserving affine transformations are just the isometries.
How much does the isometry group have to be expanded before a paradoxical
decomposition of an interval arises? We care only about transformations that pre-
serve Lebesgue measure, as there is no surprise in the fact that the function 2x can
be used to duplicate an interval. Let G(λ) be the group of all bijections f from R
to R such that both f and f −1 are Lebesgue measurable and preserve Lebesgue
measure: λ( f ±1(A)) = λ(A) if A is measurable. This group, a rather large exten-
sion of the isometry group, is rich enough to produce paradoxical decompositions
on the line. The two results together are quite analogous to what happens in the
hyperbolic plane (§§4.3, 4.6.3).

The next lemma was proved in [MT∞a], and it generalizes and simplifies the
proof of Theorem 16 in [Sie54]. The lemma can be seen as a one-dimensional
version of Theorem 3.9.
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8.2 Paradoxes of the Real Line 127

Lemma 8.16. If C is a bounded subset of R1 with cardinality less than 2ℵ0 , then
[0, 1) and [0, 1) \C are equidecomposable using translations.

Proof. Because C is bounded, there is C1 ⊆ [0, 1) with C1 ∼ C. View C1 as a
subset of the unit circle S1 in the usual way. For each x ∈ D, there are fewer than
2ℵ0 rotations of the circle taking x to another point in D, so there is a rotation ρ

such that the sets ρn(D) are disjoint sets. Then using ρ and the identity gives a
two-piece decomposition of S1 with S1 \D. Unwrapping the points back to the
interval gives the absorption of D.

This lemma tells us that [0, 1) ∼G(λ) (0, 1), from which it follows that
[0, 1] ∼G(λ) (0, 1] ∼G(λ) [0, 1) ∼G(λ) (0, 1).

Theorem 8.17 (AC). (a) Any interval on the line is G(λ)-paradoxical. Any two
bounded subsets of R with nonempty interior are G(λ)-equidecomposable.

(b) The real line is G(λ)-paradoxical using Borel sets.

Proof. (a) It is a general fact of measure theory that there is a bijection
f : [0, 1) → S2 such that both f and f −1 take measurable sets to measurable sets
and preserve measure (the measure on S2 is λ/(4π ), normalized surface Lebesgue
measure). This follows from [Roy68, Thm. 9, p. 327], for example. These proper-
ties of f imply that if σ ∈ SO3(R), then f −1σ f is a measure-preserving bijection
of [0, 1) to itself (which, by periodic extension, may be considered as an element
of G(λ)). Now, the Banach–Tarski Paradox states that S2 is SO3(R)-paradoxical,
via σi and Ai, say. It follows that [0, 1) is G(λ)-paradoxical, using pieces f −1(Ai)
and transformations f −1σ f . This technique applies to any half-open interval, and
the case of the other intervals follows from Lemma 8.16 and the remark following
it. The second part follows from the usual technique using the Banach–Schröder–
Bernstein Theorem (see Thm. 3.11).

(b) First we construct a rank-2 free subgroup of G(λ) having no fixed points in
its action on R. This can be done using functions that are piecewise linear of slope
1. For every permutation π of Z, define fπ : R → R by fπ (x) = π (�x�)+ frac (x).
The graph of fπ is a collection of diagonals in the unit squares arising in the
integer lattice Z2. It is easy to see that fπ ◦ρ = fπ ◦ fρ .

Now, consider the free group F = 〈σ, τ 〉 and enumerate F as {wi : i ∈ Z} in
any constructive way. Define a permutation π of Z by π (i) = j when wiσ = w j,
and define ρ similarly using τ . Then the two permutations π , ρ generate a free
group, and the corresponding functions fπ , fρ generate a free subgroup H of
G(λ) whose action on the real line has no fixed points. For this last, observe
that if a word w = φ1 · · · φn ∈ H fixed x ∈ R, then it would fix m = �x�. But
the sequence m, φn(m), φn−1 φn(m), . . . ,w(m) cannot terminate in m because this
sequence corresponds to a sequence of reduced words in F .

It is not hard to see that [0, 1) is a choice set for the orbits of H . So the usual
lifting of a paradox in F2 (Cor. 3.7, Fig. 1.5) yields the desired paradox. Because
[0, 1) is a union of closed intervals, this paradox uses only Fσ sets.
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128 8 Paradoxes in Low Dimensions

Von Neumann found an entirely different sort of paradox on the line, based on
using linear fractional transformations as a way of bringing free groups of 2× 2
matrices to bear. Let L be the group of linear fractional transformations of R ∪
{∞} of the form x �→ (ax+ b)/(cx+ d ), ad − bc = 1, where the usual arithmetic
of∞ is used when x is∞ or−d/c. This is a group action of L on R ∪ {∞} and any
σ ∈ L is a strictly monotonic continuous function when restricted to an interval
of R not containing −d/c. Then each σ ∈ L can be identified with the coefficient
matrix

[
a b
c d

] ∈ SL2(R), and L is isomorphic to PSL2(R).

Definition 8.18. A transformation σ ∈ L will be called a contraction with respect
to an interval of R if, for some ε < 1, |σ (x)− σ (y)| ≤ ε|x− y| for all x, y in the
interval.

The linear fractional transformations do not contain any measure-preserving
maps except the isometries, but Lebesgue measure λ behaves nicely with respect
to contractions in the sense that it shrinks.

Proposition 8.19. If σ ∈ L is a contraction on [a, b] and A is a measurable subset
of [a, b], then λ(σ (A)) < λ(A).

Proof. Let σ contract by ε. Then consider outer Lebesgue measure λ∗. Assume
A ⊆ (a, b). If A is covered by open subintervals (ai, bi) of (a, b), then the
intervals (σ (ai), σ (bi)) cover σ (A), and each σ (bi)− σ (ai) < ε(bi − ai). Hence
λ∗(σ (A)) ≤ ελ(A), and because σ−1 is a measurable function, σ (A) is a measur-
able set and λ(σ (A)) = λ∗(σ (A)).

Now, if all sets were Lebesgue measurable, by the preceding result an interval
could not be paradoxical using contractions. Indeed, the image of [0, 1] under a
piecewise contraction with respect to [0, 1], using measurable pieces, has measure
at most 1. But the von Neumann paradox on the line (Thm. 8.20) gives such a con-
struction for contractions using arbitrarily small ε; of course, nonmeasurable sets
are used. An elegant approach to this paradox is due to M. Laczkovich [Lac91b],
who used ideas of graph theory. A map f : A → R is a piecewise contraction if
there is a finite partition {Ai : 1 ≤ i ≤ n} of A such that each f �Ai is a contraction.
We have the following theorem.

Theorem 8.20 (The von Neumann Paradox for the line) (AC). Let I and J be
two bounded intervals of R. Then, for any positive ε, there is a bijection from I
onto J that is a piecewise contraction with coefficient ε.

The proof requires three lemmas. Let’s use ‖ f ‖ to denote the supremum of the
absolute value of a bounded real function f on an interval.

Lemma 8.21. Suppose g(x) = αx+ β, [−M,M] is an interval, α > 0, and ε is
some positive number. Then there is a linear fractional transformation f (x) =
ax+b
cx+d such that a, b, c, d are algebraically independent, ad − bc = 1, and, on the
interval [−M,M], ‖g− f ‖ < ε and ‖ f ′‖ is within ε of |α|.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.011
https://www.cambridge.org/core


8.2 Paradoxes of the Real Line 129

Proof. Take a, b, c, d to be in the algebraically independent set of Lemma 8.14
and lying within δ of α, β, 0, 1, respectively, where the positive number δ will
be determined separately for each of the two conclusions but is always assumed
smaller than α, so that a > 0. Then the minimum of the two δ-values will guaran-
tee that both conclusions hold.

Suppose the exact differences between a, b, c, d and α, β, 0, 1 are given by
δi, respectively. Then, after some simplification using the triangle inequality and
|δi| < δ, the difference between α and f ′(x), in absolute value, is bounded by

δ(3+ |β| + (M2 + 4M + 2)|α|)
(1+ xδ3 + δ4)2

.

So it is easy to choose δ so that the numerator is less than ε/4. To deal with the
denominator, make sure that δ < min[1/6, 1/(3M )]. It follows that |δ3x+ δ4| <
1/2 for all x in the interval. Then (1+ xδ3 + δ4)2 > 1/4 and the reciprocal is
under 4, which means the overall absolute difference from α is under ε.

For the other condition, compute the difference | f (x)− g(x)|, which is
bounded by

δ(M + 1)(M |α| + |β| + 1)

|1+ δ3x+ δ4| .

As in the other case, it is easy to choose δ so that this quantity is under ε. By
choosing c, d to be sufficiently close to 0, 1 respectively, the determinant is close
to a, which is positive. A rescaling then gets ad − bc equal to 1 exactly without
changing the function.

Lemma 8.22. Let J1 and J2 be bounded open intervals. Then there are real
numbers c1, . . . , ck1 , ck1+1, . . . , ck1+k2 such that {ci + 1

2 J1 : i ≤ k1} and {ci + 1
2 J1 :

k1 + 1 ≤ i ≤ k1 + k2} each cover J2.

Proof. Easy exercise.

Lemma 8.23. Let {(ai, bi) : i = 1, . . . , n} be a covering of an interval J = [a, b].
Then there is ε > 0 such that {(ai + ε, bi − ε) : i = 1, . . . , n} also covers J .

Proof. Let ε be less than half of the smallest difference between any two distinct
values chosen from the set of all ai, bi and also a, b.

Proof of 8.20. The proof here will work for ε = 1/2, but all the lemmas, and the
proof, hold just as well when some positive integer N replaces 2 and ε is 1/N . We
may assume that I and J = (a0, b0) are open and that the length of I is not greater
than b0 − a0, because otherwise there is a simple contraction from I to J . Let I1

and I2 be two disjoint open subintervals of I . We need linear fractional transfor-
mations f1, . . . , fn, with algebraically independent coefficients, that satisfy the
following:

(i) fi� I1 is a contraction
(ii) for any x ∈ I1, fi(x) ∈ J for at least two distinct is

(iii) for any y ∈ J , f −1
i (y) ∈ I1 for at least two distinct is
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130 8 Paradoxes in Low Dimensions

Apply Lemma 8.22 to get {ci}, yielding two covers, C1, C2, of J using transforma-
tions of I1 by linear functions by gi having linear coefficient 1/2. We will show
how to define fi by Lemma 8.21 to get each of the three conditions. Then to get
all three, one can use the minimum of the three values of ε.

(i) Use any ε less than 1/2 in Lemma 8.21. Because of the derivative condition,
‖ f ′i ‖ < 1 on I1, yielding (i).

(ii) Let ε be smaller than any distance from an endpoint of the interval in either
cover C j to either a0 or b0. Use this ε to define the family { fi} by Lemma 8.21.
Let y be the midpoint of J . It lies in some interval of each cover C j, and each of
these two intervals must be entirely contained within J . Let x ∈ I1. Because fi(x)
is within ε of gi(x), it follows that fi(x) ∈ J .

(iii) Choose ε as in Lemma 8.23 so that it works for both covers C j, and
choose fi by Lemma 8.21 for this ε. Let D1 and D2 be the perturbed covers: Make
each interval in C j smaller by ε at each end. Any y ∈ J lies in an interval from
each of D j. Let fm be the function corresponding to the interval in D1. Because
fm(I1) is an interval whose endpoints are no more than ε from the endpoints of
gm(I1), it follows that f −1

m (y) ∈ I1, and the same reasoning applies to the second
interval.

Let H = { f1, . . . , fn} and � = �H (I1, J ); by (ii) and (iii), the degree of each
vertex of � is at least 2. Let F be the group generated by the fi; by Lemma 8.13
and because composition of these functions corresponds to matrix multiplication,
F is a free group on these generators. Let C be the union of those connected
components of � that contain at least one fixed point of a nonidentity element of
F ; each function has at most one fixed point, and so C is countable. Now consider
y ∈ � \C and observe that the component containing y does not contain a cycle,
because such would lead to a word in H that, by freeness, cannot be the identity;
and nontrivial fixed points were taken care of by the exclusion of C. Therefore, by
Lemma 8.11(b), the component containing y has a perfect matching. This is true
for any component in � \C, and so �H (I1 \C, J \C) has a perfect matching. By
Lemma 8.11(a), there is a bijection f from I1 \C onto J \C that is a piecewise
contraction.

Because J ∩C is countable, there is an injection g: J ∩C → I2 such that g−1

is a piecewise contraction. To define g, cover the interval J by the intervals
A1, . . . ,Am of length less than half the length of I2. Determine a translation t1
such that t1(A1) ⊆ 1

2 I2. Now let C2 = (C \A1) ∩ A2. Because there are countably
many points in t1(A1 ∩C) and also in C2,there are countably many translations that
take a point in C2 to a point in t1(A1 ∩C). Hence we can pick a translation t2 such
that t2(A2) ⊆ 1

2 I2 and t2(C2) is disjoint from t1(A1 ∩C). Then we continue in the
same way until we get a translation tm. We have the simple expansion F (x) = 2x,
a bijection from 1

2 I2 to I2. Hence the function g defined from the functions f ◦ ti,
for i = 1, . . . , n, is the desired injection.

Define the map g1 by g1(x) = f −1(x), if x ∈ J \C and g1(x) = g(x) if x ∈ J ∩
C. Then g1 is a bijection from J onto a subset of I . Now taking a contraction h
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8.2 Paradoxes of the Real Line 131

from I into J , we can apply the Banach–Schröder–Bernstein Theorem regarding
the piecewise contractions g−1

1 and h.

The theorem can be extended to more general sets as follows.

Corollary 8.24 (AC). Let A and B be bounded subsets of R with nonempty inte-
rior. Then there is a piecewise contraction from A onto B.

Proof. Take intervals I , J so that I ⊆ A and B ⊆ J . Let g be an injective con-
traction from A into the interior of B. By Theorem 8.20, there is a piecewise
contraction h that is a bijection from I to J . Let h0 be the restriction of h to
h−1(B). Then h−1

0 is an injection from B into A. Now it is enough to apply a vari-
ant of the Banach–Schröder–Bernstein Theorem to get partitions A = A1 ∪ A2 and
B = B1 ∪ B2 such that g(A1) = B1 and h0(A2) = B2. Then the map f defined to
be g on A1 and h0 on A2 is the claimed piecewise contraction.

Corollary 8.25 (AC). Suppose μ :P (R) → [0,∞) is a finitely additive measure
with μ([0, 1]) = 1. Then for any ε,K > 0, there is a set A ⊆ [0, 1] with μ(A) > 0
and σ , a contraction of [0, 1] with factor ε, such that μ(σ (A)) ≥ Kμ(A). Further-
more, there is a set B ⊆ [0, 1] and a Lebesgue measure-preserving bijection τ of
[0, 1] to itself such that μ(τ (B)) 
= μ(B).

Because of the strong version of the Banach–Tarski Paradox, it is clear how to
get a version of Theorem 8.20 in R3: shrink a ball radially as much as desired and
then use isometries to get as large a ball as desired. Sierpiński [Sie46, Sie48b] has
shown how a contraction-type paradox in the plane can be derived directly from
the Banach–Tarski Paradox of the sphere. He proved that for any r > 0, there is
a bijection f from the unit disk to the disk of radius r that, piecewise, contracts
distances.

Some further results in this area are of interest. Assume that there is a piecewise
contraction, with n pieces, mapping A onto B. An outer measure argument as in
Lemma 8.14 shows that λ∗(B) ≤ nλ∗(A), where λ∗ is outer Lebesgue measure.
Thus if A and B are Lebesgue measurable, we have λ(B) ≤ nλ(A). But Laczkovich
[Lac92c] showed even more: λ(B) ≤ n

2λ(A), and further, n
2 is best possible. To be

precise, he proved the following theorem. We omit the proof but note that a main
step is Lemma 8.12.

Theorem 8.26 (AC). (a) Suppose A and B are Lebesgue measurable subsets of
R and f is a piecewise contraction from A onto B using n pieces. Then λ(B) <
n
2λ(A).

(b) Suppose A is a Lebesgue measurable subset of R and J is an interval of
length less than n

2λ(A) for some integer n. Then there is a surjective piecewise
contraction f : A → J. If A is an interval, then f can be taken to be a bijection.

This theorem implies that the assertion about n/2 is best possible, and it
also tells us that there is a von Neumann paradox using just three pieces. Take
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132 8 Paradoxes in Low Dimensions

I = [0, 1] and J = [0, 5/4]. There is no such paradox using two pieces, because
part (i) of the theorem would imply that λ(J ) is smaller than λ(I ), so the situation
is not paradoxical.

Let I and J be intervals on the line. Laczkovich showed in [Lac88a] that if the
length of J is less than twice the length of I , then the von Neumann paradox can
be realized using three translations and one contraction. And he showed that this
is impossible if the length condition is false.

Notes

The extension of Proposition 4.4 to larger off-diagonal numbers is due to Bren-
ner [Bre55] (see also [MK66, p. 100]). Brenner also characterized the matrices
that appear in the group generated by

[
1 m
0 1

]
and its transpose (m ≥ 2). Theorem

8.1(c), presented here for the first time, solves Problem 3 in [MW84]. Further
results on independent pairs of 2× 2 matrices may be found in [CJR58, GN57,
LU68, LU69, Mag73, Mag75, Ree61]. Independent pairs in PSL2(Z) that gener-
ate a group consisting of only hyperbolic elements were considered by Magnus
[Mag73], who used work of Neumann [Neu33]; see also [Myc77b].

The idea of expanding the isometry groups in a way that produces a generaliza-
tion of the Banach–Tarski Paradox in the plane and on the line is due to von Neu-
mann [Neu29]. He showed that the unit square was SA2(R)-paradoxical; although
he made use of the fact that SL2(Z) has pairs of independent elements, his final
proof used pairs in SL2(R) \ SL2(Z), defined from small, algebraically indepen-
dent numbers. The version of Theorem 8.5 presented here and the observation that
the addition of a single shear to the planar isometry group is sufficient to produce
paradoxes are due to Wagon [Wag82]. This latter result was motivated by work of
Rosenblatt [Ros81] on the uniqueness of Lebesgue measure as a shear-invariant
measure, which is discussed in Chapter 13.

The existence of paradoxes on the line, using linear fractional transformations,
was proved by von Neumann [Neu29]. Similar results for the plane were obtained
by Sierpiński [Sie48b]. Another result related to pathology involving contrac-
tions of nonmeasurable sets can be found in [Juz82]. The ideas used in Theorem
8.17(b) were proposed independently by Kandola and Vandervelde [KV15], and
by Tomkowicz.
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Squaring the Circle

The study of equidecomposability and measures led Tarski to formulate a problem
in 1925 that was one of the most perplexing in the field, and especially intriguing
because of its kinship to the ancient geometrical problem of squaring the circle.
The strong Banach–Tarski Paradox implies that, using arbitrary sets, a solid ball in
R3 is equidecomposable to a cube—indeed, to a cube of any size. But in the plane,
a Banach measure (Cor. 12.9) means that such a strong result is not possible: If a
disk is equidecomposable with a square, then the two regions must have the same
area. This leads naturally to Tarski’s Circle-Squaring Problem: Is a disk in the
plane equidecomposable with a square of the same area?

For sixty-five years, there was little progress, with various partial results that
provided no clue to the answer to Tarski’s problem. Things seemed not so dif-
ferent from the situation faced by Greek geometers: Polygons presented no great
difficulty (the Bolyai–Gerwien Theorem squares any polygon; Thm. 3.8), but the
passage to the circle was a mystery. Then, in a tour de force in 1990, Miklós
Laczkovich showed that not only can one square the circle in this sense but it can
be done using translations alone. In this chapter, we give an essentially complete
proof of this surprising result. The proof calls upon several fields of mathematics
(analysis, number theory, geometry, set theory), and it is amazing that one person
was able to put it all together. It is surely the single most impressive result in this
whole area.

9.1 Changing the Group

When one makes a strong geometrical restriction, the circle-squaring problem
can be resolved negatively. We use the term Jordan domain to refer to a Jordan
curve (a simple closed curve) together with its interior. Call two Jordan domains
scissors-congruent if one can be decomposed into finitely many pairwise interior-
disjoint Jordan domains that, ignoring boundaries, can be rearranged by isome-
tries to form the other. This generalizes the notion of congruence by dissection
(Def. 3.1) in which the domains are assumed to be polygons (i.e., the scissors can

133
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134 9 Squaring the Circle

cut only on straight lines). Thus any polygon is scissors-congruent to a square
of the same area. Dubins, Hirsch, and Karush [DHK63] investigated whether the
ability to cut along arbitrary Jordan curves allows a circle to be squared. They
proved that the answer is no.

Theorem 9.1. A square is not scissors-congruent to a disk.

In fact, Dubins, Hirsch, and Karush established that a disk (more generally, a
solid ellipse) is scissors-congruent to no other convex region. Theorem 9.1 has
the following corollary for Tarski’s Problem.

Corollary 9.2. A disk is not equidecomposable to a square if the pieces of the
decomposition are restricted to interiors of Jordan curves or arcs of such curves.

The result of the corollary is not known when one expands the allowable pieces
to the Borel sets. For an example of two Jordan domains that are not scissors-
congruent but are Borel equidecomposable, see [Gar85b].

There is a similarity between Tarski’s question and Question 3.13, because
both deal with equidecomposability of elementary figures in a context that pre-
cludes paradoxical decompositions. Returning to scissors-congruence, we give
a short proof of Theorem 9.1 when the pieces are assumed to have rectifiable
boundaries. The full proof is an intricate argument in plane topology.

Proof of Theorem 9.1, Rectifiable Case. Let C be a fixed circle. If E is a union of
finitely many pairwise interior-disjoint regions, each of which is the interior and
boundary of a rectifiable Jordan curve, then the boundary of E, ∂E, is rectifiable
as well. Hence we may define a number μ(E ) as follows. If A is an arc of ∂E,
then A is called convex relative to E if the convex hull of A is contained in E; A
is called concave relative to E if the convex hull of A is disjoint from the interior
of E. For any point P on ∂E, let fE (P) = +1 (resp., −1) if P is contained in the
interior of an arc A of ∂E such that A is convex (resp., concave) relative to E, and
A is congruent to an arc of C. Then let μ(E ) = ∫

∂E fEds, the integral of fE on ∂E
with respect to an arc-length parametrization of ∂E. Now, μ is clearly isometry-
invariant and, because of the cancellation that arises when a concave piece of arc
is matched with a convex piece, μ(E1 ∪ E2) = μ(E1)+ μ(E2) if the two sets are
interior disjoint. It follows that μ is invariant under scissors-congruence. Because
μ of a disk is the circumference of the bounding circle, whileμ assigns any square
the value 0, this proves the rectifiable case of the theorem.

Some positive results can be easily derived for variations of the problem. If, in
addition to isometries, we allow the shear σ = [

1 1
0 1

]
, then Theorem 8.5 can be

applied to turn a disk to a square (see the remarks following the proof of Thm.
8.5). But this has little relevance to the spirit of Tarski’s problem, because the
group then allows the disk to be turned into a square of any size.

Another extension of the isometry group yields a different sort of positive
result. Let G be the group of all similarities of the plane, that is, the group gener-
ated by all isometries and all magnifications from a point. Because isometries are
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9.2 The Squaring of the Circle 135

affine, G consists of all transformations dσ where σ ∈ G2 and d = [
α 0
0 α

]
, α > 0,

is a magnification from the origin. A similarity
[
α 0
0 α

]
σ , with σ ∈ G2, is called

ε-magnifying if 1− ε ≤ α ≤ 1+ ε.

Theorem 9.3. For any ε > 0, a disk is G-equidecomposable with a square of the
same area using similarities that are ε-magnifying. Moreover, the pieces in the
decomposition are Borel sets.

Proof. Let C be the unit disk and S a square of side-length
√
π . By the Banach–

Schröder–Bernstein Theorem and its constructive proof, it is sufficient to find a
piecewise ε-magnifying similarity from C to a subset of S, and the same from C
to a superset of S. For then C ! S ! C, and because the proof of Theorem 3.6
introduces no new similarities, this implies that C ∼G S using ε-magnifications.

Choose n so large that the disk, when shrunk radially by 1− ε, fits inside a
regular n-gon inscribed in C. Because, by Tarski’s version of the Bolyai–Gerwien
Theorem (Thm. 3.8), the polygon is equidecomposable (using isometries) with a
square smaller than S, C can be packed into S too, provided it is preshrunk by
1− ε. To get a superset of S, choose n so large that the disk, when expanded
radially by 1+ ε, contains the regular n-gon circumscribed about C, and proceed
in the same way. It is easy to see that the results used in this proof—Theorems
3.2, 3.6, and 3.8—do not introduce any non-Borel sets.

Tarski’s Problem is equivalent to asking for Theorem 9.3 to hold with ε = 0
(but without the Borel restriction). Among the many measures constructed in Part
II will be a finitely additive extension μ of Lebesgue measure in the plane with
the property that μ(s(A)) = α2μ(A) for each similarity s, where α is the amount
by which s magnifies distances (Cor. 13.5). It follows that Theorem 9.3 is false if
the square’s area does not equal that of the circle.

9.2 The Squaring of the Circle

In this section we give a complete proof of Laczkovich’s positive answer [Lac90,
Lac92b] to Tarski’s Circle-Squaring Problem from 1925. The presentation is self-
contained, except for its use of the classic, not difficult, Hall–Rado Theorem of
graph theory and some results of number theory that are variations of the Erdős–
Turán Theorem. The level of complexity and intricacy in this work is high, but the
result is so beautiful and unexpected that it is worthy of such a detailed study here.
The discussion in this section is heavy on notation, so we list here the important
items for convenience:

� J = [0, 1)× [0, 1).
� E is the standard basis of two vectors in R2.
� For a Jordan curve K, K∗ is the Jordan domain made up of the region inside or

on the curve.
� For a polygon P, p(P) is its perimeter.
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136 9 Squaring the Circle

� A unit square is a half-open square [a, a+ 1)× [b, b+ 1), where a, b ∈ Z.
� For a lattice polygon P, P̂ is the union of all the unit squares contained in P∗.
� 〈x〉 is the distance from a real number x to the nearest integer; frac(x) is x− �x�,

the fractional part of x.
� For A a finite subset of J and H a measurable subset of the plane, the discrep-

ancy of A with respect to H is D(A,H ) = ∣∣ |A∩H |
|A| − λ(H )

∣∣.
� For a discrete subset S and a measurable subset H of the plane, �(S,H ) =
||S ∩ H | − λ(H )|.

� The Z-neighborhood of a set X is U (X ,Z) = {y : ∃⇀x ∈ X such that ‖⇀x −
⇀y ‖ ≤ z}, where || · || is Euclidean distance.

� For ⇀u ∈ R2, X a finite subset of J , and a positive integer N , FN is defined by
FN (⇀u ,X ) = {frac(⇀u + n1

⇀x1 + n2
⇀x2) : ni = 0, . . . ,N − 1}.

� X ∼T Y means that X and Y are equidecomposable by translations.
� 	(x) = max(2, ln x).
� � is used for a function from N to [0,∞) such that

∑∞
k=0 �(2k )/2k is conver-

gent.
� For positive C, N (C) is the least positive integer N such that 16(N + 1)2 <

(1+ 1
4C )N .

� Given vectors ⇀u and X = {⇀x1,
⇀x2} and a plane set H , S(⇀u ,H ) = {⇀n ∈ Z2 :

frac(⇀u + ⇀n · X ) ∈ H }.
Our presentation focuses on the essentials. For a deeper discussion of the moti-

vation underlying the methods, see [Lac89, GW89].

9.2.1 Preliminaries: Six Lemmas

To prove the powerful Equidecomposability Criterion (§9.2.2), we need several
lemmas. First, some notation. We use p for the perimeter of a polygon (and also
for the perimeter of the complement of a polygon); a lattice point is any element
of Z2. In this section, a unit square is a half-open square of the form [a, a+ 1)×
[b, b+ 1) where (a, b) is a lattice point; J denotes the fundamental unit square
[0, 1)2. Let H be the family of all nonempty unions of finitely many unit squares.
A lattice polygon P is an orthogonal polygon with lattice points as vertices. If it
is a square, it is called a lattice square; for such a square P, s(P) denotes its side-
length. For a Jordan curve K, let K∗ refer to the closed set that is K together with
its interior. When P is a lattice polygon, let P̂ be the union of all the unit squares
contained in P∗; P̂ is just P∗ less some bounding segments and is an element of
H (Fig. 9.1).

Lemma 9.4. If H ∈ H, one (perhaps more) of the following assertions is true:

(i) H = P̂ for some lattice polygon P.
(ii) There are disjoint sets H1,H2 ∈ H with H = H1 ∪ H2 and p(H ) =

p(H1)+ p(H2).
(iii) There are sets H1,H2 ∈ H such that H1 ⊂ H2, H = H2 \H1, and

p(H ) = p(H1)+ p(H2).
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Figure 9.1. A unit square is at upper left; the boundary of the large gray region is a lattice
polygon P; the domain P∗ is the gray region together with the full boundary; P̂ is the open

gray region together with the thick black border and the two large points.

Proof. Let B = ∂H , the set of segments forming the boundary of H . If B is just
one simple polygon, we have (i) with H = B̂ (Fig. 9.2(a)). If B is not a single sim-
ple polygon, then break any nonsimple polygon in B into a set of simple polygons
and discard any that lie inside any other. If the resulting collection (three simple
polygons in Fig. 9.2(b)) is not just a single simple polygon, we have (ii), where
H1 and H2 might share finitely many boundary points or have disjoint boundaries.

There remains the case that B consists of a simple polygon P with simple or
nonsimple polygons inside it (Fig. 9.2(c)). Let H1 consist of all the squares inside
P, except those in H . Let H2 = H ∪ H1, a disjoint union.

Call two distinct unit squares adjacent if their boundaries have a common seg-
ment. The derived set H ′ of some H ∈ H is the union of H and unit squares
adjacent to at least one square in H . Starting with H (0) = H , iteration of the

 (a)  (b)  (c)

Figure 9.2. (a) ∂H is a simple polygon. (b) ∂H consists of three polygons, one of which is
not simple. (c) ∂H includes one all-encompassing simple polygon.
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138 9 Squaring the Circle

Figure 9.3. The derived sets up to H (16) starting from H .

process leads to the derived sequence: H (n+1) is the derived set of H (n) (Fig. 9.3).
This set approaches a diamond as n increases.

The diamond shape of derived sets means that, very roughly, the area of H (n) is
quadratic in n, which is ultimately greater than any constant times the perimeter,
which is linear in n. The next lemma makes this precise.

Definition 9.5. For any positive C, let N (C) be the least positive integer N such
that 16(N + 1)2 < (1+ 1

4C )N .

Lemma 9.6. Suppose C > 0 and H ∈ H. Then there is a positive integer n ≤
N (C) so that λ(H (n) ) ≥ Cp(H (n) )+ λ(H ). The same is true if H is instead the
complement of an element of H.

Proof. Abbreviate N (C) to N . Let pn = p(H (n) ), a positive integer; then ∂H (n)

consists of pn unit-length segments. Each such segment is part of the boundary
of a square in H (n+1) \H (n). But each such square contains at most four such
segments. Therefore

(1) pn ≤ 4λ(H (n+1) \H (n) ).

Suppose the lemma is false, so that for all positive integers n ≤ N ,

λ(H (n) \H ) < Cpn ≤ 4Cλ(H (n+1) \H (n) ) = 4Cλ(H (n+1) \H )

− 4Cλ(H (n) \H ).

This implies λ(H (n+1) \H ) > (1+ 1
4C )λ(H (n) \H ) and therefore, using (1) for

p0,

(2) λ(H (N+1) \H ) > (1+ 1
4C )Nλ(H ′ \H ) ≥ (1+ 1

4C )N p0

4 .

We next prove λ(H (N+1) \H ) ≤ 4(N + 1)2 p0, which, with (2), contradicts the
definition of N . Let Q be a unit square contained in H (N+1) \H . Then there is a
sequence Q0,Q1, . . . of at least two and at most N + 2 adjacent unit squares so

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.012
https://www.cambridge.org/core


9.2 The Squaring of the Circle 139

that Q0 ⊆ H and the last one is Q. Because the closures of Q1 and H intersect,
we can choose ⇀z to be a lattice point in ∂Q1 ∩ ∂H . Let T be the lattice square
with center ⇀z and side-length 2N ; then Q ⊂ T̂ . Because ∂H contains at most
p0 lattice points, this method covers H (N+1) \H with p0 squares, each having
area 4(N + 1)2; this gives the last inequality needed to conclude the proof. The
complementary case is identical.

Next comes a short technical lemma that makes use of the preceding one.

Lemma 9.7. Let N denote N (C). Then for any H ∈ H and C > 0, there is K ∈ H
such that

(a) H ⊆ K ⊆ H (N )

(b) λ(H (N ) ) ≥ Cp(K )+ λ(K )

Proof. Apply Lemma 9.6 to A = R2 \H (N ) to get a positive integer n ≤ N such
that

(1) λ(A(n) \A) ≥ Cp(A(n) ).

Define K to be R2 \A(n); then K ⊂ R2 \A = H (N ) (see Fig. 9.4). Suppose (a)
fails. Then there is a unit square Q contained in H but not in K. Then Q ⊂ A(n),
and so there is a sequence of at most n+ 1 adjacent unit squares going from Q to a
square Q0 ⊆ A. Because Q ⊆ H , this implies Q0 ⊆ H (n) ⊂ H (N ) = R2 \A, which

H N A 2 \ H N

A n \ A

K 2 \ A n

Figure 9.4. The central dozen white squares are H ; the collection of all squares shown is
H (12); the exterior of that set is A, the complement of H (12). The light gray squares are
A(6) \A, while the dark gray squares, together with H , form the complement of A(6). In

this example, suppose C = 4. Then the area of H (12) is 496, greater than
area(K )+Cp(K ) = 184+ 4 · 70.
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is impossible. For (b), A(n) \A = H (N ) \K and p(K ) = p(A(n) ), and the inequality
follows from (1).

The key circle-squaring idea is the construction of several types of bijections
involving lattice points. The next lemma is the first of several such constructions.
For a bijection f between two sets in metric spaces, define the spread of the
bijection to be supx∈domF ‖ f (x)− x‖. A bijection from S, a subset of R2, to Z2 is
called bounded if its spread is finite.

It is useful to define, for measurable plane sets A and H , the difference between
the counting measure and Lebesgue measure:�(A,H ) = ||A ∩ H | − λ(H )|. Also
neighborhoods are described this way, where X and Z are subsets of any metric
space: U (X ,Z) = {y : ∃⇀x ∈ X such that‖⇀x − ⇀y ‖ ≤ Z}.
Lemma 9.8 (The Bijection Lemma). Let S be a discrete subset of R2 and sup-
pose that there is C > 0 so that, for any lattice polygon P, �(S, P̂) ≤ Cp(P). Then
there is a bijection � : S → Z2 with spread at most N (C)+√2.

Proof. We start with a claim to be proved by induction on the perimeter of H .

Claim. For any H ∈ H, �(S,H ) ≤ Cp(H ).

Proof of claim. Given H , one of Lemma 9.4 (i)–(iii) must hold. If (i) holds,
the claim follows immediately from H = P̂; this includes the base case where
p(H ) = 4. Now assume the claim is valid for any H0 ∈ H with p(H0) < p(H ). If
(ii) holds, then p(Hi) < p(H ) for i = 1 and 2 and the claim is true for the Hi by the
inductive assumption. Therefore �(S,H ) ≤ �(S,H1)+�(S,H2) ≤ C(p(H1)+
p(H2)) =Cp(H ). And if (iii) of Lemma 9.4 holds, then we have p(Hi) < p(H ) for
i = 1 and 2 and therefore �(S,H ) = ||S ∩ H2| − λ(H2)− (|S ∩ H1| − λ(H1))| ≤
�(S,H1)+�(S,H2) ≤C(p(H1)+ p(H2)) = Cp(H ). This proves the claim.

Returning to the lemma, let N = N (C) and M = N +√2, and note that the
conclusion is the assertion that the bipartite graph � has a perfect matching, where
the two parts of the graph are S and Z2 and edges are ⇀x � ⇀y where ‖⇀x − ⇀y ‖ ≤
M . The degree of any vertex is finite, so the Hall–Rado Theorem (see App. C)
yields such a matching provided their condition holds: Any set of k vertices in
one part has at least k neighbors in the other part.

Consider a k-element set A ⊆ Z2, and let H be the union of the unit squares
whose lower-left corner is in A. Then H ∈ H and λ(H ) = k. By Lemma 9.6, there
is a positive integer n ≤ N such that λ(H (n) )−Cp(H (n) ) ≥ λ(H ) = k. Then, by
the claim, |S ∩ H (n)| ≥ λ(H (n) )−Cp(H (n) ) ≥ k.

So we have H (n) ⊂ U (H, n) ⊂ U (A, n+√2) ⊆ U (A,M ) and therefore |S ∩
U (A,M )| ≥ k. This shows that A is adjacent to at least k vertices in S.

For the remaining case, consider a set B ⊆ S having k elements. Let H be the
union of the unit squares that meet B. Then H ∈ H, and by Lemma 9.7, there is
K ∈ H such that H ⊆ K ⊆ H (N ) and λ(H (N ) ) ≥ λ(K )+Cp(K ).

Combining the claim and the preceding inequality gives k ≤ |S ∩ H | ≤
|S ∩ K| ≤ λ(K )+Cp(K ) ≤ λ(H (N ) ) and therefore |Z2 ∩ H (N )| = λ(H (N ) ) ≥ k.
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Figure 9.5. The overlap at a corner (dark gray) can be used to cover the missing
quarter-disk opposite the overlap, thus capturing the entire δ-neighborhood of P.

Because H (N ) ⊂ U (H,N ) ⊂ U (B,N ) ⊂ U (B,M ), we have |Z2 ∩U (B,M )| ≥ k,
yielding the desired k neighbors of B in Z2. The Hall–Rado condition is therefore
satisfied, as desired.

Next we prove a simple result that relates the area of a boundary neighborhood
of a polygon to its perimeter.

Lemma 9.9 (Fat Perimeter Lemma). If P is an orthogonal polygon, then, for
any nonnegative δ, λ(U (P, δ)) ≤ 2δp(P).

Proof. Expand each edge of the polygon δ units on both sides to get a region of
area at most 2δp(P) (Fig. 9.5). There will be overlap on the inside of each convex
vertex; these overlaps can be used to cover the quarter-circle in U (P, δ) at the
outside corner. Similarly, exterior overlap at a concave vertex can be used to cover
the needed part just inside the vertex.

The next lemma involves lattice squares whose side-length is a power of 2.
Two such squares never overlap unless one is contained in another. So for any
polygon one can get the set of maximal lattice squares whose side-length is a
power of 2 and interior lies inside the polygon by just discarding any square con-
tained in a larger one that lies within the polygon. This gives a collection of lattice
squares whose interiors approximate the polygon (Fig. 9.6). We define the distance
between two sets as follows: dist(X ,Y ) = inf⇀x∈X ,⇀y∈Y ‖⇀y − ⇀x ‖.
Lemma 9.10. Suppose P is an orthogonal polygon, P∗ is the polygon and its
interior, and {R1, . . . ,Rm} is the set of all maximal lattice squares with side-length
a power of 2 and interior lying inside P∗. Let Qi = R̂i. Then

(1) P∗ \U (J,
√

2) ⊆⋃m
j=1 Qj.

(2) if � : N → [0,∞) is such that
∑∞

n=0 �(2n)/2n converges to C, then∑m
j=1 �(s(Rj )) < 6Cp(P).
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P
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Figure 9.6. For the polygon P, the smallest gray squares form D0, the next largest are D1,
the next largest are D2, and the two large white ones are D3. The white curve encloses

P∗ \U (P,
√

2).

Proof. Any point in P∗ \U (P,
√

2) lies in a unique unit square inside P and so
in a square Qj, proving (1). Let D = {Q1, . . . ,Qm}, Dk = {Q ∈ D : s(Q) = 2k},
and nk = |Dk|; so, in Figure 9.6, D0 consists of the smallest gray squares. For any
Q ∈ Dk , there is, by maximality, a lattice square S that is not in D but contains Q
and has s(S) = 2k+1. Therefore dist(Q,P) ≤ 2k

√
2 and Q ⊆ P∗ ∩U (P, 2k2

√
2),

proving

(3)
⋃{Q : Q ∈ Dk} ⊆ P∗ ∩U (P, 2k2

√
2).

By the Fat Perimeter Lemma, λ(U (P,
√

22k+1)) ≤ √22k+2 p(P). On the
other hand, λ(

⋃
Dk ) = nk22k , and so (3) gives nk ≤ 4

√
22−k p(P). Now,∑m

j=1 �(s(Qj )) =
∑∞

k=0 nk�(2k ) ≤ 4
√

2p(P)
∑∞

k=0 �(2k )/2k < 6Cp(P).

This concludes the preliminary work; we next relate the concept of translation
equidecomposability to the constructions and estimates of the preceding lemmas.

9.2.2 A Condition for Equidecomposability

The main theorem of this section is a powerful tool for equidecomposability. So it
is not surprising that the proof is complicated. The central concept is the notion of
discrepancy: how well a finite set approximates an infinite set. For a finite subset A
of J and a measurable subset H of the plane, the discrepancy of A with respect to
H is D(A,H ) = ∣∣ |A∩H |

|A| − λ(H )
∣∣. And much of the work involves a detailed study

of certain sets of lattice points, using the two concepts in the next definition.
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Definition 9.11. (a) Given vectors ⇀u and X = {⇀x1,
⇀x2} and a plane set H,

let S(⇀u ,H ) be the set of lattice points defined by S(⇀u ,H ) = {⇀n ∈ Z2 :
frac(⇀u + ⇀n · X ) ∈ H }.

(b) For vectors ⇀u and X = {⇀x1,
⇀x2} and a positive integer N, the set FN (⇀u ,X )

is the subset of J of size at most N2 defined to be {frac(⇀u + n1
⇀x1 + n2

⇀x2) :
ni = 0, . . . ,N − 1}.

The next result is central as it shows how certain special pairs of vectors can be
used to deduce translation equidecomposability of two given sets. The existence
of such vectors for various cases, like the disk and square, will be proved in the
following subsections. We use E for the standard basis {(1, 0), (0, 1)}.
Theorem 9.12 (The Equidecomposability Criterion) (AC). Suppose H1 and H2

are measurable subsets of J with λ(H1) = λ(H2) = α2 > 0. Let X = {⇀x1,
⇀x2} be

vectors in J such that

(a) E ∪ X is linearly independent over Q.
(b) There is � : N → [0,∞) so that

∑∞
k=0 �(2k )/2k converges to a finite

sum C and, for any ⇀u ∈ R2, positive integer N, and j ∈ {1, 2},
D(FN (⇀u ,X ),Hj ) ≤ �(N )/N2.

Then H1 ∼T H2.

Proof. Fix ⇀u ∈ J and let Si, or sometimes Si(
⇀u ), denote S(⇀u ,Hi). The key is the

construction of a bounded bijection �⇀u : S1 → S2. We first show that α2 roughly
determines the proportion of lattice points in a lattice square that lie in Sj (note
that α ≤ 1).

Claim 1. For every lattice square R and j ∈ {1, 2}, ||Q ∩ Sj| − α2λ(Q)| ≤
�(s(Q)).

Proof of claim 1. Suppose s(Q) = N and Q’s lower left corner is ⇀a ∈ Z2. Then,
where inequalities with vectors represent the inequality in all components,

|Q ∩ S j| = |{⇀n ∈ Z2 : frac(⇀u + ⇀n · X ) ∈ Hj and ⇀a ≤ ⇀n <
⇀a + (N,N )}|

= |{⇀m ∈ Z2 : frac(⇀u + ⇀a · X + ⇀m · X ) ∈ Hj and 0 ≤ ⇀m < N}|
= |FN (⇀u + ⇀a · X ,X ) ∩ Hj|.

Using (b) with ⇀u + ⇀a · X as the first argument to FN , and using linear indepen-
dence of X ∪ E to get |FN (⇀u + ⇀a · X ,X )| = N2, we prove the claim as follows:

�(N ) ≥ N2D(FN (⇀u + ⇀a · X ,X ),Hj ) = N2

∣∣∣∣∣ |FN (⇀u + ⇀a · X ,X ) ∩ Hj|
|FN (⇀u + ⇀a · X ,X )| − α2

∣∣∣∣∣
= N2

∣∣∣∣∣ |Q ∩ S j|
|FN (⇀u + ⇀a · X ,X )| − α2

∣∣∣∣∣ =
∣∣∣∣∣ N2

|FN (⇀u + ⇀a · X ,X )| |Q ∩ S j| − N2α2

∣∣∣∣∣
= ||Q ∩ S j| − λ(Q)α2|.
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144 9 Squaring the Circle

Now we start the construction of the key bijection. The next claim is that αSj

satisfies the hypothesis of the bijection lemma (Lemma 9.8).

Claim 2. For any ⇀u ∈ R2, j ∈ {1, 2}, and lattice polygon P,�(αSj, P̂) ≤ C1 p(P),
where C1 = (4

√
2+ 6C)/α.

Proof of claim 2. Fix j and P. Let Pα be the scaled polygon α−1P. Apply Lemma
9.10 to Pα to get lattice squares Ri such that the lemma’s conclusion holds for Pα;
then

⋃m
i=1 Qi ⊆ P̂α . Therefore

(1)
⋃m

i=1 Qi ⊆ P̂α ⊆ U (Pα,
√

2) ∪⋃m
i=1 Qi.

Let si denote s(Qi). Define positive reals V,W,Y as follows, where all sums
and unions in this proof run from 1 to m:

� V = α2
∑

s2
i

� W =∑
�(s j )

� Y = |S j ∩U (Pα,
√

2)|
We need the following inequality:

(2) V −W − Y ≤ |S j ∩ P̂α| ≤ V +W + Y .

This inequality bounds the error when V is used to approximate the count of
lattice points in P̂α that are also in S j; the error is bounded by two terms: Y , which
is a boundary error, and W , which is the total error within the approximating
squares. We now make this precise. For the first inequality, apply the left half
of claim 1 to each Qi and sum, getting V = �α2s2

i ≤
∑

�(si)+
∑ |Qi ∩ S j| ≤

|P̂α ∩ S j| +W .
For the second inequality, start with the right half of (1) and intersect the sets

with S j to get

|P̂α ∩ S j| ≤ |S j ∩U (Pα,
√

2)| + |
⋃

(Qj ∩ S j )| = Y + | ∪ (Qj ∩ S j )|.

Now use the right half of claim 1 in the form |Q ∩ Sj| ≤ α2λ(Q)+�(s(Q)).
This gives |P̂α ∩ S j| ≤ Y +�(s j )+�α2λ(Qj ) = Y +W +V , which establishes
(2).

Next we want

(3) ||Sj(
⇀u ) ∩ P̂α| − λ(P̂)| ≤ (4

√
2+ 6C) 1

α
p(P).

We have three bounds:

� |V − λ(P̂)| ≤ λ(αU (Pα,
√

2)) ≤ λ(U (Pα,
√

2)) ≤ 2
√

2 p(Pα ) ≤ 2
√

2 1
α

p(P)
(by (2) and Lemma 9.9)

� Y ≤ |Z2 ∩U (Pα,
√

2)| ≤ 2
√

2 p(Pα ) = 2
√

2 1
α

p(P) (by Lemma 9.9)
� W ≤ 6C 1

α
p(P) (by Lemma 9.10 applied to Pα)
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S1

S2

2

u,1

S1

S2
u,2

1

Figure 9.7. The two bijections into Z
2 combine with α-scaling to get a bijection � from

S1 to S2.

Using the triangle inequality,

||S j(
⇀u ) ∩ P̂α| − λ(P̂)| ≤ ||S j(

⇀u ) ∩ P̂α| −V | + |V − λ(P̂)|

≤W + Y + 2
√

2
1

α
p(P)

≤ 6C
1

α
p(P)+ 2

√
2

1

α
p(P)+ 2

√
2

1

α
p(P)

as desired.
Because a rescaling shows that |Sj(

⇀u ) ∩ P̂α| = |αS j(
⇀u ) ∩ P̂|, (3) yields the

conclusion of claim 2.

Claim 3. For any ⇀u ∈ R2, there is a bijection � : S1 → S2 having spread at most
C2 = 2α−1(N (C1)+√2).

Proof of claim 3. Because claim 2 gives us the hypothesis of the bijection lemma,
we get two bijections �⇀u,j :αS j → Z2 with spread at most N (C1)+√2. Define

�(⇀n ) to be α−1�−1
⇀u,2
�⇀u,1(α⇀n ); then � is a bijection from S1 onto S2 (Fig. 9.7).

Note that the spread of �−1
⇀u,2

is the same as the spread of �⇀u,2. Using ⇀m1 for

�⇀u,1(α⇀n )− α
⇀n and ⇀m2 for �⇀u,2(�⇀u,1(α⇀n ))−�⇀u,1(α⇀n ), we get

α−1�⇀u,2(�⇀u,1(α⇀n )) = α−1(α⇀n + ⇀m1 + ⇀m2) = ⇀n + α−1(⇀m1 + ⇀m2).

Because each ‖⇀mi‖ ≤ N (C1)+√2, this proves the claim.
Now we can conclude the proof of the theorem. Let G be the additive subgroup

of R2 generated by E and X . We partition the additive group R2 into cosets of G.
Choose a coset E in R2/G and pick some ⇀u ∈ E . Then, by (a), every ⇀z ∈ E has a
unique representation ⇀z = ⇀u + ⇀n · X + ⇀m · E, where ⇀n , ⇀m ∈ Z2.

Suppose ⇀z ∈ H1; then, using the representation just mentioned, frac(⇀u + ⇀n ·
X ) ∈ H1 and therefore ⇀n ∈ S1(⇀u ). Let� be the bijection of claim 3 for the chosen
⇀u . Let ⇀n ′ be �(⇀n ). Because ⇀n ′ ∈ S2(⇀u ), we have frac(⇀u + ⇀n ′ · X ) ∈ H2, and so
there is ⇀m′ ∈ Z2 such that ⇀u + ⇀n ′ · X + ⇀m′ · E ∈ H2. Define the map χ⇀u (⇀z ) =
⇀u + ⇀n ′ · X + ⇀m′ · E. This map is well defined from H1 ∩ E into H2 ∩ E because
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146 9 Squaring the Circle

the vectors in X and E are linearly independent. Because � is a bijection from
S1(⇀u ) onto S2(⇀u ), χ⇀u is a bijection from H1 ∩ E onto H2 ∩ E .

The spread bound for� tells us that ‖⇀n ′ − ⇀n ‖ ≤ C2 and, because ⇀z and χ⇀u (⇀z )

are in J , we have ‖χ⇀u (⇀z )− ⇀z ‖ ≤ √2 and so

|(⇀n ′ − ⇀n ) · X + ( ⇀m′ − ⇀m) · E| ≤ |χ⇀u (⇀z )− ⇀z | ≤
√

2.

This implies ‖⇀m′ − ⇀m‖ ≤ ‖( ⇀m′ − ⇀m) · E‖ ≤ √2+ ‖(⇀n ′ − ⇀n ) · X ‖ ≤ √2+
C2 max(|⇀x1|, |⇀x2|). So, letting C3 =

√
2+C2 max(‖⇀x1‖, ‖⇀x2‖), we have proved

that for any ⇀z ∈ H1, there are vectors ⇀q , ⇀r ∈ Z2 such that

(7) ‖⇀q ‖ ≤ C2 and ‖⇀r ‖ ≤ C3

and χ⇀u (⇀z ) = ⇀u + ⇀q · X + ⇀r · E.

Let {⇀dt}Lt=1 enumerate the set of vectors ⇀q · X + ⇀r · E appearing in (7). This
set is finite with size at most (2C3 + 1)2; this bound depends only on α and �. We
have therefore proved that for any ⇀z ∈ H1 ∩ E , there is t ≤ L such that χu(⇀z ) =
⇀z + dt .

Because the proof does not depend on the choice of coset E and because each
⇀
dt ∈ G, we have a bijection χ : H1 → H2 such that for any ⇀z there is a t such

that χ (⇀z ) = ⇀z + ⇀
dt . Define the sets At = {⇀z ∈ H1 : ∃t ≤ L such that χ (⇀z ) =

⇀z + ⇀
dt}. Then the two families {At}Lt=1, {At + ⇀

dt}Lt=1 witness the translation
equidecomposability of H1 and H2.

9.2.3 Some Estimates from Number Theory

In this subsection, we estimate some sums involving the distance of a point in
the plane from the nearest lattice point. Estimates of this kind were obtained by
W. Schmidt [Sch64] and refined by Laczkovich to meet his needs.The distance
of a real number x from the nearest integer—min{frac(x), 1− frac(x)}—will be
denoted by 〈x〉. Furthermore, let 	(x) be 2 when x < e2 and ln x otherwise: 	(x) =
max(2, ln x). The use of 	 is a minor technicality, and the reader can just think of
it as being the natural logarithm.

We start with a fairly simple lemma that is needed in the more complex esti-
mates. It contains two well-known results of Diophantine approximation [Cas57,
p. 121].

Lemma 9.13. (a) For almost every x ∈ [0, 1), there are only finitely many posi-
tive integers k for which 〈kx〉 ≥ k−2 is false.

(b) For almost all pairs x, y ∈ [0, 1), there are only finitely many pairs of pos-
itive integers h, k for which 〈hx+ ky〉 ≥ (hk)−2 is false.

Proof. (a) First, 〈kx〉 < k−2 means that there is m ∈ N so that |kx− m| < k−2;
this in turn is equivalent to

∣∣x− m
k

∣∣ < k−3. For any positive integer k, look at
the set of reals x ∈ [0, 1) so that, for some m,

∣∣x− m
k

∣∣ < k−3. This defines a set
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Figure 9.8. The shaded region is D ∩ J , in the case h = k = 2; the pieces can be
rearranged into a rectangle of length

√
2.

of intervals of diameter 2k−3 with centers exactly 1/k apart. So the measure of
the set of x ∈ [0, 1) for which there is a k with 〈kx〉 < k−2 is at most 2

∑
k−2.

Furthermore, the set of such x satisfying the inequality with k ≥ K has measure
2
∑

k≥K k−2, which is a tail of a convergent series and so can be made arbitrarily
small. Therefore the set of x for which the inequality has infinitely many solutions
has measure under ε for any positive ε, and hence has measure 0.

(b) Let Dh,k be the set of (x, y) ∈ J such that 〈hx+ ky〉 < (hk)−2; let M =[
h 0
0 k

]
. Then

Dh,k =
⋃

m

{(x, y) ∈ J : |M · (x, y)− m| ≤ (hk)−2}

=
⋃

m

M−1 · {(x, y) ∈ M · J : |x+ y− m| ≤ (hk)−2}

= M−1 ·
(⋃

m

{(x, y) ∈ M · J : |x+ y− m| ≤ (hk)−2}
)
.

Let D be this last union; D ⊆ M · J = [0, h)× [0, k). Because the condition
defining D is invariant modulo 1, we can focus on D ∩ J ; there only the values
m = 0, 1, 2 are relevant (Fig. 9.8). The long borders of the central strip are given
by y = 1− x± (hk)2, from which the width of the strip is

√
2(hk)−2. Moving the

small corner pieces shows that D ∩ J is congruent by dissection to a rectangle
containing the central strip: Its dimensions are

√
2×√2(hk)−2. So the area of

D ∩ J is 2(hk)−2 (the case h = k = 1 is a trivial exception: the area is 1 not 2).
Extending to M · J tells us that D’s total area is 2(hk)−1. But Dh,k is a scaling of
D by M−1, so a factor of det(M−1) = (hk)−1 arises, giving λ(Dh,k ) = 2(hk)−2.

Let DK be the set of (x, y) ∈ J for which there are h, k, with at least one of h, k
not less than K, so that 〈hx+ ky〉 < (hk)−2. Now, suppose that for (x, y) there
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148 9 Squaring the Circle

are infinitely many pairs h, k so that (x, y) ∈ Dh,k . Then, for any K, (x, y) ∈ DK .
But the area of DK is at most 2

∑
h≥K

∑∞
k=1 2(hk)−2, where the leading 2 is due

to the symmetry in h and k. This is 4
(∑∞

k=1 k−2
)(∑

h≥K h−2
) = 2

3π
2
∑

h≥K h−2.
But this last tail of a convergent series is, for large enough K, under any pos-
itive ε, and so the set of points for which the lemma’s inequality is false has
measure 0.

And one more simple lemma.

Lemma 9.14. If f is a measurable real function on [0, 1] with a finite integral,
a ∈ R, and k ∈ N, then

∫ 1
0 f (〈a+ kx〉) dx = 2

∫ 1/2
0 f (x) dx.

Proof. Periodicity with respect to [0, 1] and a substitution yield
∫ 1

0 f (〈a+
kx〉) dx = ∫ 1−a/k

−a/k f (〈a+ kx〉) dx = ∫ 1
0 f (〈a+ kx〉) dx. Then periodicity with res-

pect to [0, 1/k] and another substitution finishes it as follows:∫ 1

0
f (〈kx〉) dx = k

∫ 1
k

0
f (kx) dx = 2

∫ 1
2k

0
f (kx)k dx = 2

∫ 1
2

0
f (x) dx.

Now we begin a series of estimates. The first two obtain bounds on some recip-
rocal sums involving the nearest integer function.

Theorem 9.15 (AC) (First Estimation Theorem). For almost every (x, y) ∈ J
and every ε > 0, there is C > 0 such that for every positive integer n,

n∑
k=1

1

k〈kx〉〈ky〉 ≤ C	3+ε (n).

Proof. Use the functions Qk (w) = 1
〈kw〉| ln〈kw〉|1+ε and Kk (w) = 1

k	1+ε (k) Qk (w).
Consider the following family of functions fk (x, y) = Kk (y)Qk (x) =

1
k	1+ε (k) Qk (x)Qk (y) with domain J , where singularities (x or y = 1/k or 0)
are irrelevant because we are ignoring sets of measure 0; let f be their sum:
f (x, y) =∑∞

k=1 fk (x, y).

Claim 1. For almost all x and y, f (x, y) is finite.

We simplify the problem by integrating to reduce the dimension. The basic
idea is to reduce the convergence question for f =∑

Kk (y)Qk (x) to the same for∑
Kk (y).

Claim 2. For almost all y,
∑∞

k=1

∫ 1
0 fk (x, y) dx is finite.

Proof of claim 2. For any y, Lemma 9.14 gives∫ 1

0
fk (x, y) dx = Kk (y)

∫ 1

0
Qk (x) dx = 2Kk (y)

∫ 1
2

0

1

x(− ln x)1+ε dx = 2Kk (y)

(ln 2)εε
.

So claim 2 follows from the next claim.

Claim 3. For almost all y,
∑∞

k=1 Kk (y) converges.
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As before, the lemma gives
∫ 1

0 Qk (y)dy = 2
(ln 2)εε . The integral test yields con-

vergence of
∑∞

k=1
1

k	1+ε (k) , and so the following series converges:

∞∑
k=1

(
1

k	1+ε (k)

∫ 1

0
Qk (y) dy

)
.

The monotone convergence theorem (which requires countably additivity and
hence requires some form of the Axiom of Choice; §15.3) allows the interchange
of the sum and integral, yielding

∫ 1

0

( ∞∑
k=1

1

k	1+ε (k)
Qk (y)

)
dy =

∫ 1

0

∞∑
k=1

Kk (y) dy <∞.

But this means that the integrand is finite for almost all y. This proves claim 3,
and therefore claim 2.

Now, interchanging the sum and limit in claim 2 gives, for almost all y, the
finiteness of

∫ 1
0

∑∞
k=1 fk (x, y) dx <∞. The integrand must be finite for almost all

x. Because Fubini’s Theorem shows that the two almost everywhere conditions
lead to a measure-zero failure set in two dimensions, this proves claim 1.

To finish, we use Lemma 9.13(a), which implies that there is a positive C′

(depending on x, and assumed smaller than 1) such that 〈kx〉 ≥ C′k−2 for every k.
For such x, taking logarithms and some simple algebra yields

1

	(k)
≤ 2+ | lnC′|
| ln〈kx〉|1+ε .

This implies that for almost all x, y,

1

k	3+ε (k)〈kx〉〈ky〉 ≤
(2+ | lnC′|)2

k	1+ε (k)〈kx〉〈ky〉| ln〈kx〉 ln〈ky〉|1+ε
= (2+ | lnC′|)2 Kk (y) Qk (x).

The right side sums (almost always) to a finite value by claim 1. Therefore for
almost all x, y,

C =
∞∑

k=1

1

k	3+ε (k)〈kx〉〈ky〉 <∞.

Because 	 is monotonic,
∑n

k=1
1

k〈kx〉〈ky〉 ≤
∑n

k=1
	3+ε (n)
	3+ε (k)

1
k〈kx〉〈ky〉 < C	3+ε (n), as

desired.

Next we derive a similar result, but in four dimensions.

Theorem 9.16 (AC) (Second Estimation Theorem). For almost every
(x1, y1, x2, y2) ∈ J2 and every positive ε and C, there is C′ > 0 such that for every
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n ∈ N,

n∑
h=1

n∑
k=1

1

hk〈hx1 + ky1〉〈hx2 + ky2〉 ≤ C′l6+ε (n).

Proof. The proof is similar to the preceding proof. Let
⇀
X = (x1, y1)

and
⇀
Y = (x2, y2). Let Qh,k (

⇀
V ) = 1

〈hv1+kv2〉| ln(〈hv1+kv2〉)|1+ε and Kh,k (
⇀
V ) =

1
hk	1+ε (h)	1+ε (k) Qk (

⇀
V ). Define the functions fh,k (

⇀
X ,

⇀
Y ) = Kh,k (

⇀
Y )Qh,k (

⇀
X ), and

let f be the sum f (
⇀
X ,

⇀
Y ) =∑∞

h=1

∑∞
k=1 fh,k (

⇀
X ,

⇀
Y ).

The claims of the preceding proof become the following, and claim 2 implies
claim 1 exactly as before.

Claim 1. For almost all
⇀
X and

⇀
Y , f (

⇀
X ,

⇀
Y ) is finite.

Claim 2. For almost all
⇀
Y ,
∑∞

h=1

∑∞
k=1

∫
J fh,k (

⇀
X ,

⇀
Y ) d

⇀
X is finite.

Claim 3. For almost all
⇀
Y ,
∑∞

h=1

∑∞
k=1 Kh,k (

⇀
Y ) converges.

Proof of claim 2. For any
⇀
Y , Lemma 9.14 gives∫

J
fh,k (

⇀
X ,

⇀
Y ) d

⇀
X = Kh,k (

⇀
Y )
∫ 1

0

∫ 1

0
Qh,k (x1, y1) dx1dy1

= Kh,k (
⇀
Y )
∫ 1

0

∫ 1

0

1

〈hx1 + ky1〉| ln(〈hx1 + ky1〉)|1+ε dx1dy1

= Kh,k (
⇀
Y )
∫ 1

0
2
∫ 1/2

0

1

x1(− ln x1)1+ε dx1dy1

= Kh,k (
⇀
Y )
∫ 1

0

2

(ln 2)εε
dy1 = Kh,k (

⇀
Y )

2

(ln 2)εε
.

And now the claim follows from claim 3.

Proof of claim 3. As in claim 2, the lemma gives
∫ 1

0

∫ 1
0 Qh,k (x1, y1) dx1dy1 =

2

(ln 2)εε . The integral test (twice) yields convergence of∑∞
h=1

∑∞
k=1

1
hk	1+ε (h)	1+ε (k) =

∑∞
h=1

1
h	1+ε (h)

(∑∞
k=1

1
k	1+ε (k)

)
; in fact, it converges to

the square of the innermost series. Therefore the following series converges:

∞∑
h=1

∞∑
k=1

[(
1

hk	1+ε (h)	1+ε (k)

)∫ 1

0

∫ 1

0
Qh,k (x1, y1) dx1dy1

)]
.

The monotone convergence theorem then yields the result as before.
Next we use Lemma 9.13(b), which gives, for almost every (x1, y1, x2, y2) ∈

J2, a number C1 such that C1h−2k−2 ≤ 〈hx1 + ky1〉 and C1h−2k−2 ≤ 〈hx2 + ky2〉
for all positive integers h and k. For these quadruples we get, taking logarithms
and with j either 1 or 2, | ln〈hx j + ky j〉| ≤ (2+ | lnC1|)(	(h)+ 	(k)). But 	 was
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defined to be no less than 2, so a product of two 	s is not less than their sum, and
the preceding inequality becomes

1

	(h)	(k)
≤ 1

	(h)+ 	(k)
≤ 2+ | lnC1|
| ln〈hx j + ky j〉| ≤

2+ | lnC1|
| ln〈hx j + ky j〉|1+ε .

This implies

∞∑
h=1

∞∑
k=1

1

hk	3+ε (h)	3+ε (k)〈hx1 + ky1〉〈hx2 + ky2〉 <∞

for almost every (x1, x2), (y1, y2) ∈ R2 and every ε > 0. And this yields the result
in the same way as at the end of the proof of Theorem 9.15.

We conclude by combining the preceding theorems with a classic result of
discrepancy theory—the Erdős–Turán–Koksma formula—to get a strong bound
on a global notion of discrepancy. Basic discrepancy is defined as follows, where
A is a finite subset of J and H is measurable: D(A,H ) = ∣∣ |A∩H |

|A| − λ(H )
∣∣.

Definition 9.17. For A, a finite subset of J , define the discrepancy D(A) to be the
supremum of D(A,H ) over all half-open subrectangles H contained in J.

Theorem 9.18 (AC) (Third Estimation Theorem). For almost every pair of
vectors ⇀x , ⇀y ∈ J and every ε > 0, there is a number C such that, for every ⇀u and
positive integer N, and with X = {⇀x , ⇀y },

(1) D(FN (⇀u ,X )) ≤ C 	6+ε (N )
N2 .

Proof. We will show that if (x1, x2, y1, y2) ∈ J2 is such that the conclusions of
Theorems 9.15 and 9.16 hold for each of the pairs (x1, y1) and (x2, y2) and for
each of the quadruples (±x1,±x2,±y1,±y2), then (1) is valid. Because the two
theorems assert that almost every 4-vector has this property, this will suffice.

To estimate the discrepancy of FN (⇀u ,X ), we apply the Erdős–Turán–Koksma
formula [KN, p. 116]. That formula gives an absolute constant C such that, for
any positive integer m,

(2) D(FN (⇀u ,X )) ≤ C
(

1
m + 1

N2�
)
,

where ‖⇀h ‖ = max(|h1|, |h2|), r(
⇀
h ) = max(|h1|, 1) max(|h2|, 1), and

� =
∑

0<‖⇀h‖≤m

(
1

r(
⇀
h )

∣∣∣∣∣
∑

0≤n,k<N

e2π i(h1(u1+nx1+ky1 )+h2(u2+nx2+ky2 ))

∣∣∣∣∣
)
.

Let �1 be the sum of those terms in � for which h1 > 0 and h2 = 0. We will
need this next identity, which can be derived by summing the geometric series,
converting the exponentials to trigonometric form, and removing terms on the
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unit circle: ∣∣∣∣∣
N−1∑
n=0

e2π inβ

∣∣∣∣∣ = | csc(πβ) sin(πβN ) | ≤ | csc(πβ) |.

Using this identity then gives, for any positive integer h,∣∣∣∣∣
∑

0≤n,k≤N−1

e2π ih(u1+nx1+ky1 )

∣∣∣∣∣ = |e2π ihu1 |
∣∣∣∣∣

∑
0≤n,k≤N−1

e2π ih(nx1+ky1 )

∣∣∣∣∣
=
∣∣∣∣∣

∑
0≤n,k≤N−1

e2π ihnx1 e2π ihky1

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
n=0

e2π ihnx1

N−1∑
k=0

e2π ihky1

∣∣∣∣∣
≤ 1

| sin(πhx1) sin(πhy1) | ≤
1

4〈hx1〉〈hy1〉 .

Summing and applying the Second Estimation Theorem then gives

�1 =
m∑

h=1

1

h

∣∣∣∣∣
∑

0≤n,k≤N

e(2π ih(u1+nx1+ky1 ))

∣∣∣∣∣ ≤
m∑

h=1

1

h〈hx1〉〈hy1〉 ≤ C	3+ε (m).

Let �2 be similar, using terms for which h1 < 0 and h2 = 0. Then

�2 ≤
m∑

h=1

1

h〈−hx1〉〈−hy1〉 ≤
m2∑

h=1

1

h〈hx1〉〈hy1〉 ≤ C	3+ε (m).

And we get the same estimates for the symmetric case where h1 = 0 and h2 
= 0.
Next, let �3 be the sum of terms in which both h1, h2 are positive. Then Theo-

rem 9.16 for (x1, x2, y1, y2) gives

�3 ≤
m∑

h1,h2=1

1

h1h2〈hx1 + h2x2〉〈h1y1 + h2y2〉 ≤ C	6+ε (m).

We get the same estimates for the sums of those terms in which h1 > 0, h2 < 0,
and similar cases. So in total we have � ≤ C2	

6+ε (m), where C2 is a constant
depending only on ⇀x , ⇀y , and ε. Applying (2) concludes the proof.

And two final estimates are needed: The first is known as the Erdős–Turán
Theorem, though the version here is a variation due to Laczkovich, and the sec-
ond theorem is yet another variation on Erdős–Turán. These results concern plane
regions bounded by graphs of functions. For a function f : [0, 1) → [0, 1), define
gr( f ) to be the filled graph: gr( f ) = {(x, y) : 0 ≤ x < 1, 0 ≤ y ≤ f (x)}. The next
theorem connects D(S, gr( f )), the discrepancy with respect to the graph of a func-
tion (the graph could be part of a circle), to D(S), a supremum of discrepancies
for rectangles. This is a glimpse of the application to circle-squaring as it relates
curves to polygons. However, even when f is the identity function, the result is
important; in that case, the graph is a right isosceles triangle, and this theorem
is the key to showing that such triangles can be squared using translations. We
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9.2 The Squaring of the Circle 153

present an outline of the proof of the next theorem; the full details are in [Lac90,
pp. 97–100].

Theorem 9.19 (Erdős–Turán Theorem). Let f : [0, 1) → [0, 1) be strictly
monotonic, and suppose there is a constant C, 0 < C ≤ 1, such that, for any dis-
tinct reals x, y ∈ [0, 1), | f (x)− f (y)| ≥ C|x− y|.

Then, for any finite set S = {(xn, yn)}, a subset of J having size N , and m is a
positive integer,

D(S, gr( f )) ≤ max

(
8D(S),

216

C
Em

)
,

where Em is given by

Em = 1

m
+

m∑
h=1

1

h

(
1

N

∣∣∣∣∣
N∑

n=1

e2πhi( f (xn )−yn )dx

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0
e2πhi f (x) dx− 1

N

N∑
n=1

e2πhi f (xn )

∣∣∣∣∣
)
.

Proof Outline. For a real t, let ft be the upward translation of f by t: ft (x) =
f (x)+ t; let ft be the fractional part of ft . Define R(t ), a periodic function on the
reals with period 1, to be the signed discrepancy D(S, gr( ft )), that is, the usual
discrepancy less the absolute value:

R(t ) = 1

N
|S ∩ gr( ft )| − λ(gr( ft )).

When t = 0, the translation and fractional parts are irrelevant, so |R(0)| =
D(S, gr( f ))), the object of study in the theorem. Now, R(t ) is a periodic function
with only finitely many simple discontinuities. Let M = maxt |R(t )|. The theorem
will follow from the result that M ≤ max

(
8D(S), 216

C Em

)
. The key to this bound

on M is a detailed study of the Fourier series of R(t ). If A(t ) denotes the number
of points in S for which yn ≤ ft (xn), then R(t ) = A(t )

N − ∫ 1
0 ft (x) dx, and this form

is amenable to Fourier analysis. In the simple but important case that f (x) = x,
R(t ) becomes just A(t )

N − 1
2 .

Suppose the Fourier series of the R(t ) is
∑∞

h=0 che2π iht . Then, by linearity, ch =
1
N ah − bh. Because M is invariant under upward translation and reduction mod 1
of S, we may assume that S has the property that the average of its y-values is 1/2.

First compute ah and bh. To start, bh =
∫ 1

0 (
∫ 1

0 ft (x) dx)e−2π ihtdt. Some easy
work based on switching the integration order and then using integration by parts
gives bh = −1

2π ih

∫ 1
0 e2π ih f (x) dx if h 
= 0, while b0 = 1/2.

Next consider ah =
∫ 1

0 A(t )e−2π i htdt. Again, a relatively easy anal-

ysis turns ah into
∑N

n=1(1− yn) = N −∑ yn = N/2 when h = 0, and∑N
n=1

1
2π ih (e2π ih( f (xn )−yn ) − e2π ih f (xn ) ) otherwise.
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Now, c0 = 1
N a0 − b0 = 1

N
N
2 − 1

2 = 0 and

ch = 1

2π ihN

N∑
n=1

(e2π ih( f (xn )−yn ) − e2π ih f (xn ) )+ 1

2π ih

∫ 1

0
e2π ih f (x) dx.

We need to bound the absolute values; rearranging gives

|ch| ≤ 1

2πhN

∣∣∣∣∣
N∑

n=1

e2π ih( f (xn )−yn )

∣∣∣∣∣+
∣∣∣∣∣ 1

2πh

∫ 1

0
e2π ih f (x) dx− 1

2πhN

N∑
n=1

e2π ih f (xn )

∣∣∣∣∣ .
The proof concludes with some computations that make use of the Fejér kernel

(see [Lac90, p. 100]). The max is dealt with by assuming M > 8D(S) and show-
ing, under this assumption, that M ≤ 216

mC + 16
∑m

h=1 |ch|. Substituting the upper
bound on |ch| turns this into the desired bound on M , and hence on R(0). �

And now comes the final result about discrepancy needed to square the cir-
cle. This is the theorem that provides the vectors X that are needed to define the
decomposition of a disk.

Theorem 9.20 (Erdős–Turán Variation). Let f be twice differentiable on [0, 1]
with f (0) = 0 and f (1) = 1. Suppose that f ′(x) is always positive and f ′′(x) is
bounded away from 0. Then, for almost every set X of two vectors in R2, there is
a constant C such that for any ⇀u and N,

D(FN (⇀u ,X ), gr( f )) ≤ CN−4/3	7(N ).

We refer to [Lac90, pp. 105–110] for the proof. It uses all the previous results
in this section—the three estimation theorems and the Erdős–Turán Theorem—
and the overall technique is similar to the proof techniques exhibited in the pre-
ceding proofs. It calls on one additional lemma—a bound on

∫ 1
0 e2π i(h f (x)−kx) dx

with h, k ∈ Z—which is derived from some well-known bounds on oscillatory
integrals known as the Van der Corput inequalities.

9.2.4 Behold! The Grand Problem No Longer Unsolved: The Circle
Squared, beyond Refutation

The section title comes from one of the many books published by misguided
circle-squarers. The only true circle-squarer is Miklós Laczkovich. In this sec-
tion we conclude his proof that, from a modern set-theoretic point of view, circle-
squaring is both a grand problem and no longer unsolved.

In the context of classic straightedge-and-compass Euclidean constructions,
it is not difficult to construct a square equal in area to a given polygon. And
when using geometric equidecomposability, again the “squaring” of a polygon
is not difficult: Any polygon is congruent by dissection to a square, as shown by
the Bolyai–Gerwien Theorem (Thm. 3.2). And extending the toolbox to general
equidecomposability leads to nothing new (Thm 3.8). But if we restrict to trans-
lations, the situation is quite different; see Theorem 3.3.
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The first consequence of all the machinery and estimates in the preceding sec-
tions is that, working with general equidecomposability, the situation is very dif-
ferent: Laczkovich proved that any polygon is equidecomposable to a square using
translations. The most difficult step is handling an isosceles right triangle; we do
that first, making use of many of the complicated estimates we have discussed.

Theorem 9.21 (AC). Any isosceles right triangle is translation equidecompos-
able to a square.

Proof. Of course, throughout this section, the triangle and square are considered
to be two-dimensional objects. Consider the isosceles right triangle A = gr( f ),
where f is the identity function. We will show that A ∼T Q, where Q is the
square [0, 1/

√
2)2. Let �(x) = 	7(x);

∑∞
k=0 �(2k )/2k is finite. By the Equide-

composability Criterion (Thm. 9.12), it suffices to show that there are two vectors
X = {⇀x , ⇀y } and a constant C such that X ∪ E is linearly independent over Q and,
for any ⇀u ∈ R2 and positive integer N ,

(1) D(FN (⇀u ,X ),A) ≤ C�(N )
N2

(2) D(FN (⇀u ,X ),Q) ≤ C�(N )
N2

Because Q is a subrectangle of J , the Third Estimation Theorem (Thm 9.18)
with ε = 1 yields (2) for almost every ⇀x , ⇀y ∈ R2. Because a measure-1 set has
pairs of vectors that satisfy the linear independence condition, it is enough to show
that (1) is true for almost every ⇀x , ⇀y . We will prove that if (x1, x2, y1, y2) ∈ J2, it
is such that

(a) the conclusion of the Third Estimation Theorem holds with X =
{(x1, x2), (y1, y2)}, ε = 1, and for any ⇀u ∈ R2 and positive integer N

(b) the conclusion of the First Estimation Theorem (Thm 9.15) holds with ε =
1 and with (x, y) being either one of (x1, y1) or (x1 − x2, y1 − y2)

then (1) holds for X = {(x1, x2), (y1, y2)} and any ⇀u and N .
Apply Theorem 9.19 with S being the N2-element set FN (⇀u ,X ). Because f is

the identity, the constant C in that theorem is just 1. This gives D(FN (⇀u ,X ),A)) ≤
max(8D(FN (⇀u ,X )), 216Em), where

Em = 1

m
+

∞∑
h=1

1

h

(
1

N2

∣∣∣∣∣
∑

0≤n,k≤N−1

e2πhi(u1+nx1+ky1−u2−nx2−ky2 )

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0
e2πhi x dx− 1

N2

∑
0≤n,k≤N−1

e2πhi(u1+nx1+ky1 )

∣∣∣∣∣
)

By (a), the first argument to max in Theorem 9.19 is under C�(N )/N2, for
some constant C. For the second argument, the integral in Em vanishes, and so,
using the same argument as in the proof of the Third Estimation Theorem, and
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using (b) twice for the final inequality, we have

Em ≤ 1

m
+ 1

N2

m∑
h=1

(
1

h〈h(x1 − x2)〉〈h(y1 − y2)〉 +
1

h〈hx1〉〈hy1〉
)

≤ 1

m
+ C′

N2
	4(m).

Setting m = N2 yields (1). So it remains to show that the preceding argument
applies to almost all (x1, x2, y1, y2) in J2.

By the First Estimation Theorem, there is a measure zero set S ⊂ J such that,
for any (x, y) ∈ J \ S, there is a constant C such that for ε = 1 and any positive
integer n, the conclusion of that theorem holds. We claim that for almost every
(x1, x2, y1, y2) ∈ J2, we have (x1 − x2, y1 − y2) /∈ S. Indeed, L(x1, x2, y1, y2) =
(x1 − x2, y1 − y2, x1, y1) is a nonsingular linear transformation and (x1 − x2, y1 −
y2) ∈ S if and only if L(x1, x2, y1, y2) ∈ S × J . Because the preimage of a mea-
sure 0 set under L has measure 0, this proves that for almost all pairs of vectors
⇀x , ⇀y ∈ J , (a) and (b) hold, and this yields (2), as desired. This completes the proof
for one specific right triangle. But because, for any similarity σ and translation τ ,
σ−1τσ is a translation, the method works on any triangle.

Next, we build on earlier geometric work and extend the preceding result to all
polygons.

Theorem 9.22 (Polygon Equidecomposability Theorem) (AC). Any two poly-
gons of the same area are translation equidecomposable.

We need two lemmas: the first uses standard techniques and allows us to ignore
one-dimensional sets when studying plane equidecomposability.

Lemma 9.23 (Absorption Lemma). Let K be the interior of a Jordan domain.
If H is any union of finitely many line segments, then K ∼T K ∪ H.

Proof. Deal with the segments one at a time. Suppose first that H is a line seg-
ment that is very short relative to the size of K. Translate H into K so that a small
rectangle can be erected in K using H as base. It is easy to see (conjugating by
a rotation to get into an orthogonal orientation) that any rectangle is translation
equidecomposable with the rectangle less any subset of a side: We can drop down
one dimension by using Lemma 8.16, which says that a closed interval is transla-
tion equidecomposable with the interval less an endpoint. This can be applied to
the closed interval orthogonal to the side in question for those base points lying in
the set to be absorbed. Because any segment can be broken up into finitely many
segments shorter than a given length, this takes care of all of H .

A consequence of the lemma (either by modifying the proof or using Thm. 3.6)
is that if P is the interior of a polygon, then any two sets Si with P ⊆ Si ⊆ P are
translation equidecomposable.
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A parallelogram is centrally symmetric, so the next lemma follows from the
Hadwiger–Glur Theorem of 1951 (Thm. 3.3; [Bol78, §10]), which states that
a convex polygon is congruent by dissection to a square using translations if
and only if the polygon is centrally symmetric. But there is a very simple self-
contained proof in the case we need here. The main idea—the use of the reverse
Pythagorean theorem—is elegant and was pointed out to us by Laczkovich.

Lemma 9.24. Any two parallelograms of the same area are translation equide-
composable.

Proof. The previous lemma allows us to ignore the issue of boundary lines. A par-
allelogram (call its area α) is congruent by translation to a rectangle by the stan-
dard method of cutting off and sliding the corners. The rectangle can be turned
into a square, in a skew orientation, by translation as in Theorem 3.2. Now the sin-
gle skew square can be broken into two axis-aligned squares by the reverse of the
Pythagorean theorem, using the method of Airy (see Fig. 3.1(d)). By the reverse
of the rectangle-squaring step already used, each of the two squares can be turned
into an axis-aligned rectangle having base of length

√
α; the two rectangles can

then be stacked to get an axis-aligned square. Doing this for both parallelograms
yields the same square, so the result follows by transitivity.

Proof of the Polygon Equidecomposability Theorem. By transitivity, it suffices to
work with a given polygon P and an axis-aligned square Q of the same area.
Decompose P into interior-disjoint triangles Ti (see proof of Thm. 3.2). Use hor-
izontal lines to divide Q into rectangles Ri so that area(Ri) = area(Ti). It is suffi-
cient to prove that Ti ∼T Ri. There is the issue of assigning the sides of the trian-
gles to particular triangles, but Lemma 9.23 shows that any boundary pieces can
be absorbed, using only translations, into a triangle or rectangle. So the borders of
the triangles and rectangles are irrelevant to the construction and can be assigned
arbitrarily.

For each i, there is a linear transformation Li such that Li(Ti) is an isosceles
right triangle. Assume by translation that the triangle has one vertex at the origin.
If the other two vertices are V1 and V2, then let Li be the inverse of the transforma-
tion determined by the matrix whose columns are V1 and V2. Theorem 9.21 then
yields Li(Ti) ∼T Si, where Si is a square. Lemma 9.24 shows that Si is translation
equidecomposable to the parallelogram Li(Ri). Therefore Li(Ti) ∼T Li(Ri). But
for any translation τ , L−1

i τLi is a translation, so we have the desired Ti ∼T Ri.

Now we can take the final step toward the squaring of the circle. First we apply
the Equidecomposability Criterion and the Erdős–Turán variation.

Theorem 9.25 (Graph Equidecomposability) (AC). Let K be a Jordan curve
made up of three subarcs OA, AB, and BO, where the first two are line segments
and the third is a twice differentiable curve that lies inside P, the parallelogram
determined by O, A, and B, is never tangent to a side of P, and has curvature
bounded away from 0. Then K∗ is translation equidecomposable to Q, an axis-
aligned square of the same area.
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Figure 9.9. At left is a Jordan domain K∗ as in Theorem 9.25. At right is the transformed
region, the graph of an inequality 0 ≤ y ≤ f (x).

Proof. The setup is as in Figure 9.9. Assume, by translating, that O = (0, 0). Let
L be the linear transformation of R2 such that L(A) = (1, 0) and L(B) = (1, 1).
Then L(OB) is contained in [0, 1]2. The conditions on differentiability and cur-
vature imply that the curve L(OB) is convex or concave with respect to the x-
axis; it follows that there is an increasing function f : [0, 1] → [0, 1] whose graph
is L(OB). It then follows from the differentiability and tangency conditions that
f ′(x) is always positive.

Because the curvature of f at (x, f (x)) is f ′′(x)/(1+ [ f ′(x)]2)3/2, it follows
from the curvature condition that f satisfies the hypothesis of Theorem 9.21. So
for almost every pair X of vectors of R2, there is a constant C′ such that, for any
⇀u and N ,

(1) D(FN (⇀u ,X ), gr( f )) ≤ C′N−4/3	7(N ).

Let Q1 ⊆ J be an axis-aligned square with lower-left corner at the origin and
with area equal to that of gr ( f ). Let Q2 be a square congruent to Q1 so that
both Q2 and L−1(Q2) are far away from the origin; of course, Q ∼T Q1 ∼T Q2.
Let P = L−1(Q2), a closed parallelogram. By the Third Estimation Theorem, for
almost all pairs of vectors X , there is a constant C′′ such that

(2) D(FN (⇀u ,X ),Q1) ≤ C′′N−2	7(N ).

Therefore we can choose a pair of vectors X and a single constant C
so that, with this C, (1) and (2) hold for any ⇀u and N . Let �(N ) =
CN2/3	7(N ). Then ��(2k )/2k converges. Because N2D(FN (⇀u ,X ), gr( f )) ≤
�(N ) and N2D(FN (⇀u ,X ),Q1) ≤ �(N ) hold for any ⇀u and N , the Equidecom-
posability Criterion yields that gr( f ) ∼T Q1, and so gr( f ) ∼T Q2. Simple conju-
gation yields L−1(gr( f )) ∼T P.

Now we have L(K∗) = gr( f ) ∪ ({1} × [0, 1]), and hence K∗ differs from
L−1(gr( f )) by only the segment AB. Because P is a parallelogram, the absorp-
tion lemma yields K∗ ∼T P. Also the areas of P and Q each equal that of K∗,
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so the Polygon Equidecomposability Theorem yields P ∼T Q. Transitivity con-
cludes the proof.

The preceding result is enough to solve the classic problem.

Corollary 9.26 (AC). Any disk can be squared with translations.

Proof. Work with the unit disk; radii from the origin to (−1, 0) and (0, 1) define
two subsets, one convex and one not, that meet the conditions of the preceding
theorem. Take one of the subsets as closed and the other as partially open. By
the theorem, the closure of each set is translation equidecomposable to an axis-
aligned square. And the Absorption Lemma means this is true for the partially
open set too. Translation then allows the squares to share a border line, and the
resulting polygon is translation equidecomposable to a single square by the Poly-
gon Equidecomposability Theorem.

But Laczkovich’s work goes beyond circle-squaring, as it applies to a large
variety of plane sets.

Theorem 9.27 (AC). Let K be a Jordan curve and Q a square whose area is the
area of K∗. Suppose K is composed of subarcs K1, . . . ,Kn such that

� each Ki is either the graph of a function or a vertical line segment
� for each Ki that is the graph of a nonlinear function, the function is twice

differentiable with curvature bounded away from 0
� K has no cusps; that is, at the common endpoint of two adjacent subarcs, the

half-tangents to the two curves do not coincide

Then K∗ ∼T Q.

Proof. The curvature condition means that the second derivative for each of the
graphs is never 0 (except for the linear case). This means that each graph splits
into two pieces on which the function is monotonic. So assume that all nonlinear
subarcs consist of graphs of monotone functions. Let an end of a subarc be called
a knot.

Claim. There are points Ai on K (indexed in order around K) and corresponding
points Pi in K∗ (not necessarily distinct) such that each knot is one of the Ai, and
the following holds, where indices are interpreted mod m.

� The line segments p−i = PiAi and p+i = PiAi+1 are in K∗ and hence p−i , p+i ,
and the subarc AiAi+1 of K form a Jordan curve Ti for each i.

� The sets T ∗i are interior disjoint.
� For each i, either Ti is a triangle or it satisfies the conditions of Theorem 9.25.

Proof of claim. Throughout this proof a square is an open, axis-aligned square.
And we will use several times the fact that the interior of K is an open set (by the
Jordan curve theorem).
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K

K

Figure 9.10. The curve K can be nicely covered by squares. Here there are seven large
squares at the knots. Then the subarcs are all translated so as to thicken K by a small

amount, and the curve outside the knot-squares is covered by small squares that do not
break the inside boundary of the fattened curve.

Step 1. For each knot A, let DA be a square centered at A so that ∂DA ∩ K con-
sists of two points and the closures of the knot-squares are pairwise dijsoint.
Also choose the square small enough so that the angle bisector of the two
tangents at the point does not intersect either subarc inside the square. See
Figure 9.10.

Step 2. Translate each subarc up or down into the interior of K (left or right
for the vertical lines) so that the translated arc intersects the knot-squares
at each end in the same edge as the untranslated subarc. Also choose the
translation so small that the translated arcs do not, outside of the the knot-
squares at their ends, strike any of the other translated or untranslated sub-
arcs or squares. For the graphs, this can be accomplished by using f (x)± ε;
the vertical line segments can just be translated horizontally. This gives a
fattened version of K (see Fig. 9.10).

Step 3. For each point x on K and not in the (open) knot squares, define a small
square Dx centered at x and so that Dx ∩ K∗ lies between the arc forming K
and the translated arc from step 2. A sampling of such squares is shown in
Figure 9.10.

Step 4. The collection of squares from steps 1 and 2 forms an open cover of
the compact set K, so there is a finite subcover. Each square in the selection,
being open, intersects other squares (Fig. 9.11).

Step 5. Let the points Ai be all the intersection points of K and the boundaries
of the squares from step 4, together with all the knots.

Step 6. Define the points Pi using some cases. If Ai is a knot, then Pi and Pi−1

can each be taken to be the point where the tangent angle bisector at the
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Figure 9.11. Once K is covered by finitely many squares, it is easy to find points Ai and Pi

that decompose K∗ into one polygon and many three-sided regions. The lines into K∗

from A1 and A8 bisect the angles of the tangents.

knot meets the segment Ai−1Ai+1 (see Fig. 9.11); this works because of the
angle bisector condition in step 1. If the subarc is a horizontal or vertical
line, it is easy to find a small V-shape to define Pi. Now suppose the arc is
the graph of y = f (x), Ai = (xi, yi), and Ai+1 = (xi+1, yi+1). If f is increas-
ing and K∗ is below the graph or f is decreasing and K∗ is above the graph,
then let Pi = (xi+1, yi), a point that lies inside any of the squares contain-
ing Ai or Ai+1. In the remaining cases, let Pi = (xi, yi+1). This proves the
claim.

Because there are no cusps, we can apply Theorem 9.25 to get disjoint squares
Q1, . . . ,Qm such that Ti ∼T Qi. The Polygon Equidecomposability Theorem gives
a square Q0 disjoint from the Qi such that the polygon K∗ \ ⋃T ∗i is translation
equidecomposable to a square Q0. The Absorption Lemma allows this last poly-
gon to be taken as open. Therefore K∗ ∼T

⋃m
i=0 Qi, and a final application of

Polygon Equidecomposability gives K∗ ∼ Q.

In fact, the theorem holds even if the cusp assumption is removed; this is shown
in [Lac90] using some ideas from the type semigroup.
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9.3 Generalizations and Open Problems

In later work, Laczkovich improved his initial results from [Lac90]. The improve-
ments are in two directions. Consider first the proof of the Equidecomposability
Criterion. In claim 3 we constructed a bijection with finite spread, transforming
one discrete subset of R2 into another one. Laczkovich [Lac92a] showed how one
can construct such a bijection transforming a discrete set to another when both
sets are in Rn. This step allowed him [Lac92b] to extend his Equidecomposability
Criterion to all Euclidean spaces Rn. Second, Laczkovich was able to connect the
Equidecomposability Criterion to a description of boundaries of sets in terms of
box dimension. The upper box dimension of a bounded subset E of Rn (same as
the upper entropy index of Kolmogorov) is defined as follows. Let Qn

m be the set of
cubes

[
a1−1

m , a1
m

]× · · · × [ an−1
m , an

m

]
, where ai ∈ Z, and let N (n,E ) be the number

of such cubes Q having nonempty intersection with E. Then the upper box dimen-
sion is lim supm→∞

ln N (m,E )
ln m . Laczkovich [Lac92b] showed that if two bounded

measurable subsets of Rn of the same measure have boundaries whose upper box
dimension is less than n, then the sets are translation equidecomposable.

As an application of this last result, consider bounded convex sets in Rn.
Namely, for any convex subset A of Rn, the upper box dimension of ∂A is at most
n− 1 (see [Egg63, Thms. 41, 42]). Therefore every ball is translation equide-
composable to a cube of the same volume. Moreover, this settles the following
one-dimensional problem raised by C. A. Rogers: Is the set

A =
(

1

3
,

2

3

)⋃(
7

9
,

8

9

)⋃(
25

27
,

26

27

)⋃
· · ·

translation equidecomposable to the interval (0, 1/2)? Because the upper box
dimension of ∂A = 0, we obtain an affirmative answer to this question (but see
§10.3 for an open question about A).

Another direction concerns the existence of measurable decompositions: The
pieces are to be Lebesgue measurable. Because a disk and square are measurable,
one can hope for a decomposition using measurable pieces. Because the Equide-
composability Criterion uses the Axiom of Choice and there is no description of
the nature of the pieces, the work in §9.2 yields no information about measura-
bility. But several spectacular recent results of Grabowski, Máthé, and Pikhurko
[GMP∞a, GMP∞b] show that it can be done with measurable pieces. Let LB
denote the family of sets in Rn that are measurable and have the Property of
Baire; that is, LB = L ∩ B. So a set is in LB iff it differs from an open set by
a measurable meager set.

Theorem 9.28 (AC). (a) In Rn (n ≥ 3) any two sets of Lb that have nonempty
interior and the same Lebesgue measure are equidecomposable with
pieces in LB.

(b) If A and B are sets in Rn of the same nonzero finite Lebesgue measure and
if the upper box dimension of the boundary of each of A and B is less than
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n, then A and B are equidecomposable using translations and with pieces
in LB.

In particular, a disk is equidecomposable to a square of the same area using
translation and pieces in LB. And the same is true for a regular tetrahedron and a
cube of the same volume, and so their work sheds light on Hilbert’s Third Prob-
lem. So now the notable question in this area is whether one can get decomposi-
tions using Borel sets.

Question 9.29. Is a disk in the plane equidecomposable to a square of the same
area using pieces that are Borel sets?

Theorem 9.28(a) is false in R2 by a result of Laczkovich (see Thm. 10.34)
that shows that there are Jordan domains that have the same measure but are not
equidecomposable even using arbitrary pieces. And it fails in R1 as well (see the
claim in the proof of Thm. 10.38).

The work of Grabowski, Mathé, and Pikhurko disproved one conjecture of R.
Gardner—that if a polytope and convex body are equidecomposable using pieces
in L and isometries from an amenable group, then they are equidecomposable
using convex pieces. But another conjecture of Gardner [Gar89] remains open.
Amenable groups are discussed in Chapter 12 (all solvable groups are amenable);
for amenable groups of isometries G, two Lebesgue measurable sets that are G-
equidecomposable must have the same measure (Thm. 12.9).

Conjecture 9.30. Suppose A,B ⊂ Rn are bounded Lebesgue measurable sets that
are equidecomposable with respect to an amenable group of isometries (and there-
fore have the same measure). Then they are equidecomposable using measurable
pieces (and all isometries).

The conclusion of this conjecture uses all isometries, not just those in the
amenable group. Now, if one were to formulate the conjecture so that the con-
clusion used the amenable group of the hypothesis, it would be more powerful.
But, as observed by Laczkovich [Lac88b], that version is false. He showed that
there are four one-dimensional isometries S = {gi} so that the unit interval [0, 1]
is equidecomposable to itself using those isometries (which come from the solv-
able group G1), but a measurable equidecomposition using S does not exist.

Let u be an irrational number between 0 and 1/2 and use it to define the rectan-
gle with vertices pi as in Figure 9.12. Let R be its perimeter, let σi be an isometry
of the line that extends the linear function defined by the segment pi pi+1 (where
index 5 becomes 1), and let S = {σi}. Note that the σi are, in order, x+ u,−x+ u,
x− u, −x+ 2− u.

Theorem 9.31. The unit interval is equidecomposable to itself using functions in
S, but such a decomposition using S and measurable pieces does not exist.
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Figure 9.12. The perimeter of the rectangle defined using u = 1/π contains a graph of a
bijection from the unit interval to itself.

Proof. We will relate decompositions to matchings. By a matching (in the context
of the unit interval) we mean a set of ordered pairs M ⊂ [0, 1]2 that defines a
bijection. Laczkovich then proved the following claims about R to get his example.

Claim 1. The set R contains a matching.

Such a matching shows that [0, 1] is equidecomposable to itself using S. The
proof uses the bipartite graph whose vertices consist of two copies of [0, 1], with
an edge from x in one part to y in the other whenever (x, y) ∈ R. All vertices have
degree 2, except for four degree-1 vertices: 0 or 1 in either part; therefore the
graph decomposes into paths and cycles. The graph has a perfect matching, and
that yields the claimed matching. Any infinite path, finite even path, or finite even
cycle has such a matching. Any bipartite graph has no odd cycle. To see that there
is no path with an odd number of vertices, observe that such a path must go from 0
to 1 in the same part. Then one proves by induction that for any path (x1, . . . , xn),
xn = ±x1 + 2an + bnu, where an, bn ∈ Z. Now, if x1 is 0 and xn is 1, then bn u is
an odd integer, which contradicts u’s irrationality.

For the rest we need to review some measure theory (for more detail, see
[Mat95]). Suppose (X , d ) is a metric space. Then μ is called an outer mea-
sure if it is a [0,∞]-valued function defined on P (X ) that is subadditive and
such that μ(∅) = 0. Furthermore, we say that μ is a metric outer measure if
μ(A ∪ B) = μ(A)+ μ(B) for any two sets A,B having positive distance from
each other.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.012
https://www.cambridge.org/core


9.3 Generalizations and Open Problems 165

The most important examples of metric outer measures are Lebesgue outer
measure in Rn and d-dimensional outer Hausdorff measure in Rn, which we will
define shortly. The restriction of outer measure to the sets A (called μ-measurable
sets) satisfying the condition μ(X ∩ A)+ μ(X \A) = μ(X ) for any set X is a
measure, that is, a countably additive function defined on a σ -algebra and with
μ(∅) = 0. In the case of metric outer measures, every Borel set is μ-measurable.

Now, we need the notion of one-dimensional Hausdorff measure H defined
on certain subsets of R2. Such a measure allows one to measure sets such as
rectifiable plane curves; it is also related to the notion of Hausdorff dimension,
useful in the study of fractals. It is defined as follows: for any A ⊆ R2 and δ > 0,
define

Hδ = inf

{ ∞∑
i=1

diam (Ui) : A ⊆
⋃

Ui, diam (Ui) < δ

}
.

Then H (A) = limδ→0 Hδ; the limit exists because Hδ decreases as δ approaches
0. This defines a metric outer measure, and the corresponding H -measurable sets
are denoted H.

For example, a disk in the plane has infinite H -measure, while H agrees with
one-dimensional Lebesgue on any measurable (with respect to λ1) subset of a
line. In what follows, we will redefine H to be the Hausdorff measure on the H -
measurable subsets of R, normalized so that H (R) = 1; and H will refer to the
H -measurable subsets of R. An H -measurable and measure-preserving function
T from R to R is said to be an ergodic transformation if, for A ∈ H with T (A) = A,
we have that H (A) = 0 or H (A) = 1.

Claim 2. There is no matching contained in R that is in H.

Define f : R → R to be the piecewise vertical translation that takes (x, y) ∈ R
to the other point in R with the same x-coordinate, with the exceptions that f fixes
p1 and p4; g is defined similarly in the other direction.

The two functions f and g just defined are homeomorphisms of R onto itself
and g ◦ f is ergodic on R; the proof of this is based on constructing a measure-
preserving homeomorphism h : R → S1 and then showing that h g f h−1 is just
an irrational rotation of the circle (see [Lac88b] for more details). Figure 9.13
shows how the composition acts on R. Moreover, if M ⊂ R is matching, then M ∪
f (M ) = R and M ∩ f (M ) has two points; the same holds for g. Now suppose that
M ∈ H. Because H (R) = 1, H vanishes on single points, and H (M ) = H ( f (M )),
it must be that H (M ) = 1/2.

On the other hand, the properties of the transformations f and g imply that
g( f (M )) and M differ in a finite set.

Proof. M ∩ f (M ) and M ∩ g(M ) are each finite (two points). So g(M ) ∩
g( f (M )) is finite. Also M ∪ g(M ) = R = M ∪ f (M ) and so M ∪ g(M ) =
g(M ) ∪ g( f (M )). Subtracting g(M ) from both sides of this last, we have that
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Figure 9.13. The composition f ◦ g wraps the perimeter R around itself.

M \B = g( f (M )) \A, for finite sets A,B, which implies that the symmetric dif-
ference of g( f (M )) and M is finite.

Let M1 =
⋂∞

i=−∞(g f )i(M ). This equals M up to a countable set, and such has
H -measure 0. But M1 is g ◦ f invariant and so has measure 0 or 1, a contradiction.

Now we can conclude with an argument that travels from the line to the plane.

Claim 3. The interval [0, 1] is not equidecomposable to itself using S and
Lebesgue measurable pieces.

Proof of claim 3. Let A be a Lebesgue measurable subset of [0, 1]. It is clear
that in R, Lebesgue measure and one-dimensional Hausdorff measure (call it H1)
coincide; so λ(A) = H1(A). Now consider σi ∈ S; its form is ±x+ b where we
take the domain to be [0, 1]. Define ! to be the projection ! : graph(σi) → [0, 1].
From now on we work in R2 and consider [0, 1] as being a subset of R2. Clearly,
for any Lebesgue measurable subset A of R1, H1(A) is the same as H (A) when A
is viewed in R2. Observe now that the transformation !−1 : [0, 1] → graph(σi)
is a similarity, with factor

√
2. So for any Lebesgue measurable subset of

[0, 1], !−1(A) ∈ H. Now, suppose that [0, 1] is equidecomposable to itself using
Lebesgue measurable sets and isometries from S. The inverse projections of the
sets lead to a matching in R that is also in H, contradicting claim 2.
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Notes

The circle-squaring problem of Tarski appears in [Tar25] and has been mentioned
often in the literature [Kle79, Sie50b, Wag81b]. Theorem 9.1 is due to Dubins,
Hirsch, and Karush [DHK63] (see also [Sal69]). For various generalizations of the
notion of scissors-congruence, see Sah [Sah79]. The idea of using the Banach–
Schröder–Bernstein Theorem to attack an approximate form of the circle-squaring
problem using ε-magnifications is due to Klee; Theorem 9.3 as stated here is due
to Henle and Wagon.

The presentation of the circle-squaring work in §9.2 follows that of Laczkovich
[Lac90].

In recent work, Grabowski, Mathé, and Pikhurko [GMP∞a] proved that circle-
squaring is possible using Lebesgue measurable pieces. A general criterion for
equidecomposability using measurable pieces of any two bounded measurable
subsets of Rn(n ≥ 3) is given in [GMP∞b].
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10

The Semigroup of Equidecomposability Types

The concept of equidecomposability is much easier to work with if one can add
sets, so that a paradoxical decomposition becomes just X = 2X . Tarski developed
a way to do this in 1938 [Tar38b], and his idea has many applications. The most
striking is the theorem of Tarski (Cor. 11.2) relating the existence of measures to
the nonexistence of paradoxes. Here we will present the method of turning sets
into an abstract object with addition (an additive semigroup), as well as several
applications. Noteworthy ones are a Cancellation Law for equidecomposability
and also a proof that any two subsets of S2 with nonempty interior are equide-
composable using rotations. This expanded context for equidecomposability will
also yield a simpler proof that a locally commutative action of a free non-Abelian
group is paradoxical (Thm. 5.5). And a certain variation on this setup will yield
the result that the Banach–Tarski Paradox can be done with pieces that are moved
so that they never collide.

10.1 The Semigroup of Equidecomposability Types

10.1.1 The Addition of Sets

We begin, appropriately enough, by setting up a space where a set is expanded
into infinitely many copies of itself.

Definition 10.1. Suppose the group G acts on X . Define an enlarged action as
follows. Let X ∗ = X × N, let G∗ = {(g, π ) : g ∈ G and π is a permutation of N},
and let the group G∗ act on X ∗ by (g, π )(x, n) = (g(x), π (n)). If A ⊆ X ∗, then
those n ∈ N such that A has at least one element with second coordinate n are
called the levels of A.

The action of G∗ extends that of G and treats all the levels in the same
way; for example, if E ⊆ X , then E × {n} is G∗-congruent to E × {m}. More-
over, G-equidecomposability and G∗-equidecomposability are closely related: If
E1,E2 ⊆ X , then E1 ∼G E2 if and only if E1 × {m} ∼G∗ E2 × {n} for all m, n ∈ N.

168

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.013
https://www.cambridge.org/core


10.1 The Semigroup of Equidecomposability Types 169

Now, the equidecomposability class of some E ⊆ X in P (X ∗) with respect to G∗

is much more valuable than the ∼G-equivalence class of E in P (X ). Because
copies of E at different levels can be identified with E, the set E × {0, 1} serves
as a representative of what we intuitively would like to call 2E, and if E is G-
paradoxical, then E × {0} ∼G∗ E × {0, 1}, that is, E = 2E. We make this more
precise by defining an addition operation for those subsets of X ∗ having only
finitely many levels.

Definition 10.2. Let G,X , G∗, X ∗ be as in Definition 10.1.
(a) A subset A of X ∗ is called bounded if it has only finitely many levels. The

equivalence class with respect to G∗-equidecomposability of a bounded A ⊆ X ∗

is called the type of A and is denoted [A]. The collection of types of bounded sets
will be denoted by S .

(b) For [A], [B] ∈ S , define [A]+ [B] to be [A ∪ B′], where B′ is an upward
shift of B so that the levels of B′ are disjoint from those of A; that is, B′ = {(b,m+
k) : (b,m) ∈ B}, where k is sufficiently large.

It is a simple matter to check that + is well defined: [A]+ [B] is independent
of the choice of representatives A,B and of the integer k used to shift B upward.
Moreover, + is commutative and associative, whence (S,+) is a commutative
semigroup, called the type semigroup. Note that [∅] = e serves as an identity for
+. If E ⊆ X , then [E] is used to denote [E × {0}].

For any commutative semigroup with identity, there is a natural way of mul-
tiplying elements by natural numbers: nα = α + α + · · · + α with n summands.
Also, there is a natural ordering given by α ≤ β if and only if α + γ = β for some
γ in the semigroup. Note that [A] ≤ [B] if and only if A ≤ B, that is, A is G∗-
equidecomposable with a subset of B. These semigroup operations satisfy many
familiar axioms: n(mα) = (nm)α, (n+ m)α = nα + mα, n(α + β ) = nα + nβ,
nα ≤ nβ, if α ≤ β, nα ≤ mα if n ≤ m, and α + γ ≤ β + γ if α ≤ β. The order
will satisfy antisymmetry (if α, β ∈ S , then α ≤ β and β ≤ α imply α = β), and
this means that it gives the type semigroup the structure of an ordered semi-
group. The fact that only bounded subsets of X ∗ were considered when types
were formed means that the type semigroup satisfies an Archimedean condition
with respect to [X ]: For each α ∈ S , there is some n ∈ N such that α ≤ n[X ].
The following proposition shows that the addition of types behaves as one would
expect with respect to set-theoretic unions.

Proposition 10.3. Suppose A and B are bounded subsets of X ∗. Then [A]+ [B] ≥
[A ∪ B], with equality if A ∩ B = ∅.

Proof. Consider the last assertion first. If B′ is any upward shift of B, then B ∼ B′,
so A ∪ B ∼ A ∪ B′, using two pieces. Hence A ∪ B is in [A]+ [B], as required. It
follows from this that arbitrary bounded sets satisfy [A]+ [B] = [A ∪ B]+ [A ∩
B], whence [A]+ [B] ≥ [A ∪ B].
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170 10 The Semigroup of Equidecomposability Types

In the context of the type semigroup, the Banach–Schröder–Bernstein Theo-
rem takes on the simple form, if α, β ∈ S , then α ≤ β and β ≤ α imply α = β.
And a type can be called paradoxical if 2α = α; hence E ⊆ X is G-paradoxical if
and only if [E] = 2[E] in S . A subtle point arises here because from a measure-
theoretic point of view, it might make sense to say α ∈ S is paradoxical if, for
some k, (k + 1)α ≤ kα (which is equivalent to (k + 1)α = kα). This latter con-
dition on α would, like 2α = α, imply the nonexistence of certain measures nor-
malizing α, but in a general semigroup the two conditions are not equivalent. One
would need a certain sort of Cancellation Law in order to deduce 2α = α from
(k + 1)α = kα. One of the pleasant aspects of equidecomposability theory is that
an appropriate Cancellation Law (Thm. 10.19) is valid for the type semigroup,
and these two conditions on α are equivalent. The proof, however, is quite intri-
cate, unlike that of the other major algebraic law, the Banach–Schröder–Bernstein
Theorem.

Our first application of this formalism is to give a different proof that a locally
commutative action of a free group of rank 2 on a set X yields a paradoxical
decomposition. This approach will be much simpler than the proof given in The-
orem 5.5, although it does not yield the stronger result that four pieces suffice.
First, we generalize Proposition 1.10 slightly, and it is here that the type semi-
group is useful.

Definition 10.4. Suppose the groups H1, . . . ,Hn all act on X . These actions are
called jointly free if, for each x ∈ X , there is at least one i = 1, . . . , n such that x
is not a fixed point of any nonidentity element of Hi.

Proposition 10.5 (AC). Suppose G acts on X in such a way that the actions of
H, . . . ,Hn on X are jointly free, where each Hi is a free subgroup of G of rank 2.
Then X is G-paradoxical.

Proof. Let Di = {x ∈ X : h(x) = x for some h ∈ Hi \ {e}}, and let δi = [X \Di]
with respect to G∗ and X ∗. By Proposition 1.10, each X \Di is Hi-paradoxical, so
δi = 2δi. Because the actions are jointly free, X =⋃

(X \Di), and so by Proposi-
tion 10.3, [X ] ≤∑ δi. Now for each i,

[X ] = [(X \Di) ∪ Di] = δi + [Di] = 2δi + [Di] = [X ]+ δi.

Therefore

[X ] = [X ]+ δ1 = [X ]+ δ2 + δ1 = · · · = [X ]+ δn + · · · + δ1 ≥ 2[X ] ≥ [X ],

whence [X ] = 2[X ] and X is G-paradoxical.

Corollary 10.6 (AC). If F is a free group of rank 2 and is locally commutative in
its action on X , then X is F-paradoxical.

Proof. We shall show that if G, a free group of rank 4 freely generated by ρ0, ρ1,
ρ2, ρ3, acts on X and is locally commutative, then X is G-paradoxical. Because
F contains such a free subgroup (ρi = σ iτ i, where σ , τ generate F ), this suffices.
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10.1 The Semigroup of Equidecomposability Types 171

Let H1 be the subgroup of G generated by ρ0 and ρ1, and let H2 be the subgroup
generated by ρ2 and ρ3. By Proposition 10.5, it suffices to show that the actions
of H1, H2 are jointly free. If not, then some x ∈ X is fixed by w1 and w2 in H1, H2,
respectively, with wi 
= e. But G’s action is locally commutative, so w1 commutes
with w2, contradicting the independence of the ρi.

10.1.2 Continuous Equidecomposability

The Banach–Tarski Paradox in its classic form has two nonphysical aspects:
The pieces are, obviously, not physically realizable, and the motions are used
abstractly, with no thought to whether the pieces would crash into each other dur-
ing their motion. Thus a famous question of de Groot [Dek58a] was whether, in
the classic Banach–Tarski Paradox, the pieces could be moved continuously so
that they remained disjoint throughout the transformation. In 2005, Trevor Wil-
son, a California Institute of Technology undergraduate, showed that this question
has a positive answer. We present his proof, which uses the ideas of the type semi-
group, here.

Definition 10.7. The sets A,B are continuously G-equidecomposable, written
A ≈G B, if there exist finite partitions {Ai} and {Bi} of A and B, respectively, and
a family of G-paths {γ i

t } (0 ≤ t ≤ 1) such that, for all i, γ i
0 is the identity and

γ i
1(Ai) = Bi, and for all 0 ≤ t ≤ 1 and i 
= j, γ i

t (Ai) ∩ γ j
t (Aj ) = ∅. We will often

suppress the G in ≈G.

The definition provides motions of the pieces that can be realized physically,
because the pieces are disjoint throughout the transformation, that is, at each time
value t; for classic equidecomposability, the sets are transported instantaneously
to their destinations. It is easy to show that ≈ is an equivalence relation.

The key step is defining a semigroup in which we can add sets and so reduce
the problem of decomposition of large sets to decomposition of small ones. The
construction is a variation on the type semigroup of §10.1.1; the addition will be
well defined on the continuous equidecomposability classes.

For n ≥ 2, let B be the ideal of bounded subsets of Rn, and let G be any group
of isometries that contains all translations in the first two coordinates; for ⇀v ∈ R2,
let T⇀v denote the corresponding translation in Rn using 0 in coordinates beyond
the second. We will use this group to show that continuous equidecomposability
is no stronger than the usual discrete notion of equidecomposability.

When working in B, addition of equidecomposability types is defined as the
union of disjoint translates, but there is no guarantee that this operation is well
defined when restricted to continuous equidecomposability. Thus we restrict the
choice of translates.

We denote by [A] the set {A0 ∈ B : A0 ≈ A} and define addition of these
classes by [A]+ [B] = [A ∪ T(v1,v2 )(B)], where (v1, v2) ∈ R2 is chosen so that
v1 > sup{(a− b)1 : a ∈ A, b ∈ B} (the subscript denotes projection onto the first
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172 10 The Semigroup of Equidecomposability Types

coordinate). The definition simply says that A lies strictly to the left of the trans-
lated copy of B.

We need some basic properties of this operation.

Proposition 10.8. Addition of continuous equidecomposability types is well
defined, associative, and commutative.

Proof. Independence of the choice of (v1, v2). We have to show A ∪ T(v1,v2 )(B) ≈
A ∪ T(w1,w2 )(B), where v1 and w1 are such that A is strictly to the left of T(v1,v2 )(B)
and also left of T(w1,w2 )(B). We can get the desired equidecomposability by trans-
lating T(v1,v2 )(B) to T(w1,w2 )(B) along horizontal and vertical line segments (those
translations lie in G).

Addition is independent of choice of representatives of [A] and [B]. Let A ≈ A′

by subsets {Ai} and {A′i} and paths αi. Because A and B are bounded and [0, 1] is
compact, choose ⇀z ∈ R2 so that αi

t (Ai) is strictly to the left of T⇀z (Bj ) for all i, j, t.
Because classes are independent of the translation vector, what we need to show
is A ∪ T⇀z (B) ≈ A′ ∪ T⇀z (B). But this is clear: We use the pieces {Ai} ∪ {T⇀z (B)} and
{A′i} ∪ {T⇀z (B)} and the paths αi

t and, for T⇀z (B), the identity. Now the case of B
being replaced by B′ is handled the same way, and transitivity then yields well-
definedness.

Commutativity. Choose a vector (v, 0) such that v > diam (A ∪ B). Then inde-
pendence of the choice of translation in the definition of [A]+ [B] means that
[A]+ [B] = [A ∪ T(v,0)(B)] and [B]+ [A] = [T(v,0)(A) ∪ B]. But the two repre-
sentative sets on the right-hand sides are continuously equidecomposable using
two pieces: Move T(v,0)(B) left back to B and move A up, around B, and then back
down on B’s right.

Associativity is left as an exercise.

Definition 10.9. A pair of disjoint sets A,B ∈ B is extricable if [A]+ [B] = [A ∪
B]. More generally, a finite family {Ai} of pairwise disjoint sets in B is extricable
if
∑

i[Ai] = [
⋃

i Ai].

Intuitively, two sets are extricable if they can be separated from each other by
a physical motion using a finite number of pieces. Note that if {Ai} is extricable,
then so is {Bi}, where Bi ⊆ Ai; just restrict the functions used in the decomposition
to the smaller sets. We call this extricable by restriction.

Let the family E consist of those sets C ∈ B such that any two disjoint subsets
of C are extricable or, equivalently, such that any finite, pairwise disjoint collection
of subsets of C is extricable. We will show that E is in fact all of B. We need two
lemmas.

Lemma 10.10. The family E is closed under subsets. Moreover, if {Ci} is a finite
subset of E and the family {Ci} is an extricable family, then C =⋃

Ci is in E .

Proof. The first assertion is clear from the definition of extricable. For the second,
one breaks up the given sets according to the partition defining C and extricates
the smaller pieces. That is, given subsets A,B ⊆ C, let Ai = A ∩Ci, and the same
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10.1 The Semigroup of Equidecomposability Types 173

for Bi. Let Di = Ai ∪ Bi ⊆ Ci; then each family {Di}, {Ai}, {Bi} is extricable by
restriction. The following sequence now completes the proof, using commutativ-
ity and the fact that each Ci ∈ E to extricate Ai and Bi:

[A ∪ B] =
[⋃

Di

]
=
∑

[Di] =
∑

([Ai]+ [Bi]) =
∑

[Ai]+� [Bi]

=
[⋃

Ai

]
+
[⋃

Bi

]
= [A]+ [B].

Lemma 10.11 (AC). There is a partition S1, S2 of R such that, for i = 1, 2, the
algebraic differences �Si = Si − Si have a dense complement R.

Proof. Define K to be the dense set
⋃

n∈N
1
3n Z and let H = K + 1

2 Z; H is an addi-
tive subgroup of R and H \K = K + 1

2 . Select elements from the cosets of R/H
to obtain the choice set {rα}. Then define S1 =

⋃
α (rα + K ) and S2 = S1 + 1

2 .
These two sets are easily seen to be disjoint, and the coset decomposition implies
that every real is in one of the two sets. To finish, we have that for all a, b ∈ Si

if a− b ∈ H , then a− b ∈ K, and so �Si is disjoint from the set H \K, which is
the dense set K + 1

2 .

Theorem 10.12 (AC). If n ≥ 2, then every bounded set in Rn is in E .

Proof. Let A ∈ B, and let Si be the sets of Lemma 10.11. Define Si j to be
Si × S j × Rn−2, and let Ai j = A ∩ Si j; then

⋃
Si j = Rn. Choose r > diam (A).

Observe first that the 4-set family {Ai j} is extricable. This is shown by linearly
translating Ai j by ir in the second coordinate and then following that by a trans-
lation through (2i+ j)r in the first coordinate. These motions never lead to a
crash, because they are restricted to single coordinates. Consider A11 and A21:
(s1, s′1,

⇀a ) ∈ A11 translates to (s1, s′1 + y, ⇀a ), which, because of the first coordi-
nate, cannot equal (s2, s′′1 + y′, ⇀a ), a similar translate of a point in A21. For the sub-
sequent translation in the first coordinate, a crash is impossible because the choice
of r guarantees that the second coordinates differ. Continuing with the exam-
ple, we would have (s1 + x, s′1 + r, ⇀a ), which cannot equal (s2 + x′, s′′1 + 2r, ⇀a ),
because s′1 − s′′1 < r. The extrication performed by the translations shows that the
sets satisfy the condition of Definition 10.9.

Now, by Lemma 10.10, it suffices to show that each Ai j ∈ E . Indeed, for any i
and j, there is a single path (a one-dimensional family of translations) {γt : 0 ≤
t ≤ 1}, where each γt is a translation in the first two coordinates and the identity in
the others, that can extricate any disjoint subsets B,C ⊆ Ai j. Define γt as follows,
where γt is defined to be a point in R2, interpreted as a translation vector in Rn.
Let γ0 = (0, 0). Let {ak}, {bk} be sequences in R \�Si, R \�S j , respectively, that
converge to 0, and define a sequence {vk} in R2 by v0 = (r, b0), v2k+1 = (ak, bk ),
and v2k+2 = (ak, bk+1) (Fig. 10.1).

Then let γt be the result of linear interpolation between vk+1 and vk during the
time interval 2−k−1 ≤ t ≤ 2−k . For t > 0, γt ∈ ({ak} × R) ∪ (R× {bk}), and so
γt /∈ �Si ×�S j; this means that γt (Ai j ) ∩ Ai j = ∅ and therefore γt (C) is always
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Figure 10.1. The meshing of two 0-converging sequences used for extrication.

disjoint from B. Moreover, γ1(C) = C + (r, b0,
⇀
0 ) and so lies strictly to the right

of B. This means that the path {γt} extricates the pair B,C.

The next result follows from the preceding proof.

Corollary 10.13. If n ≥ 2, then any finite partition of a bounded subset of Rn is
extricable by translations.

Because the isometry group is a topological group, we can talk about path-
connected subgroups.

Theorem 10.14. If n ≥ 2 and G is a path-connected group of isometries of Rn

containing all translations in two dimensions, then any two G-equidecomposable
bounded subsets of Rn are continuously G-equidecomposable.

Proof. Let A and B be equidecomposable using the partitions {Ai} and {Bi} and
isometries gi ∈ G. Using a translation if necessary, assume A and B are disjoint.
Then choosing a path from the identity to gi in G, we get Ai ≈G Bi (using only
one piece). Then Proposition 10.8 and Theorem 10.12 yield that [A] = [

⋃
Ai] =

�[Ai] = �[Bi] =
⋃

[Bi] = [
⋃

i Bi] = [B].

Corollary 10.15. If n ≥ 3, then any two bounded subsets of Rn with non-
empty interior are continuously equidecomposable using orientation-preserving
isometries.

In particular, the solid ball in R3 has a continuous paradoxical decomposition,
and so this corollary answers the question of de Groot posed in [Dek58a, p. 25].
The work of Chapter 9 leads to this slightly stronger squaring of the circle.

Corollary 10.16 (AC). A disk and a square having the same area are continu-
ously equidecomposable by translations.
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10.2 A Cancellation Law 175

This abstract approach does not easily work in more general situations; here are
some unsolved problems. In short, one can ask about continuous equidecompos-
ability for any of the known paradoxical situations. The first is related to an exten-
sion of the Banach–Tarski Paradox discussed in §11.2. Wilson [Wil05] points out
that the two sets Si of Lemma 10.11 cannot have the Property of Baire, and that
is why his method fails in that context. Because of the Dougherty–Foreman work
on Baire sets (§11.2), we have the following question.

Problem 10.17. Does there exist a continuous version of the Banach–Tarski Para-
dox using pieces having the Property of Baire?

Problem 10.18. Does there exist a continuous version of the Banach–Tarski Para-
dox in the hyperbolic plane H2? That is, does Theorem 4.17 hold when restricted
to continuous equidecomposability? Is there a continuous version of the Banach–
Tarski Paradox of the sphere S2? Is there a continuous version of any of the linear
paradoxes of Chapter 8?

10.2 A Cancellation Law

We now discuss a Cancellation Law for S that, like the Banach–Schröder–
Bernstein Theorem, is a powerful tool for proving sets equidecomposable. Let
S denote the type semigroup of an arbitrary group action on some set.

Theorem 10.19 (Cancellation Law) (AC). If, for α, β ∈ S and a positive integer
n, nα = nβ, then α = β.

By the Banach–Schröder–Bernstein Theorem, the law follows from this
weaker version.

Theorem 10.20 (Weak Cancellation Law) (AC). If, for α, β ∈ S and a positive
integer n, nα ≤ nβ, then α ≤ β.

Before diving into the details of the proof, we illustrate the law’s power by
deriving some corollaries. First, we show that finitely many copies of a set cannot
be packed into fewer copies of the set, unless the set is paradoxical.

Corollary 10.21 (AC). If α ∈ S and n ∈ N satisfy (n+ 1)α ≤ nα, then 2α = α

Proof. Substituting the hypothesized inequality into itself yields nα ≥ (n+
1)α = nα + α ≥ (n+ 1)α + α = nα + 2α. Repeating, we eventually obtain that
nα ≥ nα + nα = 2(nα). Because nα ≤ 2(nα), we have nα = (2n)α = n(2α) and
hence cancellation yields α = 2α.

Proof. Substituting the hypothesized inequality into itself yields nα ≥ (n+
1)α = nα + α ≥ (n+ 1)α + α = nα + 2α. Repeating, we eventually obtain that
nα ≥ nα + nα = 2(nα). So Theorem 10.20 yields α ≥ 2α, which suffices.
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176 10 The Semigroup of Equidecomposability Types

In Theorem 3.12 we showed how the Banach–Tarski Paradox for balls can be
combined with the Banach–Schröder–Bernstein Theorem to get the equidecom-
posability of arbitrary bounded subsets of R3 with nonempty interior. But that
technique does not suffice to get the SO3(R)-equidecomposability of arbitrary
subsets of S2 with interior. The problem is that an open subset of S2 does not
contain a sphere and so it is not evident that it contains any paradoxical sets. The
Cancellation Law allows us to show rather easily that any open subset of S2 is
paradoxical.

Corollary 10.22 (AC). If G acts on X and E ⊆ X is G-paradoxical, then E is
G-equidecomposable with any subset A of E with the property that g1A ∪ · · · ∪
gnA ⊇ E for some gi ∈ G. Hence any such A is G-paradoxical and any two such
subsets of E are G-equidecomposable.

Proof. Work in S . The hypothesis on A yields n[A] ≥ [E], while [E] = 2[E] =
· · · = n[E] because E is paradoxical. So n[A ≥ n[E] ≥ n[A] (A ⊆ E), whence
n[A] = n[E], and cancellation now implies that [A] = [E], that is, A ∼ E. Hence
A is G-paradoxical because E is, and if B is another subset of E rich enough so
that finitely many copies cover E, then B ∼ E too, whence B ∼ A.

Corollary 10.23 (AC). If n ≥ 2, then any two subsets of Sn, each of which
has nonempty interior, are SOn+1(R)-equidecomposable, and any such subset is
SOn+1(R)-paradoxical.

Proof. This follows from Corollary 10.22 and Theorem 6.1, because sufficiently
many copies of a nonempty open subset of Sn cover Sn.

It is not completely clear which subsets E of S2 are SO3(R)-equidecomposable
with all of S2. Recall (Thm. 3.10) that S2 ∼ S2 \D for any countable D, and so a
set with empty interior can be equidecomposable with S2. On the other hand, if
E ∼ S2, then E cannot be nowhere dense, nor can E have Lebesgue measure zero;
this is because these properties are preserved under equidecomposability.

The Cancellation Law, like the Banach–Schröder–Bernstein Theorem, is moti-
vated by the corresponding result for cardinality, that is, arbitrary bijections,
namely; n|X | = n|Y | implies |X | = |Y |. This more basic result is due to Bern-
stein [Ber05], who proved it without using the Axiom of Choice (see [Jec73, p.
158] for the beautiful proof in the case n = 2). Note that both Bernstein’s The-
orem and the classical Schröder–Bernstein Theorem (|X | ≤ |Y | ≤ |X | implies
|X | = |Y |) are quite easy if the Axiom of Choice is assumed. For, in the case
of the former, Choice implies that n|X | = |X | for X infinite, and for the latter,
|X | ≤ |Y | ≤ |X | implies ℵα ≤ ℵβ ≤ ℵα , where ℵα , ℵβ are the cardinals corre-
sponding to X ,Y respectively, whence ℵα = ℵβ . What is noteworthy about the
two results is that they are theorems of ZF rather than ZFC. In the case of the
Schröder–Bernstein Theorem, the Choiceless treatment proved extremely valu-
able, as it led to Banach’s useful generalization to equidecomposability; the proof
using ℵα , ℵβ is of no help with equidecomposability types. With the Bernstein
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10.2 A Cancellation Law 177

Cancellation Law, too, the proof using Choice (n|X | = |X |) does not help us deal
with arbitrary types in S , but the more constructive proof does. There is a catch,
though. Bernstein’s proof, unlike that of the Schröder–Bernstein Theorem, does
not carry over verbatim to the context of S . The necessity of finite decomposi-
tions when working in S means that the Axiom of Choice is used at one point in
the proof. The interested reader should compare Kuratowski’s proof of Theorem
10.19 for n = 2 [Kur24] with Bernstein’s Theorem as presented by Jech [Jec73,
p. 158].

We follow a rather different route, pioneered by D. König. He saw [Kon16]
that results on matchings in infinite graphs (which use Choice) could be applied
to Cancellation Laws, and after Kuratowski published a proof of Theorem 10.7
for n = 2, König [Kon26] showed how results of Valkó and himself could be used
to prove Theorem 10.19 for all n ≥ 1.

The proof of the Cancellation Law that we now give will be based on the
Hall–Rado–Hall Infinite Marriage Theorem (App. C), which is a variation on
the König method. In fact, just like the Schröder–Bernstein Theorem, the proof
of the Cancellation Law works for the situation where equidecomposability is
replaced by any relation on sets satisfying properties (a) and (b) of Theorem 3.6’s
proof.

Proof of 10.20. If nα ≤ nβ, then there are two disjoint, bounded, G∗-
equidecomposable sets E,F ⊆ X ∗ with partitions E = A1 ∪ · · · ∪ An, F = B1 ∪
· · · ∪ Bn such that each [Ai] = α and each [Bi] = β. Let χ : E → E ′ ⊆ F be
the piecewise G∗-congruence witnessing E ∼ E ′, and let φi : A1 → Ai, ψi : B1 →
Bi likewise witness G∗-equidecomposability (take φ1 and ψ1 to be the iden-
tity). For each a ∈ A1, let a = {a, φ2(a), . . . , φn(a)}, and for b ∈ B1, let b =
{b, ψ2(b), . . . , ψn(b)}. Note that {a : a ∈ A1},{b : b ∈ B1} form partitions of E,
E ′, respectively.

Form a bipartite graph by letting the first part of the vertex set be A = {a : a ∈
A1}, while B = {b : b ∈ B1} is the other part. There will be n edges emanating
from each a: For each i = 1, . . . , n, form the edge a � b whenever χ φi(a) ∈ b.
This graph, which might have multiple edges, is n-regular in the first part and
of maximum degree n in the second part. Furthermore, it satisfies the marriage
condition on the first part. For suppose Y is a k-sized subset of A; let Z be the set
of neighbors of vertices in Y . The number of edges going from Y to Z is nk. But
if |Z| < k, then the number of edges going from Z to Y is less than kn, contra-
diction.

The Hall–Rado–Hall Theorem (Thm. C.2) then provides a matching M for
the graph that covers A. For each vertex a, there is a unique edge a � b
in M , and the edge exists by virtue of χφi(a) = ψ j(b) for some i, j. Let
Ci j = {a ∈ A1 : a � b ∈ M and χφi(a) = ψ j(b)}: similarly, let Di j = {b ∈ B1 :
a � b ∈ M and χ φi(a) = ψ j(b)}. Then ψ−1

j χφi maps Ci j into Di j and is a piece-

wise G∗-congruence because each of φi, χ , ψ−1
j are. Because {Ci j} partitions A1,

this shows A1 ∼
⋃

Di j ⊆ B, or α ≤ β, as desired.
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Because the proof of the Cancellation Law uses the Axiom of Choice, it cannot
be applied in situations (as in §10.3) where there are restrictions on the sets. Tarski
developed a theory of cardinal algebras (such being a commutative semigroup
with identity and having an additional infinitary operation that satisfies several
axioms) and in [Tar49, §16] he relates that theory to the equidecomposability
relation and derives, without AC, several identities that are interesting, but weaker
than the full Cancellation Law.

10.3 Restrictions on the Pieces

We have seen that it can be natural when dealing with equidecomposability to
restrict the pieces in some way. Indeed, this goes back to the historical method
of understanding areas using the cutting apart of shapes described by the method
of congruence by dissection (§3.1), but one can also restrict to pieces that are
Lebesgue measurable (Theorem 9.29) or have the Property of Baire (the Mar-
czewski Problem, §11.2). In such situations a semigroup of types can still be
formed, but its algebraic structure may differ in important ways from the case
of arbitrary pieces. Suppose a group G acts on a set X so as to leave a certain
subalgebra A of P (X ) invariant; that is, σ (A) ∈ A whenever A ∈ A and σ ∈ G.
Examples include the ones just mentioned, as well as letting A consist of all Borel
subsets of a metric space (where G is a group of isometries), or all Borel subsets
of a topological group acting on itself by left multiplication. In these examples A
is a σ -algebra; that is, A is closed under countable unions and intersections. For
such A it is easy to see that the proof of the Banach–Schröder–Bernstein Theo-
rem (Thm. 3.6) applies to G-equidecomposability in A; the proof uses a countable
union at one point, and so the sets it constructs remain in A provided A is a σ -
algebra.

To form a semigroup of equidecomposability types for A, let X ∗ and G∗ be as
in §10.1.1, but consider only those bounded subsets A of X ∗ such that each level
of A corresponds to a set in A. Precisely, let

A∗ = {A ⊆ X ∗ : for some n ∈ N,A =
⋃
m<n

Am × {m} where each Am ∈ A},

and define the type of A ∈ A∗ to consist of all sets B ∈ A∗ such that B ∼G∗ A
using pieces in A∗. Let the collection of such types be denoted by S (A). If we
define+ in S (A) as in §10.1.1, then S (A) is a commutative semigroup. The proof
of the Cancellation Law, however, does not carry over to S (A), even if A is a σ -
algebra. This is because the proof used the Axiom of Choice, which in general
produces sets outside A: The sets Ci j and Di j, used for equidecomposability in
the proof, were defined from the matching M , which need not lie in A because
it was nonconstructively provided by the marriage theorem. We shall see in
§10.3.1 some examples showing that the Cancellation Law can indeed fail, and in
§10.3.2 some interesting contexts in which it is not known if the Cancellation Law
holds.
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10.3.1 Failure of the General Cancellation Law

In this section we show how to modify the Laczkovich matching construction
(Thm. 9.31) to show the failure of a general Cancellation Law; this work is due
to Gardner and Laczkovich [GL90]. In what follows we use a one-dimensional
version of the concept of geometric dissection, introduced in Chapter 3 so the
pieces will be simply intervals.

The purpose of the next theorem is twofold. First, it shows that there are two
plane squares (extend the intervals into the second dimension) that are equidecom-
posable with respect to a finite group of plane isometries but are not congruent by
dissection using the same isometries. Second, the ideas lead to an algebra where
the Cancellation Law (10.19) fails.

Theorem 10.24. There is a set T of four isometries of the line and two intervals
such that the intervals are equidecomposable with respect to isometries in T , but
are not congruent by dissection with respect to the group generated by T .

Proof. Start with an irrational u ∈ (0, 1) and consider the four simple isometries
{σ1, σ2, σ3, σ4} defined from u in Theorem 9.31. Let v ∈ R be such that 1, u, and
v are algebraically independent over Q; let T be the isometries given by τi(x) =
σi(x)+ v . Then the intervals [0, 1] and [v, v + 1] are equidecomposable using T
by claim 1 of Theorem 9.31. Observe that every element in the group generated
by the τi has the form g(x) = ±x+ ku+ jv + 2m, where k, j,m ∈ Z and k +
j is even. Now let G be the group consisting of all such functions g. We will
prove that these intervals are not congruent by dissection using G (which contains
the τi).

Suppose the congruence by dissection exists; then there are partitions
into closed subintervals of [0, 1] and [v, v + 1] via the numbers 0 = a0 < a1

< . . . < an = 1 and v = b0 < b1 < · · · < bn = v + 1, respectively, such that
each [ai, ai+1] is gi-congruent to [bi, bi+1] for some gi ∈ G. Now define a bipar-
tite graph � as follows: The vertices of one part are the numbers ai, and of the
other part are the bj. And ai � b j is an edge if gi(ai) = b j, where i < n, or
gi−1(ai) = b j and i > 0. The graph can have multiple edges; we observe that all
vertices have degree 2, except the vertices a0, an, b0, and bn, which have degree
1. Let �0 be the connected component containing a0; this component must have
a path from a0 to one of the three leaves. But any vertex in the path has the form
ku+ jv + 2m, with k + j even. Because the end of the path is 1, v , or v + 1, this
contradicts the assumption of algebraic independence.

A modification of the preceding result yields an example showing that 2x = 2y
in the type semigroup for equidecomposability using a set-algebra does not imply
that x = y. By an algebra, we mean a collection of subsets of X containing ∅, X
and closed under finite union and intersection, and complementation in X . Here
G is the group of Theorem 10.24.
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180 10 The Semigroup of Equidecomposability Types

Theorem 10.25. There is a subset X of R and a G-invariant subalgebra A
of P (X ) such that the Cancellation Law fails for G-equidecomposability using
pieces in A.

Proof. Let u, v be the reals from Theorem 10.24; let H = {ku+ jv + m :
k, j,m ∈ Z} and X = R \H . Let (a, b)X denote the intersection of the interval
with X , and then let A be the algebra generated by the basis intervals: sets (a, b)X ,
where a, b ∈ H ∪ {±∞}. Because of the use of the complement of H , A is exactly
the set of all finite unions of the basis intervals and complements of such sets.

Now we can show that the sets B = (0, 1)X ∪ (2, 3)X and C = (v, v + 1)X ∪
(v + 2, v + 3)X are G-equidecomposable with pieces in A. Note that G maps
H to H and X to X , and hence A is G-invariant. We can partition B into
B1 = (0, u)X , B2 = (u, 1)X , B3 = (2, 3− u)X , and B4 = (3− u, 3)X and C into
C1 = (v, v + u)X , C2 = (v + 2, v + 3− u)X , C3 = (v + u, v + 1)X , and C4 =
(v + 3− u, v + 3)X . Then gi(Bi) = Ci, where g1(x) = −x+ u+ v , g2(x) = x−
u+ v + 2, g3(x) = x+ u+ v − 2, and g4(x) = −x− u+ v + 6.

On the other hand, translation by 2 witnesses G-equidecomposability using
pieces in A of the sets (0, 1)X and (2, 3)X , and also (v, v + 1)X and (v + 2, v +
3)X . So we have, in the type semigroup, 2[(0, 1)X ] = 2[(v, v + 1)X ]. But the sets
(0, 1)X and (v, v + 1)X are not G-equidecomposable using pieces in A, because
such a decomposition would use only basis intervals and so, after extending the
isometries from X to R, would show that the corresponding real intervals were
congruent by dissection using elements of G, in contradiction to the proof of
Theorem 10.24.

The counterexamples to the Cancellation Law found by Gardner and
Laczkovich (and also a different example by J. Truss [Tru90]; his example uses
a σ -algebra and does not use isometries) used noncommutative groups. But
Laczkovich [Lac91a] showed that such failures are possible even with commu-
tative groups. Here and later in this section we use interval of Rn to mean a set
of the form I1 × I2 × · · · × In, where each Ii is a bounded interval on the line.
For the next example, all the components will be half-open. Working in R2, let R
be the set of rectangles [a, b)× [c, d ), where a < b and c < d, and let A be the
algebra generated by R. For two fixed positive reals α, β with α/β irrational,
define the set of vectors V = {(x+ nα + kβ, x) : x ∈ R, n, k ∈ Z}. This set deter-
mines a group TV of planar translations.

Theorem 10.26 (AC). The Cancellation Law fails for the triple (R2,TV ,A).

Proof. Let A = [0, α)× [0, β/2) and B = [0, α/2)× [0, β ); we will show that
2[A] = 2[B] and [A] 
= [B] in the type semigroup. Define A′ = [0, α)× [β/2, β ).
We have A ∼TV A′ in A. Indeed, choose a positive integer n such that nα < β/2 <
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(n+ 1)α; then A = A1 ∪ A2 and A′ = A′1 ∪ A′2, where

A1 =
[

0, (n+ 1)α − β

2

)
×
[

0,
β

2

)
,A2 =

[
(n+ 1)α − β

2
, α

)
×
[

0,
β

2

)

and

A′1 =
[
β

2
− nα, α

)
×
[
β

2
, β

)
,A′2 =

[
0,
β

2
− nα, α

)
×
[
β

2
, β

)
.

Observe that A′1 = A1 + t1, where t1 = (β/2− nα, β/2) ∈ TV , and A′2 = A2 +
t2, where t2 = (β/2− (n+ 1)α, β/2) ∈ TV . This implies that A ∼TV A′ in A. Sim-
ilarly, B ∼TV B′ in A, where B′ = [α/2, α)× [0, β ). Because A ∪ A′ = B ∪ B′, we
have that 2[A] = 2[B] in A.

Next we will show that [A] 
= [B] in A. For this we will construct a function
� from R to the circle group R/[0, 1) that is Tv -invariant modulo 1 and assigns
different values to [A] and [B].

Let F : R2 → R be any function. It is easy to see that �, defined by

�([a, b)× [c, d )) = F (a, c)− F (b, c)+ F (b, d )− F (a, d ),

is a finitely additive function on R. Now we have to choose F so that � is as
desired. For this, we take a Hamel basis H (a basis of R over Q) containing α and
β and define functions f , g : R → R such that f (x+ y) = f (x)+ f (y) and g(x+
y) = g(x)+ g(y) for any x, y ∈ R as follows: f (x) and g(x) are the coefficients of
α and β in the representation x =∑

ru · u, where u ∈ H , ru ∈ Q, and ru = 0 for
all but finitely many ru. Note that because α/β /∈ Q, we can always construct these
two functions.

Next define the function F (x, y) = f (x− y)�g(x− y)�, where x, y are
real. It follows that F (0, 0) = F (α/2, 0) = F (α, 0) = F (0, β/2) = F (0, β ) = 0,
F (α/2, β ) = −1/2, and F (α, β/2) = −1; therefore �(A) = −1 and �(B) =
−1/2, which gives [A] 
= [B].

For Tv -invariance we need to show that for any R ∈ R and t ∈ TV , �(R+ t ) ≡
�(R) (mod 1). For this it is enough to check that it is true in the following cases:
t = (z, z), where z ∈ R, t = (α, 0), and t = (β, 0). Because F (x+ z, y+ z) =
F (x, y), the first case is clear. If t = (α, 0), then

F (x+ αy) = f (x− y+ α)�g(x− y+ α)� = ( f (x− y)+ 1)�g(x− y)�
= f (x− y)�g(x− y)� ≡ F (x, y)(mod 1),

which easily implies TV -invariance. Let t = (0, β ); then

F (x+ β, y) = f (x− y+ β )�g(x− y+ β )� = f (x− y)�g(x− y+ 1)�
= f (x− y)�g(x− y)� + f (x− y) = F (x− y)+ f (x− y).

If R = [a, b)× [c, d ), then by the preceding we get �(R+ (β, 0)) = �(R)+
( f (a− c)− f (b− c)+ f (b− d )− f (a− d )) = �(R), and this concludes the
construction.
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182 10 The Semigroup of Equidecomposability Types

Based on the preceding construction, Laczkovich [Lac91a] gave two additional
examples of the failure of the Cancellation Law, obtained by using Abelian group
actions (see [Lac91a, Exs. 2 and 3]). In the first of these examples the underlying
space is a compact Abelian group (the torus {(x, y) : 0 ≤ x < α, 0 ≤ y < β} such
that α/β is irrational and addition is defined mod α in the first coordinate and mod
β in the second) and the acting group is a subgroup of translations. In the second
example the space is R and the acting group is the group of all translations. This
work led Laczkovich to the following question.

Question 10.27. Let X be a compact Abelian group, let G be the group of all
translations in X , and let A be any subalgebra of P (X ). Does the Cancellation
Law hold for (X ,G,A)?

We have also the following old question.

Question 10.28. Does the Cancellation Law hold for Borel equidecomposability
in every locally compact group?

Laczkovich [Lac91a] found a very interesting relation between Cancellation
Law and signed measures. Recall that signed measures, unlike classical measures,
are allowed to take any value in R ∪ {∞} as a value (usually such measures are
allowed to be −∞, but we restrict to only ∞ here). More precisely, let a group G
act on a set X and let A be a G-invariant subring of P (A). We will say that θ is a
finitely additive, G-invariant signed measure on (X ,G,A) if

(a) θ : A→ R ∪ {∞}
(b) for any A ∈ A, θ (A) = θ (gA)
(c) for any disjoint A,B ∈ A, θ (A ∪ B) = θ (A)+ θ (B)

Now we will need the type semigroup defined for a given ring of sets: It is
defined in the same way as the type semigroup for a subalgebra of P (X ) in §10.1.
As usual, we use [A] for the type of A ∈ A. Laczkovich [Lac91a] proved the fol-
lowing theorem.

Theorem 10.29 (AC). Suppose G acts on X and A,B ∈ A, where A is a subal-
gebra of P (X ). Then θ (A) = θ (B) for any G-invariant, finitely additive, signed
measure on A if and only if there is a positive integer n such that n[A] = n[B].

Consider now the following two conditions for a triple (X ,G,A):

(a) A,B ⊆ X are G-equidecomposable with pieces in A.
(b) θ (A) = θ (B), whenever θ is any finitely additive G-invariant signed mea-

sure defined on A.

Theorem 10.31 leads to the following corollary.

Corollary 10.30 (AC). For every triple (X ,G,A), conditions (a) and (b) are
equivalent if and only if the Cancellation Law holds for equidecomposability with
respect to G and A.
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Proof. The forward direction follows from Theorem 10.31. For the reverse,
observe that if the Cancellation Law fails in A, then (b) does not imply (a).
Indeed, let n be a positive integer such that n[A] = n[B] and [A] 
= [B]. By the
theorem, n[A] = n[B] implies (b), and therefore the implication (b) ⇒ (a) does
not hold.

Because the Cancellation Law holds when A = P (X ), we immediately get the
following corollary.

Corollary 10.31 (AC). Let G be a group acting on a set X . Then for any A,B ⊆
X , A ∼G B holds if and only if θ (A) = θ (B) is true for any finitely additive, G-
invariant signed measure on P (X ).

Finally, we observe that in Corollary 10.33 we cannot use finitely additive mea-
sures or even signed measures with finite values. First we observe that in that
corollary, we cannot use a finitely additive, G-invariant measure. Indeed, let X =
Q; then μ([0, 1) ∩Q) = ∞ implies μ([0, 1] ∩Q) = ∞. And if μ([0, 1) ∩Q) <
∞, then for any x ∈ Q, μ({x}) = 0. Therefore μ([0, 1] ∩Q) = μ([0, 1) ∩Q).
But, by a result of Sierpiński [Sie54, Thm. 17], [0, 1) ∩Q is not equidecompos-
able to [0, 1] ∩Q.

Now observe that the signed measure θ in Corollary 10.3 cannot have only
finite values. Let X = Z and let G be the group of integer translations. If θ is
a finitely additive G-invariant signed measure with finite values, then θ (N) =
θ (N \ {0}) (as one is a translate of the other) and so θ ({0}) = 0 = θ (∅). But {0}
and ∅ are not equidecomposable.

10.3.2 Regular-Open Sets and Geometric Bodies

In Rn the restriction to Borel pieces eliminates paradoxical decompositions of sets
such as balls or cubes, because of Lebesgue measure. But there is another way
of looking at equidecomposability in Rn that, when n ≥ 2, leads to the intriguing
Marczewski Problem. This problem was open for more than 60 years before being
solved by Dougherty and Foreman in 1992 (§11.2).

An open subset of Rn is called regular-open if it equals the interior of its
closure; loosely speaking, the open set can have no cracks. The union of two
regular-open sets is not necessarily regular-open, but there is another natural
binary operation that is very similar to union. If A and B are regular-open,
let A ∨ B be int(A ∪ B), where int (E ) is the interior of E; it is easy to check
that A ∨ B is regular-open and ∨ is associative. Moreover, A1 ∨ A2 ∨ · · · ∨ An =
int(A1 ∪ · · · ∪ An). The importance of this notion is that the regular-open sets in
any topological space X form a complete Boolean algebra, with A ∧ B = A ∪ B,
A′ = int(X \A), and

∑{Ai : i ∈ I} = int
⋃{Ai : i ∈ N} [CN74, p. 53]. We are

interested in the collection of bounded regular-open subsets of Rn, which we
denote by R. Now, we can define equidecomposability in R with respect to the
isometries of Rn in the usual way, using∨ instead of ∪ and with the restriction that
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184 10 The Semigroup of Equidecomposability Types

all pieces come from R. Then let [A], for A ∈ R, be the collection of sets that are
equidecomposable in R with A, and let S (R) = {[A] : A ∈ R}. Unlike the gen-
eral case, where it was necessary to expand X to X × N, this definition of S (R)
is adequate for adding types. Translations can be used to obtain as many disjoint
copies of a bounded set as required, whence addition of types may be defined by
[A]+ [B] = [A ∪ τ (B)], where τ is a translation taking B to a set disjoint from A.

The Banach–Schröder–Bernstein Theorem holds in S (R) by the proof given
in Theorem 3.6, where one replaces A ∪ B by A ∨ B,

⋃∞
n=0 Cn by

∑
Cn and A \B

by A ∧ B′. But it is unclear whether the Cancellation Law holds in S (R). Because
of the paradox inherent in the solution to the Marczewski Problem, the semigroup
becomes trivial (two elements) in dimensions 3 and greater. But the situation in
dimensions 1 or 2 is not clear.

Question 10.32. Does 2α = 2β imply α = β in S (R), where R is the regular-
open algebra in R1 or R2?

We know that any two bounded nonempty open sets in Rn (n ≥ 3) are
equidecomposable—the strong form of the Banach–Tarski Paradox—but that
uses arbitrary sets in the decomposition. Equidecomposability in R requires that
regular-open sets be used as pieces. A first clue that paradoxes might exist comes
from the fact that Lebesgue measure is not additive with respect to the join opera-
tion that defines equidecomposability in R. We show why such additivity fails in
R1, but the example generalizes easily to Rn.

Proposition 10.33. For any ε > 0, the open unit interval (0, 1) contains disjoint
regular-open sets A1 and A2 such that A1 ∨ A2 = (0, 1) but λ(A1)+ λ(A2) < ε.

Proof. Let {qn : n ∈ N} enumerate the rationals in (0, 1). Choose open intervals
In such that In is centered at qn, has an irrational radius less than ε2−(n+1), and
is disjoint from the previously defined intervals. But if qn already lies in some
Im with m < n, let In = ∅. Let A =⋃

In, an open dense set with λ(A) < ε. Let
I ′n be the open interval forming the left half of In, while I ′′n is the (open) right
half. Finally, let A1 =

⋃
I ′n, A2 =

⋃
I ′′n . Because Ai is open, to show that it is

regular-open, it suffices to show that any point x in the interior of Ai lies in Ai.
Consider A1. Let I be an open interval containing x and contained in A1. Then I
is disjoint from A2. Let q < x be a rational in I ; because I ∩ A2 = ∅, the interval
In containing q must be centered at a rational to the right of I , which implies that
x ∈ A1. Similarly, A2 ∈ R.

Because A1 ∪ A2 contains all rationals in (0, 1), A1 ∪ A2 = [0, 1] and A1 ∨
A2 = (0, 1). Moreover, λ(A1) = λ(A2) = 1

2λ(A), so λ(A1)+ λ(A2) < ε.

And in fact a cube and a cube twice the size are equidecomposable in R. This
is a consequence of the Dougherty–Foreman solution to the Marczewski Problem
(§11.2). In dimensions 1 and 2, there is a measure on R that implies a paradox
does not exist. The main point is that, because the boundary of an open set is
nowhere dense, a finitely additive measure will be additive with respect to ∨ if,
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unlike λ, it vanishes on all nowhere dense sets. This is because the difference
between A ∪ B and A ∨ B is nowhere dense. The techniques of Part II (Cor. 12.9)
will show how, in R and R2, the solvability of the isometry group allows one
to construct a finitely additive, isometry-invariant measure, μ, on all bounded
subsets of Rn (n ≤ 2) such that μ(J ) = 1 and μ(E ) = 0 for all meager sets E.
Such a measure μ, unlike λ, is additive with respect to ∨, and hence yields that
neither an open interval in R nor a square in the plane is paradoxical in the sense
of R. This technique does not apply to R3, and in fact the open unit cube in R3 is
paradoxical in the sense of R.

Paradoxical decompositions involving the join operation on regular-open sets
can certainly be eliminated by a further restriction on the pieces. Let Rv be the
algebra of bounded, regular-open, Jordan measurable sets (sometimes called geo-
metric bodies), and let v , for volume, denote Jordan measure. Recall that Jordan
measure is the precursor of Lebesgue measure, using coverings by finite collec-
tions of intervals rather than countable ones. A bounded set A is Jordan measur-
able if and only if its boundary ∂A has Jordan measure zero (see App. B). The fact
that Rv is an algebra—closed under ∨—follows from this: A ∨ B ∈ R because R
is an algebra; and ∂ (A ∨ B) ⊆ ∂ (A ∪ B) (easy proof), and the latter has Jordan
measure 0 because A ∪ B is Jordan measurable.

Define equidecomposability in Rv using the join operation, pieces in Rv , and
the full isometry group Gn. Because the sets in Rv are a mathematical analog of
physical bodies, we say that A and B are equidecomposable as geometric bodies
when they are equidecomposable in Rv as just defined. The finite additivity and
isometry invariance of v yields that v is an invariant for equidecomposability: If
A,B ∈ Rv are equidecomposable as geometric bodies, then v (A) = v (B). What
about the converse? A positive answer would be a nice extension of the Bolyai–
Gerwien Theorem about geometric dissection, but Laczkovich [Lac03, Thm.3]
showed that the answer is negative by proving the following theorem.

Theorem 10.34. There are two Jordan curves in R2 such that the defining
functions are differentiable with bounded derivative, the corresponding Jordan
domains each have Lebesgue measure 1, and the interiors of the domains are not
equidecomposable as sets using isometries.

The connection between Jordan domains and geometric bodies is a little
delicate. For example, there is a Jordan domain whose boundary has positive
Lebesgue measure [Osg03]; thus continuity is not sufficient to get a Jordan-
measure zero boundary.

Lemma 10.35. If K is a Jordan curve that is differentiable with bounded deriva-
tive, then K is Jordan measurable and has Jordan measure 0.

Proof. Let B bound the norm of the derivative vector; assume B ≥ 1; let f with
domain [0, 1] define K. Given positive ε (assumed less than 1), split the unit
interval into interior-disjoint subintervals, each of length at most ε/(2B2). Using
the f -value of the midpoints of these as centers of orthogonal squares of side
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186 10 The Semigroup of Equidecomposability Types

ε/(2B), we then have a covering of K by squares of area ε2/(4B2). The number of
these is at most $2B2/ε%. So the total area of the squares is at most ( 2B2

ε
+ 1) ε2

4B2 ,
which is under ε. This shows K has Jordan measure 0.

Corollary 10.36. There are two geometric bodies in R2 that have the same Jordan
measure but are not equidecomposable as geometric bodies.

Similar ideas work in R1, as Laczkovich, building on the ideas of [Lac93],
proved that there are two one-dimensional geometric bodies of the same length
but not equidecomposable as geometric bodies. We present a sketch of the proof.
In what follows we will use a function δ f that relates to a necessary condition for
translation equidecomposability of two subsets of the unit interval J = [0, 1). Let
f : J → R be bounded; let ω( f ) be the diameter of the set f (J ): sup f − inf f .
Furthermore, Tc denotes the translation operator: Tc( f ) takes x to f (x+ c). Now,
for a given bounded f as just defined, we can define the following function for
reals t ≥ 1:

δ f (t ) = inf

{
ω

(
1

n

n∑
i=1

Tci ( f )

)
: n ≤ t and ci ∈ J

}
.

For A ⊆ J , we use just δA for δχA . Note that δ f is both nonnegative and decreas-
ing on its domain. If f is Riemann integrable and the sequence ci is uniformly dis-
tributed in J , then the function 1

n

∑n
i=1 Tci ( f ) converges uniformly to

∫
J f = dx

(see [KN74]) and therefore limt→∞ δ f (t ) = 0. Also for any A ⊆ J , the function
1
n

∑n
i=1 Tci (χA) takes on only the values i/n, (i = 1, . . . , n) and so δA(t ) is in fact

an exact minimum. Finally, if A ⊆ J is Jordan measurable, then χA is Riemann
integrable and so limt→∞ δA(t ) = 0.

Laczkovich also proved the following two theorems.

Theorem 10.37. If A,B ⊆ J and A and B are translation equidecomposable, then
there are positive numbers K and ε such that, for t ≥ 1, δB(t ) < δA(

√
t )+ Kt−ε .

Theorem 10.38 (AC). There are one-dimensional geometric bodies A, B of Jor-
dan measure 1 that are not equidecomposable as geometric bodies.

Sketch of proof of Theorem 10.38. The construction uses two sequences
of positive numbers: 1/4 = ε0 > ε1 > . . . and an unbounded sequence
1 = t0 < t1 < . . . , and a sequence of sets An ⊂ (εn, εn+1), n ≥ 1. Each An is
a union of closed intervals. The sequences satisfy the following condition.

For any positive integer n, if D1,D2 ⊆ {1, . . . , n− 1}, B1,B2 ⊂ [0, εn], and
J1, J2 are subintervals of [1/2, 1], then

1. δC1 (t2
n ) > εn−1

4 > δC2 (tn)+ t−1/n
n , where

2. C1 = B1 ∪ (
⋃

i∈D1
Ai) ∪ An ∪ J1 and C2 = B2 ∪ (

⋃
i∈D2

Ai) ∪ J2.
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10.3 Restrictions on the Pieces 187

Then for any infinite subset H of N we define A(H ) = (
⋃

i∈H Ai) ∪ K, where
the interval K is chosen to fulfill the requirement that λ(A(H )) = 1. We have the
following.

Claim. If H1 \H2 is infinite, then A(H1) is not translation equidecomposable to
A(H2).

Proof. Suppose that A(H1) ∼T A(H2); by Theorem 10.39, there are positive K
and ε such that for any t ≥ 1, δA(H1 )(t ) < δA(H2 )(

√
t )+ Kt−ε . Because H1 \H2 is

infinite, we can choose nr ∈ H1 \H2 such that 1
nr
< ε and tε−1/nr

nr
> K. Then apply-

ing (1) and (2) with n = nr, Di = Hi ∩ {1, . . . , nr − 1}, Bi = A(H1) ∩ [0, εr], and
Ci = A(Hi) (for i = 1, 2), we get

δA(H1 )(t
2
nr

) > δA(H2 )(tnr )+ t−1/nr
nr

> δA(H2 )(tnr )+ Kt−εnr
,

which leads to a contradiction.
We now conclude the proof. Define A1 to be A(H1) ∪ (−A(H1)) and B2 =

A(H2) ∪ (−A(H2)). By the Cancellation Law these two sets are not transla-
tion equidecomposable. Moreover the sets A(H1) = A1 \ (−1, 0) and A(H2) =
B2 \ (−1, 0) are not equidecomposable using G1. Now define the sets A =
Int A(H1) and B = Int A(H2). Clearly the sets A and B are not equidecomposable
as geometric bodies.

C. A. Rogers asked whether the set A, defined as the regular-open
set (1/3, 2/3) ∪ (7/9, 8/9) ∪ (25/27, 26/27) ∪ . . . , is equidecomposable to
(0, 1/2). If arbitrary sets are allowed as pieces, then the answer is affirmative
(§9.3). But the following remains unsolved.

Question 10.39. (a) Are A and (0, 1/2) equidecomposable as one-dimensional
geometric bodies?

(b) Is it true that geometric bodies in the line or plane that are equidecompos-
able with arbitrary pieces are equidecomposable as geometric bodies?

(c) If geometric bodies A, B in Rn (n ≥ 3) have the same Jordan measure, then
are they equidecomposable as geometric bodies?

Regarding (c), Corollary 10.38 and Theorem 10.40 show that it is false in the
line and plane. Moreover, Laczkovich’s work in that area is valid in all dimen-
sions, provided the group in question is amenable. Because the isometry group in
dimension 3 or greater is not amenable, Question 10.39(c) is unresolved.

The following question is also unsolved.

Question 10.40. Does the Cancellation Law hold for equidecomposability in Rv

in the line or plane?

We close this chapter with a result that shows that equidecomposability does
hold for very simple geometric bodies.
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188 10 The Semigroup of Equidecomposability Types

Proposition 10.41. Any two open intervals of Rn having the same volume are
equidecomposable as geometric bodies. Moreover, any two intervals of the same
volume are equidecomposable in the usual sense, using pieces that are Borel sets.

Proof. By transitivity, it suffices to show that any open interval is equidecompos-
able in Rv to a cube (of the same volume). For R1 this is trivial, and for R2 it
follows by the part of the Bolyai–Gerwien Theorem that deals with rectangles.
For higher dimensions, assume inductively that the result is valid for intervals
of dimension n− 1, and let I = I1 × · · · × In be an interval in Rn. Denote the
length of an interval by 	. Then, by the two-dimensional case, I ∼ K1 × K2 × I3

× · · · × In in Rv , where 	(K1) = v (I )1/n and 	(K2) = 	(I1)	(I2)/	(K1). And the
induction hypothesis yields that K2 × I3 × · · · × In is equidecomposable in Rv to
a cube of volume v (I )(n−1)/n. It follows that K1 × K2 × I3 × · · · × In, and hence
I , is equidecomposable in Rv to a cube of volume v (I ). The assertion about Borel
sets follows by replacing the phrase “equidecomposable in Rv” in the proof with
“equidecomposable using Borel sets,” and invoking Theorem 3.9 instead of the
Bolyai–Gerwien Theorem. Note that the proof of Theorem 3.9 uses only Borel
sets. The one-dimensional case calls on Lemma 8.16.

Notes

The idea of expanding the action of G on X to allow addition of equidecompos-
ability types and form a semigroup is due to Tarski [Tar38b, p. 60]. He discovered
a fundamental result on measures in semigroups that he applied to this particular
semigroup (see Thm. 11.1 and Cor. 11.2).

Jointly free actions stem from work of von Neumann [Neu29], who essentially
proved Proposition 10.5 with the conclusion that: X is G-negligible. The idea of
decomposing a locally commutative action into two jointly free actions (Cor. 10.6)
is due to Wagon [Wag81a].

The Cancellation Law for equidecomposability (Thm. 10.19) was proved for
n = 2 by Kuratowski [Kur24], who modified a proof of Bernstein’s analogous law
for cardinality, due to Sierpiński [Sie22]. Banach and Tarski [BT24] deduced the
case n = 2m from the case n = 2, and this was sufficient for some applications, for
example, Corollaries 10.22 and 10.23. See [Tar49, p. 33] for further references to
Bernstein’s Theorem and for an abstract treatment of many algebraic laws derived
from cardinality considerations. Dénes König [Kon26] realized that Kuratowski’s
result followed from his matching theorem (see App. C), which he had proved
much earlier for all finite graphs and all infinite 2-regular graphs [Kon16]. König
also knew that the countable case of his matching theorem for n-regular graphs
yielded the general case. Finally, König and Valkó [KV25] proved the countable
case, yielding the complete matching theorem and Cancellation Law. The tech-
nique used by König and Valkó is based on a result that has come to be known
as the König Tree Lemma: Every infinite, finitely branching tree has an infinite
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branch (see [Nas67, p. 287]). In a later paper, König [Kon27] isolated this lemma
and gave several other applications, including a proof that a countable graph is
n-colorable (n <∞) if and only if all of its finite subgraphs are.

Corollary 10.23, the analog of the strong form of the Banach–Tarski Paradox
for S2 rather than R3, is due to Banach and Tarski [BT24]. Their proof was quite
different than the one presented here, as it used the analog of the Bolyai–Gerwien
Theorem for spherical polygons [Ger83].

Equidecomposability using regular-open sets, R, and regular-open Jordan
measurable sets, Rv , was introduced by Mycielski [Myc77a], who posed Ques-
tions 10.32 and 10.39(b) and (c).

Proposition 10.41 is a special case of a result of Hadwiger [Had57, p. 25], who
gave necessary and sufficient conditions for the geometric equidecomposability of
two n-dimensional parallelotopes using translations. The extension of his result to
set-theoretic equidecomposability was provided by Kummer [Kum56].
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Finitely Additive Measures, or the Nonexistence
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11

Transition

This chapter discusses a remarkable theorem of Tarski that tightly links the two
parts of this book. The theme of the first part was the construction of paradoxical
decompositions; the second part is devoted to constructing invariant measures,
which provide a way of showing that paradoxical decompositions do not exist.
Tarski’s result is that this reason for the lack of a paradox is essentially the only
one: If a paradoxical decomposition does not exist in a certain context, then a
finitely additive invariant measure does. Or, recalling Definition 2.4; if G acts on
X , then a subset of X is G-paradoxical if and only if it is G-negligible.

In this chapter we shall prove Tarski’s beautiful theorem and discuss some
applications. Then we summarize the state of two extensions of equidecompos-
ability theory: to the topological context, where pieces must have the Property of
Baire, and to the case where a countably infinite number of pieces is allowed.

11.1 Tarski’s Theorem

To prove the nontrivial direction of Tarski’s Theorem—the construction of a mea-
sure in the absence of a paradoxical decomposition—we shall work in S , the type
semigroup of G’s action on X . Because any finitely additive, G-invariant measure
on P (X ) is necessarily invariant under G-equidecomposability, such a measure
μ induces a measure ν from S into [0,∞]: If [A] ∈ S , let v ([A]) =∑

μ(An),
where A =⋃

(An × {n}). Note that ν(α + β ) = ν(α)+ ν(β ) for any α, β ∈ S .
Conversely, any function ν :S → [0,∞] with this additivity property induces a
finitely additive, G-invariant measure on P (X ): Let μ(A) = ν([A]). Thus the type
semigroup is a natural context for the construction of a G-invariant measure.
Tarski saw how to formulate and prove a very general theorem on measures in
semigroups that he applied to the type semigroup to obtain his characterization.

Recall that any commutative semigroup with an identity (T ,+, 0) admits an
ordering defined by α ≤ β if α + δ = β for some δ ∈ T , and there is a natural
multiplication nα of elements of T by natural numbers. If ε ∈ T is fixed, then
an element α of T will be called bounded if, for some n ∈ N, α ≤ nε. In the
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type semigroup of a group action, the ordering ≤ is a partial ordering (Banach–
Schröder–Bernstein Theorem), but the following theorem applies to arbitrary
commutative semigroups, even those where α ≤ β and β ≤ α might hold for dis-
tinct α, β.

Theorem 11.1 (AC). Let (T ,+, 0, ε) be a commutative semigroup with identity
0 and a specified element ε. Then the following are equivalent:

(a) For all n ∈ N, (n+ 1)ε � nε.
(b) There is a measure μ :T → [0,∞] such that μ(ε) = 1 and μ(α + β ) =

μ(α)+ μ(β ) for all α, β ∈ T . (Note that μ is a homomorphism of semi-
groups, from T to ([0,∞],+)).

That (b) implies (a) is clear, because any μ satisfying (b) is such that μ(α) ≤
μ(β ) if α ≤ β, and μ(nε) = n; hence (n+ 1)ε ≤ nε would imply n+ 1 ≤ n. For
the other direction, we shall use a technique that will be one of the main tools
for constructing measures in later chapters. The key is to exploit the compactness
of the product space [0,∞]T (all functions from T into [0,∞]) together with
the observation that if μ fails to be a measure on T as in (b), then the failure is
evident in some finite subset of T . Note that the compactness of [0,∞]T is a con-
sequence of Tychonoff’s Theorem that products of compact spaces are compact
(see [Roy68]), which requires the Axiom of Choice. Without loss of generality,
we assume that all elements of T are bounded (with respect to ε). For once we
have a measure on the bounded elements, it may be extended by assigning the
unbounded elements measure ∞. Most of the work will be in the proof of the
following claim.

Claim. If T0 is a finite subset of T that contains ε, then there is a function
ρ :T0 → [0,∞] such that (i) ρ(ε) = 1, and (ii) if φi, θ j ∈ T0 satisfy φ1 + · · ·φm ≤
θ1 + · · · + θn, then

∑
ρ(φi) ≤

∑
ρ(θ j ).

Before proving the claim, we show how it can be combined with compact-
ness to produce the desired measure on all of T . For any T0 as in the claim, let
M(T0) consist of all f ∈ [0,∞]T satisfying (1) f (ε) = 1, and (2) f (α + β ) =
f (α)+ f (β ) whenever α, β, α + β ∈ T0. This last additivity property is an easy
consequence of property (ii) of the claim, whence the claim implies that each
M(T0) is nonempty. Now, the compactness of the product space [0,∞]T may be
interpreted as follows: If a collection of closed subsets of [0,∞]T has the finite
intersection property (any intersection of finitely many members of the collection
is nonempty), then the intersection of all sets in the collection is nonempty. Each
M(T0) is closed. This is because whether f ∈M(T0) depends only on the finitely
many coordinates mentioned in f � T0, and if f fails to satisfy (l) or (2), then either
f (ε) 
= 1 or f (α + β ) 
= f (α)+ f (β ). In either case, there is an open subset of
[0,∞]T0 containing f � T0 on which the condition is violated—just vary the ε-
coordinate, the α-coordinate, or the β-coordinate a little bit. Therefore M(T0) is
closed. Note that M(T1) ∩ . . . ∩M(Tn) ⊇M(T1 ∪ . . . ∪ Tn), where each Ti is a
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11.1 Tarski’s Theorem 195

finite subset of T containing ε. Because
⋃

Ti is also finite, the claim implies that
M(

⋃
Ti) 
= ∅; it follows that {M(T0) : T0 is a finite subset of T containing ε}

has the finite intersection property. By compactness, there must be a μ that lies in
each M(T0), and such a μ is a measure as desired: because μ ∈M(ε), μ(ε) = 1,
and to see that μ(α + β ) = μ(α)+ μ(β ), use the fact that μ ∈M({ε, α, β, α +
β}).
Proof of claim. The proof is by induction on the size of T0. If |T0| = 1, then
T0 = {ε}, and ε �→ 1 is the desired function. In this case, property (ii) of the claim
reduces to: if mε ≤ nε, then m ≤ n. But this is a consequence of (a), the theo-
rem’s hypothesis on ε; for if mε ≤ nε and m ≥ n+ 1, then (n+ 1)ε ≤ mε ≤ nε,
a contradiction. This is the only place in the proof where the hypothesis on ε is
used.

Now, suppose |T0| > 1, and let α be any element of T0 \ {ε}. Use the induction
hypothesis to get a function ν on T0 \ {α} satisfying the claim. By our bound-
edness assumption, all elements are bounded by some nε; hence ν takes on
only finite values. Define ρ on T0 by letting ρ agree with ν on T0 \ {α} and
setting ρ(α) = inf{(∑ ν(βk )−∑ ν(γ1))/r}, where the inf is over all positive
integers r and β1, . . . , βp, γ1, . . . , γq ∈ T0 \ {α} satisfying γ1 + · · · + γq + rα ≤
β1 + · · · + βp. Because α is bounded, ρ(α) is the greatest lower bound of a
nonempty set: If α ≤ nε, then ρ(α) ≤ n. Note the similarity with the classical
outer measure construction: ρ(α) is defined to be as small as possible subject to
bounds it must have if the claim is to be satisfied.

Because a consequence of property (ii) of the claim is that ρ(α) ≥ 0 (ε ≤
ε + α so 1 ≤ 1+ ρ(α)), it remains only to prove that ρ continues to satisfy prop-
erty (ii). So suppose that φ1 + · · · + φm + sα ≤ θ1 + · · · + θn + tα, where φi,
θ j ∈ T0 \ {α} and s, t ∈ N. If both s and t are 0, then the desired inequality follows
from the fact that ν satisfies the claim on T0 \ {α}. Consider first the case s = 0
and t > 0; we must show that

∑
ν(φi) ≤ tμ(α)+∑ ν(θ j ), that is, that ρ(α) ≥

w = (
∑

ν(φi)−
∑

ν(θ j ))/t. Let γ1 + · · · + γq + rα ≤ β1 + · · · + βp be a typi-
cal inequality defining ρ(α); it suffices to show that (

∑
ν(βk )−∑ ν(γ	))/r ≥ w.

Multiplying the given inequality φ1 + · · · + φm ≤ θ1 + · · · + θn + tα by r and
adding the same quantity to both sides yields

rφ1 + · · · + rφm + tγ1 + · · · + tγq ≤ rθ1 + · · · + rθn + trα + tγ1 + · · · + tγqq.

Substituting the inequality involving γ , α, β yields

rφ1 + · · · + rφm + tγ1 + · · · + tγq ≤ rθ1 + · · · + rθn + tβ1 + · · · + tβq.

The induction assumption about ν now yields

r
∑

ν(φi)+ t
∑

ν(γ	) ≤ r
∑

ν(θ j )+ t
∑

ν(βk ),

which implies that (
∑

ν(βk )−∑ ν(γ	))/r ≥ w, as desired.
Finally, suppose φ1 + · · · + φm + sα ≤ θ1 + · · · + θn + tα where s > 0.

It suffices to show that sρ(α)+∑ v (φi) ≤ z1 + · · · + zt +
∑

ν(θ j ), where
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z1, . . . , zt are any of the numbers whose greatest lower bound defines ρ(α). By
considering the smallest of z1, . . . , zt we may assume that these numbers are
all the same. In other words, suppose that γ1 + · · · + γq + rα ≤ β1 + · · · + βp,
where γ	, βk ∈ T0 \ {α}, and let z = (

∑
ν(βk )−∑ ν(γ	))/r; then we must prove

that sρ(α)+∑ v (φi) ≤ tz+∑ ν(θ j ). Multiplying the φ, α, θ -inequality by r and
adding the same quantity to both sides yields

rφ1 + · · · + rφm + rsα + tγ1 + · · · + tγq

≤ rθ1 + · · · + rθn + rtα + tγ1 + · · · + tγq,

and substituting the γ , α, β-inequality yields

rφ1 + · · · + rφm + tγ1 + · · · + tγq + rsα ≤ rθ1 + · · · + rθn + tβ1 + · · · + tβp.

This last inequality is a typical one used to define μ(α), and it follows that
sμ(α)+∑ ν (φi) is bounded by

∑
ν(φi)+ s

(
1

rs

)(
r
∑

ν(θ j )+ t
∑

ν(βk )− r
∑

ν(φi)− t
∑

ν(γ	)
)
,

which equals tz+∑ ν(θ j ), as required to prove the claim, and hence the theorem.

The reader familiar with transfinite induction will see that the proof could be
shortened a little by using that technique rather than Tychonoff’s Theorem. The
claim allows one to construct μ by treating the elements of T one at a time,
starting with ε and proceeding inductively through |T | steps; this was Tarski’s
original approach. We chose to illustrate the use of compactness, because this
technique will appear several times in Part II.

In his original construction, Tarski used both outer and inner measure defined
on the semigroup T (with distinguished element ε as in Thm. 11.1, satisfying
(a) of the theorem, and with all elements of T bounded). His construction was
as follows: let T1 ⊆ T . Let g:T1 → [0,∞) satisfy (i) and (ii) of the claim in the
preceding proof:

(i) g(ε) = 1
(ii) if β1 + · · · + βp ≤ γ1 + · · · + γq, where βi, γ j ∈ T1, then

∑
g(βi) ≤∑

g(γ j )

The existence of such a g when T1 is finite follows from the claim in Theorem
11.1. In the general case, one would use transfinite induction. Then for any α ∈ T ,
we can define two numbers as follows, where β and γ lie in T1:

μi(α) = sup
{∑

(g(βk )−
∑

g(γl ))/r : β1 + · · · + βp ≤ γ1 + · · · + γq + rα
}

μe(α) = inf
{∑

(g(βk )−
∑

g(γl ))/r : γ1 + · · · + γq + rα ≤ β1 + · · · + βp

}
.

These values are, respectively, an inner and outer measure on T .
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Put T1 = {ε}; then Tarski called the elements α ∈ T such that μi(α) = μe(α)
absolutely measurable. In the case of type semigroups (using the full isometry
group) for Rn (with ε being the type of the unit cube), these measurable elements
have the following property. Let A ⊂ Rn be any representative of α; then any
two Banach measures (see §12.3) defined on P (Rn) agree on A; this explains the
term “absolutely measurable.” Furthermore, the construction of Tarski’s absolute
measure has geometric roots. Namely, it is related to the following construction
of a geometric absolute measure on the line obtained by Tarski [Tar38a]. For any
bounded subset A ⊂ R, define the numbers

μa(A) to be sup{|I| : I ∼ B,B ⊆ A, I is an interval}
μa(A) to be inf{|I| : A ∼ C,C ⊆ I, I is an interval}.

These are the geometric absolute inner measure and geometric absolute outer
measure, respectively, of A. And any set A ⊂ R such that μa(A) = μa(A) is called
geometrically absolutely measurable. As Tarski [Tar38a], observed every Jordan
measurable set of reals is geometrically absolutely measurable; the measure is an
attempt to extend Jordan measure using equidecomposability in the spirit of the
Lebesgue extension of Jordan measure leading to Lebesgue measure. Note, how-
ever, that we cannot use countable equidecomposability, because any two intervals
of R are countably equidecomposable (Thm. 11.21). Moreover, this geometric
measure is not a measure but a set function. In fact, take a Cantor set C ⊂ [0, 1] of
positive Lebesgue measure and the set A = ([0, 1] \C) ∪C1, where C1 = C + 1.
Then the sets [0, 1] and A have Tarski absolute measure 1 but A ∪ [0, 1] is not
Tarski measurable. Therefore the geometrically measurable sets do not form an
algebra.

Let G be a group of isometries of Rn under which the unit cube is not paradox-
ical. Then it can be shown [MT∞a] that any representative of an absolutely mea-
surable element α of measure 0 has the following property: For any ball K ⊂ Rn,
there is a set A1 ⊂ K such that A ∼G A1. Mycielski and Tomkowicz introduced in
[MT∞a] the following notion: A bounded S ⊂ Rn is a small set if for any ball
K ⊂ Rn there is a set S1 ⊂ K such that S ∼G S1 and K ∼G K \ S1. Clearly every
small set has geometric absolute measure zero (a property also known as being a
Tarski null set), but as shown by Mycielski and Tomkowicz [MT∞a], even in R
there are such geometric absolute measure 0 sets that are not small (see [MT∞a]).
They also showed that every bounded G-paradoxical subset of Rn is a small set,
provided G contains all the translation of Rn. See [MT∞a] for more information
about small sets.

Corollary 11.2 (Tarski’s Theorem) (AC). Suppose G acts on X and E ⊆ X .
Then there is a finitely additive, G-invariant measure μ :P (X ) → [0,∞] with
μ(E ) = 1 if and only if E is not G-paradoxical.

Proof. The easy direction was done in Proposition 2.5, so assume E is not G-
paradoxical and let S be the type semigroup of G’s action on X . Then 2ε 
= ε,
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where ε = E × {0}, and hence Corollary 10.21 to the Cancellation Law for
equidecomposability implies that S , with the distinguished element ε, satisfies
condition (a) of Theorem 11.1. Hence that theorem yields a measure ν on S nor-
malizing ε, whence μ(A) = ν([A× {0}]) is the desired G-invariant measure on
P (X ).

Theorem 11.1 may also be applied to the case of equidecomposability where
the pieces are restricted in some way. Suppose G acts on X and A is a G-invariant
subalgebra of P (X ). Let S(A) be the type semigroup of the induced action of
G on A, where only pieces in A can be used to witness the equidecompos-
ability of sets in A (see §10.3). We do not have a general Cancellation Law in
this context, and if Corollary 10.21 fails, it may be that, say, 3[E] = 2[E] even
though 2[E] 
= [E] ([E] stands for [E × {0}] in S(A)). In such a case, no G-
invariant measure on A normalizing E could exist, despite the fact that E is not
G-paradoxical using pieces in A. Nevertheless, Theorem 11.1 yields the following
slightly weaker analog of Corollary 11.2

Corollary 11.3 (AC). Let G, X , A be as in the preceding paragraph and suppose
E ∈ A. Then the following are equivalent:

(a) For all n ∈ N, (n+ 1)[E] � n[E].
(b) There is a finitely additive, G-invariant measure μ :A→ [0,∞] with

μ(E ) = 1.

Proof. If μ is as in (b), then μ induces a measure on S (A) satisfying condition
(b) of Theorem 11.1 (see remarks preceding Thm. 11.1) and hence, as in that
theorem, (n+ 1)[E] � n[E]. For the other direction, apply Theorem 11.1 to S
(A), with ε = [E], and use the measure on S(A) so obtained to induce the desired
measure on A.

Tarski proved a more general version of these results dealing with the case of
partial transformations of a set. We refer the reader to [Tar49] for details, men-
tioning here one important application (see [Tar49, p. 233]). Let A be the Borel
subsets of a compact metric space X and let F consist of all partial isometries, that
is, distance-preserving bijections with domain (and hence image; see remarks pre-
ceding Question 3.13) in A. Then Tarski’s work yields the equivalence of the exis-
tence of a finitely additive, congruence-invariant (i.e., F-invariant) Borel measure
on X of total measure 1 with the assertion that for any n, (n+ 1)[X ] � n[X ]
in the type semigroup formed from F-equidecomposability. The Banach–Ulam
Problem asks if such a measure exists in every compact metric space; see the
discussion following Question 3.13 for some partial results.

Because Corollary 11.3 does not appeal to the Cancellation Law for equide-
composability, the only point that requires the Axiom of Choice is the compact-
ness of [0,∞]S(A). If it happens that A is a countable subalgebra of P (X ), then
S (A) is countable too, and the compactness of a countable product of copies of
[0,∞] can be proved without using the Axiom of Choice. Hence, in such a case,
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Corollary 11.3 is valid without Choice. This idea will be important in some later
applications of the compactness technique of Theorem 11.1, so we give the effec-
tive compactness proof here. It should be pointed out that the more general asser-
tion that X S is compact whenever X is compact and S is countable is equivalent
to the Axiom of Choice for countable families of sets.

Proposition 11.4. If S is a countable set, then the product space [0,∞]S is com-
pact.

Proof. Because [0,∞] and [0, 1] are homeomorphic, it suffices to show that
[0, 1]N is compact. Suppose that {Ui} is an open cover of [0, 1]N without a
finite subcover; assume each Ui is a basic open set in [0, 1]N. Consider the two
sets [0, 1/2]× [0, 1]× [0, 1]× . . . and [1/2, 1]× [0, 1]× [0, 1]× . . . . Choose
the leftmost of these two sets that is not coverable by finitely many Ui and get
four subsets of it by splitting the first coordinate in two again and splitting the
second coordinate in two as well. Thus a typical set at this second stage might be
[1/4, 1/2]× [1/2, 1]× [0, 1]× [0, 1]× . . . . Now choose the (lexicographically)
least one of these four sets that cannot be covered by finitely many Ui and get eight
subsets of it by halving in three coordinates. Continue for ℵ0 steps, obtaining a
decreasing sequence that determines a unique element r of [0, 1]N. One of the Ui

contains r. But Ui is determined by open sets in finitely many coordinates, whence
Ui contains one of the sets in the sequence defining r, contradiction.

For an approach to Tarski’s Theorem that uses pseudogroups, see §12.4.1.

11.2 The Marczewski Problem: A Paradox Using Baire Sets

One of the most famous problems about paradoxes was formulated in 1930 by
E. Marczewski (before 1940, his name was E. Szpilrajn) and concerns B, the sets
having the Property of Baire. Although he was thinking in terms of measures, his
problem is most easily stated as follows: Is there a paradox of the ball, like the
Banach–Tarski Paradox but using pieces in B? Recall that a Baire set differs from
an open set (equivalently, a Borel set) by a meager set, whereas a Lebesgue mea-
surable set differs from a Borel set by a measure zero set. So the algebras B and L
are related to Borel sets in a similar way, but using different ideals of small sets.

The similarities and differences between B and L are fascinating. The most
famous phenomenon concerns independence results. Let PB (resp., LM) be the
assertion that all sets have the Property of Baire (resp., are Lebesgue measurable);
DC is the Axiom of Dependent Choice, a weaker version of AC that is sufficient
for the basics of analysis and topology. The consistency of ZF is equivalent to the
consistency of ZF+ DC+ PB; but the consistency of ZF+ DC+ LM is stronger
than the consistency of ZF: It is equivalent to the consistency of ZF+ the existence
of inaccessible cardinal (see §15.1). This is a remarkable and fundamental distinc-
tion between sets that are topologically nice and sets that are measure-theoretically
nice. Now, it is obvious that there is no paradox using measurable sets. But what
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about sets in B? That is the Marczewski Problem, and it came as a great surprise
when, in 1992, R. Dougherty and M. Foreman [DF92, DF94] proved that such
paradoxes do exist.

Let B denote the family of subsets of Rn (or Sn) having the Property of Baire,
and let a B-measure denote a finitely additive, Gn-invariant (or On+1-invariant)
measure on B that normalizes the unit cube (or Sn). The existence of a B-measure
on Rn implies that the unit cube is not paradoxical using pieces in B. Moreover, a
B-measure on Rn induces a B-measure on Sn−1 using the technique of adjoining
radii and so implies that Sn−1 is not paradoxical using pieces with the Property
of Baire. Thus Marczewski’s problem is equivalent to asking whether there is
a B-measure in either R3 or S2. For lower dimensions, such a measure exists
(Cor. 13.3). It is also useful to define a Marczewski measure as a B-measure that
vanishes on all bounded meager sets.

Because we do not know whether the Cancellation Law holds for equidecom-
posability in B, it is not immediate (via Cor. 11.2) that the existence of a B-
measure can be equated with the lack of a paradoxical decomposition. Never-
theless, such an equivalence is true, at least in the case of Rn. For one can, in
B, deduce the important Corollary 10.21 of the Cancellation Law. Theorem 11.7
shows how to do this, and shows as well the connection between Marczewski’s
Problem for Rn and the existence of paradoxes in R, the algebra of bounded,
regular-open subsets of Rn (see §10.3.2).

The Marczewski Problem concerns a topological version of the Banach–Tarski
Paradox, so the following definition is useful.

Definition 11.5. Two open subsets A, B of Rn are called densely equidecompos-
able if there are finitely many disjoint open subsets Ai of A and isometries σi such
that

⋃
Ai is dense in A, σi(Ai) are pairwise disjoint, and

⋃
σi(Ai) is dense in B.

There is a Banach–Schröder–Bernstein Theorem for dense equidecomposabil-
ity; the proof is similar to the classic case (Thm. 3.6), using some modifications
to deal with the dense sets; see [DF94, Prop. 2.9] for details.

Theorem 11.6. If A and B are open subsets of Rn such that A is densely equide-
composable to a subset of B, and vice versa, then A and B are densely equidecom-
posable.

The next theorem shows that a diverse set of topological properties of
Euclidean space are equivalent.

Theorem 11.7 (AC). Let S (B), S (R) be the type semigroups with respect to Gn-
equidecomposability in B, R, respectively, as defined in Chapter 10. Let J denote
the (open) unit cube in Rn. The following are equivalent:

(a) There is m ∈ N such that (m+ 1)[J ] ≤ m[J ] in S (B).
(b) J is paradoxical in B.
(c) There exists no B-measure on Rn.
(d) There is m ∈ N such (m+ 1)[J ] ≤ m[J ] in S (R).
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(e) J is paradoxical in R.
(f) |S (R)| = 2; that is, S (R) = {{∅}, [J ]}.
(g) There is no finitely additive (with respect to ∨), Gn-invariant measure

μ :R→ [0,∞) with μ(J ) = 1.
(h) Any bounded, nonempty, open set U ⊆ Rn has finitely many pairwise dis-

joint open subsets Ui such that, for isometries ρi,
⋃
ρi(Ui) is dense in J.

(i) There is an open dense subset of J that can be packed into a proper sub-
cube of J using finitely many pieces in B.

Proof. Corollary 11.3 yields (a) ⇔ (c), and (a) ⇒ (b) can be proved as follows.
Suppose (m+ 1)[J ] ≤ m[J ] in S (B); using a similarity shows that this is true for
any cube. Choose a cube K small enough that m copies of K fit into J . Then
choose k large enough that (m+ k)[K] ≥ 2[J ]. Because (m+ 1)[K] ≤ m[K]
yields (m+ k)[K] ≤ m[K], we have m[K] ≤ [J ] ≤ 2[J ] ≤ (m+ k)[K] ≤ m[K];
hence the Banach–Schröder–Bernstein Theorem yields [J ] = 2[J ], giving (b).
Because (b) ⇒ (a) is obvious, we have (a) ⇔ (b), and hence the equivalence of
(a), (b), and (c).

Exactly the same technique, using Theorem 11.1 in the semigroup S (R),
yields the equivalence of (d), (e), and (g). Statement (f) implies that [J ] = 2[J ] in
S (R), yielding (e). For the converse, we can prove that if J is paradoxical in R,
then [U ] = [J ] for any nonempty U ∈ R, which yields (f). For this, use similari-
ties as done at the end of the proof of Theorem 8.5. Hence statements (d)–(g) are
equivalent.

These two groups of statements will be tied together by considering the asser-
tions about measures, (c) and (g). The proof that (c) ⇒ (g) hinges on the fact
that any set A ∈ B can be uniquely represented as E'P where E is regular-open
and P is meager (see [Oxt71, p. 20]). Suppose μ is a measure as in (g); extend
μ to all regular-open sets by setting μ(A) = ∞ if A is unbounded. Then define
ν on B by ν(A) = μ(E ) where A = E'P is the representation just mentioned.
The uniqueness of this representation and the fact that (E1 ∨ E2) \ (E1

⋃
E2)

is nowhere dense yield that ν is a B-measure; more precisely, one shows that
(A ∪ A′)'(E ∨ E ′) is meager, which implies that the R-representation of A1 ∪ A2

is E1 ∨ E2. Also E1 and E2 are disjoint (details in next paragraph). The converse
needs some auxiliary results and will be discussed after we treat (h) and (i). We
shall show that a B-measure, when restricted to R, satisfies the conditions of (g).

To deal with (h) and (i), we prove that ( f ) ⇒ (h) ⇒ (i) ⇒ (e). To see that
(i) ⇒ (e), suppose Ai ∈ B and isometries ρi witness the packing of an open dense
subset of J into a proper subcube, K. As in the proof of (c) ⇒ (g), write Ai as
Ei'Pi, where Ei is regular-open and Pi is meager. Then (Ei ∩ Ej ) \ (Pi ∪ Pj ) ⊆
Ai ∩ Aj = ∅ if i 
= j, so Ei ∩ Ej ⊆ Pi ∪ Pj. But Pi ∪ Pj is meager and so con-
tains no nonempty open set (Baire Category Theorem; see [Oxt71, p. 2]); hence
Ei ∩ Ej = ∅ if i 
= j. Similarly, the disjointness of ρi(Ei) and ρi(Ej ) follows from
that of ρi(Ai) and ρ j(Aj ). The Baire Category Theorem also implies that Ei ⊆
Ai; hence ρi(Ei) ⊆ ρi(Ai) = ρi(Ai) ⊆ K, so ρi(Ei) ⊆ K. The preceding remarks,
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together with the easy fact that the join of the Ei in R must equal J , pack J into K
in a way that yields [J ] ≤ [K] in S (R). Hence, if L is a cube contained in J \K,
[K]+ [L] ≤ [K], and it follows that [K]+ m[L] ≤ [K] for any m. Choose m so
large that m copies of L cover K. Then 2[K] = [K]+ [K] ≤ [K]+ m[L] ≤ [K],
so K is paradoxical in R. Using a similarity yields that J is paradoxical in R, as
desired. For (h) ⇒ (i), let U in (h) be a proper subcube of J . Then U contains
sets as in (h), but the ρi(Ui) might not be disjoint. Make them disjoint by taking
complements in sequence and then take preimages back in U . This packs a dense
subset of J into U using sets in B. Finally, for ( f ) ⇒ (h), let U be a bounded
open set and let E = Int(U ), a regular-open set. By (f), E ∼ J in R, so there are
disjoint regular-open subsets Ei of E whose join is E and, for some isometries,
Int(

⋃
ρi(Ei)) = J . The sets Ei ∩U are then open subsets of U , and

⋃
ρi(Ei ∩U )

is dense in J .
We now return to (g) ⇒ (c), the proof of which uses an interesting and useful

observation of Tarski. To place it in its proper context, we mention the following
general problem. If μ is a finitely additive, Gn-invariant measure on the Lebesgue
measurable subsets of Rn, and μ(J ) = 1 where J is the unit cube, then to what
extent must μ agree with Lebesgue measure, λ? This problem, which goes back
to Lebesgue, was settled in the early 1980s and will be discussed in more detail
later (Thm. 13.13). Note that to have any hope of concluding that μ agrees with λ,
one must restrict the discussion to bounded sets; for if μ is defined to agree with λ
on the bounded Lebesgue measurable sets, but to give measure ∞ to unbounded
measurable sets, then μ satisfies the hypothesis of the problem, but μ 
= λ. First
we observe that even under the weaker assumption of translation invariance, one
can at least be assured that μ agrees with λ on certain elementary sets, namely,
those that are Jordan measurable.

Proposition 11.8. Jordan measure v is the unique finitely additive, translation-
invariant measure on the Jordan measurable sets in Rn that normalizes J .

Proof. Let μ be a finitely additive, translation-invariant measure on the Jordan
measurable sets with μ(J ) = 1. We will show that μ(K ) = v (K ) for any orthog-
onal closed cube K. This suffices, for suppose E is Jordan measurable; then
for any ε > 0, there are sets D, F such that D ⊆ E ⊆ F , D and F are each a
union of finitely many interior disjoint closed cubes with edges parallel to the
coordinate axes, and v (F )− v (D) < ε (see App. B). It follows from this that
|v (E )− μ(E )| < ε.

Now we will prove the assertion about μ for the plane, but the same idea works
in all dimensions. Translation invariance implies that any finite set of bounded line
segments gets μ-measure zero, because one could pack arbitrarily many trans-
lates of such a set (broken into pieces) into the unit square, J . This means we can
ignore the boundaries of squares, and therefore because μ(J ) = 1, Figure 11.1
shows that μ is correct on any properly oriented square of side-length 1/2. Sub-
dividing repeatedly yields the correctness of μ on any properly oriented square
of side-length 2−n, and hence those of side-length m/2n, m, n ∈ N. Now, these
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Figure 11.1. A translation-invariant measure that agrees with area on a square must also
agree with area on the subsquares.

dyadic rationals are dense in the positive reals; approximating an arbitrary prop-
erly oriented square by one with side-length m/2n yields the correctness of μ on
all orthogonal squares, as desired.

The previous result is valid in all dimensions; Tarski observed that the Banach–
Tarski Paradox could be used to provide an improvement in R3 and beyond. One
of the main points of interest of the following lemma is that it turns the nega-
tive connotations of the Banach–Tarski Paradox to positive advantage. By shifting
the focus from all subsets of Rn to the bounded Lebesgue measurable ones, the
lemma allows us to view the Banach–Tarski Paradox as giving additional infor-
mation about the uniqueness of Lebesgue measure, rather than just saying that
no measures of a certain sort exist on all of P (Rn). In fact, the solution of the
Ruziewicz Problem (discussed in §13.1) yields the uniqueness of Lebesgue mea-
sure as a finitely additive, invariant measure on the bounded Lebesgue measurable
sets, if n ≥ 3. Lemma 11.9, and hence the Banach–Tarski Paradox, is a small but
crucial step in the solution (Thm. 13.13; Cor. 13.2 shows that Lemma 11.9, and
hence the uniqueness of Lebesgue measure as a finitely additive measure, fails in
R1 and R2).

Lemma 11.9 (AC). If n ≥ 3 and μ is a finitely additive, Gn-invariant measure on
the bounded, Lebesgue measurable subsets of Rn normalizing J (or, a B-measure
in Rn), then μ vanishes on the bounded sets of Lebesgue measure zero (or, on the
bounded meager sets). The same is true for measures on Sn having total measure
1 when n ≥ 2.

Proof. Suppose E is a bounded subset of Rn with λ(E ) = 0, and K is a cube large
enough to contain E. For any ε > 0, K is Gn-equidecomposable with a cube L
of volume ε, by the strong form of the Banach–Tarski Paradox (Thm. 6.1(c)).
Suppose A1, . . . ,Am ⊆ K are the pieces witnessing this decomposition. Now, by
Proposition 11.8, μ agrees with volume on cubes; so μ(L) = ε. However, this
does not imply that μ(K ) = ε because the pieces, Ai, will not be Lebesgue mea-
surable, and hence not μ-measurable. But the sets Ai ∩ E must be μ-measurable,
as they are subsets of E, which has Lebesgue measure zero, and hence are
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Lebesgue measurable. It then follows from the packing of E into L, and the finite
additivity and Gn-invariance of μ, that μ(E ) ≤ μ(L) = ε. Because ε was arbi-
trary, this means μ(E ) = 0. This proof works just as well in the case of meager
and Property of Baire sets, because a subset of a meager set is meager, and hence
has the Property of Baire and isμ-measurable. The extension to spheres has essen-
tially the same proof, using the strong paradox of Corollary 10.23 and some small
open set in place of L.

The case of the preceding lemma dealing with B-measures and meager sets
allows us to prove (g) ⇒ (c) of Theorem 11.7 when n ≥ 3. For if μ is a B-
measure, then Lemma 11.9 implies that μ vanishes on all meager sets. Hence all
nowhere dense sets get μ-measure zero, and it follows from the remarks following
Proposition 10.35 that μ itself, when restricted to R, is additive with respect to
∨. In R1 and R2, B-measures do exist but do not necessarily vanish on the mea-
ger sets (see discussion before Thm. 13.4). But B-measures that do vanish on the
meager sets can be constructed (Cor. 13.3), and they yield the negation of (c) (and
hence (c) ⇒ (g)) in those dimensions.

We repeat that the situation regarding cancellation is still open: Does the Can-
cellation Law hold for B-equidecomposality for subsets of Rn or Sn?

Now, one of the most noteworthy and surprising results in the area of paradoxes
was proved by Randall Dougherty and Matthew Foreman in 1992 [DF92, DF94].
They used an intricate but self-contained argument to prove a general result in
Polish spaces that can be applied to Rn and Sn−1 (n ≥ 3). Inspired by Theorem
11.7, the key step in their solution to the Marczewski Problem is the following
result, which does not use the Axiom of Choice. Recall that a Polish space is
a complete separable metric space; any Gδ subset of Rn or Sn is a Polish space
[Kur66].

Theorem 11.10. Let X be a Polish space and suppose σi, τi (i = 1, 2, 3) are
independent homeomorphisms of X such that the group G they generate has no
nontrivial fixed points. Then there are disjoint open sets Ui, Vi such that

⋃
σi(Ui)

and
⋃

τi(Vi) are each dense in X .

The idea of the proof is as follows. Let C be a countable, dense, G-invariant
subset of X . Give C the induced topology: Open sets are U ∩C, where U is an
open subset of X . Now it suffices to construct Ui and Vi, six pairwise disjoint
open subsets of C, such that

⋃
σi (Ui) and

⋃
τi (Vi) are each dense in C. This is

because taking the interiors of the closures of the six sets will give the open sets
we seek. The construction of the six sets uses a complicated induction argument.

The theorem yields a topological paradox on S2 (i.e., a paradox up to a meager
set), which is constructive in that the Axiom of Choice is never used. Such a para-
dox solves the Marczewski Problem, still without using AC. This is analogous to
how the Hausdorff Paradox is used (Thms. 2.3 and 2.6), though that does require
AC.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.014
https://www.cambridge.org/core


11.2 The Marczewski Problem: A Paradox Using Baire Sets 205

Corollary 11.11. There are two disjoint subsets of S2 such that each is in B and
equidecomposable to a dense subset of S2 using pieces in B.

Proof. Let G be a free group of rotations having rank 2 (Thm. 2.1) and let D be
the set of fixed points of the action. Because D is countable, S2 \D is a Gδ set and
so is a Polish space with the induced topology. Moreover, G acts by homeomor-
phisms without fixed points on this space. Choose six independent elements σi, τi

of G (see start of §7.1) and apply the theorem to get Ui, Vi, open (in the induced
topology) subsets of S2 \D; these sets are in B. Let A =⋃

Ui and B =⋃
Vi. Then

A is equidecomposable as claimed to a dense subset of S2 \D. But a dense subset
of S2 \D is necessarily a dense subset of S2, so A is as claimed; the same is true
for B.

Corollary 11.12. (a) There is no Marczewski measure on S2.
(b) (AC) There is no B-measure on S2.

Proof. (a) Suppose μ is such a measure normalizing S2. Let A and B be as in the
preceding corollary; then μ(A)+ μ(B) ≤ 1. But A has the same μ-measure as the
dense set A∗ it is equidecomposable to. And, because μ vanishes on meager sets,
A∗, being in B, has the same measure as a dense open set. But a dense open set
has μ-measure 1, because its complement is nowhere dense and so of μ-measure
0. So A, and similarly B, have μ-measure 1, a contradiction.

(b) Apply Lemma 11.9.

Now we can bring in AC and get the pure Baire-set strengthening of the
Banach–Tarski Paradox.

Corollary 11.13 (AC). The sphere S2 is SO3(R)-paradoxical in B. The same is
true, with isometries, for higher-dimensional spheres and for balls and cubes in
Rn, n ≥ 3.

Proof. Proceed as in Corollary 11.11 to get rotations σi and τi and pairwise dis-
joint open sets Ui, Vi. Furthermore, assume that the sets σi(Ui) are disjoint, and
the same for τi(Vi); this can be done without leaving B. Define L =⋃

σi(Ui) ∩⋃
τi(Vi), a comeager set, and let E =⋂

g∈G g(L). Then G acts on E, which, by

the Baire Category Theorem, is a comeager subset of S2. Put Ûi = E ∩Ui and
V̂i = E ∩Vi, yielding E =⋃

σi(Ûi) =
⋃
τi(V̂i). This shows that E is paradoxical

in B. Now let D be the set of fixed points of G; then F = S2 \ (E ∪ D) is meager
and G-invariant. Hence Proposition 1.10 yields that F is G-paradoxical in B; this
is because any subset of a meager set is in B. To conclude, we observe that S2 is
G-equidecomposable in B to S2 \D (Thm 3.10), which equals E ∪ (S2 \ (E ∪ D)),
and because E and S2 \ (E ∪ D) are G-paradoxical in B, so is S2. The extension
to the additional cases is easily carried out by using radii and absorption of the
origin; the case of unit cubes is implied by the case of unit balls together with the
Banach–Schröder Bernstein for B. Scaling yields it for all cubes and balls.
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Now, much more is true; remarkably, everything about the classic paradox
holds for Baire sets, except that the classic four-piece result in the Banach–Tarski
case becomes a six-piece result when restricted to Baire sets. And a strong para-
dox holds: Any two bounded subsets of Rn or Sn−1 (n ≥ 3) having nonempty
interior are Baire equidecomposable [DF94, Cors. 2.7, 5.2]. For the first part of
the next theorem, see [DF94, Thm. 5.11]; the proof that six is best possible is due
to Wehrung [Weh94; see also [DF94, Thms. 5.7, 5.9]. Recently a new approach
to Baire paradoxes was discovered by Marks and Unger [MU∞]. Using ideas
of matchings in infinite graphs and a generalization of Hall’s condition, they
proved that whenever a group G acts on a Polish space X so that (a) the func-
tions defined by the action are Borel functions and (b) X is G-paradoxical, then
X is G-paradoxical using Baire pieces. This implies Corollary 11.13.

Theorem 11.14 (AC). The sphere S2 is SO3(R)-paradoxical in B using six
pieces; a paradox using five or fewer pieces does not exist.

We next present a very surprising theorem, really a corollary of Theorem
11.10. This theorem, which does not use the Axiom of Choice, says that a pea
can be cut into pieces that can be moved by isometries to fill the sun in a way that
leaves no hole of positive radius.

Theorem 11.15. Any two bounded nonempty open subsets of R3 are densely
equidecomposable.

Proof. Let the sets be A, B, and let K be the open unit ball. Proceed as in Corollary
11.11, using the fact that D, the fixed point set of the free group, is a countable
union of lines and so is an Fσ subset of K. Thus we have six independent elements
σi, τi, and six disjoint open sets Ui,Vi of K \D such that

⋃
σi Ui and

⋃
τi Vi

are each dense in K \D. Define Ûi, V̂i to be the interiors of the closures of Ui,
Vi, respectively; let U =⋃

Ûi and V =⋃
V̂i. It is easy to see that U and V are

disjoint and that each is densely equidecomposable to K. Because the same rea-
soning applies to any open ball centered at the origin, we may replace K by a small
ball contained in A and repeatedly duplicate using the preceding ideas to get that
this small ball is densely equidecomposable to a superset of a ball containing B.
Therefore A is densely equidecomposable to a superset of B. Because this works
the same way in the opposite direction, an application of the Banach–Schröder–
Bernstein Theorem (Thm. 11.6) completes the proof.

By Theorem 11.7(b) ⇒ (e) and Corollary 11.13, the Dougherty–Foreman
work leads to a paradox using regular-open sets: The cube in R3 is paradoxical
in the regular-open algebra R, using the join of regular-open sets. There is also
a paradox using regular-open sets and union (as opposed to join in R), which we
now present. These regular-open paradoxes are much more counterintuitive than
the original Banach–Tarski Paradox because they involve sets that have a strong
geometrical content, unlike the amorphous nature of the nonmeasurable sets in
the original 1924 paradox.
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Theorem 11.16. Any two bounded nonempty open subsets A, B of R3 are densely
equidecomposable using regular-open pieces.

Proof. Assume first that the given sets are regular-open. Start with the sets Ai, Bi

that witness the dense equidecomposability of A and B. Recall that for any open
set X , there is a (unique) regular-open shadow S(X ) ⊇ X such that S(X ) \X is
closed and nowhere dense ([Oxt71, Thm. 4.5]; for open sets, S(X ) is Int(X )).
Now, use S(Ai) for the regular-open pieces to get dense equidecomposability. Each
S(Ai) is contained in A (because A is regular-open), the nowhere dense differences
imply that

⋃
S(Ai) is dense in A, and the S(Ai) are pairwise disjoint (if not, then

S(Ai) ∩ S(Aj ) \ ([S(Ai) \Ai] ∪ [S(Aj ) \Aj]) is a nonempty subset of Ai ∩ Aj). The
isometric image of each S(Ai) is S(Bi), which shows that the images are disjoint,
regular-open, and dense in B.

Now the general case of open sets follows from the fact that any bounded
open set A in Rn can be densely filled by two disjoint regular-open sets. Let B =
S(A) ⊇ A be the regular-open shadow of A; so B \A = F is closed and nowhere
dense. Let d be the diameter of A. Let Bm be the collection of points in A that are
within distance d/m of a point in F . Let Rm be the annular object Bm \Bm+1 and
let P =⋃

modd Int(Rm); Q =⋃
meven Int(Rm). It is easy to see that P and Q are

disjoint regular-open sets and P ∪ Q is dense in A.

The preceding two results are also valid for spheres: Corollary 2.8 and The-
orem 5.1 of [DF94] show that any two open subsets of Sn, n ≥ 2, are densely
equidecomposable. The work in this section indicates how the Marczewski Prob-
lem is solved via paradoxes in R3 and higher dimensions. But in R1 and R2,
Marczewski measures do exist (Cor. 13.3). Mycielski wondered if the regular-
open paradoxes are possible with the movement of the pieces being disjoint (see
§10.1.2 for the proof that this is possible for the classic Banach–Tarski Paradox;
see also Question 10.17).

Question 11.17. Can the paradox of Theorem 11.16 be realized with continuous
equidecomposability; that is, can the pieces be moved to their new positions so
that, at each moment, they are disjoint?

11.3 Equidecomposability with Countably Many Pieces

Ever since Lebesgue, countably additive measures have been more prevalent in
mathematics than finitely additive ones, and it is natural to ask if the theory of
paradoxical decompositions can be applied to such measures. Recall (Thm. 1.5)
that the first example of a paradox using isometries arose from Vitali’s proof of the
nonexistence of a countably additive, translation-invariant measure defined on all
sets of reals. That decomposition used infinitely many pieces, and we shall now
study some further consequences of allowing countably many pieces in the theory
of equidecomposability. First, we note that the question of Lebesgue measure’s
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uniqueness among countably additive measures is much simpler than the case
where λ is viewed as a finitely additive measure.

Proposition 11.18. Lebesgue measure λ is the unique countably additive,
translation-invariant measure on the Lebesgue measurable subsets of Rn that nor-
malizes the unit cube.

Proof. If μ is another such measure, then by Proposition 11.7, μ agrees with
volume on cubes. It follows that μ agrees with λ on all open sets, because an
open set is a union of countably many pairwise disjoint half-open cubes (of side-
length 2−m). This fact can be proved by subdividing space repeatedly, retaining the
cubes that are contained in the open set; see [Coh80, p. 28] for a detailed proof. It
follows that μ agrees with λ on bounded closed sets too. Now, if A is measurable
and bounded, then for any ε > 0, there are F , G with F closed (and bounded), G
open, F ⊆ A ⊆ G, and λ(G \F ) < ε. It follows easily that μ(A) = λ(A). Because
an unbounded measurable set is a union of countably many bounded measurable
sets, μ agrees with λ on all measurable sets.

Uniqueness of countably additive measures holds in more general contexts.
Let (X ,A,m) be a measure space with m(X ) = 1 (i.e., m is a countably additive
measure on the σ -algebra A) and suppose m is G-invariant where G, a group
acting on X , preserves A. Suppose further that G’s action is ergodic; that is, if
A ∈ A and 0 < m(A) < 1, then there is some g ∈ G such that m(A' g(A)) > 0.
Then, using the Radon–Nikodym Theorem, one can show that any other countably
additive, G-invariant measure on A that normalizes X and vanishes on the sets of
m-measure 0 (i.e., is absolutely continuous with respect to m) must equal m. Proof
sketch: the Radon–Nikodym derivative f is unique up to a set of measure 0. But
for any g ∈ G, f (gx) is easily shown to be a Radon–Nikodym derivative. So f
is g-invariant almost everywhere. But then, by ergodicity, f is constant almost
everywhere with value inf{q : q ∈ Q and q ≥ 0 and m({x : f (x) > q}) = 1}. By
normalization, the constant is 1.

Next we formalize the notion of countable equidecomposability.

Definition 11.19. Suppose a group G acts on X and A,B ⊆ X . Then A and B
are countably G-equidecomposable, A ∼∞ B (the G in this notation will be clear
from the context), if there is a partition of A into countably many sets Ai (i ∈ N)
and elements σi ∈ G such that the sets σi(Ai) form a partition of B. A subset E
of X is countably G-paradoxical if E contains disjoint sets A, B such that A ∼∞
E and B ∼∞ E. If G is the group of isometries of X , then the prefix “G-” will
be omitted. If all the pieces are required to lie in A, a G-invariant σ -algebra
of subsets of X , the sets will be called countably G-equidecomposable in A, or
countably paradoxical in A.

It is easy to see that countable equidecomposability is an equivalence rela-
tion. Moreover, because this relation satisfies properties (a) and (b) of the proof
of Theorem 3.6, the proofs of the Banach–Schröder–Bernstein Theorem and the
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Cancellation Law carry over without modification. Indeed, as we shall discuss fur-
ther, the Cancellation Law is valid even for the case where the pieces are restricted
to a σ -algebra of sets. But Tarski’s Theorem (Cor. 11.2) fails for countable equide-
composability, as the following example shows.

Theorem 11.20. Let G be the group of all permutations π of ω1, the first uncount-
able ordinal, with the property that {α < ω1 : π (α) 
= α} is finite. Then ω1 is not
countably G-paradoxical, but there is no countably additive, G-invariant measure
μ on P (ω1) with μ(ω1) = 1.

Proof. Because all singletons are congruent under G’s action, a measure μ as in
the theorem must assign them all measure zero. But it is a well-known result of
Ulam [Oxt71, p. 25] that there exists no countably additive measure on ω1 having
total measure 1 and vanishing on singletons. To see that ω1 is not countably G-
paradoxical, suppose A, B are disjoint subsets of ω1 with A ∼∞ ω1 ∼∞ B, where
the equidecomposabilities are witnessed by the functions f , g. Because only
countably many permutations are used, only countably many points are moved
by f or g. If α ∈ ω1 is not such a moved point, then f (α) = α, so f −1(α) = α

and α ∈ A; similarly α ∈ B. So A and B are not disjoint.

Despite the previous example, there are some ways to extend Tarski’s Theorem
to the countably additive case. Recall that a probability measure is a countably
additive measure of total measure 1. The ideal extension would be, If X is not
countably G-paradoxical, then there is a G-invariant probability measure on X .
This fails because of Theorem 11.20. Chuaqui searched for an additional hypoth-
esis and conjectured that the following is sufficient: There is a probability mea-
sure on A (a given σ -algebra) that normalizes X and vanishes on the countably
G-paradoxical (in A) sets. P. Zakrzewski [Zak93a, pp. 343–352] proved that this
does indeed suffice to give a G-invariant probability measure on A.

We now present some of the details. Suppose G acts on X and A is a G-
invariant σ -algebra of subsets of X . Define the subfamily I of A to consist of
all sets A ∈ A that are ω-negligible: sets for which X contains infinitely many
“copies” of A (i.e., X has pairwise disjoint subsets Ai ∈ A, i ∈ N, with each
Ai ∼∞ A in A). Then I is closed under taking subsets in A and under count-
able unions, and so I is a σ -ideal in A. Any countably paradoxical set lies in
I, and in fact I is generated by all countably G-paradoxical (with pieces in A)
sets in A [Chu77]. It is clear that any G-invariant probability measure on A must
assign measure zero to all sets in I; also X ∈ I iff X is countably G-paradoxical
in A.

In the example of Theorem 11.20, A = P (ω1) and I consists of all countable
subsets of ω1. The proof of that theorem uses the fact that there is no countably
additive measure on A that vanishes on I and normalizes ω1, even without the
additional requirement of G-invariance. This phenomenon was the motivation for
Chuaqui’s conjecture [Chu69] that this is the only barrier to a generalization of
Tarski’s Theorem.
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A set A ∈ A is weakly wandering if there are elements gi ∈ G such that, for i, j
distinct, gi(A) ∩ g j(A) = ∅. Let W be the family of such sets; clearly, W ⊆ I.
The following theorem was proved by Zakrzewski [Zak93a].

Theorem 11.21 (AC). Let G act on X . Suppose that (X ,A,m) is a measure
space where A is a G-invariant σ -algebra and m is a σ -finite countably additive
measure. The following are equivalent:

(a) There is a G-invariant probability measure μ on A such that m is abso-
lutely continuous with respect to μ.

(b) The measure m vanishes on W .

Because W ⊆ I, we have the following affirmative resolution of Chuaqui’s
conjecture.

Corollary 11.22 (AC). Suppose G acts on X and let A be a G-invariant σ -
algebra of subsets of X . The following are equivalent:

(a) There is a G-invariant probability measure on A.
(b) There is a probability measure on A that vanishes on I.

It is worth noting that Theorem 11.21 is closely related to the following prob-
lem of classic ergodic theory: Let m be a G-invariant, σ -finite measure defined on
a σ -algebra A in P (X ). Find necessary and sufficient conditions for the existence
of a G-invariant probability measure μ defined on A such that m is absolutely
continuous with respect to μ (see [Zak93b] for more on this point).

Another positive result is due to Becker and Kechris [BK96], who showed that,
for Borel actions of Polish groups on Polish spaces, an exact extension of Tarski’s
Theorem to the countably additive case does exist.

As was done for finite equidecomposability, one can form a semigroup,
S∞(A), of types with respect to the relation of countable equidecomposability
in A. Instead of X × N, one uses X × ω1 and considers bounded sets to be those
that have only countably many levels. An important aspect of countable equide-
composability is that S∞(A) has a richer algebraic structure than S (A): S∞(A)
is a cardinal algebra, as defined by Tarski [Tar49]. The structure of these algebras
is worked out in detail in [Tar49]; in particular, the Cancellation Law is valid.
See [Chu69, Chu76, Chu77] for a variety of applications of this point of view to
countable equidecomposability and countably additive measures.

Turning now to the specific case of Rn and isometries, we shall see that count-
able equidecomposability is much simpler than finite equidecomposability. For
instance, the existence of paradoxes is not dependent on dimension. The following
result may be viewed as a generalization of Vitali’s nonmeasurable set, showing
even more emphatically why translation-invariant, countably additive measures
defined on all subsets of Rn do not exist.

Theorem 11.23 (AC). Any two subsets of Rn with nonempty interior are count-
ably equidecomposable.
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Proof. By transitivity and the Banach–Schröder–Bernstein Theorem, it suffices to
show that for any half-open interval K, K ∼∞ R. Vitali’s construction (Thm. 1.5),
restated for K, shows that K may be partitioned into countably many sets Ai such
that Ai ∼2 Aj for each i, j. (In fact, by a result of von Neumann—see comments
before Corollary 5.16—it can be guaranteed that the sets Ai are all congruent to
each other.) It follows that for any infinite subset S of N,

⋃{Ai : i ∈ S} ∼∞ K.
Now, by splitting the family {Ai : i ∈ N} into infinitely many infinite subfamilies,
one gets that K is countably equidecomposable with infinitely many copies of
itself. It follows, upon using some additional translations, that K ∼∞ R. One can
get a Vitali partition of [0, 1]n by simply using the Vitali partition on the first
coordinate; this allows the proof for R to be repeated for Rn.

The condition on interiors in the preceding result is necessary because, for
example, a meager set cannot be countably equidecomposable with a nonmeager
set.

The Vitali partition shows that a countably additive measure on P ([0, 1]) that
has total measure 1 cannot be invariant with respect to translations (modulo 1).
This leads to the question of whether there can be a countably additive measure
on P ([0, 1]) that has total measure 1, but is not required to satisfy any invariance
condition whatsoever. Of course, the principal measure determined by a point is
such a measure; hence we add the natural condition (a consequence of translation
invariance) that points get measure zero. Because this problem does not refer at all
to the geometry of the line, it is really a problem in set theory: If f is a bijection
from X to Y , then X bears such a measure if and only if Y does. So let us say that
a cardinal κ is real-valued measurable if κ bears a countably additive measure
defined on all subsets, having total measure 1, and vanishing on singletons.

Ulam [Ula30] showed that real-valued measurable cardinals must be large
(weakly inaccessible, and more), and so ω1 is not real-valued measurable (this
result is used in the proof of Thm. 11.20); thus, if the Continuum Hypothesis is
true, then there is no real-valued measure on the real numbers. But unlike CH,
which is independent of ZFC, the usual axioms of set theory (i.e., the addition of
either CH or its negation yields a noncontradictory system), the statement that the
continuum is real-valued measurable has a more complicated status. Its negation
is consistent because it follows from CH, but the statement in its positive form is
connected with large cardinal axioms for set theory. It follows that the consistency
of the statement cannot be derived from the consistency of ZFC alone. In fact, the
existence of a real-valued measure on the continuum is equiconsistent with the
existence of a (2-valued) measurable cardinal. In short, if it is noncontradictory
to add a certain axiom about the existence of very large cardinals to ZFC, then
(and only then) is it noncontradictory to add the statement that the continuum is
real-valued measurable. See [Jec78] for a complete discussion of the connection
between this problem in measure theory and large cardinal axioms in set theory.
Other connections between large cardinals and consistency results in set theory
and in measure theory are discussed in Chapter 15.
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Even if there is a real-valued measure on P ([0, 1]), such a measure need not
extend Lebesgue measure. For example, one can use a bijection of [0, 1] with
[0, 1/2] to transform the measure into one that assigns measure 0 to [1/2, 1].
Nevertheless, if the continuum is real-valued measurable, then there is a countably
additive measure on P ([0, 1]) that extends Lebesgue measure; see [Jec78, p. 302]
for a proof.

Of course, Theorem 11.23 fails if the pieces in the decomposition are required
to be Lebesgue measurable. On the other hand, the result remains valid if the
pieces are restricted to lie in B, the algebra of subsets of Rn having the Property
of Baire. While the following result for n ≥ 3 and bounded sets follows from the
much stronger Dougherty–Foreman work, the following proof is simple, applies
to the unbounded case, and works in all dimensions.

Theorem 11.24 (AC). Any two subsets of Rn, each of which has the Property of
Baire and nonempty interior, are countably equidecomposable in B.

Proof. We shall show that K ∼∞ Rn in B, where K is any cube in Rn. By transi-
tivity and the Banach–Schröder–Bernstein Theorem, this suffices. First we show
that K can be packed into any other cube L, using countably many pieces in B.
Let E be an open dense subset of K with λ(E ) ≤ λ(L)/2; simply get E as a union
of sufficiently small pairwise disjoint intervals Im, so that the first k points of a
countable dense subset of K are contained in the union of the first k intervals. Let
M = K \E, a nowhere dense set. Now, split L into two halves, L1 and L2, and pack
E and M into L1 and L2, respectively, as follows (see Fig. 11.2). By Proposition
10.41, each Im is finitely equidecomposable, using Borel pieces, with an open strip
of L having the same volume (see Fig. 11.2), and it follows that E =⋃

Im can be
packed into L1 using countably many Borel pieces.

To pack M into L2, use Theorem 11.23 to pack all of Rn into L2 with no restric-
tion on the pieces. But a subset of a nowhere dense set is nowhere dense, and
therefore the packing of M into L2 induced by the packing of Rn has its pieces in
B, as desired.

Now, we may cover Rn with infinitely many closed cubes Ki, each having the
same volume as a given cube K, and K itself contains infinitely many pairwise
disjoint open cubes Li. The result in the previous paragraph shows how to pack
each Ki into Li, and this yields that Rn !∞ K. Obviously K !∞ Rn, so K ∼∞ Rn

as desired.

A consequence of Theorem 11.24 is that no invariant measure on B that nor-
malizes J can be countably additive. Recall that the Marczewski Problem was
whether a finitely additive, invariant measure on B that normalizes J exists if
n ≥ 3. To put it another way, while the unit cube in Rn, n ≥ 3, is paradoxical in B
using finitely many pieces (Cor. 11.13), the use of countably many pieces yields
that it is B-paradoxical even in R1 and R2. Note that the result about the nonex-
istence of a countably additive measure on B could not have been obtained by
the classical Vitali approach (Thm. 1.5). Using the representation of sets in B in
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Figure 11.2. A packing of a square into a smaller square using pieces with the Property
of Baire.

terms of regular-open sets (see proof of Thm. 11.7, (c) ⇒ (g)), it is easy to see
that the unit cube cannot be partitioned into countably many sets with the Prop-
erty of Baire that are pairwise congruent using translations modulo 1. Note that
the condition on interiors in Theorem 11.24 cannot be eliminated. M. Penconek
[Pen91, Cor. 1.5] showed that there is a comeager set A in Rn that is not countably
paradoxical. Because Rn is countably paradoxical, Proposition 3.5, extended to
the countable case, shows that A and Rn are not countably equidecomposable.

In Rn, n ≥ 3, one can simplify the part of Theorem 11.24’s proof that packs
M into L2 by invoking the Banach–Tarski Paradox instead of Theorem 11.23.
Because M is bounded, the strong form of the Banach–Tarski Paradox yields that
a cube containing M , and hence M itself, may be packed into L2 using finitely
many pieces. But all subsets of M are nowhere dense and hence in B. If E could
also be handled with finitely many pieces in B, we would essentially have a para-
doxical decomposition in B as in Theorem 11.7(b). But the existence of an E that
could be so handled is just Theorem 11.7(i) and is equivalent to the existence of a
Marczewski measure.

Of course, Theorem 11.24 fails if L, the algebra of Lebesgue measurable sets,
is used instead of B, because of the existence of the countably additive invari-
ant measure λ. Even if two sets have the same Lebesgue measure, they need
not be countably equidecomposable in L: Simply consider the empty set and any
nonempty set of measure zero. But this example is essentially the only one. The
following definition allows us to show that Lebesgue measure is as complete an
invariant for countable equidecomposability as is possible.

Definition 11.25. Two measurable sets A,B ∈ L are almost countably equide-
composable in L if there are measure zero sets E1, E2 such that A \E1 ∼∞ B \E2

in L.

The reader may prove, as an exercise, that the relation of almost countable
equidecomposability in L is transitive. (This also follows from the discussion
of quotient algebras in §13.2, because the relation in question is equivalent to
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countable equidecomposability in the quotient algebra L/N , where N is the ideal
of sets of measure zero.) This new relation clearly preserves λ and eliminates the
problem of sets of measure zero. As we now show, λ is a complete invariant for
this modified notion of equidecomposability.

Theorem 11.26. If A and B are Lebesgue measurable subsets of Rn (or of Sn),
then λ(A) = λ(B) if and only if A and B are almost countably equidecomposable
in L.

Proof. Only the forward direction requires proof. Assume λ(A) <∞. For if
λ(A) = λ(B) = ∞, we may partition each of A, B into countably many bounded
sets such that corresponding sets have the same measure. Then the fact that
corresponding summands are almost equidecomposable yields that the same is
true for A and B. Now, the Lebesgue density theorem asserts that if λ(E ) > 0,
then for almost all P ∈ E, limh→0 λ(E ∩C(h))/hn = 1, where C(h) is a cube
of side-length h centered at P. Choose P1, P2 in A, B, respectively, so that for
some h > 0, the quotients of the preceding limit are each greater than 1/2. Then
B ∩ (A+ (P2 − P1)) has positive measure. This shows that whenever two sets
have positive measure, some translate of one intersects the other in a set of positive
measure.

Now, let 	 be the supremum of λ(τ (A) ∩ B) over all translations τ , and
choose τ0 so that λ(τ0(A) ∩ B) = 	0 ≥ 	/2. Let B0 = τ0(A) ∩ B and A0 = τ−1

0 B0.
Then replace A, B by A \A0, B \B0, respectively, and (stopping if λ(A \A0) =
λ(B \B0) = 0) repeat to obtain A1, B1, and 	1. Continue as long as possible,
always choosing τm so that 	m = λ(τm(A \ ⋃k≤m−1 Ak ) ∩ (B \ ⋃k≤m−1 Bk ) is
at least half as large as is possible. If this procedure stops in finitely many
steps—that is, if one of A \ ⋃k≤m Ak , B \ ⋃k≤m Bk has measure zero—then both
of these sets have measure zero (because λ(A) = λ(B), λ(Ak ) = λ(Bk )) and A
and B are almost finitely equidecomposable in L. Otherwise,

⋃
Am ∼∞

⋃
Bm in

L, and because the 	m correspond to measures of pairwise disjoint subsets of B,∑
	m ≤ λ(B) = λ(A). Therefore the sequence {	m} converges to 0. But this means

that
∑

	m = λ(
⋃

Am) = λ(A), for if λ(A \ ⋃Am) > 0, then there would be a
translation τ such that λ(τ (A \ ⋃Am) ∩ (B \ ⋃Bm)) = r > 0. Choosing m such
that r > 2	m yields that τ contradicts the choice of τm, because 	m is not greater
than r/2.

The same proof works for subsets of Sn, because the Lebesgue density theorem
is valid on spheres and any point can be taken to any other by a rotation.

It is interesting to note that in the preceding proof, it is sufficient to choose τm

so that 	m > 0. The procedure might then continue on beyond ω steps, but one
could still define τα , 	α , Aα , and Bα for infinite ordinals α. Because the 	α cor-
respond to disjoint sets, the sets A and B must be exhausted, in measure, by the
Aα and Bα corresponding to α < β for some countable ordinal β. This is a con-
sequence of the fact that a set of finite measure cannot contain uncountably many
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11.3 Equidecomposability with Countably Many Pieces 215

pairwise disjoint subsets of positive measure (otherwise, for some n, infinitely
many of the sets would have measure greater than 1/n).

Theorem 11.26 may be generalized to Haar measure on the Borel subsets of a
locally compact topological group: If A and B are Borel sets with the same finite
Haar measure, then A and B are almost countably equidecomposable using Borel
pieces. The proof is the same as the one just given, once it is established that
whenever μ(A) and μ(B) are nonzero (μ denotes Haar measure), for some g ∈ G,
μ(B ∩ g A) > 0. This, in turn, may be derived from Fubini’s theorem, together
with the following two facts about Haar measure [Coh80, Chap. 9]:

(a) μ(A−1) > 0 if μ(A) > 0.
(b) The function F (s, t ) = (s, t−1s−1) is a measure-preserving (with respect to

μ× μ) homeomorphism of G× G to G× G.

Because μ(B)μ(A−1) = (μ× μ)(F−1(B× A−1)) = (μ× μ)({(h, g) : h ∈
B ∩ g A}), the set of g such that μ(B ∩ gA) > 0 must itself have positive measure.

It might even be true that two bounded subsets of R with the same Lebesgue
measure are almost finitely equidecomposable in L.

One can also consider almost countable equidecomposability with no restric-
tions on the pieces. This yields the following variation of Theorem 11.26: Any
two subsets of Rn with positive Lebesgue inner measure are almost countably
equidecomposable. For the proof of this, see [BT24, Thm. 41].

Another way to avoid the problem caused by sets of measure zero is to consider
just the open sets or, more generally, sets with nonempty interior, rather than all
measurable sets. We shall show that such sets are countably equidecomposable in
L provided they have the same measure. The proof requires the following lemma,
part (a) of which can also be deduced from the “sack of potatoes” theorem (see
[Mau81, p. 74]); that theorem states that given a countable sequence of convex
bodies in Rn, with bounded diameters and with bounded total volume, there is a
cube such that the potatoes fit disjointly into the cube.

Lemma 11.27. (a) If E ⊆ Rn has Lebesgue measure 0 and U is a given
nonempty open subset of Rn, then E is countably equidecomposable with
a subset of U .

(b) The same result is valid for subsets E of Sn having Lebesgue measure zero.

Proof. (a) Choose a cube K ⊆ U . Then cover E with rectangles Ri whose volumes
sum to less than the volume of K. Choose pairwise disjoint rectangles R′i ⊆ K
such that λ(R′i) = λ(Ri) and apply Proposition 10.41 to obtain the (Borel) equide-
composability of Ri with R′i. It follows that E is countably equidecomposable to a
subset of

⋃
R′i.

(b) The result is clear for S1 and may be proved for S2 in the same way as
part (a), using the Bolyai–Gerwien Theorem for spherical polygons [Ger83]. To
get it for all dimensions, use a stereographic projection, from the north pole, of
the southern hemisphere of Sn onto a ball in Rn. Then one can apply the “sack
of potatoes” theorem in Rn mentioned prior to the lemma. The key point is that
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this projection sends spherical caps to balls, and vice versa. One advantage of this
constructive approach that pertains to both cases is that if the set E is Borel, then
the packing can be accomplished with Borel pieces.

The preceding proof for spheres does not use the Axiom of Choice. If one is
willing to use AC, then one can do it, for Sn with n ≥ 2, by appealing to the strong
form of the Banach–Tarski Paradox; such an approach will use only finitely many
pieces. But if E is Borel, then this approach might introduce non-Borel sets.

Lemma 11.27 raises the question whether the packings can be effected using
only finitely many pieces. As pointed out in the proof (see also Lemma 11.9),
the Banach–Tarski Paradox yields that any bounded null set in Rn or Sn−1 (n ≥
3) can be packed into any nonempty open set using finitely many (necessarily
measurable) pieces. In R1, R2, and S1, however, there exist null sets that cannot
be finitely packed into any open set of measure less than 1; see remarks following
Corollary 13.3. And the solution to the Marczewski Problem tells us that we can
do the same in the topological context, without the necessity of the restriction
to small (i.e., meager) sets. Any bounded Baire set can be packed into any cube
using Baire pieces! The given cube is, by Corollary 11.13, scaling, and repeated
duplication, B-equidecomposable to a cube large enough to contain the given set.

Lemma 11.27 can be combined with Theorem 11.26 to yield the following
theorem.

Theorem 11.28. Any two measurable subsets of Rn (or of Sn) with nonempty
interior and with the same Lebesgue measure are countably equidecomposable
in L.

Proof. First note that if in Theorem 11.26, A and B have nonempty interior, then
we may construct the decomposition so that the equidecomposable sets A \E1 and
B \E2 also have nonempty interior. Simply choose the first translation τ0 so that
τ0(A) ∩ B contains an open set; the condition 	0 ≥ 1/2 may fail for this one case,
but this will not affect the proof, because the sequence {	m} still converges to 0.
Hence if A and B are as hypothesized, there are measure zero subsets E1, E2, of A,
B, respectively, such that A \E1 ∼∞ B \E2 in L and A \E1, B \E2 each contain a
nonempty open set.

Now, it is sufficient to show that A ∼∞ A \E1, in L (and the same for B and
B \E2). But this is a consequence of the previous lemma. Choose countably many
pairwise disjoint open subsets Ui of A \E1, and choose Fi ⊆ Ui so that Fi ∼∞ E1.
Then partition A into A \ (E1 ∪

⋃
Fi), E1, F0, F1, . . . . Because E1 ∼∞ F0, F0 ∼∞

F1, . . . , this shows that A ∼∞ A \E1 in L as required. Similarly, B ∼∞ B \E2 in
L, completing the proof.

If A and B are Borel subsets of Rn and have nonempty interior and the same
measure, then the proof of the previous theorem, together with the remark at the
end of Lemma 11.27’s proof, yields a decomposition using Borel sets. It follows
that some of the decomposition problems posed earlier have affirmative answers
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if countably many pieces are allowed: The circle can be squared and a regular
tetrahedron cubed using Borel sets.

As with Theorem 11.26, it seems reasonable to expect that the previous result is
valid for sets of the same finite Haar measure, using Borel sets as pieces. Even for
Lie groups, this problem is unsolved (although Freyhoffer [Fre78] has obtained
a solution in commutative Lie groups). Because the generalization of Theorem
11.26 to Haar measure is valid, the method of proof of Theorem 11.28 reduces
the problem to generalizing Lemma 11.27.

Question 11.29. Is it true that whenever E is a Borel set of Haar measure zero
in a locally compact topological group G, and U is a nonempty open subset of G,
then E is countably equidecomposable with a subset of U using left translations
and Borel pieces?

Notes

Tarski’s Theorem is remarkably elegant, and it provided the original motivation
for the first edition of this book in 1985. The theorem is presented in [Tar38b],
although he obtained the result much earlier [Tar29]. Tarski used transfinite induc-
tion. The use of the Tychonoff Theorem stems from work of Łoś and Ryll-
Nardzewski [LR51], who used it to prove the Hahn–Banach Theorem. Tarski’s
Theorem is not as well known as it deserves to be, and the result has been redis-
covered by J. Sherman [She79] (in a weaker form than Tarski’s) and by Emerson
[Eme79]. For a proof based on the Hahn–Banach Theorem, see [HS86].

Marczewski was the first to investigate measures vanishing on the meager sets.
The equivalences of Theorem 11.7 are due to Mycielski [Myc77a, Myc80]. The
1980 paper, however, deals with S2 rather than R3 and assumes that Corollary
11.2 is valid for B. This is not known, and so Theorem 11.7 is not known to be
true as stated for S2. The trick of using similarities to sidestep the problem in Rn

(Thm. 11.7(a) ⇒ (b)) is due to Mycielski.
Lemma 11.9 is due to Tarski [Tar38b, p. 65] and has turned out to be important

in recent work on characterizing Lebesgue measure (see remarks preceding Defn.
13.9). Proposition 11.18 was essentially known to Lebesgue [Leb04].

The fact that the Dougherty–Foreman work yields a general equidecompos-
ability result about open sets using regular-open pieces (Thm. 11.16) is due to
Mycielski.

Chuaqui [Chu69, p. 74] conjectured that Tarski’s Theorem is valid for count-
ably additive measures and ∼∞, but then he discovered the counterexample
of Theorem 11.20 [Chu73]. (A counterexample was first discovered by Lang
[Lan70], but he assumed the Continuum Hypothesis.)

The notions of countable equidecomposability and almost countable equide-
composability were first investigated by Banach and Tarski [BT24], who proved
Theorems 11.22 and 11.26. Their proof of Theorem 11.26 was more elementary
and more complicated than the proof presented here, which is due to Mycielski.
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The extension of Theorem 11.26 to Haar measure is due to von Neumann (unpub-
lished; see [Chu76] and [Mah42]).

Lemma 11.27 is due to Banach and Tarski [BanTar24, p. 277] for Rn (see also
[Chu69]), and the fact that the result is valid on spheres without having to use the
Axiom of Choice was pointed out to the authors by B. Grünbaum. The fact that
Lemma 11.27 could be used to obtain the characterization of Theorem 11.28 is
due to Chuaqui [Chu69], although for open sets the result was known to Banach
and Tarski. The possibility that Theorem 11.28 is valid for Haar measure, that is,
Question 11.29, was first investigated by Chuaqui [Chu76].
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12

Measures in Groups

In Part One we saw that the main idea in the construction of a paradoxical decom-
position of a set was to first get such a decomposition in a group acting on the set
and then transfer it to the set. A similar theme pervades the construction of invari-
ant measures on a set X acted upon by a group G. If there is a finitely additive,
left-invariant measure defined on all subsets of G, then it can be used to produce a
finitely additive, G-invariant measure defined on all subsets of X . Such measures
on X yield that X (also certain subsets of X ) is not G-paradoxical.

It was von Neumann [Neu29] who realized that such a transference of mea-
sures was possible, and he began the job of classifying the groups that bear mea-
sures of this sort. In this chapter we first study some properties of the class of
groups having measures and show that it is fairly extensive, containing all solvable
groups. We then give the important application to the case of isometries acting on
the line or plane, obtaining the nonexistence of Banach–Tarski-type paradoxes in
these two dimensions.

12.1 Amenable Groups

An amenable group is one that bears a certain measure; the name, put forward by
Mahlon Day, is a pun when the “e” is long, as in “ameanable.”

Definition 12.1. If, for a group G, μ is a finitely additive measure on P (G) such
that μ(G) = 1 and μ is left-invariant (μ(gA) = μ(A) for g ∈ G, A ⊆ G), then μ
will be called simply a measure on G. An amenable group is one that bears such
a measure; AG denotes the class of all amenable groups.

If a group G is paradoxical with respect to left translations, then G cannot
be amenable, because a measure would have to satisfy μ(G) = 2μ(G). Thus, for
example, any group that has a free subgroup of rank 2 is not amenable (by Thm.
1.2 and Prop. 1.10). In fact, an application of Tarski’s Theorem (Cor. 11.2) to a
group’s action on itself yields that groups that are not paradoxical are necessar-
ily amenable, and hence AG coincides with the class of nonparadoxical groups.

219
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220 12 Measures in Groups

While this characterization of amenability can be used to establish the amenabil-
ity of some families of groups (e.g., the amenability of Abelian groups follows
from Thm. 14.21(a)), we shall establish the existence of a measure more directly
whenever possible, avoiding the rather difficult theorem of Tarski.

Note that if G is an infinite group, there cannot be a left-invariant measure on
P (G) that has total measure 1 and is countably additive. This is easily proved
by the Vitali technique (Thm. 1.5), using instead the equivalence relation based
on any countable subgroup of G. In fact, there cannot even be a σ -finite, left-
invariant, countably additive measure on P (G) (see [EM76, AP80]).

The basic result on amenability is that all elementary groups are amenable,
where the elementary groups are the smallest family containing all finite and
Abelian groups and closed under subgroup, quotient group, group extension, and
direct limits. Before proving this, we discuss a few simple consequences of the
definition of amenability.

For a group G, let B(G) denote the collection of bounded real-valued functions
on G; B(G) is a vector space under pointwise addition and scalar multiplication
of functions. If μ is a measure on G, then the standard construction of an inte-
gral from a measure (see, e.g., [Roy68, Chap. 11]) can be applied to the system
(G,P (G), μ). This construction, which proceeds by defining the integral first on
simple functions, then, via suprema, on all measurable functions, is somewhat
simplified in this context because all sets, and hence all functions, are measur-
able. Thus,

∫
f dμ defines a linear functional on all of B(G). On the other hand,

because the measure is not necessarily countably additive, certain standard the-
orems, such as the monotone and dominated convergence theorems, cannot be
proved. In summary, then, a real number,

∫
f dμ, is assigned to each f ∈ B(G),

and this integral satisfies the following properties:

(a)
∫

a f + bg dμ = a
∫

f dμ+ b
∫

g dμ if a, b ∈ R
(b)

∫
f dμ ≥ 0 if, for all g ∈ G, f (g) ≥ 0

(c)
∫
χG dμ = 1

(d) for each g ∈ G, f ∈ B(G),
∫

g f dμ = ∫
f dμ, where (g f )(h) = f (g−1h);

that is, the integral is left-invariant

It is easy to see that conditions (b) and (c) may be replaced by the single con-
dition inf{ f (g) : g ∈ G} ≤ ∫ f dμ ≤ sup{ f (g) : g ∈ G}. Because of this, a lin-
ear functional on B(G) that satisfies (a)–(d) is called a left-invariant mean on
G; therefore an amenable group always bears a left-invariant mean. Conversely,
if F : B(G) → R is a left-invariant mean, then defining μ(A) = F (χA) yields a
measure on G. Hence a group is amenable if and only if it bears a left-invariant
mean.

While the existence of a measure is sufficient to prove some properties of
amenable groups, in some proofs the corresponding mean is the more useful
object. The following proposition is an example. Defining a right-invariant mea-
sure in the obvious way, one sees that a left-invariant measure, μ, on G yields
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12.1 Amenable Groups 221

a right-invariant measure, μ0, defined by μ0(A) = μ(A−1). Note that the inte-
gral with respect to μ0 is invariant under the right action of G on B(G) given
by fg(h) = f (hg−1). A (left-invariant) measure on an amenable group is not nec-
essarily right-invariant (see [HR63, p. 230]), but at least some measures on an
amenable group are two-sided invariant.

Proposition 12.2. If G is amenable, then there is a measure ν on P (G) that is
left-invariant and right-invariant.

Proof. Let μ be a measure on G and μ0 the corresponding right-invariant mea-
sure. If A ⊆ G, define fA in B(G) by fA(g) = μ(Ag−1); fA is bounded by 1.
Then define ν on P (G) by ν(A) = ∫

fA dμ0. It is easy to check that ν(G) = 1
and ν is finitely additive ( fA∪B = fA + fB if A ∩ B = ∅). Moreover, fgA = fA and
fAg = ( fA)g, so ν is both left- and right-invariant.

A much more important application of means is the Invariant Extension Theo-
rem (Thm. 12.8). The next result is a very simple special case. It shows why a set
cannot be paradoxical if the group acting on it is amenable.

Theorem 12.3. Suppose the amenable group G acts on X . Then there is a finitely
additive, G-invariant measure on P (X ) of total measure 1; hence X is not G-
paradoxical.

Proof. Choose any x ∈ X and, if μ is a measure on G, define v :P (X ) → [0, 1]
by ν(A) = μ({g ∈ G : g(x) ∈ A}). It is easy to check that ν, which gives measure
1 to the orbit of x, is as required.

Because of Tarski’s Theorem, this result may be stated as; if G acts on X and G
is not paradoxical, then X is not G-paradoxical. In fact, it is easy (see remarks after
Prop. 1.10) to give a direct proof of this latter result, which is a strong converse to
Proposition 1.10.

We now turn our attention to proving that all elementary groups—in particu-
lar, all Abelian and solvable groups—are amenable. Note, however, that Theorem
12.3, together with the amenability of the solvable groups G1 and G2, yields only
that Rn is not Gn-paradoxical if n = 1 or 2. We are more interested in the fact that
no interval or square is paradoxical, and this requires a measure that does not van-
ish on intervals or squares; the measures provided by Theorem 12.3 necessarily
vanish on all bounded sets. The proof that a measure that agrees with Lebesgue
measure exists (if n ≤ 2) requires a stronger form of Theorem 12.3, the Invariant
Extension Theorem (Thm. 12.8).

Theorem 12.4. (a) Finite groups are amenable.
(b) Abelian groups are amenable.
(c) (AC) A subgroup of an amenable group is amenable.
(d) If N is a normal subgroup of the amenable group G, then G/N is amenable.
(e) If N is a normal subgroup of G, and each of N, G/N are amenable, then G

is amenable.
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222 12 Measures in Groups

(f) (AC) If G is the direct union of a directed system of amenable groups,
{Gα : α ∈ I}, then G is amenable.

Before proving this theorem, we note some consequences. By parts (b) and
(e), every solvable group is amenable; in particular, O1, G1, and G2 are amenable.
Also, because any group is the direct union of its finitely generated subgroups, it
follows from (c) and (f) that a group is amenable if and only if all of its finitely
generated subgroups are. Thus amenability may be regarded as being primarily a
property of finitely generated groups.

Proof of 12.4. (a) If |G| = n <∞, then defining μ(A) = |A|/n yields the desired
measure on G.

(b) This part is the most difficult and will be proved after the others.
(c) Let μ be a measure on G, and suppose H is a subgroup of G. Let M be

a set of representatives (choice set) for the collection of right cosets of H in G.
Then define ν on P (H ) by ν(A) = μ(

⋃{Ag : g ∈ M}). It is easy to check that ν
is a measure on H .

(d) If μ is a measure on G, then define ν :P (G/N ) → [0, 1] by setting ν(A) =
μ(
⋃

A). Again, it is routine to check that ν is as desired.
(e) Let ν1, ν2, be measures on N , G/N , respectively. For any A ⊆ G let fA : G →

R be defined by fA(g) = ν1(N ∩ g−1A). Then if g1 and g2 define the same coset
of N in G, fA(g1) = fA(g2). For if g−1

2 g1 = h ∈ N , then

fA(g2) = ν1(N ∩ g−1
2 A) = ν1(N ∩ hg−1

1 A) = ν1(h(N ∩ g−1
1 A))

= ν1(N ∩ g−1
1 A) = fA(g1).

This means that fA induces f̂A, a (bounded) real-valued function with domain
G/N . Define μ(A) to be

∫
f̂A dν2. Because fG = χG, μ(G) = 1; and if A,B ⊆

G, A ∩ B = ∅, then for any g ∈ G, g−1A ∩ g−1B = ∅ whence fA∪B(g) = fA(g)+
fB(g), and so f̂A∪B(gN ) = f̂A(gN )+ f̂B(gN ). This yields the finite additivity of
μ. Finally, fgA(g0) = ν1(N ∩ g−1

0 gA) = fA(g−1g0) = g( fA)(g0), and so the left-
invariance of the integral defined by ν2 yields that μ(gA) = μ(A).

(f) We are given that G =⋃{Gα : α ∈ I} where each Gα is amenable (with
measure μα), and for each α, β ∈ I there is some γ ∈ I such that Gα and Gβ are
each subgroups of Gγ . Consider the compact topological space [0, 1]P (G); this is
where the Axiom of Choice, via Tychonoff’s Theorem, is used. For each α ∈ I ,
let Mα consist of those finitely additive μ :P (G) → [0, 1] such that μ(G) = 1
and μ(gA) = μ(A) whenever g ∈ Gα . Then each Mα is nonempty, as can be seen
by defining μ(A) = μα (A ∩ Gα ). And, as in the proof of Theorem 11.1, one may
check that each Mα is a closed subset of [0, 1]P (G). Because Mα ∩Mβ ⊇Mγ

if Gα , Gβ ⊆ Gγ , the collection {Mα : α ∈ I} has the finite intersection property.
By compactness, then, there is some μ ∈⋂{Mα : α ∈ I}, and such a μ witnesses
the amenability of G.

(b) As pointed out before, any group is the direct union of its finitely gen-
erated subgroups; hence, by (f) it suffices to consider finitely generated Abelian
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12.2 Classes of Groups 223

groups. So suppose G is Abelian, with generating set {g1, . . . , gm}. We claim that
it suffices to show that for all ε > 0, there is a function με :P (G) → [0, 1] such
that

1. με (G) = 1
2. με is finitely additive
3. με is almost invariant with respect to the generators in the sense that for

each A ⊆ G and generator gk , |με (A)− με ( gk A)| ≤ ε

Once the existence of such a με is established, we may let Mε denote the set
of functions from P (G) to [0, 1] satisfying (l)–(3). Then each Mε is nonempty
and closed, because if a function fails to lie in Mε , then that failure is evi-
dent from finitely many values of the function (see Thm. 11.1’s proof); more
precisely, if μ(G) < 1, then the inequality holds for an open set containing μ;
and if |μ(A)− μ(gkA)| > ε for some A, k, ε, then again the inequality is valid
on an open set containing μ; and the same for failure of finite additivity. Fur-
thermore, the collection of the sets Mε has the finite intersection property:⋂

Mεi =Mmin εi , which is nonempty. Therefore, by compactness of [0, 1]P (G),
there is some μ lying in each Mε . Such a μ is left-invariant with respect to each
gk and hence is left-invariant with respect to any member of G, as desired.

The idea behind the construction of a single με is really very sim-
ple. For example, consider the case where G has the single generator g1.
Choose N so large that 2/N ≤ ε, and let με (A) = |{i : 1 ≤ i ≤ N and gi

1 ∈ A}|/N .
Then με differs from με (gA) by no more than 2/N ≤ ε. For the general
case, choose N as before and let με (A) be |{(i1, . . . , im). : 1 ≤ i1, . . . , im ≤
N and gi1

1 gi2
2 · · · gim

m ∈ A}.|/Nm. Then με (G) = 1, μ is finitely additive, and
because gk commutes with the other generators, με (gkA) differs from με (A)
by no more than |{(i1, . . . , im) : 1 ≤ i1, . . . , ik−1, ik+1, . . . , im ≤ N and ik = 1 or
N + 1}|/Nm = 2Nm−1/Nm = 2/N ≤ ε, as desired.

12.2 Classes of Groups

The concept of amenability in groups is central to the theory of paradoxical
decompositions, because the key idea from the beginning has been to take a para-
dox in a group and lift it to a set on which the group acts. The class of amenable
groups, AG, includes EG, the class of elementary groups, which we now define
formally. The elementary groups are the smallest class of groups containing all
finite groups and all Abelian groups and satisfying (a)–(d). Recall that {Gi : i ∈ I}
is a directed system of subgroups if for all i, j ∈ I , there is some k ∈ I such that
Gi and Gj are subgroups of Gk .

(a) If H is a subgroup of EG, then H ∈ EG.
(b) If H is a normal subgroup of G ∈ EG, then G/H ∈ EG.
(c) If H is a normal subgroup of G, and both H and G/H are in EG, then

G ∈ EG.
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224 12 Measures in Groups

(d) If {Gi : i ∈ I} is a directed system and each Gi ∈ EG, then the union of the
Gi is a group in EG. Because of (a), this is equivalent to the following: If
all finitely generated subgroups of G are in EG, then G ∈ EG.

This class can be defined more explicitly using transfinite induction (see
[Cho80]). Consider also the class NF, which consists of all groups without a free
subgroup of rank 2. Now, Theorem 1.2 tells us that F2 is a paradoxical group under
left multiplication; hence F2 has no invariant measure and is not amenable. By
Theorem 12.4(c), this means that no group with F2 as a subgroup can be amenable;
hence AG ⊆ NF . Theorem 12.4 implies that every elementary group is amenable,
so we have EG ⊆ AG ⊆ NF .

The question as to whether these inclusions are proper is difficult but has been
resolved; they are both proper. The assertion that AG = NF is sometimes known
as the von Neumann Conjecture or the von Neumann–Day Problem. To rephrase,
this is asking; Is it true that every paradoxical group contains F2? or; Is it true that
every nonelementary group is paradoxical? The first result in this area stems from
the 1968 solution to the Burnside Problem: Is each Burnside group B(m, n) finite?
(The group B(m, n) is 〈x1, x2, . . . , xm : wn = 1〉, where w ranges over all words in
the x±1

i .) Any Burnside group is a periodic group: Each element has finite order;
clearly any periodic group is in NF .

Theorem 12.5. There is a finitely presented amenable group that is not elemen-
tary. There is a nonamenable periodic group; such a group is in NF \AG.

The existence of a nonamenable group in NF was established in 1968 by
Adian and Novikov (see [Adi79]). Also Adian resolved the Burnside Conjecture
by showing that B(2, 665) is infinite. Now, B(2, 665) obviously has no free sub-
group, and it is not hard to see that B(2, 665) /∈ EG. This is a consequence of
the fact [Cho80, Thm. 2.3] that there are no infinite groups that are elementary,
finitely generated, and periodic. And more is true, as Adian [Adi83] has proved
that B(2, 665) is not amenable; indeed, this applies to B(m, n) whenever m ≥ 2
and n ≥ 665. So this is a concrete example of a group in NF \AG. And there is
even an example, due to Lodha and Moore, that is finitely presented: It has three
generators and nine relations (Thm. 14.38).

That AG is strictly larger than EG follows from Grigorchuk’s counterexample
to the Milnor–Wolf Conjecture (Thm. 14.28). That group is finitely generated but
not finitely presented (a finitely presented group is one defined by a finite gener-
ating set together with finitely many relations). Grigorchuk later found [Gri96] a
finitely presented example in AG \EG; it is given as follows:

H = 〈a, b, c, d, t : a2 = b2 = c2 = d2 = bcd = (ad )4 = (adacac)4 = e,

t−1at = aca, t−1bt = d, t−1ct = b, t−1dt = c〉.
It should be noted that the three classes EG, AG, and NF share many properties;

for instance, they all satisfy the closure properties (a)–(d) that define elementary
groups.
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Note that if a group is paradoxical in the same way that a non-Abelian free
group is paradoxical—that is, there is a 4-piece paradox—then in fact the group
contains such a free subgroup (Cor. 5.9).

Theorem 12.5 notwithstanding, there is a wide class of groups in which the
nonamenable groups do coincide with the groups having a free subgroup of rank
2. A theorem of Tits [Tit72] yields that, when restricted to a certain class of
groups, the classes EG, AG, and NF do coincide. Moreover, this class includes
all groups of isometries of Rn, and hence the result is applicable to the central
examples of this book. If a group has a normal subgroup of finite index with a
certain property, we shall say that the group almost has the property.

Theorem 12.6. Let G be any group of n× n nonsingular matrices (under multi-
plication) with entries in a field K; that is, G is a subgroup of GLn(K ).

(a) If K has characteristic 0, then either G has a free subgroup of rank 2 or G
is almost solvable.

(b) If K has nonzero characteristic, then either G has a free subgroup of rank
2 or G has a normal solvable subgroup H such that G/H is locally finite
(meaning that every finite subset generates a finite subgroup).

The interested reader is referred to [Tit72] for a proof of this powerful result
and some further applications. Further expositions can be found in [Dix73] and
[Weh73], and an illuminating discussion appears in [Har83]. A refinement of part
(a) of the theorem appears in [Wan81]. Because a locally finite group is the direct
limit of its finite subgroups and hence is elementary, this result yields that a matrix
group without a free subgroup of rank 2 is elementary and hence amenable. Note
that the extra complication of G/H in part (b) is necessary. If K is infinite and
n ≥ 2, then GLn(K ) is not almost solvable, and if, in addition, K is an algebraic
extension of a finite field, then GLn(K ) is locally finite and hence has no free
subgroup of rank 2. Thus, for example, GLn(K ), where K is the algebraic closure
of a finite field, shows that the result of part (a) is not valid in the case of nonzero
characteristic. Now, the Euclidean affine group An is isomorphic to a subgroup of
GLn+1(R) (see App. A); it follows that any group of isometries of Rn either has a
free subgroup of rank 2 or is almost solvable.

Tits’s Theorem is an algebraic one. A topological approach was used by Bal-
cerzyk and Mycielski [BM57] to show that any locally compact, connected topo-
logical group either is solvable or contains a free subgroup of rank the contin-
uum. It follows that the three classes EG, AG, and NF coincide when restricted
to this collection of topological groups. The work of Balcerzyk and Mycielski
builds upon the earlier investigation into free subgroups of Lie groups by Kura-
nishi [Kur51].

12.3 Invariant Measures

For applications to equidecomposability theory, the most important question
is whether a group is amenable. But there are many interesting questions
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concerning the types of measures on an amenable group. For instance, it is clear
that the normalized counting measure is the only possible measure on a finite
group, and it is now known ([Gra63]; see also [Gre69, App. 1]) that any infi-
nite amenable group carries more than one measure. Indeed, if G is infinite and
amenable, then there are as many measures on G as there are real-valued func-
tions on P (G) ([Cho76]). The question of measure uniqueness for an action of a
group on a set is discussed in §13.1. The unique measure on a finite group is also
inverse-invariant (μ(A) = μ(A−1)), and it is easy to see that an amenable group
always bears an inverse-invariant measure: Just use (μ(A)+ μ(A−1))/2, where μ
is both left- and right-invariant (use Prop. 12.2). It may happen that all measures
are necessarily inverse-invariant, however. For instance, if G is Abelian, then all
measures are inverse-invariant if and only if 2G (which is {g+ g : g ∈ G}) is finite
[RW68].

To prove several results about the existence of invariant measures in as uniform
a way as possible, it is most convenient to work in the context of Boolean alge-
bras. There are other approaches, however, and we shall indicate after the proof of
Theorem 12.11 how the important Corollaries 12.9 and 12.10 can be proved using
linear functionals and the Hahn–Banach Theorem. But Boolean algebras are more
natural for some of the other applications of amenability. We now summarize the
basic facts about Boolean algebras that will be needed. The reader who is famil-
iar with the Hahn–Banach Theorem and desires a short proof that analogs of the
Banach–Tarski Paradox do not exist in R1 or R2 might skip ahead to Theorem
12.11, (a) ⇒ (e). For a more detailed treatment of Boolean algebras, see [Sik69].

A Boolean algebra A is a nonempty set (also denoted by A) together with three
operations defined on elements of A: a ∨ b (join), a ∧ b (meet), and a′ (comple-
ment). These operations, which generalize the set-theoretic operations of union,
intersection, and complement, must satisfy the following axioms:

(a) ∨ and ∧ are commutative and associative.
(b) (a ∧ b) ∨ b = (a ∨ b) ∧ b = b.
(c) a ∧ (b∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b∧ c) = (a ∨ b) ∧ (a ∨ c).
(d) (a ∧ a′) ∨ b = (a ∨ a′) ∧ b = b.

We assume that Boolean algebras are nondegenerate: They have at least two ele-
ments. It follows that there are two distinguished elements, 0 and 1, defined by
0 = a ∧ a′ and 1 = a ∨ a′ (the choice of a is immaterial). The complement of b in
a, a ∧ b′, is denoted simply by a− b. If A is a finite subset of A, A = {a0, . . . , an},
then

∑
A denotes a0 ∨ a1 ∨ . . . ∨ an. Two elements a, b ∈ A are called disjoint if

a ∧ b = 0. There is a natural partial ordering in any Boolean algebra, defined by
a ≤ b if a ∧ b = a; 1 is the greatest element and 0 the least with respect to this
ordering.

A subset A0 of A is a subalgebra if A is closed under ∨, ∧, and ′. For any
subset X of A, there is a smallest subalgebra of A containing X . It is called the
subalgebra of A generated by X . See [Sik69] for an explicit description of the
subalgebra generated by a set; an important fact is that the subalgebra generated
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by a finite set is finite. An equally important concept is that of relativization—
the restriction of a Boolean algebra to elements smaller than a fixed b ∈ A. More
precisely, let Ab = {a ∈ A : a ≤ b}, with the same join and meet as in A and
with a′ in Ab defined to be a′ ∧ b (in A). Then Ab is a Boolean algebra whose
zero is the same as the zero of A but whose unit is b. Note that Ab is not a
subalgebra of A. An element b ∈ A is called an atom if there are no elements
below b except for 0 and b, that is, if Ab = {0, b}, a two-element Boolean algebra.
Any finite Boolean algebra is isomorphic to the algebra of all subsets of a finite
set. It follows that any nonzero element b of a finite Boolean algebra satisfies
b =∑{a : a ≤ b and a is an atom}; in particular, there is at least one atom a such
that a ≤ b.

An automorphism of a Boolean algebra A is a bijection g:A→ A that pre-
serves the three Boolean operations. For instance, if a group G acts on a set X , then
each g ∈ G induces an automorphism of the Boolean algebra P (X ) by g(A) =
{g(x) : x ∈ A}. A measure on a Boolean algebra A is a function μ :A→ [0,∞]
such that μ is finitely additive (meaning μ(a ∨ b) = μ(a)+ μ(b) if a ∧ b = 0)
and μ(0) = 0. If G is a group of automorphisms of A, then a measure μ on A is
G-invariant if μ(g (b)) = μ(b) for all b ∈ A, g ∈ G.

Finally, we shall need the notion of a subring of a Boolean algebra. A nonempty
subset A0 of a Boolean algebra A is a subring if a1 ∨ a2 and a1 − a2 are in A0

whenever a1, a2 ∈ A0. For instance, the collection of bounded subsets of Rn is
a subring of P (Rn). Note that a subalgebra is always a subring. A measure on a
subring A0 means a finitely additive function μ :A0 → [0,∞] with μ(0) = 0.

The next theorem is fundamental to the study of measures in Boolean algebras.
For instance, letting A0 = {0, 1} and μ(0) = 0, μ(1) = 1, the theorem yields that
every Boolean algebra admits a measure of total measure 1. Or, letting A0 = L,
the subalgebra of P (R) consisting of all Lebesgue measurable sets, and μ = λ,
one gets a finitely additive extension of Lebesgue measure to all sets. Such a
measure will not necessarily have any invariance properties, but Theorem 12.8
will show how invariance can be guaranteed, provided the group in question is
amenable.

Theorem 12.7 (Measure Extension Theorem) (AC). Suppose A0 is a subring
of the Boolean algebra A, and μ is a measure on A0. Then there is a measure μ
on A that extends μ.

Proof. We first prove the theorem under the additional assumption that A is finite,
proceeding by induction on the number of atoms in A. If A has one atom, then
A = {0, 1}, and the assertion is trivial. In general, choose s to be a minimal (with
respect to ≤) element of A0 \ {0} (if A0 consists only of 0, simply let μ be iden-
tically 0). Let c = s′ and consider the relativized algebra Ac with associated sub-
ring A0 ∩Ac and measure μ� (A0 ∩Ac). Let a0 be an atom of A such that a0 ≤ s.
Then a0 /∈ Ac, whence Ac has fewer atoms than A and the induction hypothesis
can be used to obtain a measure ν on Ac that extends μ�A0 ∩Ac. Now, define
μ on A by first defining μ on all atoms of A, and then extending to all of A by

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.015
https://www.cambridge.org/core
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μ(b) =∑{μ(a) : a ≤ b, a an atom}; μ will then automatically be finitely addi-
tive on A. Let a be any atom of A, and define μ(a) by μ(a) = ν(a) if a ≤ c,
μ(a) = μ(s) if a = a0, and μ(a) = 0 if a ≤ s but a 
= a0. Note that μ must agree
with ν on all of Ac; it remains to show that μ agrees with μ on A0. Observe
that by the minimality of s, if d ∈ A0, then either d ∧ s = 0 or d ≥ s (otherwise,
s− d ∈ A0 \ {0}). If the former, then d ≤ c, so μ(d ) = ν(d ) = μ(d ). If, instead,
d ≥ s, then d = s ∨ (d − s) and μ(d ) = μ(s)+ μ(d − s) = μ(s)+ ν(d − s) =
μ(s)+ μ(d − s) = μ(d ).

The result will be extended to infinite Boolean algebras by the usual com-
pactness technique applied to the product space [0,∞]A, viewed as consisting
of functions from A to [0,∞]. For each finite subalgebra, C, of A, let M(C) =
{ν ∈ [0,∞]A : μ� C is a measure extending μ� (A0 ∩Ac)}. Each M(C) is easily
seen to be closed and, as shown, nonempty. Moreover, finitely many finite subal-
gebras of A generate a finite subalgebra; it follows that the family of all M(C)
has the finite intersection property. By compactness, then, the intersection of all
the M(C) over all finite subalgebras C is nonempty, and any element of this inter-
section satisfies the conclusion of the theorem.

As shown in Proposition 11.4, the compactness of [0,∞]A does not require
the Axiom of Choice if A is countable; hence neither does the Measure Exten-
sion Theorem in this case. Some form of choice is definitely required for the
general Measure Extension Theorem just proved, however. This is because if the
theorem is applied to A = P (N), A0 = {A ∈ A : A or N \A is finite}, and μ, the
measure assigning measure 0 to finite sets and measure 1 to cofinite sets, one
obtains a finitely additive measure on P (N) that has total measure 1. In fact, by
using {0, 1}A instead of [0,∞]A in the latter part of the proof, one obtains a
{0, 1}-valued measure on P (N) of total measure 1 that vanishes on singletons.
Such a measure (more precisely, the sets having measure 1 with respect to such
a measure) is called a nonprincipal ultrafilter on N. In Chapter 15 (Thms. 15.4
and 15.5) it will be indicated why the existence of such an ultrafilter, or even of a
finitely additive measure on P (N) that vanishes on singletons, cannot be proved
in ZF alone. It will also be shown in that chapter why parts (c), (f), and, with an
additional hypothesis about inaccessible cardinals, (b) of Theorem 12.4 cannot be
proved in ZF.

However, the Measure Extension Theorem is not strong enough to prove the
full Axiom of Choice. This is because the proof of the Measure Extension Theo-
rem used the fact that a product of compact Hausdorff spaces is compact, rather
than the full Tychonoff Theorem. This Hausdorff version of the Tychonoff The-
orem is equivalent to the Boolean Prime Ideal Theorem (every Boolean algebra
has a {0, 1}-valued measure of total measure 1; see [Jec73]), and it is known that
these assertions do not imply the Axiom of Choice. In fact, the Measure Extension
Theorem is equivalent (in ZF) to the Hahn–Banach Theorem on extending linear
functionals [Lux69], and it is known that these statements are strictly weaker than
the Boolean Prime Ideal Theorem; see Figure 15.1.
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Now, it is a slightly more complex situation that interests us. Namely, if G is
a group of automorphisms of A, A0 is a G-invariant subring (a ∈ A0 and g ∈ G
imply g(a) ∈ A0), and μ is a G-invariant measure on A0, can we be sure that there
is a G-invariant extension of μ to all of A? This can be done if G is amenable:
First use the preceding theorem to obtain some extension ν, and then use a left-
invariant mean on G to average out the noninvariance of ν.

Theorem 12.8 (Invariant Extension Theorem) (AC). If, in the Measure Exten-
sion Theorem, G is an amenable group of automorphisms of A, and A0 and μ are
G-invariant, then μ can be chosen to be G-invariant as well.

Proof. Use the Measure Extension Theorem to get a measure ν on A extending μ.
Let θ be a measure on the amenable group G. Now, if b ∈ A, define fb : G → R by
fb(g) = ν(g−1(b)). Then define μ by μ(b) = ∫

fb dθ , if fb ∈ B(G), that is, if fb

is bounded, and μ(b) = ∞ if fb is unbounded (where a function that takes on the
value ∞ is considered to be unbounded). It is easy to see that μ is a G-invariant
extension of μ, using the fact that for any g ∈ G, fg(b) = g( fb) and property (d) at
the start of §12.1

In fact, it is easy to see that the amenable groups are the only ones for which
the Invariant Extension Theorem holds. If the theorem holds for G, apply it to
A = P (G), A0 = {∅,G}, μ(∅) = 0, and μ(G) = 1, with G acting on A by left
translation to obtain a measure on G.

The Invariant Extension Theorem can be applied to extend Lebesgue mea-
sure to an invariant, finitely additive measure defined on all subsets of R1 or R2.
Hence the Banach–Tarski Paradox has no analog using isometries of the line or
plane. Because of the Banach–Tarski Paradox (more precisely, by Thm. 2.6), such
invariant extensions of Lebesgue measure do not exist in R3 and beyond; but
if invariance with respect to an amenable group of isometries, rather than the
full group, is desired, such extensions exist in all dimensions. Finitely additive,
isometry-invariant extensions of Lebesgue measure to all sets are called Banach
measures.

Corollary 12.9 (AC). If G is an amenable group of isometries of Rn (resp., Sn),
then there is a finitely additive, G-invariant extension of Lebesgue measure λ to
all subsets of Rn (resp., Sn). In particular, Lebesgue measure on S1, R1, or R2

has an isometry-invariant, finitely additive extension to all sets.

Proof. Apply the Invariant Extension Theorem to A = P (Rn), A0 = L, the sub-
algebra of Lebesgue measurable sets, and μ = λ. The second assertion fol-
lows from the fact that the corresponding isometry groups are solvable (see
App. A).

Recall (Cor. 1.6) that there is no countably additive, translation-invariant mea-
sure on all subsets of Rn that normalizes a cube. But the translation group is
Abelian, so Corollary 12.9 shows that if only finite rather than countable additiv-
ity is desired, then such measures do exist.
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Corollary 12.10 (AC). If G is an amenable group of isometries of Rn, then no
bounded subset of Rn with nonempty interior is G-paradoxical. In particular, no
bounded subset of R1 or R2 with nonempty interior is paradoxical.

Proof. Use the preceding corollary to obtain μ, a finitely additive, G-invariant
extension of λ to all subsets of Rn. Then 0 < μ(A) <∞ for any bounded set A
with nonempty interior, so A is not G-paradoxical.

Corollary 12.10 actually applies to a wider class of sets. For if A has positive
inner Lebesgue measure and bounded outer Lebesgue measure, then if μ is as in
the proof of Corollary 12.10, it is easy to see that 0 < μ(A) <∞, whence A is not
paradoxical. But some conditions on A are necessary because of the Sierpiński–
Mazurkiewicz Paradox (Thm. 1.7), which provides an example of a paradoxical
subset of R2. Recall that the set of that paradox is countable and unbounded.
However, there are bounded, uncountable paradoxical subsets of the plane (§14.2).

The situation in R1 is quite different, because the isometry group is much sim-
pler. In fact, in R1, Corollary 12.10 is valid without any conditions on the set, that
is, no nonempty subset of the line is paradoxical. This will follow from Theorem
14.21 and Proposition 14.24, which show that this is the case whenever the group
acting on the set is almost Abelian.

Although paradoxes using isometries are missing in the plane, recall that the
Von Neumann Paradox (Thm. 8.5) shows that a square is paradoxical using area-
preserving affine transformation. Of course, this enlargement of the isometry
group is nonsolvable and nonamenable.

In the next chapter, we investigate the necessity of amenability in these two
corollaries. It turns out that in the case of spheres, amenability is a necessary
condition for the existence of a measure as in Corollary 12.10. But amenability
is not necessary for the absence of paradoxes, that is, the existence of a finitely
additive, G-invariant measure on P (Rn) that normalizes the unit cube but does
not necessarily agree with Lebesgue measure.

We have used the Axiom of Choice to prove that the analog of the Banach–
Tarski Paradox fails in R1 and R2. Thus Choice sits on both sides of the fence—
it is used to construct the paradoxes in the higher dimensions and to get rid of
them in the lower dimensions. If one desires only the nonexistence of paradoxes
rather than the stronger (in the absence of Choice) existence of total measures,
one can get by without using the Axiom of Choice (see Cors. 14.25 and 15.9).
Thus a more accurate portrayal of the axiom’s role, at least in R1 and R2, is that
it is used to destroy countably additive measures but to construct finitely additive
measures. In the next chapter, we give some further applications of amenability to
the construction of measures.

12.4 Characterizations of Amenability

We now present some more properties of amenable groups, including an alternate
proof of Corollary 12.10 based on the use of linear functionals rather than Boolean

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.015
https://www.cambridge.org/core


12.4 Characterizations of Amenability 231

algebras. The following result gives several characterizations of amenability,
showing how natural this notion is.

Theorem 12.11 (AC). For a group G, the following are equivalent:

(a) G is amenable.
(b) There is a left-invariant mean on G.
(c) G is not paradoxical.
(d) G satisfies the Invariant Extension Theorem: A G-invariant measure on a

subring of a Boolean algebra may be extended to a G-invariant measure
on the entire algebra.

(e) G satisfies the Hahn–Banach Extension Property: Suppose
i) G is a group of linear operators on a real vector space V ;

ii) F is a G-invariant linear functional on V0, a G-invariant subspace of
V ; and

iii) F (v ) ≤ p(v ) for all v ∈ V0, where p is some real-valued function on V
such that p(v1 + v2) ≤ p(v1)+ p(v2) for v1, v2 ∈ V , p(αv ) = αp(v )
for α > 0, v ∈ V , and p(g(v )) ≤ p(v ) for g ∈ G, v ∈ V .

Then there is a G-invariant linear functional F on V that extends F and is
dominated by p.

(f) G satisfies Følner’s Condition: For any finite subset W of G and every
ε > 0, there is a nonempty finite subset W ∗ of G such that for any g ∈W ,
|gW ∗'W ∗|/|W ∗| ≤ ε.

(g) G satisfies Dixmier’s Condition: If f1, . . . , fn ∈ B(G) and g1, . . . , gn ∈ G,
then for some h ∈ G,

∑
fi(h)− fi(g−1(h)) ≤ 0.

(h) G satisfies the Markov–Kakutani Fixed Point Theorem: Let K be a com-
pact convex subset of a locally convex linear topological space X , and
suppose G acts on K in such a way that each transformation g: K → K
is continuous and affine (g(α x+ (1− α)y) = α g(x)+ (1− α)g(y) when-
ever x, y ∈ K and 0 ≤ α ≤ 1). Then there is some x in K that is fixed by
each g ∈ G.

Proof. The equivalence of (a)–(d) follows from previous work. The equivalence
of (a) and (b) was discussed at the beginning of this chapter; that of (a) and (c)
follows from Tarski’s Theorem (Cor. 9.2); and that of (a) and (d) follows from
Theorem 12.8 and the remarks following its proof. We shall prove that (a) ⇔ (e)
and (a) ⇒ (h) ⇒ (b) ⇒ (g) ⇒ (b), yielding the equivalence of all statements but
(f). That (f) implies (a) will be proved here, and the converse will be given a
complete proof in §12.4.1.

(a) ⇒ (e). Use the standard Hahn–Banach Theorem [Roy68, p. 187] to
obtain a linear functional F0 on V that extends F and is dominated by p. Then,
for any v ∈ V , define fv : G → R by fv (h) = F0(h−1(v )). Because F0(h−1(v )) ≤
p(h−1(v )) ≤ p(v ), fv is bounded by p(v ). Hence, choosing a measure μ on G,
we may define F (v ) to be

∫
fv dμ. Then F (v ) ≤ p(v ) and F is a linear functional
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on V . Moreover, F extends F , and because fg(v ) = g( fv ), the G-invariance of F
follows from that of μ.

(e) ⇒ (a). Let V = B(G), with V0 taken to be the subspace of constant func-
tions. The action of G on B(G) by f �→ g f is linear, and V0 is G-invariant. Let-
ting F (αχG) = α and p( f ) = sup{ f (g) : g ∈ G}, we see that the hypotheses of
(e) are satisfied. Hence there is a left-invariant linear functional F on B(G) with
F (χG) = 1. To prove that F is a left-invariant mean (see (a)–(d) at the begin-
ing of §12.1), it remains to show that F ( f ) ≥ 0 if f (g) ≥ 0 for each g ∈ G. But
p(− f ) ≤ 0 for such f , whence F (− f ) ≤ p(− f ) ≤ 0 and F ( f ) = −F (− f ) ≥ 0.

(b) ⇒ (g). If F is a left-invariant mean on B(G), then F (
∑

( fi − gi fi)) = 0;
by the inf-sup condition after the definition of invariant mean, this means that for
some h ∈ G,

∑
( fi(h)− ( gi fi)(h)) ≤ 0.

(g) ⇒ (b). Let V0 be the subspace of B(G) generated by the constant func-
tions and all functions of the form f − g f , where f ∈ B(G) and g ∈ G. An ele-
ment of V0 has the form f − g f + αχg for some real α that, by the hypothesis
that each f − g f takes on a nonpositive value, is unique; hence we can define a
linear functional on V0 by F ( f − g f + αχg) = α. We claim that F (v ) ≤ sup v for
each v ∈ V0. For if v = f − g f + α χg, then because−( f − g f ) = − f − g(− f )
takes on a nonpositive value, v = αχg − (−( f − g f )) takes on a value no smaller
than α = F (v ). So, letting p(v ) = sup v for v ∈ B(G), we may apply the Hahn–
Banach Theorem to obtain a linear functional F on B(G) that extends F and is
dominated by p. The definition of F , and the fact that and f − g f lies in V0, guar-
antees that F is left-invariant and normalizes χG. And if f (h) ≥ 0 for all h ∈ G,
then F ( f ) = −F (− f ) ≥ −p(− f ) ≥ 0. Hence F is a left-invariant mean on B(G).

(h) ⇒ (b). Turn B(G) into a normed linear space by using the sup norm,
‖ f ‖ = sup{| f (g)| : g ∈ G} and let X be the dual space of B(G) (all bounded
linear functionals on B(G)), equipped with the weak∗ topology. With this topol-
ogy, X is a locally convex linear topological space. Let K be the subset of X
consisting of all functionals F satisfying inf f ≤ F ( f ) ≤ sup f . Note that each
F ∈ K satisfies |F ( f )|/‖ f ‖ ≤ 1; hence K is contained in the unit ball of X .
Because this ball is compact (Banach–Alaoglu Theorem) and K is closed (for
this, one shows that every net of elements of K, defined by reverse inclusion of
neighborhoods, converges to some element in K), K is a compact subset of X .
Moreover, K is convex. Now, each g ∈ G acts on X by (gF )( f ) = F (g−1 f ), and
the transformation of X induced by G is linear (hence affine) and continuous.
Moreover, because inf(g f ) = inf( f ) and sup(g f ) = sup( f ), each G maps K into
K. So, by (h), there is some F ∈ K that is fixed by each g ∈ G; such an F is a
left-invariant mean on B(G).

(a) ⇒ (h). Let μ be a measure on G and choose any point y ∈ K. We will
show how μ can be used to get an average value of the function f : G → K
defined by f (g) = g(y). This average will be the desired fixed point. Let D be
the directed set consisting of all finite open covers π = {Ui} of K, ordered by
refinement (i.e., π ′ > π iff every set in the net π ′ is contained in a set in π ),
where it is assumed that each Ui ∩ K is nonempty. If V is a neighborhood of the
origin, then π will be called V -fine if each set in π can be translated to fit into V .
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Define a net φ : D → K as follows: For π ∈ D, choose points si ∈ Ui ∩ K and let
φ(π ) =∑

μ(Ei)si, where Ei = f −1(Ui) \
⋃{Ej : j < i}. Then φ(π ) is a convex

combination of the si, and therefore φ(π ) ∈ K.

Claim 1. If V is a convex and symmetric (V = −V ) neighborhood of the origin,
π is V/2-fine, and π ′ refines π , then φ(π ′)− φ(π ) ∈ V .

Proof. For simplicity assume π = {U1,U2}with si ∈ Ui and π ′ = {W1,W2,Z1,Z2}
with designated points s′i and Wi ⊆ U1 and Zi ⊆ U2. Then φ(π ) = α1 s1 + α2 s2

and φ(π ′) = β1 s′1 + β2 s′2 + β3 s′3 + β4 s′4 where α1 + α2 = β1 + β2 + β3 +
β4 = 1. But the coefficents are measures and the containments imply that
β1 + β2 ≤ α1 and β3 + β4 ≤ α2, which yields β1 + β2 = α1 and β3 + β4 = α2.
We use “v” for a generic element of V/2; it can stand for different elements of V/2.
Fineness gives si = ti + v; because of the containments, it gives also s′1 = t1 + v ,
s′2 = t1 + v , s′3 = t2 + v , and s′4 = t2 + v . Therefore β1 s′1 + β2 s′2 = α1t1 + v

and β3s′3 + β4s′4 = α2t2 + v . So φ(π ′)− φ(π ) = (α1 t1 + α2 t2 + v )−
(α1 t1 + α2 t2 + v ) ∈ V .

The next claim gets the “average value” we seek.

Claim 2. There is a unique x ∈ K such that the net φ converges to x.

Proof. The compactness of K yields that φ has at least an accumulation point x
in K. To prove that φ→ x it suffices to show that if U is any convex symmetric
neighborhood of the origin, then there is some π ∈ D such that φ(π ′) ∈ x+U
whenever π ′ refines π . To this end, let π be any U/4-fine cover in D (such exists
by compactness) and, using the fact that φ accumulates at x to refine π if neces-
sary, assume φ(π ) ∈ x+U/2. Now, if π ′ refines π , then φ(π ′)− φ(π ) ∈ U/2 by
claim 1. Because φ(π )− x ∈ U/2, this yields that φ(π ′)− x ∈ U , as required.
Because X is a Hausdorff space, limits of nets are unique.

The proof that x from claim 2 is the desired fixed point requires the following
assertion.

Claim 3. If ρ is a net on D defined in the same way as φ, but with different
designated points, then ρ converges to x.

Proof. Because φ→ x, for any convex symmetric neighborhood of the origin,
U , there is some π ∈ D such that, for all refinements π ′ of π , φ(π ′) ∈ x+U .
Now, given such a U , refine the corresponding π to so that it is U/4-fine; do this
by choosing a finite subcover of K from the cover {(t +U/4) ∩Ui}t∈K,Ui∈π . Let π ′

be any refinement of π . By claim 1, φ(π ′) ∈ x+U/2. Suppose φ(π ′) is defined
using si, while ρ(π ′) uses ri. Then there are points ti such that ri, si ∈ ti +U/4.
Because U = −U , it follows that ri − si ∈ U/2, and because U/2 is convex, this
implies that ρ(π ′)− φ(π ′) =∑

αiri −
∑

αisi ∈ U/2. Now, φ(π ′)− x ∈ U/2
so ρ(π ′)− x = (ρ(π ′)− φ(π ′))− (φ(π ′)− x) ∈ U/2−U/2 ⊆ U . Hence
ρ(π ′) ∈ x+U , proving ρ → x.

Now, g is continuous, so the net gφ defined by (gφ)(π ) = g(φ(π )) converges
to g(x). To complete the proof, we shall show that gφ→ x; uniqueness of limits
then yields x = g(x). Note that each g ∈ G induces an order-preserving map
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from D to D by g(π ) = {{z : g(z) ∈ Ui} : Ui ∈ π}. Use this mapping to define a
net ψ on D by ψ (π ) = φ(g(π )); it is easy to prove that if ψ → z, then φ→ z
too. We claim that the net gψ converges to x, the limit of φ. This is because
(gψ )(π ) = g(ψ (π )) = g(φ(g(π ))) = g(

∑
αiri), where ri is some point on the

ith set of the cover g(π ) and αi is the μ-measure of the appropriate subset of
G. Because g: X → X is affine, g(

∑
αiri) =

∑
αig(ri) and the left-invariance

of μ yields that αi is the measure of the subset of G arising from π . Because
g(ri) ∈ Ui, this means that the net gψ satisfies the condition of claim 3. Hence
gψ → x. This yields that ψ → g−1(x), which implies by the preceding remark
that φ→ g−1(x). Therefore gφ→ x, as desired. (For a rather different proof of
the Markov–Kakutani Theorem in the Abelian case, but without the assumption
that X is locally convex, see [DS67, p. 456].)

Følner’s Condition is a very interesting property that abstracts the essential
fact about Abelian groups that makes them amenable. Loosely speaking, it states
that for any finite subset of the group, there is another finite subset that is almost
invariant with respect to translation on the left by elements of the first set. It is
not hard to see that Følner’s Condition yields amenability. The surprising fact
is that all amenable groups satisfy Følner’s Condition. This was discovered by
Følner [Fol55]; we will present a complete proof in §12.4.1. See also [Nam64], or
[Gre69], where a topological version of Følner’s Condition (involving Haar mea-
sure) is proved equivalent to topological amenability for locally compact topo-
logical groups (see the remarks at the end of §12.5). Because Haar measure on
a discrete group is just the counting measure, the equivalence for abstract groups
is a consequence of the topological generalization. Another aspect of Følner’s
Condition is its connection to expander graphs and Property (T) (Thm. 13.11).

( f ) ⇒ (a). The proof of amenability from Følner’s Condition is similar to the
proof of Theorem 12.4(b). For each ε > 0 and finite W ⊆ G that is closed under
inversion, let MW,ε consist of those finitely additive functions μ : P (G) → [0, 1]
such that μ(G) = 1, and for each g ∈W and A ⊆ G, |μ(A)− μ(gA)| ≤ ε. Then
MW,ε is a closed subset of [0, 1]P (G); for any A ⊆ G, g ∈ G, and ε > 0, the
condition |μ(A)− μ(gA)| > ε defines an open subset of the product space, and
so the union over all A, g, and ε yields an open set. The collection of MW,ε has
the finite intersection property, and so Tychonoff’s Theorem gives an element
in all the sets, which will complete the proof once it is shown that each MW,ε

is nonempty. For this, simply define μ(A) to be |A ∩W ∗|/|W ∗|, where W ∗ is as
provided by Følner’s Condition. Then μ is finitely additive and μ(G) = 1. For the
ε-invariance, argue as follows:

Given A, we want ||A ∩W ∗| − |(gA) ∩W ∗|| ≤ ε|W ∗|. Consider first the case
that |A ∩W ∗| ≥ |(gA) ∩W ∗|. We have |A ∩W ∗| = |g(A ∩W ∗)|. Now,

g(A ∩W ∗) = (g(A ∩W ∗) ∩W ∗) ∪ (g(A ∩W ∗) \W ∗)

⊆ ((gA) ∩W ∗) ∪ (g(W ∗) \W ∗)

⊆ ((gA) ∩W ∗) ∪ (g(W ∗)'W ∗).
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This means |A ∩W ∗| ≤ |((gA) ∩W ∗)| + |(g(W ∗)'W ∗)| ≤ |((gA) ∩W ∗)| +
ε|W ∗|, as desired.

Finally, suppose |(gA) ∩W ∗| ≥ |A ∩W ∗|. Then |(gA) ∩W ∗| = |g−1((gA)
∩W ∗)| and

g−1((gA) ∩W ∗) = (g−1((gA) ∩W ∗) ∩W ∗) ∪ (g−1((gA) ∩W ∗) \W ∗)

⊆ (g−1(gA) ∩W ∗) ∪ ((g−1W ∗) \W ∗)

⊆ (A ∩W ∗) ∪ (g−1W ∗'W ∗),

which means |(gA) ∩W | ≤ |A ∩W ∗| + |(g−1W ∗'W ∗)| ≤ |A ∩W ∗| + ε|W ∗|.

Define D to consist of all finite sums� fi − (gi fi), where fi ∈ B(G). Then 12.11
(a) ⇔ (g) says that G is nonamenable iff there is f ∈ D such that inf f > 0. G. A.
Willis proved in [Wil88] that more is true: G is amenable if and only if D 
= B(G).

Several other properties of a group are equivalent to amenability. One such
is due to Kesten [Kes59a,Kes59b]. He proved, using Følner’s Condition, that
amenability is equivalent to an assertion about recurrence for random walks in
a group with respect to symmetric probability distributions on the group. See
[Day64] for a different, shorter proof of Kesten’s characterization. More recently,
Cohen [Coh82] has obtained a very useful characterization of amenability in
terms of a growth condition on the group; this characterization is discussed in
§14.4.

Now, by considering the problem of extending Lebesgue measure to all sets
as one of extending the Lebesgue integral to all functions, we can use the Hahn–
Banach Extension Property for amenable groups to give an alternate proof of
Corollaries 12.9 and 12.10. The only part of the previous theorem that is required
is (a) ⇒ (e).

Another proof of Corollary 12.9. Suppose G is an amenable group of isometries
of Rn. Let V0 be the space of all Lebesgue integrable real-valued functions on Rn,
and V the space of all functions f : Rn → R such that for some g ∈ V0 and all x,
−g(x) ≤ f (x) ≤ g(x). Then any group of isometries of Rn acts on V and V0 in
the obvious way ( f �→ g f ), and we may let F be the G-invariant linear functional
on V0 defined by the Lebesgue integral, that is, F (g) = ∫

g dλ. Finally, define
a G-invariant sublinear function p on V that dominates F by p( f ) = inf{F (g) :
g ∈ V0 and for all x, g(x) ≥ f (x)}; recall that each f ∈ V is dominated by some
g ∈ V0.

Now, use the Hahn–Banach Extension Property to obtain a G-invariant linear
functional F on V , and use F to define the desired measure, μ, on P (Rn) by
μ(A) = F (χA) if χA ∈ V ; μ(A) = ∞ otherwise. It is easy to see that μ is finitely
additive and G-invariant. And because F (χA) = ∫

χA dλ = λ(A) if A has finite
Lebesgue measure, μ extends λ. Finally, note that μ(A) ≥ 0; for if f (x) ≥ 0 for
all x ∈ Rn, then − f (x) ≤ 0, whence F (− f ) ≤ p(− f ) ≤ 0 and F ( f ) = −F (− f )
≥ 0.
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Much of the preceding discussion of amenability is valid in semigroups. The
definition is the same, and many of the applications remain valid. For instance, the
Hahn–Banach Extension Property and Følner’s Condition are valid for precisely
the amenable semigroups. See [Day57] for more on amenable semigroups.

12.4.1 Pseudogroups and Følner’s Condition

In this section we present a result about equidecomposability that plays a role
in an approach to Følner’s Condition based on the theory of pseudogroups. In
particular, we will present a proof of Ceccherini-Silberstein, Grigorchuk, and de
la Harpe [CGH99] that G satisfies Følner’s Condition iff G is amenable, thus
completing the proof of Theorem 12.11.

We start with a result of Laczkovich [Lac01] that generalizes the work of Deu-
ber, Simonovits, and Sós [DSS95]. Recall that §9.2.1 introduced the concept of
a bounded bijection (its spread is finite) transforming a subset of R2 onto Z2.
The idea easily generalizes to arbitrary metric spaces. A wobbling bijection is a
bounded bijection from one subset of a metric space to another. We will say that
two subsets A, B of a metric space (X , d ) are wobbling equivalent if there is wob-
bling bijection � : A → B. And a set A ⊆ X is wobbling paradoxical if A can be
partitioned into A1 and A2 such that A1 and A2 are wobbling equivalent to A.

For r > 0, the closed r-neighborhood of H ⊆ X is U (H, r) = {x ∈ X :
dist(x,H ) ≤ r}, where dist(x,H ) is the distance of x from H (the infimum of
all d(x, h) for h ∈ H ). The following characterization of Laczkovich [Lac01] is
central.

Theorem 12.12 (AC). A metric space X is wobbling paradoxical iff there is r > 0
such that for any finite H ⊆ X , |U (H, r)| ≥ 2|H |.

Deuber, Simonovits, and Sós proved this theorem for discrete, countable metric
spaces. Their result was applied by Ceccherini-Silberstein, Grigorchuk, and de la
Harpe to prove the Følner/amenable equivalence. Here we give the details of an
extension of the result due to Laczkovich.

We look at wobbling equivalence in the context of group actions. Let Gw be the
group of all wobbling bijections from X to itself; Gw acts on X . We can as usual
consider Gw-equidecomposability and Gw-paradoxical sets. In fact, wobbling
equivalence and Gw-equivalence are equivalent. Before proving that, we introduce
the notion of a bounded space introduced by Laczkovich [Lac01]. For a nonempty
set X , define the diagonal � = {(x, x) : x ∈ X }, and if A,B ⊆ X × X , define
A−1 to be {(y, x) : (x, y) ∈ A} (inversion) and A ◦ B to be {(x, y) : ∃z(x, z) ∈
A and (z, y) ∈ B} (composition). An ideal in a Boolean algebra is a nonempty sub-
set of the algebra such that a ∨ b ∈ I whenever a, b ∈ I, and a ≤ b ∈ I implies
a ∈ I; the main example here is when the algebra is the family of all subsets of
a set. (Any Boolean algebra can be turned into a ring using a' b as addition and
a ∧ b as multiplication [Sik69, §17]; the definition of ideal just given corresponds
to the usual notion in rings.)
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Definition 12.13. For any set X , the pair (X ,B) is a bounded space if B is an
ideal of subsets of X × X containing � and closed under inversion and composi-
tion.

The motivation is that B generalizes the family of subsets of X × X that are
boundedly close to the diagonal, by which is meant sets so that each point (x, y)
in the set has d(x, y) < r. For any metric space, there is an induced bounded space
as follows

B = {A ⊆ X × X : ∃r > 0 such that ∀(x, y) ∈ A, d(x, y) < r}.
Note that � always lies in B. But there are bounded spaces that do not arise

from a metric space in this way [Lac01].
We can interpret the ideas related to wobbling bijections in the language of

bounded spaces. Let (X ,B) be a bounded space and let A,B ⊆ X . We say that
f is an (X ,B)-wobbling bijection from A to B if f : A → B is a bijection and
the graph of f is in B. And A and B are (X ,B)-wobbling equivalent if there
is an (X ,B)-wobbling bijection from A to B. It is easy to see that the set Gw

of all (X ,B)-wobbling bijections from X to itself is a group. Therefore we can
define equidecomposability and paradoxical sets with respect to the group Gw.
Moreover, if H ⊆ X and V ⊆ X × X , then we can define the V -neighborhood of
H as U (H,V ) = {x ∈ X : ∃y ∈ H such that (x, y) ∈ V }; this is π1(π−1

2 (H ) ∩V ),
where πi is the standard projection.

Proposition 12.14. The sets A,B ⊆ X are wobbling equivalent if and only if
A ∼Gw

B.

Proof. For the reverse direction, suppose that A ∼Gw
B; so A can be partitioned

into finitely many sets {Ai} such that { fi(Ai)} partitions B, where the fi are wob-
bling bijections. The union of the graphs of the fi lies in B because B is an ideal,
so the piecewise definition of f : A → B using fi and Ai leads to the desired wob-
bling bijection.

For the forward direction, let f : A → B be a wobbling bijection and let V be
the graph of f . Define A0 = A \B and An = f n(A0), where f n is the nth iterate of
f and f n(A0) = { f n(x) : x ∈ A0 ∩ dom ( f n)}. One can easily check that the An

are pairwise disjoint. Then define g as follows:

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f −1(x) if x ∈ A1,

f −2(x) if x ∈ An,where n ≥ 3 is odd,
f −1(x) if x ∈ An,where n is even and x ∈ B \A,
f 2(x) if x ∈ An,where n is even, x ∈ A, and f (x) ∈ A,
f (x) if x ∈ An,where n is even, x ∈ A, and f (x) ∈ B \A.

Then g is a bijection from A′ =⋃
n≥0 An to itself. Extend g to X by g(x) = x for

x ∈ X \A′. Then g ∈ Gw because the graph of g is contained in � ∪V ∪V−1 ∪
V ◦V ∪V−1 ◦V−1.
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A

B

A0

f

A1
A2

A3

Figure 12.1. A schematic of the sets used to get equidecomposability from a wobbling
bijection f : A → B.

Now define C =⋃
n even A ∩ An and D =⋃

n odd A ∩ An. Then g(C) ∩ D = ∅.
In fact, if x ∈ C, x ∈ An, and f (x) ∈ A, then g(x) = f 2(x) ∈ An+2, where n is even,
and therefore g(x) /∈ D. If x ∈ C and f (x) /∈ A, then g(x) = f (x) /∈ D, because
D ⊆ A. Observe now that C ∪ D ∪ (A \A′) partitions A and g(C), D ∪ (A \A′) are
disjoint subsets of B. Thus A is Gw -equidecomposable to a subset of B. Similarly,
B is Gw -equidecomposable to a subset of A, and an application of the Banach–
Schröder–Bernstein Theorem finishes the proof.

For V ⊆ X × X , define the cross section V [x] = U ({x},V ) = {y ∈ X :
(y, x) ∈ V }. This is just π1π

−1
2 ({x}). If V ∈ B in a bounded space, let V∞ = {x ∈

X : V [x] is infinite}. We need the following lemma; only the case involving 4 is
needed, but it holds for any positive integer in place of 4.

Lemma 12.15 (AC). Given a bounded space (X ,B), if V ∈ B, then, in the type
semigroup for Gw, 4[V∞] ≤ [X ].

Proof. Because V∞ ⊆ (V ∪V−1 ∪�)∞, we may assume that V = V−1 and
� ⊆ V . Define D to be a maximal subset of V∞ such that the sets V [y], for y ∈ D,
are pairwise disjoint; D 
= ∅. Thus for any x ∈ V∞, there is a y ∈ D such that
V [x] ∩V [y] 
= ∅. This implies that (x, y) ∈ V ◦V and x ∈ (V ◦V )[y]. Therefore
V∞ ⊆⋃

y∈D(V ◦V )[y]. Put C =⋃
y∈D(V ◦V )[y]; then [V∞] ≤ [C] (in the type

semigroup). To finish, it is enough to show that 4[C] ≤ [X ].
Define, for any y ∈ D, the set Hy = (V ◦V )[y] \ (⋃z∈D V [z]

)
. Using a well-

ordering of D, one can get pairwise disjoint Ky such that Ky ⊆ Hy for any y ∈ D,
and

⋃
y∈D Ky =

⋃
y∈D Hy. Put Ly = Ky ∪V [y] for y ∈ D; then the sets Ly are pair-

wise disjoint and, because any V [z] omitted from Hy is picked up by Lz, we have
C =⋃

y∈D Ly. Because V [y] ⊆ Ly and y ∈ D ⊆ V∞, every Ly is infinite. There-

fore, for any y ∈ D, there is a decomposition of Ly into L1
y,L2

y,L3
y,L4

y such that
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|Ly| = |Li
y|. Then define, for each i ≤ 4, a bijection fi from C onto

⋃
y∈D Li

y such
that fi(Ly) = Li

y for any y ∈ D.
Because Ly ⊆ (V ◦V )[y] (because � ⊆ V ), we get that (x, fi(x)) ∈ (V ◦V ) ◦

(V ◦V ) ∈ B for any x ∈ C; that is, the graph of f is a set in the ideal B.
This implies that C and

⋃
y∈D Li

y are wobbling equivalent, proving 4 [C] = [C]
≤ [X ].

Lemma 12.15 yields the following very general theorem of Laczkovich, which
has Theorem 12.12 as a corollary.

Theorem 12.16 (AC). Let (X ,B) be a bounded space. Then X is Gw-paradoxical
iff there is V ∈ B such that for any finite H ⊂ X , |U (H,V )| ≥ 2|H |.
Proof. For the forward direction, if X is Gw-paradoxical, then X can be parti-
tioned into X1, X2 with X1 ∼Gw

X ∼Gw
X2. By Proposition 12.14, X1, X2, and X are

pairwise (X ,B)-wobbling equivalent. Let fi be an (X ,B)-wobbling bijection from
X to Xi, and let Vi be the graph of fi. Because B is an ideal, V = V1 ∪V2 ∈ B. For
any finite H ⊂ X , f1(H ) ∪ f2(H ) ⊆ U (H,V ), which, because f1(X ) ∩ f2(X ) =
∅, implies 2|H | = | f1(H1)| + | f2(H2)| ≤ |U (H,V )|.

Suppose now that V ∈ B and |U (H,V )| ≥ 2|H | for any finite H ⊆ X . Let A =
(V ◦V )∞ and B = X \A = {x ∈ X : (V ◦V )[x] is finite}. Define the types [A] =
a, b = [B], and c = [X ]; then a+ b = c. Lemma 12.15 gives 4a ≤ c = a+ b; the
key is showing 4b ≤ c.

Claim. For any finite H ⊆ X , U (H,V ◦V ) has at least 4|H | elements.

Proof of claim. It is easy to see that U (H,V ◦V ) = U (U (H,V ),V ). If
U (H,V ) is finite, then, by hypothesis, |U (U (H,V ),V )| ≥ 2|U (H,V )| ≥ 4|H |.
Otherwise, choose H0 ⊂ U (H,V ) so that |H0| = 2|H | and apply the hypoth-
esis to H0 to get |U (H0,V )| ≥ 2|H0| = 4|H |. This means |U (U (H,V ),V )| ≥
|U (U (H0,V ),V )| ≥ 4|H |.

Let � be the bipartite graph with edges defined by V ◦V : The parts are B and
X (where B here is a copy of B, to avoid the complication that B ⊆ X ) and each
(b, x) ∈ V ◦V (where b ∈ B) determines an edge b � x. Every vertex in B has
finite degree. The claim means that H , an arbitrary finite subset of B, is adjacent
in the graph to at least 4|H | vertices in X . An extension of the (infinite) marriage
theorem (Thm. C.4) then yields four disjoint matchings, showing that B is (X ,B)-
wobbling equivalent to four disjoint subsets of X ; that is, 4b ≤ c. Because 4a ≤
c, we have 2a+ 2b ≤ 4a+ 4b ≤ 2c = 2a+ 2b. Therefore 4c = 4a+ 4b = 2a+
2b = 2c, and by the Cancellation Law, 2c = c; that is, X is Gw-paradoxical.

Proof of Theorem 12.12. Let (X ,B) be the bounded space induced by X . It is easy
to see that the wobbling bijections of (X , d ) and of (X ,B) coincide. Moreover, if
V ∈ B, then there is an r > 0 such that U (H,V ) ⊆ U (H, r), and also for any
r > 0, there is a V ∈ B such that U (H, r) ⊆ U (H,V ). Now it is enough to apply
Theorem 12.16.
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240 12 Measures in Groups

The preceding work will lead to a proof that a group satisfying Følner’s Con-
dition is amenable, completing the proof of Theorem 12.11. We will do this using
pseudogroups, a useful tool that allows the study of partial isometries, thus lead-
ing to the generalization of many important results about group actions.

Definition 12.17. We say that G is a pseudogroup of transformations of X
(denoted (G,X )) if G is a set of bijections γ : S → T between subsets of X that
satisfies

(a) the identity e : X → X is in G
(b) if γ : S → T is in G, then γ−1 : T → S is in G
(c) if γ : S → T and δ : T → U are in G, then so is δ γ : S → U
(d) if γ : S → T is in G and S1 ⊆ S, then the restriction γ � S1 : S1 → γ (S1) is

in G
(e) if γ : S → T is a bijection of subsets of X and if there is a finite partition

{Si} of S such that each γ � Si is in G, then γ ∈ G

Conditions (d) and (e) tell us that two operations that are common in the con-
text of equidecomposability will work in any pseudogroup.

Any action of a group G on a nonempty set X generates a pseudogroup GG,X

by placing a bijection γ : S → T in GG,X iff there is a finite partition {Si} of S and
gi ∈ G such that γ is the piecewise bijection defined by Si and gi. In this case, S
is G-equidecomposable to T . A special case of this construction is the left action
of a group G on itself; this induces a pseudogroup denoted just GG.

Suppose X is a metric space. Then GP,X denotes the pseudogroup of piecewise
isometries of X . This pseudogroup can be larger than GG,X , where G is the isom-
etry group, because there can be a piecewise isometry that does not extend to all
of X [CGH99, ex (ii)].

The set of all partial wobbling bijections defined on a subset of a metric space
X is a pseudogroup, denoted by W (X ). De la Harpe and Skandalis [HS86] inves-
tigated pseudogroups of transformations between the subsets in an algebra (or
σ -algebra) of subsets of given space X . This led them to an alternative proof of
Tarski’s theorems (Cor. 11.2 and 11.3; see Thm. 12.23).

Let G be a pseudogroup of transformations of X . For γ ∈ G, dom(γ ) and
rng(γ ) refer to its domain and range, respectively. For A ⊆ X and R ⊆ G, we
define the R-boundary of A as

∂RA = {x ∈ X \A : ∃γ ∈ R ∪ R−1 and x ∈ dom (γ ) such that γ (x) ∈ A}.
One can define Følner’s Condition for a pseudogroup in a slightly different

way than for groups; amenability is defined in the most natural way.

Definition 12.18. A pseudogroup (G,X ) satisfies Følner’s Condition if for any
finite R ⊆ G and ε > 0, there is a nonempty finite F ⊆ X such that |∂RF | < ε|F |.
And (G,X ) is an amenable pseudogroup if there is a finitely additive G-invariant
measure on P (X ) having total measure 1, where invariance means that μ(A) = B
whenever γ : A → B is in G.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.015
https://www.cambridge.org/core
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Lemma 12.19. If G is an amenable group, then GG is an amenable pseudogroup.
And if GG satisfies Følner’s Condition, then so does G.

Proof. The first is easy because the same measure works: For X ⊆ G, just let the
new measure equal the given measure from the amenable group.

Now assume Følner’s Condition for GG and consider a finite R ⊆ G and
positive ε. Apply the pseudogroup condition to R and ε/2 to get F so that
|∂RF | < (ε/2)|F |. The following claim suffices because |∂RF | = |g(∂RF )|.
Claim. For any g ∈ R, gF' F ⊆ ∂RF ∪ g(∂RF ).

Proof of claim. Suppose σ ∈ gF \F . Then σ ∈ ∂RF because g−1σ ∈ F and g−1 ∈
R−1. Suppose σ ∈ F \ gF . Then g−1σ ∈ g−1F \F , and the preceding argument
yields g−1σ ∈ ∂RF , so σ ∈ g(∂RF ). This proves the claim, and the lemma.

Pseudogroups are a convenient way to study equidecomposability. Ceccherini-
Silberstein, Grigorchuk, and de la Harpe proved the following theorem, which, by
the preceding lemma, yields the equivalence in groups (Thm. 12.22).

Theorem 12.20 (AC). A pseudogroup is amenable if and only if it satisfies Føl-
ner’s Condition.

Proof of reverse direction. The reverse direction mimics Theorem 12.11 ( f ) ⇒
(a). Given (G,X ), for each finite R ⊆ G and ε > 0, let MR,ε consist of those
finitely additive μ :P (X ) → [0, 1] such that μ(X ) = 1 and, for each g ∈ R and
A ⊆ dom(g) ⊆ X , |μ(A)− μ(gA)| ≤ ε. Then MR,ε is a closed (see proof of Thm.
12.4(b)) subset of [0, 1]P (G) and compactness completes the proof once we know
that each MR,ε is nonempty. For this, let F ⊆ X be from Følner’s Condition for R
and define μ(A) to be |A ∩ F |/|F |; then μ(X ) = 1 and μ is finitely additive. We
need that μ ∈MR,ε , which requires |μ(A)− μ(gA)| ≤ ε whenever A ⊆ dom(g).
The proof of this is essentially the same as the proof of the same point in Theorem
12.11( f ) ⇒ (a) and is left as an exercise.

For the proof of the difficult forward direction of this theorem, we need sev-
eral ideas. Let (G,X ) be a pseudogroup; then X is G-paradoxical if there is a
partition of X into A1 and A2 such that G contains bijections γi : Ai → X . Skan-
dalis and de La Harpe [HS86] proved that Tarski’s Theorem (Cor. 11.2) extends
to pseudogroups; we will prove that here using the methods of [CGH99].

Let (X , d ) be a discrete metric space. By C(X ) we mean the family of all
maps of bounded spread from a subset of X to another subset (these maps are not
necessarily bijective). Recall that W (X ) is the set of wobbling bijections between
subsets of X and U (A, r) is the closed r-neighborhood of A. We will say that
� ∈ C(X ) satisfies the Gromov condition if, for any x ∈ X , |�−1(x)| ≥ 2. And the
condition appearing in the statement of Theorem 12.12 will be called the doubling
condition.

Let � be a bipartite graph on parts A and B; a perfect double matching is
an edge subgraph �0 of � such that every vertex in A (resp., B) has degree 2
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(resp., 1) in �0. The boundary ∂�F of a set of vertices of � is the set of vertices
not in F but connected by a �-edge to a vertex in F . For a metric space (X , d )
and a real r > 0, we can construct a bipartite graph �r where each part is a copy
of X . The edge x � y is in �r iff d(x, y) < r. Note that (X , d ) is discrete iff for
any positive r, �r is locally finite.

Theorem 12.21 (AC). If X is a discrete metric space, then the following are
equivalent:

(a) X is W (X )-paradoxical.
(b) There is a mapping � : X → X in C(X ) such that, for x ∈ X , |�−1(x)| =

2.
(c) There is a mapping � : X → X in C(X ) that satisfies the Gromov Condi-

tion.
(d) X satisfies the doubling condition.
(e) W (X ) does not satisfy Følner’s Condition.

Proof. We first prove (a) ⇔ (b). For the forward direction, use the two wobbling
bijections that witness the paradox to define, in a piecewise manner, a function
satisfying (b). For the opposite, use AC to select, for each x, a point ax ∈ �−1(x),
and let bx be the other point so that �(bx) = x. Then {ax} and {bx} together with
the function � in each case give the paradox.

The implications (b) ⇒ (c) ⇒ (d ) are immediate. To finish the proof, we show
(a) ⇒ (e) ⇒ (d ) ⇒ (a). The last implication is just Theorem 12.12. For (a) ⇒
(e), if W (X ) satisfies Følner’s Condition, then (Thm. 12.20) it is an amenable
pseudogroup. But amenability gives a measure μ on P (X ), and a paradox would
yield 2 = 2μ(X ) = μ(X ) = 1.

Finally, (e) ⇒ (d ). For Følner’s Condition to fail for W (X ), there is ε > 0
and a finite R ⊆W (X ) so that, for any nonempty finite F ⊆ X , |∂RF | ≥ ε|F |,
whence |F ∪ ∂RF | ≥ (1+ ε)|F |. Let K be large enough to bound the spread of
any σ ∈ R ∪ R−1. Then, for any finite F , |U (F,K )| ≥ (1+ ε)|F |. Choose m so
that (1+ ε)m ≥ 2. Now |U (F, 2K )| ≥ |U (U (F,K ),K )| ≥ (1+ ε)2|F |, where the
discreteness of the space is used to get finiteness of U (F,K ), which is used in
this inequality. Repeating gives |U (F,mK )| ≥ (1+ ε)m|F | ≥ 2|F |, which is the
doubling condition.

Proof of forward direction of Theorem 12.20. Consider first the case of the pseu-
dogroup W (X ), where X is a discrete metric space. The result then follows
by Theorem 12.21 (e) ⇒ (a). For if Følner’s Condition fails, then (a) implies
that there is no W (X )-invariant measure on P (X ), so W (X ) is nonamenable.
Now suppose (G,X ) is a pseudogroup for which Følner’s Condition fails, wit-
nessed by R and ε. Define a discrete metric dR on X by letting dR(x, y) be the
smallest positive integer n such that there are n functions ρi ∈ R ∪ R−1 so that
y = ρnρn−1 · · · ρ1(x); if there are no such functions, set dR(x, y) to ∞. By con-
catenation of the ρ-strings, dR satisfies the triangle inequality and so is a metric.
Then, for any finite F ⊆ X and using the neighborhood for this metric, we have
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|U (F, 1)| ≥ (1+ ε)|F |. The metric space case then shows that X is W (X ) para-
doxical, for W (X ) defined by the metric dR; because W (X ) ⊆ G, this means that
(G,X ) is paradoxical and so not amenable.

Theorem 12.22 (AC). An amenable group satisfies Følner’s Condition.

Proof. By Theorem 12.20 and Lemma 12.19.

Theorem 12.23 (AC). For any pseudogroup, (G,X ) is amenable iff (G,X ) is not
paradoxical.

Proof. The forward direction is clear: A measure destroys any paradox. For the
reverse, suppose (G,X ) is not paradoxical. We will prove that (G,X ) satisfies
Følner’s Condition, which, by Theorem 12.20, suffices. Suppose not, as witnessed
by ε and R. Define the metric dR as in the proof of Theorem 12.20, thus turning X
into a discrete metric space with corresponding pseudogroup W (X ). Now, using
the finiteness of R, the fact that G is not paradoxical implies that X is not W (X )-
paradoxical. And this means that W (X ) satisfies Følner’s Condition by Theorem
12.21.

Now, suppose R = {ρ1, ρ2, . . . , ρk}. Each ρi can be viewed as an element
of W (X ) with wobbling bound 1. So Følner’s Condition gives F ⊆ X so that
|∂RF | < ε|F |, where the boundary is formed in W (X ). To show that the same
F witnesses Følner’s Condition in G, consider the inequality |∂RF | < ε|F | in G.
Because ∂RF in G is contained in ∂RF in W (X ), the inequality holds in G.

Using Lemma 12.19, the preceding theorem yields the same result for groups,
and so the work in this section gives an independent proof of Tarski’s Theorem:
Corollary 11.2 in the case that E = X . In fact, these results hold in the case of
measures normalizing a subset of X as well [CGH99, §7].

Pseudogroups are a flexible tool in studying invariant measures and paradox-
ical decompositions. Besides group actions, they allow the investigation of mea-
sures that are invariant with respect to partial bijections (such as partial isometries
in metric spaces). It is possible that the proof of Theorem 12.20, with a necessary
modification of Følner’s Condition that replaces finite sets by Borel sets of X ,
works also in the case of pseudogroups of transformations between sets in a given
algebra (or σ -algebra). If so, the concept might apply to Borel sets, and so pseu-
dogroups might well be relevant to an investigation of the Banach-Ulam Problem
(Question 3.13).

12.5 Topological Amenability

An important generalization of amenability is a topological one. In the summary
that follows, all topological groups will be assumed to be locally compact and
Hausdorff; some of the results are valid without the assumption, but the theory is
much more coherent in this class of groups. A topological group is called topolog-
ically amenable if there is a finitely additive, left-invariant measure on the Borel
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subsets of the group that has total measure 1. In what follows, we use the word
amenable in this topological sense. To say that G is amenable as a discrete group
(i.e., with the discrete topology, which is locally compact) is the same as saying
that G is amenable in the usual, nontopological sense: In the discrete case, all sets
are Borel. Note that a topological group that is amenable as an abstract group is
topologically amenable: Simply restrict the measure on P (G) to the Borel sets. If
G is compact, then there is a countably additive, left-invariant Borel measure with
total measure 1, namely, Haar measure; hence compact groups are topologically
amenable.

The book by Greenleaf [Gre69] contains a detailed account of the theory of
topological amenability, which is much richer than the theory of amenability in
abstract groups and has many applications to diverse areas of analysis. Theorem
12.4 is valid after making appropriate topological modifications; for example, a
closed subgroup of an amenable locally compact group is amenable. It is not
surprising that G is topologically amenable if and only if there is a left-invariant
mean on the bounded, Borel measurable functions from G to R, but in fact it is
sufficient to have a mean on the bounded, continuous real-valued functions on
G. The following version of Følner’s Condition is equivalent to amenability. If K
is a compact subset of G and ε > 0, then there is a Borel set K∗ ⊆ G with 0 <
θ (K∗) <∞ such that θ (g(K∗)'K∗)/θ (K∗) ≤ ε for all g ∈ K (here θ denotes
left-invariant Haar measure). Also, there is a topological version of the Markov–
Kakutani Fixed Point Theorem that is equivalent to amenability in locally compact
groups. One simply adds the condition that the function from G× K to K induced
by the action is continuous, that is, the map (g, x) → g(x) is jointly continuous.
Many more characterizations of topological amenability are given in [Gre69].

If a locally compact group G has a closed subgroup H that is a free group
on two generators, then G is not amenable. This is because H is countable and
Hausdorff, so all of its subsets are Borel; hence the standard paradox of a free
group of rank 2 yields that H is not topologically amenable, and therefore, because
H is closed, G is not amenable. Just as with abstract groups, this leads to the
question whether a locally compact group is amenable if and only if it has no
closed subgroup that is free of rank 2. This optimistic characterization is false,
because by Theorem 12.5, it is false already in the discrete case. But yet, just as
in the discrete case, it may be that this characterization is valid for large classes
of interesting locally compact groups (just as Tits’s Theorem yields the discrete
version for a large class of groups). In fact, Rickert [Ric67] has shown that if the
locally compact group G is almost connected (i.e., G/N is compact where N is
the component of the identity), then G is amenable if and only if G does not have
a closed subgroup that is free of rank 2.

Clearly a group cannot be amenable if it is paradoxical using Borel pieces.
But the converse is not clear. Tarski’s Theorem (Cor. 11.3) yields that a group is
amenable if and only if, for each n, it is not possible to pack n+ 1 copies of the
group into n copies using Borel pieces (and left multiplication). But, because no
cancellation law for Borel equidecomposability is known, it is not clear that the
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assertion referring to all n is equivalent to the one for n = 1, that is, the assertion
that G is paradoxical. Nevertheless, A. Paterson [Pat86; see also Pat88, p. 123]
has shown that a locally compact group that is not Borel paradoxical is amenable.

Theorem 12.24 (AC). A locally compact group is amenable iff it is not paradox-
ical using Borel sets.

For some recent work that uses a weakening of Følner’s Condition to relate
amenability to a condition connected to Ramsey theory, see [Moo13].

Notes

The material of this chapter has its origin in the seminal paper of Banach [Ban23].
In that paper Banach developed the main ideas of the Hahn–Banach Theorem and
showed that the isometry groups of R1 and R2 satisfy the Hahn–Banach Exten-
sion Property of Theorem 12.11. Thus he proved Corollary 12.9 for the line and
plane, using the technique of the proof given after the proof of Theorem 12.11.
Von Neumann [Neu29] realized that Banach’s results could be formulated more
abstractly. He introduced the definition of an amenable group and proved Theorem
12.4(a), (b), and (e). Von Neumann was the first to state explicitly that a free group
of rank 2 is not amenable, and the problem whether AG = NF (§12.2) has often
been attributed to him. Agnew and Morse [AM38] showed how von Neumann’s
ideas applied to the Hahn–Banach Theorem in its modern form. They showed that
all solvable groups satisfied the Hahn–Banach Extension Property and obtained
corresponding results about extensions of Lebesgue measure.

The class of amenable groups was studied extensively by Day [Day49, Day57].
He proved Proposition 12.2; parts (c), (d), and (f) of Theorem 12.4 (parts (c) and
(d) were obtained independently by Følner [Fol55]); and many other results about
amenable groups and semigroups.

The Measure Extension Theorem (Thm. 12.7) is due to Horn and Tarski
[HT48]. See [Lux69, Pin72, Pin74, PS77] for various results related to the
axiomatic strength of the Measure Extension Theorem and comparisons with the
Hahn–Banach Theorem; foundational considerations are also discussed in Chap-
ter 15. The idea of the Invariant Extension Theorem (Thm. 12.8) goes back to
Banach and von Neumann; the formulation given here, using subrings, appears in
Mycielski [Myc79].

Probability theory is mostly concerned with countably additive measures. But
the restriction to finitely additive measures can be of value; see [BH15, Chap. 9],
where such finitely additive measures are used in the context of Benford’s Law.

Theorem 12.11 contains only a sample of the many properties of a group
now known to be equivalent to amenability. The Hahn–Banach Extension Prop-
erty was considered by Agnew and Morse [AM38], Klee [Kle54], and Silver-
man [Sil56a, Sil56b]. Silverman proved that the property implies amenability
and investigated generalizations of the property to vector-valued linear function-
als. Følner’s Condition was introduced by Følner [Fol55], whose proof of the
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sufficiency of amenability was substantially simplified by Namioka [Nam64].
Dixmier’s Condition was introduced in [Dix50]; see [Eme78] and [Gre69]. The
fact that the Markov–Kakutani Fixed Point Theorem is valid for amenable groups
was proved by Day [Day61], and this paper also contains the converse, which is
due to Granirer. Chen [Che78] presents a weaker version of the Markov–Kakutani
Fixed Point Property that holds for groups without a free non-Abelian subgroup.

There has been a large amount of work on amenability done in the Soviet
Union. For a summary, see [Ver82].

Pseudogroups were first studied in the context of topology and differential
geometry. Their use in the area of equidecomposability is by de la Harpe and
Skandalis [HS86]. The reverse direction of the proof of Theorem 12.20 is due to
Tomkowicz and Wagon.

A variety of results, applications, and references on the subject of topological
amenability is contained in Greenleaf [Gre69] and Pier [Pie84]. The equivalence
of topological amenability with a topological version of the Markov–Kakutani
Fixed Point Theorem can be found in [Ric67] (see also [Day64]). Emerson
[Eme79], unaware of Tarski’s work, obtained the characterization of topological
amenability discussed just before Theorem 12.24 and raised the question that that
theorem answers.
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Applications of Amenability

This chapter contains some refinements and further applications of the basic tech-
nique of constructing finitely additive measures that was introduced in Chapter
12. After constructing certain “exotic” measures in R1 and R2, we survey sev-
eral results about an old problem about the uniqueness of Lebesgue measure
that shows that such strange measures do not exist in R3 or beyond. Much of
the emphasis here is on measures on the algebra of measurable sets rather than
measures on all sets. Finally, we discuss the problem of characterizing groups of
Euclidean isometries (and more general group actions) for which paradoxes exist.

13.1 Exotic Measures

Corollary 12.9 showed how to construct finitely additive, invariant extensions of
Lebesgue measure. Such measures might seem unnatural because they mix the
two types of additivity; λ is countably additive, but the extension is finitely addi-
tive. To prove that paradoxical decompositions do not exist, all that is required is
a finitely additive, isometry-invariant measure that normalizes the unit cube. Of
course, if we are considering all isometries, then we know (by Cor. 12.9 and the
Banach–Tarski Paradox) that such measures exist in Rn if and only if n ≤ 2.

As we shall see, it is worthwhile to study the properties of a finitely addi-
tive, isometry-invariant measure that normalizes the cube. Recall from Proposi-
tion 11.8 that such a measure must agree with Jordan measure, v , on the Jordan
measurable sets, J . A famous problem, settled for all Rn in 1982 (Thm. 13.11),
is whether such a measure must agree with Lebesgue measure. If B denotes the
sets with the Property of Baire, then J ⊆ L ∩ B (see App. B). If A ∈ J , then
v (A) = 0 if and only if A is nowhere dense (or meager) if and only if λ(A) = 0.
So, Jordan measure is unbiased regarding measure and category: The Jordan null
sets are precisely those sets in J that are small in the sense of both measure and
category. Lebesgue measure is an extension of v from J to L that is biased toward
the measure side: λ gives positive measure to some nowhere dense sets (consider
the complement in [0, 1] of a small open cover of the rationals). We may also view
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λ as a finitely additive, invariant Borel measure that vanishes on the (Borel) sets
of Lebesgue measure zero.

The Marczewski Problem (§11.2) is about the existence of finitely addi-
tive, invariant Borel measures that are biased in the opposite direction, that
is, they vanish on all meager sets (and hence necessarily disagree with λ on
some closed, nowhere dense sets). Such measures may be viewed as measures
on B (because if A ∈ B, then A = C' E, where C is Borel, E is meager, and
X 'Y = (X \Y ) ∪ (Y \X )). The techniques of Chapter 12 can be used to pro-
duce Marczewski measures in R1 and R2, while the Dougherty–Foreman work
shows that they do not exist in higher dimensions. In Corollary 13.3, we construct
these measures in low dimensions and then examine the consequences of their
existence for questions about Lebesgue measure’s uniqueness.

The Marczewski construction and some of the other results to be presented in
this chapter are most easily understood in the context of quotient Boolean algebras
with respect to an ideal. Two prominent examples of ideals are the collection of
meager sets, to be denoted by M, and the collection of sets of Lebesgue measure
zero (also called null sets), to be denoted by N . In P (Rn), both M and N are
ideals, while M is an ideal in B (sets with the Property of Baire) and N is an
ideal in L. We shall also use the notion of ideal in a subring C of a Boolean
algebra A, defined by a ∨ b ∈ I whenever a, b ∈ I, and a ≤ b ∈ I implies a ∈ I
whenever a, b ∈ C (see §12.3 for a definition of subring). Note that if I is an ideal
in A and C is a subring of A, then I ∩ C is an ideal in C. Whenever μ is a measure
on a Boolean algebra, the collection of μ-measure-zero sets is an ideal.

If I is an ideal in A, a quotient algebra can be defined using the equivalence
relation a1 ∼ a2 if a1' a2 ∈ I. Let A/I denote the collection of equivalence
classes and define the Boolean operations in the obvious way using representa-
tives, that is, [a1] ∨ [a2] = [a1 ∨ a2], and so on. These operations are well-defined
[Sik69, §10] and turn A/I into a Boolean algebra. The same idea works for ideals
in rings. The next theorem shows that in the Measure Extension Theorem and the
Invariant Extension Theorem (§12.3), the property of “vanishing on an ideal” can
be preserved.

Theorem 13.1 (AC). Suppose A is a Boolean algebra, G is a group of automor-
phisms of A, I is a G-invariant ideal in A, C is a G-invariant subring of A, and
μ is a G-invariant measure on C that vanishes on C ∩ I. Suppose further that G
is amenable. Then there is a G-invariant extension of μ to a measure on A that
vanishes on I.

Proof. Form the quotients AI = A/I and CI = C/(C ∩ I ). Because I is G-
invariant (if a ∈ I, then g(a) ∈ I), G may be regarded as acting on these two
quotients; moreover, CI induces a G-invariant subring ĈI of AI , where ĈI con-
sists of the classes containing an element of C. The hypothesis on μ implies that μ
induces a G-invariant measure on ĈI by μ([c]) = μ(c) (where c ∈ C). The Mea-
sure Extension Theorem extends μ to ν on AI , which gives the desired measure
μ on A by μ(a) = ν([a]).
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Corollary 13.2 (AC). If G is an amenable group of isometries of Rn (or Sn),
then there is a finitely additive, G-invariant measure on P (Rn) (or P (Sn)) that
normalizes the unit cube (or Sn) and vanishes on all meager sets.

Proof. Apply Theorem 13.1 with A = P (Rn), C = J , μ = v , and I =M, the
ideal of meager sets. It is shown in Appendix B that Jordan measure v vanishes
on all Jordan measurable, meager sets.

Corollary 13.3 (AC). Marczewski measures exist in R1, R2, and S1.

Proof. The isometry groups in these cases are solvable, hence amenable. If μ is
the total measure that exists by the previous corollary, then μ�B is a B-measure
that vanishes on M, that is, a Marczewski measure.

Because of the Banach–Tarski Paradox (really, the Hausdorff Paradox), mea-
sures as in Corollary 13.2 cannot exist if G is the group of all isometries of Rn or
Sn−1 (n ≥ 3). Corollary 11.13 shows much more: In these dimensions, measures
as in Corollary 13.2 cannot exist even on B. Note that a Marczewski measure such
as does exist by Corollary 13.3 cannot be countably additive (Thm. 11.24).

Corollary 13.3 was required to prove (c) ⇒ (g) of Theorem 11.7, and so that
proof is now complete. The existence of Marczewski measures has an interesting
geometric consequence. Let A be an open dense subset of [0, 1] with λ(A) < 1;
just choose a small open covering of Q ∩ [0, 1]. Then [0, 1] \A is nowhere dense;
therefore, if μ is an isometry-invariant measure on all sets, as in Corollary 13.2,
μ([0, 1] \A) = 0 and μ(A) = 1. It follows that A is not equidecomposable with
any subset of a proper closed subinterval of [0, 1], even using arbitrary pieces.
(However, if countably many pieces are allowed, then A and (0, λ(A)) are Borel
equidecomposable; see remark after Thm. 11.28.) For the analogous question in
R3, the result is the opposite: Given any small cube J0, the unit cube has an open
subset A such that the complement of A in the cube is nowhere dense, but A is
equidecomposable with a subset of J0 (Thm. 11.15).

If, in the preceding two corollaries, one uses the ideal of nowhere dense sets
rather than M, one gets measures vanishing on the nowhere dense sets. A natural
question is whether such a measure necessarily vanishes on the meager sets. The
answer is no. Here is a sketch of the proof for S1. Let A be a meager Fσ subset of
S1 with λ(A) = 1 (see [Oxt71, p. 5]; A is obtained as the complement of the inter-
section of a sequence of successively smaller open covers of a countable dense
set). Let C be the subalgebra of P (S1) generated by {ρ(A) : ρ ∈ O2(R)}; then any
element of C is a finite union of terms, each of which is a finite intersection of
terms of the form ρ(A) or S1 \ ρ(A) (see [Sik69, p. 14]). It follows that C is con-
tained in the algebra of Borel sets, and so λ may be viewed as a measure on C.
The representation of elements of C implies that λ is {0, 1}-valued on C, and it
follows that λ vanishes on any nowhere dense set in C (because otherwise there
would be a nowhere dense set A ⊂ S such that λ(A) = 1). Now, Theorem 13.1
may be applied to get an invariant extension of λ� C to P (S1) that vanishes on all
nowhere dense sets. This extension, however, gives A measure 1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.016
https://www.cambridge.org/core


250 13 Applications of Amenability

The standard measures (Jordan and Lebesgue) have another property that we
can try to preserve in our extensions; namely, these measures react to similarities
by multiplying the measure by the nth power of the magnifying factor, where n is
the dimension. The following generalization of the Invariant Extension Theorem
can be used to show how this property can be preserved.

Theorem 13.4 (AC). Suppose G is an amenable group of automorphisms of
a Boolean algebra A, A0 is a G-invariant subring of A, and μ is a mea-
sure on A0. Suppose further that π : G → (0,∞) is a homomorphism into the
multiplicative group of positive reals such that whenever c ∈ A0 and g ∈ G,
μ(g(c)) = π (g)μ(c). Then there is an extension μ of μ to all of A that satisfies
μ(g(a)) = π (g)μ(a).

Proof. The proof is identical to that of the Invariant Extension Theorem (Thm.
12.8), except that for a ∈ A, fa : G → R is defined by fa(g) = π (g)ν(g−1(a)).
Then μ, which is defined by integrating fa over the amenable group G, has the
desired property, because ( f )g(a) = π (g) g( fa).

Now, let Hn be the group of similarities of Rn; any element of Hn has a unique
representation as h σ , where σ ∈ Gn and h is a magnification through the origin:
h(⇀v ) = α

⇀
v for some positive real α. Let the homomorphism π : Hn → (0,∞) be

defined by π (h σ ) = αn, where α is h’s magnification factor.

Corollary 13.5 (AC). If n ≤ 2, then there is a finitely additive extension μ of
λ to all of P (Rn) such that μ(g(A)) = αn μ(A) whenever g is a similarity with
magnification factor α.

Proof. The mapping h σ �→ σ is a homomorphism from Hn onto Gn whose ker-
nel is the subgroup consisting of pure magnifications. Because this subgroup is
Abelian, Hn is solvable if Gn is. But G1 and G2 are solvable, whence H1 and H2

are amenable, and the corollary is now an immediate consequence of Theorem
13.4, using the homomorphism π : Hn → (0,∞).

Of course, this corollary is valid for larger n, provided Hn is replaced by some
amenable group of similarities. Also, Theorems 13.4 and 13.1 can be combined
so that one can get a Marczewski measure in R1 or R2 that behaves properly with
respect to similarities. R. Mabry [Mab10] has investigated Banach measures that
are isometry invariant but do not behave properly with respect to similarities. The
Axiom of Choice can be eliminated from the next corollary in the same way that,
in Corollary 15.11, it is eliminated from Corollary 10.10 when n ≤ 2.

Corollary 13.6. Suppose A ⊆ R2 is Lebesgue measurable, with 0 < λ(A) <∞.
Suppose K is a square such that for any ε > 0, A is H2-equidecomposable with
K using similarities (g) that are ε-magnifying (meaning: 1− ε ≤ π (g) ≤ 1+ ε).
Then K has area λ(A).
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Proof. Let μ be a measure on all subsets of the plane as in Corollary 13.5.
Suppose λ(K ) 
= λ(A) and let ε = |1−√λ(K )/λ(A)|/2. Then, because A is
H2-equidecomposable with K using ε-magnifying similarities, (1− ε)2μ(A) ≤
μ(K ) ≤ (1+ ε)2μ(A), whence 1− ε ≤ √λ(K )/λ(A) ≤ 1+ ε, contradicting the
choice of ε.

This corollary means that Theorem 9.3, which showed how for any ε > 0 the
circle could be squared using ε-magnifying similarities, is not valid if the square’s
area is different than that of the circle.

Marczewski measures were a refinement of some measures produced by
Banach to answer a question of Ruziewicz and Lebesgue regarding the unique-
ness of Lebesgue measure as a finitely additive measure. We have already seen
(Prop. 11.18) that λ is the only countably additive, translation-invariant measure
on L normalizing the unit cube. As stated earlier, this is false if λ is viewed as
a finitely additive measure: Simply let μ(A) = λ(A) if A ∈ L is bounded, and
μ(A) = ∞ if A ∈ L is unbounded. This led Ruziewicz to pose the problem of λ’s
uniqueness as a finitely additive, invariant measure on Lb, the bounded Lebesgue
measurable subsets of Rn (on Sn, Lb is L). Call a finitely additive measureμ on Lb

exotic if μ is isometry-invariant and normalizes the unit cube (or, Sn), but μ 
= λ.
Ruziewicz’s Problem asks whether exotic measures exist in Rn or Sn.

This problem is closely related to questions of amenability and paradoxical
decompositions. First of all, note that Banach’s solution is an easy consequence
of the construction given in Corollary 13.2. If μ is a finitely additive, isometry-
invariant measure on P (R1), P (R2), or P (S1) that normalizes the unit interval,
square, or sphere, respectively, but vanishes on all meager sets (such measures
exist by Cor. 13.2), then μ vanishes on a closed nowhere dense set of posi-
tive Lebesgue measure. Hence μ�Lb is an exotic measure. The solution of the
Ruziewicz Problem in higher dimensions, which makes use of the Banach–Tarski
Paradox, was completed only in 1980–1981 and is discussed later. First we exam-
ine Banach’s solution for S1 more closely.

The fact that an exotic measure exists for S1 relies heavily on the amenability
of O2(R). How general is this phenomenon? Suppose (X ,A,m) is an arbitrary
nonatomic measure space with m(X ) = 1 (i.e., A is a σ -algebra, m is a countably
additive probability measure on A, and any set of positive measure splits into two
sets, each having positive measure). Suppose further that a group G acts on X so
that A and m are G-invariant (in short, G is measure-preserving). Then a finitely
additive, G-invariant measure ν on A with ν(X ) = 1 and ν 
= m is called exotic.
If, in addition, ν vanishes on all sets in A of m-measure zero, then ν is called an
absolutely continuous exotic measure.

Now, Corollary 13.2 yields an exotic measure for O2(R)’s action on (S1,L, λ).
Indeed, one can get an absolutely continuous exotic measure by letting I be the
O2(R)-invariant ideal in L generated by N together with a single nowhere dense
set of positive measure; because a finite union of nowhere dense sets is nowhere
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dense and hence has Lebesgue measure less than 1, I is a proper ideal. The desired
measure arises by applying Theorem 13.1 with A = L, m = λ, C = I ∪ {S1 \A :
A ∈ I}, and μ the {0, 1}-valued measure on C that vanishes on I. In its use of a
nowhere dense set, these arguments use a bit of the topology of S1.

J. Rosenblatt wondered whether amenability of G was enough to always yield
an exotic measure on any nonatomic measure space on which G acts. His prob-
lem can be stated both in the context of the Ruziewicz problem (i.e., in terms of
invariant means on equivalence classes of functions) and in terms of pure mea-
sures. For the latter, there are connections to the axioms of set theory. Let N! be
the group of permutations of N. A group is locally finite if any finitely generated
subgroup is finite; such a group is amenable. Then the situation for such groups
is complicated; part (a) of the next result is due to S. Krasa [Kra88]; (b) is due
to Z. Yang [Yan91]; and (c) and the Martin’s Axiom assertion of (b), is due to
M. Foreman [For89].

Theorem 13.7. (a) If a solvable group G acts on the infinite set X , then there is
an exotic measure on P (X ).

(b) Assuming the Continuum Hypothesis (or the weaker Martin’s Axiom),
there is a locally finite subgroup G of N! such that there is only one finitely
additive G-invariant measure on P (N) having total measure 1.

(c) It is consistent with ZFC that, for any locally finite subgroup G of N!, there
are at least two finitely additive G-invariant measures on P (N) having
total measure 1.

Part (b) shows that (a) cannot be extended from solvable to amenable groups,
as it shows (under CH) that uniqueness can occur. The question remains: Can
one prove in ZFC that there is an amenable group acting on a set for which there
are no exotic measures? The nonuniqueness result is also known to hold for any
countable amenable group, but that is better stated in the context of absolutely
continuous measures (Thm. 13.8).

Now we turn to the exotic measure problem in Ruziewicz’s original context,
which was related to Lebesgue measure. Absolute continuity plays a very impor-
tant role. This is best understood in the context of functional analysis rather than
measure theory. A G-invariant measure m on an algebra A ⊆ P (X ) induces a
G-invariant linear functional on L∞(X ) (the m-equivalence classes of bounded,
measurable, real-valued functions on X ) that assigns nonnegative values to non-
negative (almost everywhere) functions and normalizes the constant function with
value 1, namely, the integral with respect to m. Such a functional is called an
invariant mean on L∞(X ). The integral with respect to an exotic measure on
A will be a new invariant mean on L∞(X ) only if the exotic measure is abso-
lutely continuous with respect to m, for otherwise the new integral will not be
well defined on the m-equivalence classes of functions. Thus the existence of an
absolutely continuous exotic measure on A is equivalent to the nonuniqueness
of the m-integral as an invariant mean. Most of the results in this area have been
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motivated by the uniqueness question for invariant means, and the proofs use tech-
niques of functional analysis applied to L∞(X ).

In the case of countable groups, Rosenblatt’s Problem has been solved. More-
over, for arbitrary groups, it is known that the amenability condition in Rosen-
blatt’s Problem is necessary. The proof of the countable case uses the notion of an
asymptotically invariant sequence, by which is meant a sequence of sets (An)∞n=0

such that m(An) > 0, and for every g ∈ G, limn→∞ m(An' g An)/m(An) = 0. For
an example of such a sequence in a slightly different context, see the proof of
Theorem 13.16. This notion, with net replacing sequence, also plays a role in the
omitted details of the proof of (a) in the next theorem. The notion of an asymptot-
ically invariant sequence, which plays a central role in the next theorem and also
in the solution to Ruziewicz’s Problem, to be discussed, is intimately related to
Følner’s Condition (§12.4). Indeed, another way of phrasing Følner’s Condition
for a countable group G is; There is a sequence (An) of nonempty finite subsets of
G that is asymptotically invariant with respect to the counting measure on P (G).

Theorem 13.8 (AC). Let G be a group.

(a) If every nonatomic G-invariant measure space (X ,A,m) admits an abso-
lutely continuous exotic measure on A, then G is amenable.

(b) If G is amenable and countably infinite and (X ,A,m) is nonatomic and
G-invariant, then there is an absolutely continuous exotic measure on A;
that is, the m-integral is not the unique G-invariant mean on L∞(X ).

Proof. (a) (Sketch; see [LR81, Ros81] for more details.) Suppose G is not
amenable. Let X = ZG

2 , a compact topological group with Haar measure m on its
Borel sets. Consider the natural action of G on X given by g((sh)h∈G) = (sg h)h∈G;
m is invariant under this action. But it can be shown {LR81, Ex. (d)] that the m-
integral is the unique G-invariant mean on L∞(X ), contradicting the hypothesis
for the measure space (X ,Borel sets,m).

(b) Del Junco and Rosenblatt [JR79, Thm. 2.4] proved that if T is a finite
subset of an amenable group H and ε > 0, then there is a set B such that
0 < m(B) < ε and, for g ∈ T , m(B' g B)/m(B) < ε. Now, enumerate the given
G as {gi : i = 0, 1, . . .} and use the preceding result to get a sequence {Ak}
so that m(Ak ) < 2−(k+1) and Ak is (1/k)-invariant for gi with i ≤ k. Then (Ak )
is an asymptotically invariant sequence for G, and it yields a new invariant
mean as follows. Define mn by mn(A) = m(A ∩ An)/m(An). Let U be a non-
principal ultrafilter on N (see remarks after Thm. 12.7) and define ν(A) =∫

fA dU , where fA(n) = mn(A). Because limn→∞ fA(n)− fgA(n) = 0 (to see this,
use m(A ∩ An) = m(g(A ∩ An)) = m(g A ∩ g An) to relate the given limit to the
asymptotic invariance of (An)) and finite sets have U -measure zero, ν is G-
invariant. Clearly ν is absolutely continuous with respect to m, and ν is exotic
because m(

⋃
An) < 1/2+ 1/4+ · · · = 1 = ν (

⋃
An).

For details of the preceding proofs, and various related results on asymptot-
ically invariant sequences and the problem of uniqueness for invariant means,
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see [CFW81, CW80, Dan85, JR79, LR81, Mar80, Mar82, Ros81, Sch80, Sch81,
Sul81, Bek98, Oh05].

The existence of absolutely continuous exotic measures can be given another
interpretation. Let us, for the moment, call a measure-preserving action of G
on (X ,A,m) superergodic if, for any set A of positive measure, there are
g1, . . . , gn ∈ G such that m(

⋃
gi A) = 1; a superergodic action on a nonatomic

space is necessarily ergodic (easy exercise). Now, asking for an absolutely con-
tinuous exotic measure is equivalent to asking whether any measure-preserving
action of an amenable group on a finite, nonatomic measure space fails to be
superergodic. For if ν is exotic and absolutely continuous, then as shown by
Rosenblatt [Ros81, Prop. 1.1], there is another absolutely continuous exotic
measure ν ′ such that ν ′ vanishes on a set A of positive m-measure; this set
witnesses the nonsuperergodicity of the action because m(

⋃
gi A) = 1 implies

ν ′(
⋃

giA) = 1, contradicting ν ′(A) = 0. Conversely, if A is such that m(A) > 0
and m(g1A ∪ · · · ∪ gnA) < 1 for all finite subsets {gi} of G, then I, the collec-
tion of sets contained in a set of the form E ∪ (

⋃
gi A), m(E ) = 0, and {gi} is a

finite subset of G, is a proper G-invariant ideal in A. Then Theorem 13.1, with
C = I ∪ {X \B : B ∈ I} and μ equal to the {0, 1}-valued measure on C that van-
ishes on I, yields an absolutely continuous finitely additive measure on A that
vanishes on I and hence is exotic. In short, a measure-preserving action of an
amenable group G on (X ,A,m) is superergodic if and only if the m-integral is
the unique invariant mean on L∞(X ).

For approximately fifty years, no progress was made on Ruziewicz’s Problem
in higher dimensions. All that was known was Tarski’s observation (Lemma 11.9)
that, because of the Banach–Tarski Paradox, any exotic measure necessarily van-
ishes on the bounded sets of Lebesgue measure zero, that is, is absolutely con-
tinuous with respect to Lebesgue measure on Lb. This means that to prove the
nonexistence of an exotic measure, it suffices to prove that the Lebesgue integral
is the unique invariant mean on L∞(Rn) or L∞(Sn−1), n ≥ 3. Then, in 1980–1981,
a solution for Sn, n ≥ 4, was obtained simultaneously in Russia (by G. Margulis)
and in the United States (by D. Sullivan and J. Rosenblatt). The solution leans
heavily on a property of groups diametrically opposed to amenability called Prop-
erty (T), first introduced by Kazhdan [Kaz67]. We state the definition for count-
able groups, although the property can be defined more generally for locally com-
pact topological groups.

Definition 13.9. A countable group G has Property (T) if, whenever a unitary
representation π of G on a complex Hilbert space H admits an asymptotically
invariant sequence of nonzero vectors (i.e., a sequence of nonzero vn ∈ H such
that for all g ∈ G, limn→∞ ‖vn − π (g)vn‖/‖vn‖ = 0), then there is a nonzero G-
invariant vector (i.e., a nonzero v ∈ H such that for all g ∈ G, π (g)v = v).

There is a connection between groups having Property (T) and expander
graphs, which play a role in a variety of fields.
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Definition 13.10. Let � = (V,E ) be a finite k-regular graph (undirected, no mul-
tiple edges, loops allowed) with n vertices. For Y ⊆ V , we define the boundary ∂Y
as the set of vertices outside Y and connected by an edge to a vertex in Y . Then �
is an ε-expander if, for any Y ⊆ V with |Y | ≤ |V |/2, we have |∂Y | ≥ ε|∂Y |.

For any ε-expander �, we can define the isoperimetric constant h(�) as the
minimum of |∂Y |/|Y | over all vertex sets Y with |Y | ≤ |V |/2. A sequence of
graphs (�m) where �m = (Vm,Em) is k-regular and |Vm| approaches infinity is
called an expander family if there is an η > 0 such that h(�m) > η for all �m

in the family. The existence of an expander family is closely related to finitely
generated groups with Property (T). This is the content of a famous theorem of
Margulis [BHV08, Ex. 6.1.12]. Recall that the (right) Cayley graph C(G, S) of a
finitely generated group G with generating set S is the graph whose vertices are
the elements of G and with an edge (possibly a loop) v1 � v2 whenever v2 = v1s
for some s ∈ S±1.

Theorem 13.11. Let G be a finitely generated group with Property (T), and let
F be an infinite family of normal subgroups of G having finite index. Then the
Cayley graphs C(G/N, S), where N ∈ F , form an expander family.

There is also a link between expander families and nonamenable pseu-
dogroups. Negating Følner’s Condition for pseudogroups (see Defn. 12.18) and
applying Theorem 12.20, we obtain that a pseudogroup G of transformations of
X is not amenable if and only if there is an ε > 0 and a finite R ⊆ G such that
for any finite F ⊆ X , |∂RF | ≥ ε|F |. Therefore a pseudogroup G is not amenable
if and only if every infinite sequence of finite subsets of X yields a family of
expanders by forming the graphs using elements of G. For more information on
expanders, see [BHV08, Chap. 6].

The key step in the solution of the Ruziewicz Problem in S4 and beyond was
the identification, using techniques of algebraic group theory, of a countable dense
subgroup of SOn(R) (n ≥ 5) that has Property (T). The relevance of Property (T)
to the uniqueness of invariant means is given by the following theorem.

Theorem 13.12. Suppose a countable group G with Property (T) acts on X in a
way that is measure-preserving and ergodic, where (X ,A,m) is a nonatomic mea-
sure space and m(X ) = 1. Then the m-integral is the unique G-invariant mean on
L∞(X ).

Proof. Suppose the m-integral is not the unique mean. Then, by a result of del
Junco and Rosenblatt ([JR79]; see [Ros81, Thm. 1.4] for a proof), there is an
asymptotically invariant sequence (An) of sets of positive measure such that
limn→∞ m(An) = 0. Let L2(X ) denote the Hilbert space of all square-integrable
complex functions on X , and let H be the subspace consisting of those f such
that

∫
f dm = 0. Let π be the natural representation of G as isometries of

H : (π (g) f )(x) = f (g−1(x)). Let fn(x) = χAn (x)− m(An); then fn ∈ H , ‖ fn‖2 =
m(An)(1− m(An)), and ‖ fn − π (g) fn‖2 = m(An' gAn). It follows that { fn} is an
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asymptotically invariant sequence in H , so because G has Property (T), some
nonzero f ∈ H satisfies π (g) f = f for all g ∈ G. But then set Er = {x ∈ X :
| f (x)| ≥ 1/r}; Er has positive measure for some r and m(Er' g Er) = 0 for all
g ∈ G, which contradicts the ergodicity of G’s action.

The converse of the previous theorem is valid too. If invariant means are unique
for all actions of a countable group G as in the theorem, then G has Property (T)
[CW80, Sch81]. Property (T) can also be characterized in terms of cohomological
properties of G [Sch81, Wan74]. For more on the relation between Property (T)
and amenability, see the beginning of §11.3.

Now, the action of a countable dense subgroup of SOn(R) on Sn−1 is ergodic,
like the action of all of SOn(R). Hence Theorem 13.12, together with the exis-
tence, mentioned earlier, of a countable dense subgroup of SOn(R), n ≥ 5, having
Property (T), implies that the Lebesgue integral is the unique invariant mean on
L∞(Sn), n ≥ 4, and hence by Tarski’s observation, there is no exotic measure on
Sn, n ≥ 4.

The preceding technique can be adapted to R5 and beyond, but the lower-
dimensional cases R3, R4, S2, and S3 proved more troublesome. Nevertheless,
Margulis [Mar82] obtained a solution for all Rn, n ≥ 3, and Drinfeld [Dri85]
solved the remaining two cases, S2 and S3, using some deep mathematics, includ-
ing Deligne’s proof of the Petersson Conjecture. For a detailed discussion of the
complete solution to the Ruziewicz Problem, see [Lub1994]. To summarize:

Theorem 13.13 (AC). An exotic measure in Sn or Rn exists only in the cases R1,
R2, and S1.

The role of absolute continuity in the proof of Theorem 13.13, via Tarski’s
observation, shows how the Banach–Tarski Paradox, which is usually interpreted
negatively (invariant extensions of Lebesgue measure to all sets do not exist), can
be looked upon more positively if the focus is shifted from all of P (Rn) to the
measurable sets. The paradox yields that exotic measures must be absolutely con-
tinuous, which, by the work just outlined, yields a characterization of Lebesgue
measure as a finitely additive measure.

Theorem 13.13 points to a close connection between the existence of exotic
measures and the amenability of the group in question, because exotic measures
exist only in the cases that the isometry group is amenable. How closely are these
two properties related? We shall see that for a somewhat trivial reason, exotic
measures on S3, for example, can exist even when the group in question is a non-
amenable group of rotations (see the use of a principal measure after Thm. 13.24).
Thus it is appropriate to formulate a question in terms of absolutely continuous
measures; they lead to invariant means on L∞(Sn).

Question 13.14. Does the nonamenability of a subgroup G of On+1(R) guaran-
tee the uniqueness of the Lebesgue integral as a G-invariant mean on L∞(Sn)?
Can the mean’s uniqueness be proved under the stronger assumption that Sn is
G-paradoxical?
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An affirmative answer to the first part of this question would yield (in fact,
is equivalent to) the assertion that if G is a nonamenable subgroup of On+1(R)
and F is a G-invariant mean on L∞(Sn), then F is, in fact, On+1(R)-invariant.
Note that if G is an amenable subgroup of On+1(R) and n is at least 2, then there
is a G-invariant mean on L∞(Sn) that is not On+1(R)-invariant: Any G-invariant
mean that differs from the Lebesgue integral (such exist by the method preceding
Theorem 13.7) is not On+1(R)-invariant because of Theorem 13.13.

All the known results about exotic measures have been obtained by studying
the related question about the uniqueness of invariant means on L∞. But these
techniques do not apply if one is considering the family of Borel sets rather than
the collection of measurable sets. Lemma 11.9 cannot be used because the proof
of that lemma uses subsets of sets of measure zero, a technique that can intro-
duce non-Borel sets. Thus we have the following question, which is completely
unresolved.

Question 13.15. Is it true that in Sn, n ≥ 2 (or Rn, n ≥ 3), Lebesgue measure is
the only finitely additive, isometry-invariant measure on the Borel sets that has
total measure 1 (or, that normalizes the unit cube)?

13.2 Paradoxes modulo an Ideal

The nonexistence of exotic measures leads to a new type of paradoxical decompo-
sition, one that uses measurable pieces. Of course, J , the unit cube in R3, cannot
be paradoxical using pieces in L. But it is possible that J is paradoxical in L pro-
vided sets in some ideal I of L are ignored. We have already seen the usefulness
of considering equidecomposability modulo an ideal; see Definitions 11.5 and
11.25. To fit this generalization into the machinery already developed, we digress
briefly to discuss equidecomposability in arbitrary Boolean algebras.

If G is a group of automorphisms of a Boolean algebra A, and a, b ∈ A,
then a and b are G-equidecomposable (a ∼ b) if there are two pairwise disjoint
collections of n elements, {ai}, {bi}, and gi ∈ G, such that a = a1 ∨ · · · ∨ an,
b = b1 ∨ · · · ∨ bn, and gi(ai) = bi. An element a in A is G-paradoxical if there
are disjoint b, c ≤ a such that b ∼ a and c ∼ a. Most of the algebras consid-
ered so far have been fields of sets, but Ruziewicz’s Problem leads to the con-
sideration of paradoxical decompositions in quotient algebras of the form L/I.
One consequence of this increased generality is that the proof of the Banach–
Schröder–Bernstein Theorem (Thm 3.6) breaks down. The two axioms for equide-
composability used in that proof, (a) and (b), remain valid if suitably reformu-
lated for Boolean algebras (the relativization of A to an element is defined in
§12.3): (a) If a ∼ b, then there is a Boolean isomorphism g:Aa → Ab such that
c ∼ g(c) for each c ≤ a, and (b) if a1 ∧ a2 = 0 = b1 ∧ b2, a1 ∼ b1, and a2 ∼ b2,
then a1 ∨ a2 ∼ b1 ∨ b2. For (a), let g(c) = g1(c ∧ a1) ∨ · · · ∨ gn(c ∧ an), where
ai, gi witness a ∼ b. But the proof of Theorem 3.6 uses an infinite union at one
point, and the Boolean counterpart of that operation does not always exist. A
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Boolean algebra A is called countably complete if sups and infs (with respect to
≤) of countable subsets of A exist in A. It is easy to see that in countably com-
plete Boolean algebras, the proof of Theorem 3.6 yields the Banach–Schröder–
Bernstein Theorem for G-equidecomposability.

An example showing that the Banach–Schröder–Bernstein Theorem is not
valid in all Boolean algebras can be constructed as follows. Kinoshita [Kin53]
found countable Boolean algebras A, C1, and C2 such that A ∼= A× C1 × C2, but
A � A× C1 (∼= is isomorphism of Boolean algebras). This result was improved
by Hanf [Han57], who showed that C1 could be taken isomorphic to C2. Now, let
B = A× C1 × C2 ×A, and let G be the group of all automorphisms of B. Let g
be the automorphism that uses the isomorphism to take the first factor of B to the
last three, and vice versa; let h be the automorphism that switches the first and last
coordinates. Finally, let a = (1, 0, 0, 0) and b = (1, 1, 0, 0). Then a ≤ b and b ∼G

gh(b) = g(0, 1, 0, 1) ≤ g(0, 1, 1, 1) = a. If a and b are G-equidecomposable, let
f be the piecewise automorphism from Ba to Bb. For simplicity, assume two
pieces, so that a = a1 ∨ a2, b = b1 ∨ b2 (with a1 ∧ a2 = b1 ∧ b2 = 0), and with
gi ∈ G so that gi(ai) = bi. Now we can show that f is actually an isomorphism of
Ba = A and Bb = A× C1. Consider the join operation: Suppose c1 ∨ c2 ∈ A. In
the following derivations, we make use of the fact that gi is a Boolean automor-
phishm.

Claim. If c ≤ a, then f (c) = (g1(c) ∧ b1) ∨ (g2(c) ∧ b2).

Proof. f (c) = f (c ∧ a1) ∨ f (c ∧ a2) = g1(c ∧ a1) ∨ g2(c ∧ a2)
= (g1(c) ∧ g1(a1)) ∨ (g2(c) ∧ g2(a2)) = (g1(c) ∧ b1) ∨ (g2(c) ∧ b2).

Now, to finish,

f (c1 ∨ c2) = (b1 ∧ g1(c1 ∨ c2)) ∨ (b2 ∧ g2(c1 ∨ c2)) [by the claim]

= [b1 ∧ (g1(c1) ∨ g1(c2))] ∨ [b2 ∧ (g2(c1) ∨ g2(c2))]

= [(b1 ∧ g1(c1)) ∨ (b1 ∧ g1(c2))] ∨ [(b2 ∧ g2(c1)) ∨ (b2 ∧ g2(c2))]

= [(b1 ∧ g1(c1) ∨ (b2 ∧ g2(c1))] ∨ [(b1 ∧ g1(c2)) ∨ (b2 ∧ g2(c2))]

= f (c1) ∨ f (c2) [by the claim].

So f preserves join, and similar reasoning applies to the other operations. This
shows that f :A→ A× C1 is an isomorphism, contradiction.

The generalization of equidecomposability to arbitrary Boolean algebras pro-
vides a convenient context for studying equidecomposability in quotient algebras,
but strictly speaking, this can all be carried out within the framework used ear-
lier, that of G-equidecomposability in an algebra of subsets of some set, where
G acts on the set. This is because by the Stone Representation Theorem [Sik69,
p. 24], any Boolean algebra A is isomorphic to an algebra of subsets of X for
some set X (X is the set of ultrafilters on A), and a group of automorphisms of
A may be viewed as a group acting on X . Because of these remarks, we may talk
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of equidecomposability of objects na where n ∈ N and a ∈ A; simply apply the
semigroup construction at the start of §10.3.2 to the algebra of sets corresponding
to A. Moreover, Tarski’s Theorem in the form of Corollary 11.3 applies to equide-
composability in Boolean algebras. Because of the lack of a general cancellation
law, we cannot be sure that the stronger Corollary 11.2 is valid.

With all these preliminaries, we can now derive a new type of paradoxical
decomposition of a cube in Rn (n ≥ 3) or of Sn (n ≥ 2) from the nonexistence
of exotic measures. Let I be any isometry-invariant ideal in L, the measurable
subsets of Rn, n ≥ 3, or of Sn, n ≥ 2, and let A be the Boolean algebra L/I; let
[A] denote the I-equivalence class of a measurable set A. If I consists only of
measure zero sets, then Lebesgue measure induces an isometry-invariant measure
on A. But in all other cases, that is, whenever I is an isometry-invariant ideal in
L that contains a set of positive measure, there is no isometry-invariant measure
on A normalizing [J ] (or normalizing [S]n). This is a consequence of Theorem
13.13, because such a measure would induce an exotic measure on Lb. Note that
such ideals are easy to obtain; for example, choose any closed nowhere dense
set A of positive measure and let I = {B ∈ L : for some σ1, . . . , σm ∈ Gn,B ⊆
σ1 A ∪ · · · ∪ σm A}. Now, an application of Corollary 11.3 yields the following
result.

Corollary 13.16 (AC). Let L denote the class of measurable subsets of Rn, n ≥ 3,
or Sn, n ≥ 2; let I be any proper isometry-invariant ideal in L that contains a set
of positive measure; let A = L/I; and let α be the equivalence class of the unit
cube in Rn or of the sphere Sn. Then there is some positive integer m such that
(m+ 1)α ≤ mα in A; that is, m+ 1 copies of the cube or sphere can be packed
into m copies using measurable pieces, but ignoring sets in I.

This corollary is noteworthy because it applies to every ideal satisfying the
hypothesis; but the conclusion is weaker than one might hope because of the
usual problems with the Cancellation Law requiring Corollary 11.3 to be used
rather than Corollary 11.2. Nevertheless, even before Ruziewicz’s Problem for S2

had been solved, Rosenblatt [Ros79] had constructed a specific isometry-invariant
ideal I in the algebra of measurable subsets of S2 such that S2 is paradoxical mod-
ulo I using measurable pieces. Note also that the case of Rn in Corollary 13.16
can be improved if I is assumed, in addition, to be closed under countable unions
and invariant under similarities. Then L/I is countably complete and satisfies the
Banach–Schröder–Bernstein Theorem, whence the proof of (a) ⇒ (b) of Theo-
rem 11.7 can be applied to obtain that the unit cube is paradoxical in L/I. In other
words, the extra hypotheses on I in the case of Rn allow m to be taken to be 1.

13.3 How to Eliminate Exotic Measures in R2

Recall from §8.1.2 that even though the square in R2 is not paradoxical using
isometries, the square is paradoxical using a larger group, one that contains some
area-preserving linear transformations. Let G be the group generated by G2 and σ ,
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where σ (x, y) = (x+ y, y). Then
[

1 2
0 1

] = σ 2 and
[

1 0
2 1

] = [
0 −1
1 0

]
σ−1

[
0 1
−1 0

]
,

so A and B of Proposition 4.4 lie in G, and by the von Neumann Paradox (Thm.
8.5), the square is G-paradoxical. It follows as in Lemma 11.9 that any G-invariant
finitely additive measure on Lb, the Lebesgue measurable subsets of R2, that nor-
malizes the unit square must be absolutely continuous with respect to λ.

Now, Rosenblatt [Ros81] has shown that despite the existence of absolutely
continuous exotic measures in R2, no such measure can be σ -invariant. But, by the
preceding remarks, the absolute continuity condition is redundant in the presence
of σ -invariance. Thus any finitely additive measure on Lb that normalizes the unit
square and is G-invariant must coincide with Lebesgue measure. In other words,
if one modifies the original Ruziewicz Problem by considering area-preserving
affine transformations instead of just isometries, then one obtains a characteri-
zation of Lebesgue measure as a finitely additive measure that is valid in all Rn

except R1.
Rosenblatt’s result was obtained as a corollary to results on the n-dimensional

torus, Tn. He proved that the Lebesgue integral on L∞(Tn), where n ≥ 2, is the
unique mean that is invariant under the natural action of SLn(Z); hence there is a
unique mean on L∞(Tn) that is invariant under all topological automorphisms of
Tn. Therefore absolutely continuous SLn(Z)-exotic measures on the measurable
subsets of Tn do not exist. As pointed out in [Ros81], however, finitely additive
SLn(Z)-invariant measures differing from Lebesgue measure do exist. Thus the
toroidal case shows that the uniqueness of invariant means can be a different ques-
tion than the nonexistence of exotic measures. For a further analysis of invariant,
finitely additive measures both on the family of measurable subsets of Tn and on
P (Tn), see [Dan85].

For countably infinite groups, amenability and Property (T) are mutually exclu-
sive. To see this, let G = (gi)i∈N be an enumeration of an amenable group. By
Følner’s Condition (Thm. 12.11), we have, for each n, a finite subset Wn ⊆ G
such that |gi(Wn)'Wn| ≤ |Wn|/n for each i ≤ n. Let L2(G) be the space induced
by Haar measure m on G; then {χWn} is an asymptotically invariant sequence of
nonzero vectors for the representation of G on L2(G) induced by G’s action on
itself (as in proof of Thm. 13.12); so Property (T) yields a G-invariant vector in
L2(G). But the only such G-invariant vectors for this action are constant, and if
a constant function is in L2(G), then m(G) is finite. Because Haar measure on a
countable group is a scalar multiple of the counting measure, G must be finite.

These two properties are not exact opposites, however. For example, SL1(Z) is
amenable and SLn(Z) has Property (T) if n ≥ 3 (see [Mar80]), but SL2(Z), which
is nonamenable (Prop. 4.4, Thm. 8.1), fails to have Property (T) (see [Sch81,
Example 3.7]). Also, a free group of rank n, n ≥ 2, fails to have Property (T) (see
[Ake81, Kaz67]). Of course, such groups are nonamenable.

One can also investigate exotic measures in hyperbolic space. Let λH be
Lebesgue measure in H2 with a unit disk normalized (see end of §4.6.1). The
following is open.
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13.4 Paradoxes Using Measurable Pieces 261

Question 13.17. Is λH unique as a finitely additive, isometry-invariant measure
on the bounded Lebesgue measurable subsets of H2 and normalizing the unit
disk?

13.4 Paradoxes Using Measurable Pieces

Recall from §4.2 that the hyperbolic plane (also Hn, n ≥ 2) is paradoxical using
measurable pieces. The measure-theoretic consequence of this is that there is no
finitely additive measure on the measurable subsets of H2 that has total measure 1
and is invariant under hyperbolic isometries. Analogous paradoxical decomposi-
tions of Rn using measurable pieces do not exist. This is not too difficult to prove
geometrically [Myc74, §5], but it can also be derived from the construction of
a measure of the type that cannot exist in hyperbolic space. Part of the interest
in the following theorem is that it is valid even in the cases where the isometry
group is nonamenable. Moreover, it yields the somewhat surprising result that
paradoxes using measurable pieces do not exist even if one allows similarities,
which can change areas greatly. Measures as in the next theorem are sometimes
called Mycielski measures.

Theorem 13.18 (AC). For any n, there is a finitely additive, isometry-invariant
measure μ on L such that μ(Rn) = 1. Moreover, μ can be chosen so that μ(A) =
μ(g(A)) for any similarity g.

Proof. Let U be a nonprincipal ultrafilter on N (see discussion following Theorem
12.7). Let Bm denote the ball of radius m centered at the origin and, for A ∈ L,
define fA : N → [0,∞] by fA(m) = λ(A ∩ Bm)/λ(Bm). Then let μ(A) = ∫

fA dU .
It is clear thatμ is finitely additive, μ(Rn) = 1, andμ is On(R)-invariant. Because
On ∪ Tn generates Gn, it must be shown that for any v ∈ Rn and A ∈ L, μ(A) =
μ(A+ v ). But limm→∞ λ(Bm' (Bm + v )/λ(Bm) = 0, which implies (as in Thm.
13.8’s proof) that limm→∞ fA(m)− fA+v (m) = 0. Using the fact that finite subsets
of N have U -measure zero, it follows that

∫
fA dU = ∫

fA+v dU , as required.
For the part of the theorem dealing with Hn-invariance, where Hn is the group

of similarities of Rn, modify the measure of the preceding paragraph as fol-
lows. Let M be the group of magnifications from the origin; then (see remarks
preceding Cor. 13.5) Hn/Gn

∼= M and M is Abelian, hence amenable. Let θ
be a left-invariant measure on M , and define μ∗ by μ∗(A) = ∫

fA dθ , where
fA : M → R is given by fA(d ) = μ(d−1(A)). Then, as usual, μ∗ is finitely additive
and M-invariant, and μ∗(Rn) = 1. But because Gn is a normal subgroup of Hn,
μ∗ is G-invariant too: fσ (A)(d ) = μ(d−1 σ (A)) = μ(σ0d−1(A)) = μ (d−1(A)) =
fA(d ), where σ0 = d−1 σ d ∈ Gn. Because Hn is generated by Gn ∪ M , μ∗ is Hn-
invariant.

Corollary 13.19. Rn is not paradoxical using measurable pieces and isometries
(or even similarities).
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A

A

B

B
C

C

Figure 13.1. A constructive Hausdorff Paradox of the plane using affine transformations.

Note that the key point of the preceding proof is that any unbounded increasing
sequence of concentric balls in Rn is asymptotically Gn-invariant.

Now consider the action of SAn(R), the group of affine transformations with
determinant 1, on Rn. For R1 this adds nothing new, but in R2 and beyond SAn(R)
is substantially larger than the isometry group. The techniques of §8.1 (Cor.
8.2(b)) easily yield that if n ≥ 2, Rn is SAn(R)-paradoxical. Indeed, if n ≥ 3,
this follows already from Corollary 6.8, while for R2 this follows from the local
commutativity of SL2(Z) in its action on R2 \ {0}. But can it happen that Rn is
SAn(R)-paradoxical using Lebesgue measurable pieces? In other words, can there
be a Mycielski measure when the group is SAn(R)? The answer is no.

Theorem 13.20. If n ≥ 2, then there does not exist a finitely additive, SAn(R)-
invariant measure of total measure one on L, the Lebesgue measurable subsets of
Rn.

Proof. Consider the plane first, and let A, B, C be the sets of Figure 13.1. Let σ , τ ,
ρ be, respectively, the following elements of SL2(Z):

[
1 1
0 1

]
,
[

1 0
1 1

]
,
[

0 −1
1 0

]
. Then

σ (A ∪ B) = A, τ (A ∪ B) = B, and ρ(A ∪ B) = C, whence A ≡ B ≡ C ≡ A ∪ B.
This is a Hausdorff decomposition, and it implies that there is no measure as in
the theorem. The sets extend to Rn in the obvious way, and the usual absorption
technique to deal with origin then yields that Rn is SAn(R)-paradoxical using
measurable pieces, if n ≥ 2.

Although no finitely additive measure on the measurable subsets of R2 having
total measure 1 is SA2(R)-invariant, Belley and Prasad [BP82] have shown that
there are interesting subalgebras of the algebra of Borel subsets of Rn that (a) are
invariant under all affine transformations and (b) bear a finitely additive measure
of total measure 1 that is invariant under all affine transformations.

13.5 Characterizing Isometry Groups That Yield Paradoxes

We now turn our attention to a finer analysis of paradoxical decompositions and
attempt to characterize the groups of isometries of Rn (resp., Sn) with respect to
which the cube (resp., Sn) is paradoxical. In other words, for which subgroups of
Gn (resp., On(R)) are Corollaries 12.9 and 12.10 valid? This leads to two distinct

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.016
https://www.cambridge.org/core


13.5 Characterizing Isometry Groups That Yield Paradoxes 263

problems. For the first, we are asking to characterize the groups, G, of isometries
for which λ has a G-invariant, finitely additive extension to all sets. For the second,
we are asking about groups with respect to which no paradox exists, which by
Tarski’s Theorem is equivalent to asking about groups G for which there exists a
finitely additive, G-invariant measure on all sets that normalizes the unit cube, or
the sphere.

The following theorem treats the first question for spheres; the case of Rn fol-
lows.

Theorem 13.21 (AC). Let G be a subgroup of On+1(R). Then the following are
equivalent to each other and to the statements of Theorem 12.11:

(a) G is amenable.
(b) G has no free subgroup of rank 2.
(c) There is a finitely additive, G-invariant extension of λ to all subsets of Sn.
(d) There is a finitely additive, G-invariant measure μ on P (Sn) with μ(Sn) =

1 and μ(E ) = 0 if λ(E ) = 0.

Proof. As indicated just before Tits’s Theorem (Thm. 12.6), that theorem implies
the equivalence of (a) and (b) for groups of Euclidean (and hence spherical)
isometries. Because (a) ⇒ (c) is just Corollary 12.9 and (c) ⇒ (d ) is triv-
ial, it remains only to show (d ) ⇒ (a). Assume μ is as in (d) and G is not
amenable. Then, by Theorem 12.4(f) and the fact that any group is the union
of its finitely generated subgroups, there is some finitely generated, and hence
countable, subgroup H of G that fails to be amenable. Let D = {x ∈ Sn : σ (x) =
x for some nonidentity σ ∈ H }. Now, the fixed point set (in Rn+1) of a nonidentity
isometry of Sn is a linear subspace of dimension at most n. It is easy to see (use
radial extension inward) that such a subspace intersects Sn in a set of surface mea-
sure 0. Because H is countable, this implies that λ(D) = 0, and hence μ(D) = 0
and μ(Sn \D) = 1. But H acts on Sn \D without nontrivial fixed points, and H ,
being nonamenable, is paradoxical by Tarski’s Theorem. Therefore, by Propo-
sition 1.10, Sn \D is H -paradoxical, contradicting μ(Sn \D) = 1. (Note: The
appeal to Tarski’s Theorem here can be avoided by using an easy variation of
Prop. 1.10 to transfer the measure, μ, on Sn \D directly to H , contradicting H ’s
nonamenability.)

We now use the previous theorem to obtain a characterization of subgroups of
Gn for which invariant extensions of Lebesgue measure on Rn exist.

Theorem 13.22 (AC). Let G be a subgroup of Gn. Then the following are equiv-
alent:

(a) G is amenable.
(b) G has no free subgroup of rank 2.
(c) There is a finitely additive, G-invariant extension μ of λ to all subsets of

Rn.
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Proof. As in Theorem 13.21, only (c) ⇒ (b) requires proof. Suppose F is a rank-
2 free subgroup of G. Consider first the case that F is locally commutative on Rn.
Then, by Theorem 5.5, Rn is F -paradoxical. But this contradicts the existence of
a finitely additive G-invariant measure ν on P (Rn) having total measure 1, which
can be obtained from μ as in Theorem 13.18. More precisely, let U and Bm be as
in Theorem 13.18 and define ν(A) to be

∫
μ(A ∩ Bm)/μ(Bm) dU .

If F is not locally commutative, choose noncommuting σ1, σ2 ∈ F , and P ∈ Rn

such that σ1(P) = P = σ2(P). Let τ be the translation by −P and define ν on
P (Rn) by ν(A) = μ(τ−1(A)); let σ ′i = τ σi τ

−1; this fixes the origin and so is in
On(R). Then ν is a finitely additive extension of λ that is 〈σ ′1, σ ′2〉-invariant. But
〈σ ′1, σ ′2〉 is isomorphic to 〈σ1, σ2〉, which, because σ1 and σ2 do not commute,
is freely generated by σ1, σ2. Because ν induces a 〈σ ′1, σ ′2〉-invariant extension
of λ on P (Sn−1) by adjunction of radii, this contradicts (c) ⇒ (b) of Theorem
13.21.

A question related to the previous characterization problem asks, Which
groups of isometries can arise as the group with respect to which a finitely additive
extension of λ to P (Rn) is invariant? If μ is such a measure, let Invt(μ) denote
the subgroup of Gn containing those isometries σ such that μ is σ -invariant. The
following result shows that precisely the amenable groups arise as Invt(μ).

Theorem 13.23 (AC). Suppose G is a subgroup of Gn. Then there is a finitely
additive extension μ of λ to P (Rn) such that Invt(μ) = G iff G is amenable.

Thus, for example, there are total extensions of λ in R1 that are invariant under
all translations, but not under any reflections, or invariant under all rational trans-
lations, but no others. In fact, in R1 and R2, any group of isometries is realizable
as Invt(μ). Note that in other contexts, things may turn out quite differently in that
invariance with respect to one group is sufficient to imply invariance with respect
to a larger group. For instance, any countably additive, translation-invariant mea-
sure on L in R1 that normalizes [0, 1] must coincide with Lebesgue measure and
hence is necessarily invariant under reflections. (But see [HW83] for a variation
on this problem.) Or, letting G be the countable dense subgroup of SO5(R) hav-
ing Property (T) (see remarks preceding Thm. 13.12), any G-invariant mean on
L∞(S4) is necessarily O5(R)-invariant (because it must equal the Lebesgue inte-
gral).

The necessity of amenability in Theorem 13.23 follows from Theorem 13.22.
The proof of sufficiency is due to Wagon [Wag81a]. The main idea is to find a set
A such that B = {χσ (A) : σ ∈ Gn} is linearly independent over L1(Rn), the space of
Lebesgue integrable, real-valued functions on Rn (this means that no function in B
lies in the subspace spanned by L1(Rn) and the rest of B). Then the Hahn–Banach
Theorem is used to extend the Lebesgue integral to a linear functional F on the
space generated by L1(Rn) ∪ B in such a way that F (χσ (A) ) = 1 or 0 according as
σ is or is not in G. Then F , which is precisely G-invariant, is extended by Theorem
12.11(e) to a G-invariant linear functional on the space of all real-valued functions
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on Rn that are bounded by a function in L1(Rn). This extension induces a measure
μ on P (Rn) such that μ extends λ and Invt(μ) = G.

We now consider the rather different problem of characterizing the groups of
isometries of Sn for which an invariant, finitely additive measure on P (Sn) having
total measure 1 exists. By Corollary 11.2, this is equivalent to asking for the sub-
groups of On(R) with respect to which Sn is paradoxical. For the case of S2, the
local commutativity of SO3(R) yields an easy solution, as follows.

Theorem 13.24 (AC). For a subgroup G of O3(R), the following are equivalent:

(a) G is amenable.
(b) G has no free subgroup of rank 2.
(c) S2 is not G-paradoxical.
(d) There is a finitely additive, G-invariant measure on P (S2) having total

measure 1.

Proof. (a) ⇒ (b) follows from Theorem 13.21 and (c) ⇒ (d ) follows from
Corollary 11.2. Moreover, (a) ⇒ (d ) by Theorem 12.3. Finally, Theorem 5.5 (see
also Cor. 10.6) and the local commutativity of SO3(R) yield (c) ⇒ (b) for sub-
groups of SO3(R). The result for O3(R) follows, because if σ , τ are independent
in O3(R), then σ 2 and τ 2 are independent in SO3(R).

Property (d) is much more sensitive to an action’s fixed points than the corre-
sponding property (c) of Theorem 13.19. Because of this, Theorem 13.24 does not
extend to R3 or to S3. If σ, ρ ∈ SO3(R) are independent, then G, the group they
generate, satisfies (d) with respect to R3: Just let μ(A) be 1 or 0 according as the
origin is or is not in A. But G does not satisfy (b). For a similar example in S3, use
the same σ , ρ, but extend them to σ ′, ρ ′ ∈ SO4(R) by fixing the new coordinate.
Then σ ′ and ρ ′ are still free generators of G, the group they generate, so G fails
to satisfy (b). But there is a G-invariant measure on S3; just let μ be the principal
measure determined by the point (0, 0, 0, 1), which is fixed by the action of G (a
principal measure assigns 1 to sets containing a given point, 0 to the others).

The point of the examples of the preceding paragraph is that if a group G acting
on X fixes some x ∈ X , then the principal measure determined by x is G-invariant.
In fact, it is not necessary that G fix a point but only that a certain subgroup
of G fix a point. For suppose H is a normal subgroup of G such that G/H is
amenable and H has a common fixed point x. Then let E be the G-orbit of x and
consider the natural action of G/H on E given by (gH )(g0x) = gg0 x. This is well
defined because, using the fact that H is normal, g h g0 x = gg0h′ x = gg0x. The
amenability of G/H yields a G/H -invariant measure on P (E ), and it is easy to see
that this yields a G-invariant measure. Giving X \E measure zero then yields a G-
invariant measure on P (X ). A result of Dani (who used the technique introduced
in [Dan85]) confirmed a conjecture of Wagon [Wag81a] that this condition is
necessary as well as sufficient for G-invariant measures on P (Sn) to exist, where
G is a subgroup of On+1(R).
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Theorem 13.25 (AC). For a subgroup G of SOn+1(R), the following are equiva-
lent:

(a) Sn is not G-paradoxical.
(b) There is a finitely additive, G-invariant measure on P (Sn) having total

measure 1.
(c) There is a normal subgroup H of G such that G/H is amenable and some

point in Sn is fixed by all isometries in H.

Of course, (a) and (b) are equivalent by Tarski’s Theorem, and as proved (c)
implies (b). Dani’s proof that (b) implies (c) combines Theorem 13.27 with the
fact that G’s action on Sn has the following property: If x ∈ Sn, then Gx denotes
the subgroup of G that fixes x; if H is a subgroup of G, then FH denotes the set of
points in Sn left fixed by each member of H . Then Dani’s property is that every
intersection of members of {Gx : x ∈ Sn} (and of {FH : H a subgroup of G}) is in
fact an intersection of finitely many members of the family.

If G, a subgroup of On+1(R), contains a locally commutative free subgroup of
rank 2, then by Theorem 5.5 or Corollary 10.6, Sn is G-paradoxical. Thus each of
(a)–(c) of Theorem 13.25 implies that G has no such subgroup. This leads to the
following question.

Question 13.26. Does O4(R) have a subgroup G such that for any normal sub-
group H of G with G/H ∈ AG, H has no common fixed point on S3, but yet
G does not have a free locally commutative subgroup of rank 2? Equivalently,
is there a subgroup G of O4(R) such that S3 is G-paradoxical, but S3 is not G-
paradoxical using four pieces?

The preceding discussion for spheres brings us to the general question of what
conditions on a group action are necessary and sufficient for the existence of an
invariant measure. Condition (c) of Theorem 13.25 is sufficient but not necessary.
Van Douwen [Dou90] has shown that F , a free group of rank 2, can act on an
infinite set X in such a way that the action is transitive and each element of F
fixes only finitely many points in X (it follows that condition (c) of Thm. 13.25
fails), but yet a finitely additive, F -invariant measure on P (X ) exists. Another
counterexample was presented by Promislow [Pro83]: let G be the group with
generators {g1, g2, . . . , h1, h2, . . .} and subject to the relations that hi and h j com-
mute for all i, j and that gi and h j commute if i ≤ j. Let G act on G \ {e} by
conjugation. Then there is an invariant measure on all subsets of G \ {e}: For any
finite subset S of G, let μS be the principal measure determined by hn, where
n is so large that i ≤ n for all gi ∈ S. Then μS is S-invariant, and applying the
usual compactness technique to subsets MS of [0, 1]P (G) (see the proof of Thm.
12.4), one gets a G-invariant measure on P (G). But it is easy to see that Theorem
13.25(c) fails for this action.

For some positive results, recall that a locally commutative action of a free
group of rank 2 is paradoxical. In fact, a somewhat stronger result is true; the
following result shows that the hypothesis can be weakened to nonamenability.
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Theorem 13.27 (AC). If a nonamenable group G acts on X in such a way that
for every x ∈ X , Gx = {g ∈ G : g x = x} is amenable, then there is no finitely
additive, G-invariant measure on X having total measure 1 (and hence X is G-
paradoxical).

Proof. The proof is a generalization of that of Theorem 12.4(e). Suppose μ is a
finitely additive, G-invariant measure on X . Let M ⊆ X be a set of representa-
tives for the orbits of G’s action, and for each x ∈ M , let νx be a finitely additive,
left-invariant measure on the amenable group Gx. Now, for any A ⊆ G, define
fA : X → R by setting fA(y) = νx(Gx ∩ h−1A), where x is the unique element of
M such that y is in x’s orbit and h is any element of G such that h x = y. To see
that fA is well defined, note that if h1x = h2 x, then fA(h1x) = νx(Gx ∩ h−1

1 A) =
νx(h−1

2 h1(Gx ∩ h−1
1 A)) = fA(h2 x). Now define ν on P (G) by ν(A) = ∫

fA dμ.
Because fgA(y) = fA(g−1 y), ν is a left-invariant finitely additive measure, con-
tradicting the nonamenability of G.

In the case that G is a free group, another version of the preceding result has
been strengthened by Promislow [Pro83]: If m is a positive integer and G, a free
group of rank m+ 1 or greater, acts on X in such a way that each Gx, x ∈ X , is a
free group of rank at most m, then there is no finitely additive, G-invariant measure
on X having total measure 1. Still, these results leave us quite short of a general
solution to the question posed earlier, which we restate in the possibly simpler
case of a transitive action. The transitivity condition eliminates trivial cases such
as groups whose action is the identity action.

Question 13.28. Suppose a nonamenable group G acts transitively on X . Is there
a condition on the action that is both necessary and sufficient that no finitely addi-
tive, G-invariant measure on P (X ) exists?

Notes

The existence of Marczewski measures in R1, R2, and S1 was proved by E. Mar-
czewski in the 1930s (see [Myc79, Myc80]); [Myc79] contains the explicit for-
mulation of Theorem 13.1. The modification of the Invariant Extension Theorem
to obtain a measure that scales according to a fixed homomorphism from G to
(0,∞) (Thm. 13.4) is due to Klee [Kle54] for solvable groups; as a consequence,
he proved Corollary 13.5. For amenable groups in general, the result is given in
[Myc79].

The Ruziewicz Problem is investigated in [Ban23], where Banach solved the
problem in R1, R2, and S1. In fact, the problem had been posed earlier by
Lebesgue, in the case of R1. Lebesgue had realized [Leb04, p. 106] that the
Lebesgue integral was the unique invariant mean on L∞[0, 1] that satisfied the
Monotone Convergence Theorem, and he asked whether this last, rather compli-
cated condition was necessary for the characterization. Because the Monotone
Convergence Theorem is equivalent (via Fatou’s Lemma) to countable additivity
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of the underlying measure, and because countable additivity does characterize λ as
an invariant measure, Lebesgue was really posing the same problem as Ruziewicz.

Rosenblatt’s Problem (stated before Thm. 13.7), which was an attempt to
generalize Banach’s negative solution of the Ruziewicz Problem, was posed in
[Ros81]. Theorem 13.8(b), which solves this problem for countable groups, is
due to del Junco and Rosenblatt [JR79]. The other implication of the theorem is
due to Losert and Rindler [LR81, Ex. (d)]; a related result was proved indepen-
dently by Rosenblatt [Ros81, Thm. 3.8]. Theorem 13.8(b) was first shown to be
true for nilpotent groups by Rosenblatt and Talagrand [RT81].

The paper by del Junco and Rosenblatt turned out to be the impetus for the
solution of the higher-dimensional cases of Ruziewicz’s Problem, a problem that
had been dormant for fifty years. Using their result that the nonuniqueness of
the invariant mean yields an asymptotically invariant sequence, Margulis [Mar80]
discovered the argument of Theorem 13.12 and constructed a countable dense
subgroup of SOn(R), n ≥ 5, that has Property (T). Simultaneously and inde-
pendently, Rosenblatt [Ros81] used the work of [JR79] to prove that if n ≥ 2,
then the Lebesgue integral is the unique mean on L∞(Rn) that normalizes χJ ,
is invariant under isometries, and is invariant under the shear: σ (x1, . . . , xn) =
(x1 + x2, x2, . . . , xn). After seeing Rosenblatt’s paper, Sullivan [Sul81] saw how
to solve Ruziewicz’s Problem in Sn, n ≥ 4, using essentially the same technique as
Margulis. The solution in Rn, n ≥ 3, is due to Margulis [Mar82], and V. Drinfeld
[Dri85] settled the two remaining cases, S2 and S3. It should be mentioned that the
fundamental result of [JR79] on uniqueness of means and asymptotically invari-
ant sequences was inspired by Namioka’s proof [Nam64] that amenable groups
satisfy Følner’s Condition.

Many others have studied Property (T), and some of their results have a bearing
on the topics considered here. See [Ake81, Bek98, CW80, Kaz67, Oh05, Sch81,
Sul81, Wan69, Wan74, Wan75].

The fact that Theorem 13.13 could be used to obtain a paradoxical decomposi-
tion modulo an ideal was pointed out by Rosenblatt [Ros81], although that paper
asserts that m can be taken equal to 1 in Corollary 13.16, which is not known
unless I is closed under countable unions and invariant under similarities. How-
ever, Corollary 13.16 for a particular ideal of measurable subsets of S2, and with
m = 1, was proved by Rosenblatt earlier [Ros79].

Theorem 13.18 is due to Mycielski [Myc74, Myc79], although a geometric
proof of Corollary 13.19 for isometries that avoids the Axiom of Choice was
found by Davies [Myc74]. Some results related to Theorem 13.18 may be found
in [Ban83]. Theorem 13.20 is due to Rosenblatt for n ≥ 3 and to Kallman (unpub-
lished) for n = 2.

Theorem 13.21 (d ) ⇒ (a) is due to Wagon [Wag81]; a version of this result
for the action of SLn(Z) on Tn is given by Dani [Dan85]. The proof of Theorem
13.22 is due to Mycielski. Theorem 13.23 is due to Wagon [Wag81], and that
paper also contains Theorem 13.24, although, as indicated in Theorem 13.24’s
proof, this characterization follows from known results. Theorem 13.25 is due to
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Dani [Dan85b] exploiting the ideas of [Dan85] and answers a question of Wagon
[Wag81]. Question 13.26 was suggested by A. Borel.

The general problem of characterizing those actions of a free group of rank
2 that yield a paradox was posed by Greenleaf [Gre69, p. 18]. The paper of
van Douwen [Dou90] contains several relevant results. Theorem 13.27, which,
because AG is strictly smaller than NF (Thm. 12.5), is a substantial strengthen-
ing of Corollary 10.6, is due to Rosenblatt [Ros81, Thm. 3.5]. It is interesting
to note that the proof of Theorem 13.27 is this book’s third proof that a locally
commutative action of a free group of rank 2 is paradoxical (see also Thm. 5.5
and Cor. 10.6). The result was discovered again, with yet a different proof, by
Akemann [Ake81]. Promislow’s result mentioned at the end of the chapter (see
[Pro83]) is noteworthy because its proof combines methods of graph theory and
combinatorial group theory.
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14

Growth Conditions in Groups and
Supramenability

We present some interesting connections between a group’s amenability and its
rate of growth: the speed at which new elements appear when one considers
longer and longer words using letters from a fixed finite subset of the group.
This approach sheds light on a fundamental difference between Abelian and
solvable groups. Both families are amenable, but their growth properties can be
quite different. This will explain why there is a paradoxical subset of the plane
(the Sierpiński–Mazurkiewicz Paradox, Thm. 1.7) but no such subset of the real
line.

The study of growth conditions also elucidates the amenability of Abelian
groups. The proof that Abelian groups are amenable (Thm. 12.4(b)) is somewhat
complicated. But one can use growth rates to prove quite simply (without the
Axiom of Choice) that an Abelian group is not paradoxical (Thm. 14.21). Then
one can deduce amenability simply by calling on Tarski’s Theorem (Cor. 9.2).

We shall also discuss the cogrowth of a group, a notion that refines the idea of
growth. This leads to a striking and important characterization of amenable groups
(Cor. 14.26), a characterization that is central to Ol’shanksii’s construction of a
group that is periodic (meaning each group element has finite order; hence it is
NF ) but not amenable.

14.1 Supramenable Groups

The notion of amenability of a group is based on the existence of a measure of
total measure 1. But we are often interested in invariant measures that assign spe-
cific subsets measure 1. The following definition is the appropriate strengthening
of amenability that guarantees the existence of such measures for any nonempty
subset of a set on which the group acts.

Definition 14.1. A group G is supramenable if, for any nonempty A ⊆ G, there is
a finitely additive, left-invariant measure μ :P (G) → [0,∞) with μ(A) = 1. The
class of supramenable groups is denoted AG+.

270
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14.1 Supramenable Groups 271

Of course, if G is supramenable, then no nonempty subset of G is paradoxical.
By Tarski’s Theorem, this latter condition is equivalent to supramenability. Before
discussing some simple properties and examples of supramenable groups, we give
the main result on supramenable actions.

Theorem 14.2. Suppose that a supramenable group G acts on X and that A is
a nonempty subset of X . Then there is a finitely additive, G-invariant measure
μ :P (X ) → [0,∞] such that μ(A) = 1. Hence no nonempty subset of X is G-
paradoxical.

Proof. Fix any point x ∈ A and then assign a subset B∗ of G to every B ⊆ X as fol-
lows: B∗ = {g ∈ G : g(x) ∈ B}. Note that the identity of G is in A∗. Therefore, by
G’s supramenability, there is a finitely additive, left-invariant ν : P (G) → [0,∞]
with ν(A∗) = 1. Now, define the desired measure μ on P (X ) by setting μ(B) =
ν(B∗). Then μ(A) = ν(A∗) = 1, and the finite additivity of ν easily yields the
same for μ. Finally, if h ∈ G, then h(B)∗ = h(B∗), whence the G-invariance of μ
follows from the left-invariance of ν.

Of course, any nonamenable group fails to be supramenable, but the
Sierpiński–Mazurkiewicz Paradox provides an example of an amenable group
that is not supramenable. The planar isometry group, G2, is solvable and hence
amenable, but the existence of a paradoxical subset of the plane, together with
the previous theorem, implies that G is not supramenable. This can be shown
more directly by using Theorem 1.8, which constructed a free subsemigroup of
rank 2 in G2. In fact, free semigroups of rank 2 play much the same role for supra-
menability that free groups of rank 2 do for amenability. As we now show, a group
that contains a free subsemigroup of rank 2 cannot be supramenable. Recall that a
semigroup S is free with free generating set A if S is the semigroup generated by
A and distinct words using elements of A as letters yield distinct elements of S.

Proposition 14.3. If G contains σ and ρ, free generators of a free subsemigroup
of G, then G is not supramenable.

Proof. Let S be the subsemigroup of G generated by σ and ρ. It was shown
in Proposition 1.3 that S is G-paradoxical: S ⊇ σS, ρS and S = σ−1(σS) =
ρ−1(ρ S).

Let NS be the class of groups with no free subsemigroup of rank 2; then Propo-
sition 14.3 states that AG+ ⊆ NS. Although no simple example of a group in
NS \AG+ is known, the work on the analogous problem for amenable groups
shows that such examples exist. Recall from Theorem 12.5 that there is a non-
amenable periodic group G. Then G is not supramenable, but because all ele-
ments of G have finite order, G ∈ NS. Another natural question is whether
AG+ = NS ∩ AG. An example due to Grigorchuk shows that this is false, as it
lies in NS ∩ AG \AG+. However, AG+ and NS do coincide when restricted to the
subclass EG of AG; see remarks following Theorem 14.18.
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272 14 Growth Conditions in Groups and Supramenability

The next theorem details the known closure properties of AG+, and it is easy
to see that NS satisfies all of them as well. (For (f), use the fact that if σ, τ freely
generate a subsemigroup of G, then for each n ≥ 1, so does the pair σ n, τ n. But for
some n, σ n and τ n both lie in H .) Furthermore, neither class is closed under gen-
eral group extension because the solvable group G2 is not amenable. But, unlike
the case of the classes AG, NF , and EG, it is not clear that AG+ and NS share the
same closure properties (see Question 14.5).

Theorem 14.4. (a) Finite groups are supramenable.
(b) (AC) Abelian groups are supramenable.
(c) A subgroup of a supramenable group is supramenable.
(d) If N is a normal subgroup of a supramenable group G, then G/N is supra-

menable.
(e) (AC) If G is the direct union of a directed system of supramenable groups,

{Gα : α ∈ I}, then G is supramenable.
(f) If H, a subgroup of G, is supramenable and H has finite index in G, then

G is supramenable.

Proof. (a) If A ⊆ G is nonempty, let μ be defined by μ(B) = |B|/|A|.
(b) This will be deduced from the more general result, to be proved later (Thm.

14.21), that groups that do not grow too fast are necessarily supramenable.
(c) If A is a nonempty subset of H which, in turn, is a subgroup of a supra-

menable group G, then simply restrict a measure on P (G) that normalizes A to
P (H ).

(d) If A is a nonempty set of N-cosets, let μ be a left-invariant measure on
P (G) that normalizes

⋃
A. Then define ν on P (G/N ) by ν(B) = μ(

⋃
B).

(e) Let a nonempty A ⊆ G be given. Because each Gα is contained in a Gβ that
intersects A, we may assume that each Gα intersects A; simply delete from the
system any subgroups that miss A. Consider the topological space [0,∞]P (G),
which is compact. For each α ∈ I , let Mα consist of those finitely additive
μ :P (G) → [0,∞] such that μ(A) = 1 and μ is Gα-invariant. Each Gα is supra-
menable, so if μα is a Gα-invariant measure on P (Gα ) with μα (A ∩ Gα ) = 1,
then the measure defined by μ(B) = μα (B ∩ Gα ) lies in Mα . As in Theorem
12.4, each Mα is closed, and because Mα ∩Mβ ⊇Mγ if Gα , Gβ ⊆ Gγ , the
collection {Mα : α ∈ I} has the finite intersection property. Compactness yields
μ ∈⋂Mα , and such a μ is a G-invariant measure normalizing A.

(f) Suppose A is a nonempty subset of G, and let {gi, . . . , gm} represent the
right cosets of H in G. Because H is supramenable, we may apply Theorem 14.2
to the action of H on G by left multiplication to obtain an H -invariant measure ν
on P (G) with ν(

⋃
giA) = 1. Note that 0 <

∑
ν(giA) <∞, for otherwise some

ν(giA) = ∞, contradicting ν(
⋃

giA) = 1.
Now, let a =∑

ν(giA) and define μ on P (G) by μ(B) = (1/a)
∑

ν(gi B).
Then μ is finitely additive and μ(A) = 1. Moreover, for any g ∈ G, the set
{gi g} represents the right cosets of H . Hence μ(gB) = (1/a)

∑
i ν(gi g B) =
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D1 D2 1 D1 2 D2 E

E E

Figure 14.1. In a (1, 2)-paradoxical set E, there is a partition of E (on the right) into three
pieces that yield two copies of E via three isometries.

(1/a)
∑

k ν(hk gk B), where hk ∈ H , and the H -invariance of ν then yields that
μ(gB) = μ(B).

It can be shown that NS is closed under (finite) direct products (see [Ros74]);
therefore the same is true of NS ∩ AG. But it is not known whether the corre-
sponding closure property for AG+ holds.

Question 14.5. If G and H are supramenable, is G× H supramenable?

14.2 Bounded Paradoxical Sets

The Sierpiński–Mazurkiewicz Paradox gives a simple paradoxical subset of the
plane, but it is unbounded. A question that was open for many years was whether a
bounded example exists. That was answered affirmatively by W. Just [Jus87]. We
present here G. A. Sherman’s later construction [She90]. We wish to minimize
the number of pieces in a paradox, and so we use the following definition of an
(m, n)-paradoxical set; this definition requires that the pieces cover the set.

Definition 14.6. A set E is (m, n)-paradoxical if there are isometries ρi and σ j

and three partitions of E: {Ai : i = 1, . . . ,m}, {Bj : i = 1, . . . , n}, and {ρi(Ai) :
i = 1, . . . ,m} ∪ {σ j(Bj ) : i = 1, . . . , n}.

In particular, a (1, 2)-paradoxical set E (Fig. 14.1) has a partition {D1,D2} such
that, for isometries σ1, σ2, and τ , E is partitioned by {σ1(D1), σ2(D2), τ (E )}. Note
that an (m, n)-paradoxical set is also paradoxical for any pair of larger numbers.

The Sierpiński–Mazurkiewicz set is (1, 1)-paradoxical. The bounded set found
by Just is (1, 3)-paradoxical; Sherman’s example, which we give next, is (2, 2)-
paradoxical. The common feature of Just’s and Sherman’s constructions is that
they both use a rotation of infinite order and translations by algebraic complex
numbers.

Theorem 14.7. There is a bounded (2, 2)-paradoxical subset of the plane.

Proof. Working in C, let ρ be counterclockwise rotation by 1 radian (ρ(z) = eiz,
though any transcendental number on the unit circle can replace ei), let τ be trans-
lation by 1, and let E be the orbit of 0 under the semigroup action of ρ and τ , all
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P Q
T
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 (a)  (b)

Figure 14.2. The rectangles used to get a bounded paradoxical subset of rectangle T ′.
Rectangle T contains Q and is interior-disjoint from P; it rotates to T ′, which is contained

in P ∪ Q.

as in the Sierpiński–Mazurkiewicz Paradox. Define three closed rectangles as fol-
lows: T = [−2, 5]+ i[−3, 6], P = [−7,−2]+ i[−3, 6]; Q = (−2, 4]+ i[−3, 6]
(Fig. 14.2(a)).

Let σ = ρ8 and T ′ = σ (T ). Eight radians is about 98◦, close to a quarter-
turn, so we have that T ′ ⊂ P ∪ Q (Fig. 14.2(b)). Because Q, Q+ 1, P+ 6, and
P+ 7 are all contained in T , we have that σ (Q), στ (Q), στ 6(P), and στ 7(P) are
all subsets of T ′. Now define X =⋃

Xn ⊂ T ′ inductively as follows: X0 = {0};
X1 = {στ (0)}; and Xn+1 is defined by taking each point z ∈ Xn and

� if z ∈ P, put στ 6(z) and στ 7(z) in Xn+1
� if z ∈ Q, put σ (z) and στ (z) in Xn+1

Any point placed in X is either 0 or has the form σ �� . . .� τ (0), where
each � is one of {ρ, τ }. Note that X ⊆ E, the Sierpiński–Mazurkiewicz set. Let
XP = X ∩ P, and same for Q. We have that X is the disjoint union of XP and XQ,
and the following four sets also partition X :

P = {π1, π2, π3, π4} = {στ 6(XP), σ (XQ), σ τ 7(XP), σ τ (XQ)}.
The sets in P clearly cover all points of X , by construction. Note that 0 ∈ π2.

Because ei is transcendental, we have that every point in E other than 0 (which is
both identity(0) and ρ(0)) has a unique representation as w(0), where w is a word
in the free semigroup generated by ρ and τ . This uniqueness can be used to show
disjointness of the sets in P as follows:

� if z ∈ π1, then z = στ 6σ �� . . .� τ (0)
� if z ∈ π2, then z = 0 or z = σ 2�� . . .�τ (0)
� if z ∈ π3, then z = στ 7σ �� . . .� τ (0)
� if z ∈ π4, then z = στ σ �� . . .� τ (0)

By uniqueness of the words, these representations give disjointness of the
four sets in P . Because τ−6 σ−1(π1) = XP, σ−1(π2) = XQ, τ−7 σ−1(π3) = XP,
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and τ−1 σ−1(π4) = XQ, the four sets define a (2, 2)-paradox for the bounded set
X .

Every word w for which w(0) is in Sherman’s set X is a word in σ , τ , where
σ = ρ8, but not all words appear. Note that instead of ei, we may choose a tran-
scendental eiθ so that, with ρ being the corresponding rotation, ρ (T ) = T ′ ⊂
P ∪ Q; that is, we choose θ to be near 8. Then, instead of ρ8 in the proof, we can
use just ρ. Making such a choice requires knowing that the set of θ for which eiθ

is transcendental is dense in [0, 2π ). To see this, choose any φ ∈ [0, 1) so that
e2π iφ is transcendental. Then φ is irrational and Kronecker’s Theorem [HWHSW,
§23.2] says that {nφ (mod1) : n ∈ Z} is dense in [0, 1]. It follows that a power
ei2πnφ can be found arbitrarily close to 8.

The set X of Theorem 14.7 is countable and so has measure zero. To under-
stand more about paradoxical sets in the plane, let μ be a Banach measure. Then
if X is paradoxical, μ(X ) must be 0 or ∞, and so the same is true of λ(X ) for
measurable X ; for bounded paradoxical sets, μ(X ) = 0, and so X has empty inte-
rior. Sherman strengthened these results by showing that if X is a paradoxical set
in the plane, then

� X cannot have nonempty interior
� X cannot be measurable with infinite Lebesgue measure

On the other hand, Burke [Bur04] showed that a bounded paradoxical set can
have positive outer measure. We prove these results next, starting with Sherman’s
work from [She91].

Theorem 14.8 (AC). If X is a paradoxical subset of R2, thenμ(X0) = 0 for every
bounded set X0 ⊆ X .

This result has several consequences of interest.

Corollary 14.9 (AC). (a) Every paradoxical subset of R2 has empty interior.
(b) If X is measurable and paradoxical, then λ(X ) = 0.
(c) Let X be a subset of R2 with nonempty interior or having positive (possi-

bly infinite) Lebesgue measure. Then there is a finitely additive, isometry-
invariant measure ν defined on all subsets of R2 and with ν(X ) = 1.

Note that part (c) is not true in Rn (n ≥ 3) as stated because Theorem 6.8 yields
a paradoxical decomposition of Rn. And, as shown by Penconek [Pen91, Cor. 1.4],
there are sets of infinite measure in every Rn that are not paradoxical, and so have
measures as in (c). In R1, (c) holds for any nonempty set X (see Cor. 14.25).

Proof. (a) If a paradoxical subset were to contain a nonempty open set, then it
would contain a disk of positive radius, which has positive μ-measure.

(b) Let X be measurable and paradoxical. Then Theorem 14.8 implies that
λ(X ∩ Dn) = 0 for every n ∈ N, where Dn is an origin-centered disk of radius n.
Countable additivity then gives λ(X ) = 0.

(c) By (a) and (b), using Tarski’s Theorem (Cor. 11.2).
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Proof of Theorem 14.8. Let X be a paradoxical subset of R2 with the witnessing
sets A1, . . . ,Am,B1, . . . ,Bn and isometries σi, τ j as in the definition of an (m, n)-
paradoxical set. So each of {Ai}, {Bj}, and {σi(Ai)} ∪ {τ j(Bi)} is a partition of X .
Let P be any point in the plane, let Dr denote the closed disk of radius r centered at
P, and let ρ stand for any of the isometries σi, τ j. Define s to be maxρ ‖P− ρ(P)‖.
Then ρ(Dr) ⊆ Dr+s for any ρ, and so σi(Ai ∩ Dr) ⊆ σi(Ai) ∩ Dr+s and τ j(Bi ∩ Dr)
⊆ τ j(Bj ) ∩ Dr+s.

Using the aforementioned three partitions and the isometry invariance of μ, we
have, for each positive r,

2μ(X ∩ Dr) =
m∑

i=1

μ(Ai ∩ Dr)+
n∑

j=1

μ(Bj ∩ Dr)

=
m∑

i=1

μ(σi(Ai ∩ Dr))+
n∑

j=1

μ(τ j(Bj ∩ Dr))

≤
m∑

i=1

μ(σi(Ai) ∩ Dr+s)+
n∑

j=1

μ(τ j(Bj ) ∩ Dr+s) = μ(Dr+s).

Then an easy induction on n shows that 2nμ(X ∩ Dr) ≤ μ(X ∩ Dr+ns) and,
finally,

μ(X ∩ Dr) ≤ lim
n→∞

1

2n
μ(Dr+ns) = lim

n→∞
1

2n
π (r+ ns)2 = 0.

This is true for all r, so, for large enough r and bounded X0 ⊆ X , μ(X0) = μ(X0 ∩
Dr) ≤ μ(X ∩ Dr) = 0.

Theorem 14.8 can be strengthened as follows, where μ is still a Banach mea-
sure.

Corollary 14.10. If X is a paradoxical subset of R2, then μ(Y ) = 0 for every
subset Y of X having finite outer measure.

Proof. Let V be a set containing Y and having finite measure. Let {Vi} partition V
into countably many bounded measurable sets. For each ε > 0, there is an integer
n such that μ(

⋃∞
i=n Vi) < ε. Hence, by Theorem 14.8, we have

μ(Y ) =
n−1∑
i=1

μ(Y ∩Vi)+ μ

(
Y ∩

( ∞⋃
i=n

Vi

))
< 0+ ε.

Sherman [She91] showed more: A paradoxical subset of R2 must have
Lebesgue inner measure zero; so there cannot be a paradoxical Lebesgue mea-
surable subset of the plane having infinite measure. So that raises the question
whether there is a bounded paradoxical set that does not have Lebesgue measure
zero, that is, that has positive outer measure. Such a set was constructed by Burke
[Bur04].
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14.2 Bounded Paradoxical Sets 277

Recall that Lebesgue inner measure λ∗ is given by λ∗(E ) = sup {λ(K ) : K ⊆ E
and K compact}. As Sherman observed, it follows from Theorem 14.8 that every
paradoxical set in the plane has inner measure zero. For suppose E was a coun-
terexample. Then there is a compact set K ⊆ E such that 0 < λ(K ) = μ(K ),
which, because compact sets are bounded, contradicts the theorem.

Mycielski and Wagon [MW84] showed that H2 is paradoxical (Thm. 4.5). The
proof of Theorem 14.8 gives us some information about such paradoxes. Recall
that there is no Banach measure in H2, because of Mycielski’s hyperbolic ana-
log of the classic Banach–Tarski Paradox (Thm. 4.17). Nevertheless, letting X
be a paradoxical subset of H2 with pieces that are measurable with respect to
hyperbolic Lebesgue measure λH, the inequality of Theorem 14.8’s proof is valid:
λH(X ∩ Dr) ≤ limn→∞ 2−nλH(Dr+ns). But in the hyperbolic plane, the preceding
limit is not always 0; it depends on s. Using the fact that the area of a hyperbolic
disk of radius r is 4π sinh2(r/2),

lim
n→∞

1

2n
λH(Dr+ns) =

⎧⎪⎨
⎪⎩

0 if s < ln 2,

πer if s = ln 2,

∞ if s > ln 2.

This gives us some information on paradoxes such as the Mycielski–Wagon
Paradox.

Theorem 14.11. Let X be a measurable subset of H2 having a paradoxical
decomposition with measurable pieces and hyperbolic isometries. Then either
λH(X ) = 0 or, for each point P ∈ H2, at least one of the isometries moves P to a
point at hyperbolic distance ln 2 or more from P.

Proof. Suppose some point P0 was not moved distance ln 2 or greater for any
isometry used in the paradox. Then, let this P0 be the point P of the proof of
Theorem 14.8, and define s as in that proof. Then s, being a maximum over a
finite set, would be under ln 2, and the limit displayed earlier would be 0, which
means that λH(X ) = 0.

G. A. Sherman [She91] then raised the following question.

Question 14.12. Is there a constant larger than ln 2 for which Theorem 14.11
holds?

Now we turn to M. R. Burke’s construction of paradoxical sets with positive
outer measure [Bur04]. The following theorem is the key.

Theorem 14.13 (AC). Let E0 be a countable (m, n)-paradoxical planar set and
let {Kξ : ξ < 2ℵ0} be a family of uncountable compact subsets of C. Then there
exists a planar (m, n)-paradoxical set E such that, for each ξ , E ∩ Kξ 
= ∅.

Proof. Work in C. We may assume by translation that 0 ∈ E0. Let the witnessing
sets of the (m, n)-paradox be the partitions {Ai : 1 ≤ i ≤ m} and {Ai : m+ 1 ≤ i ≤
m+ n}, with isometries σ j of the form z �→ a jz+ b j with |a j| = 1. Let H be the
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278 14 Growth Conditions in Groups and Supramenability

group generated by {a j} using multiplication; H is a subgroup of the multiplica-
tive group of the unit circle in C. Recall that a closed set obeys the Continuum
Hypothesis, and so each |Kξ | = 2ℵ0 . Inductively choose, for ξ < 2ℵ0 , zξ ∈ Kξ so
that zξ /∈ Q(H ∪ E0 ∪ {zη : η < ξ}). This is possible because the cardinality of
the field Q(H ∪ E0 ∪ {zη : η < ξ}) is less than 2ℵ0 . Define E = {azξ + y : ξ <
2ℵ0 , a ∈ H, y ∈ E0}.

The representation of an element of E in the form azξ + y is unique. For
suppose a1 zξ1 + y1 = a2 zξ2 + y2, where ξ1 ≤ ξ2; then we have zξ2 ∈ Q(H ∪ E0 ∪
{zξ1}), contradiction. So ξ1 = ξ2, and we have (a1 − a2) zξ1 = y2 − y1. But zξ1 /∈
Q(H ∪ E0), so a1 = a2 and then y1 = y2.

For 1 ≤ j ≤ m+ n, define Bj = {azξ + y : ξ < 2ℵ0 , a ∈ H, y ∈ Aj}. Then,
because of the A-partitions and the uniqueness fact just proved, {Bi : 1 ≤ i ≤ m}
and {Bi : m+ 1 ≤ i ≤ m+ n} are partitions of E. And for j ≤ m+ n,

σ j(Bj ) = {a jazξ + a jy+ b j : ξ < 2ℵ0 , a ∈ H, y ∈ E0}
= {azξ + σ j(y) : ξ < 2ℵ0 , a ∈ H, y ∈ E0}.

The uniqueness of representations and the fact that {σ j(Aj ) : j ≤ m+ n} is a
partition of E0 mean that {σ j(Bj ) : j ≤ m+ n} partitions E. Thus E is (m, n)-
paradoxical. Because 0 ∈ E0, each zξ ∈ E, and that gives the desired nonempty
intersections.

Corollary 14.14 (AC). (a) There exists an unbounded planar (1, 1)-
paradoxical set having positive outer Lebesgue measure.

(b) There exist bounded planar (2, 2)-paradoxical and (1, 3)-paradoxical sets
having positive outer measure.

Proof. (a) Apply Theorem 14.13 to the Sierpiński–Mazurkiewicz set and the fam-
ily of all uncountable compact subsets of C to get a set E. There are only contin-
uum many bounded open sets (they arise from unions of intervals with rational
ends), so there are that many compact sets. Then E intersects every uncountable
compact set so that λ∗(C \E ) = 0. And then E cannot have Lebesgue outer mea-
sure 0, for if it did, it would have Lebesgue measure 0, and the complement would
have positive or infinite Lebesgue measure and hence positive or infinite λ∗.

(b) Use Theorem 14.13 on the corresponding set E0 of Just or Sherman, and
let K be the family all uncountable compact subsets of the unit disk D. Then the
set E constructed by the theorem is bounded, because, in E’s definition, a, zξ ,
and y are from bounded sets. Suppose λ(E ∩ D) = 0. Then λ(D \E ) = π , and
so D \E, having positive inner measure, contains a compact set K0 of positive
measure. But E ∩ K0 is nonempty, a contradiction. This means E ∩ D has positive
outer measure.

The Axiom of Choice, which is used in the preceding results, is not essen-
tial to the construction of large bounded paradoxical plane sets. One can use the
isometries and partitions in Sherman’s construction (Thm. 14.7) to get a
continuum-sized bounded paradoxical set as follows.
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xor or

or

Figure 14.3. All vertices of G have one edge in and two out; if the point is in D1, there is a
σ -edge going out, and if it is in D2, a τ -edge leaves. And the incoming edge depends on

which of ρ(X ), σ (D1), and τ (D2) contains the point.

Theorem 14.15. There is a bounded paradoxical subsets of the plane having
cardinality 2ℵ0 .

Proof. The coefficients appearing in the proof of Theorem 14.7 are algebraic
numbers, and we have to modify the approach to get the desired continuum-sized
set. Use Theorem 7.5 to get a nonempty perfect set P of complex numbers in the
unit disk that are algebraically independent over the field generated by the alge-
braic numbers together with the number ρ8 from Theorem 14.7’s proof; this is
possible because there are only countably many polynomials with coefficients in
the field. Let S be the semigroup defined in Theorem 14.7. Then, as in that the-
orem, define E = {w(z) : w ∈ S, p ∈ P, and z = σ−k (p), k = 0, 1, 2, . . .}, where
σ = ρ8 is a rotation as in Theorem 14.7 (or as in Just’s construction). Then E is
a bounded (2, 2)-paradoxical (or (1, 3)-paradoxical) set; verification is as in the
proof of Theorem 7.14. Note that the isometries witnessing the paradox are the
same as those in Theorem 14.7.

Lindenbaum [Lin26] proved that there is no (1, 1)-paradoxical bounded subset
of R2, a proof that was improved by Hadwiger, Debrunner, and Klee [HDK64,
p. 80]. Using some of the reasoning of the improved proof, Sherman [She90]
obtained the same result for (1, 2)-paradoxical sets; this combines with Theorem
14.7 and Just’s result to resolve the whole story: The only forbidden pairs for
bounded paradoxical sets are (1, 1) and (1, 2).

Theorem 14.16 (G. A. Sherman). There is no (1, 2)-paradoxical bounded subset
of R2.

Proof. Suppose there is a (1, 2)-paradoxical decomposition of a bounded set X .
So we have a partition of X into D1 and D2 and isometries ρ, σ , τ , so that ρ(X ),
σ (D1), τ (D2) form a partition of X . Make a directed infinite graph G with ver-
tex set X and possibly with loops, as follows: edges are x � ρ(x) for all x, and
x � σ (x) where x ∈ D1, and x � τ (x) where x ∈ D2. Think of the edges as being
labeled with the functions ρ, σ , τ . Every vertex has indegree 1 and outdegree 2
(Fig. 14.3). We need an easy lemma.

Lemma 14.17. Suppose H is a directed graph that is connected in the undirected
sense and has indegree 1 at each vertex. Then H has at most one directed cycle.

Proof. If C and D are distinct directed cycles, then they must be disjoint by the
indegree hypothesis. Let {vi : 1 ≤ i ≤ n} be an undirected path from a vertex in
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or

or

or

or

or

or

or or

or

oror or or or

z0

Figure 14.4. The tree forming the graph H. The marked nodes at the bottom are relevant
to the proof of case 1.

C to one in D. The last edge in this path must be directed backward: vn � vn−1.
Then let v j be the first vertex in the path such that the edge to the next vertex is
directed backward; v j has indegree 2, a contradiction.

Now work in the graph G; the term component means component in the undi-
rected sense. If every component of G has a directed cycle, choose c to be a vertex
in such a cycle and edge c � z0 that is not in the cycle. Otherwise, let z0 be any
vertex in a component having no cycle. Let H be the subgraph of G generated by
z0 and all directed paths starting at z0: the strong component of z0. Then H has no
cycle by Lemma 1 and so is a directed tree (Fig. 14.4). Let U be the vertices of
H; note that ρ(U ) ⊆ U .

Because z0 was defined to be part of no directed cycle, ρ(z0) 
= z0 and, further-
more, {ρn(z0)} consists of distinct points. So ρ is not a reflection or a rotation of
finite order. And because X is bounded, so is {ρn(z0)}, which means that ρ is not
a translation or glide reflection. Therefore ρ is a rotation of infinite order; let O
be the fixed point of this rotation and D the smallest closed disk, of radius r, say,
centered at O and containing all vertices in H.

Claim. The circle forming ∂D, the boundary of D, is contained in U , the closure
of U .
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Proof of claim. The ρ-orbit of each point in U lies in and, by Kronecker’s Theo-
rem, is dense in some circle around O. If some h ∈ U lies on ∂D, then Kronecker’s
Theorem yields that the orbit of h is dense in ∂D, proving the claim. If not, then
U decomposes into countably many ρ-orbits; each such orbit lies on (and is dense
in) a circle Cr of radius r. Let {ri} be the radii that arise in this way, with r0 = 0.
Let r be the supremum of these radii. Then D is the disk of radius r, because D
must contain all the circle Cri and the disk of radius r is the smallest that does so.
Find points hi ∈ U that have a limit h∞ lying on ∂D. Now, given any positive ε
and any point Q on the circle ∂D, there is some ρn(h∞) within distance ε/2 of Q.
But there is some hi within distance ε/2 of h∞. So this point hi is in U and within
ε of Q. Hence U is dense in ∂D.

The proof now concludes with geometric arguments for six cases depending
on the type of σ and τ and their action on the point O. We present only two cases
here; see [She90] for the complete proof.

Case 1. σ and τ are both rotations fixing O.

Case 2. σ (O) 
= O and τ (O) 
= O.

The additional four cases are σ (O) 
= O and τ is a rotation fixing O; σ (O) 
= O
and τ is a reflection fixing O; σ and τ are both reflections fixing O; σ is a rotation
fixing O and τ is a reflection fixing O.

Case 1 proof. The points in the tree of the form γ ρ2(z0), ρ γ ρ(z0), and ρ2 γ (z0),
where in each case γ is one of {σ, τ } are all different (these are the black dots on
the lowest level in Fig. 14.4). But two of the γ s must be the same, and all three
rotations fix O and therefore commute, so they are not different.

Case 2 proof. The circle ∂D of radius r cannot be covered by two disks of radius
r unless it is covered by one of them. Therefore σ−1(D) ∪ τ−1(D) does not cover
∂D. So there is v ∈ U \ (σ−1(D) ∪ τ−1(D)). But because v ∈ U , one of σ (v ) or
τ (v ) is in U , and so v ∈ σ−1(D) ∪ τ−1(D), contradiction.

Lindenbaum’s original proof is quite simple, so we include it here.

Theorem 14.18. No nonempty bounded subset E of R2 contains two disjoint
subsets, each of which is congruent to E.

Proof. Suppose A,B ⊆ E, A ∩ B = ∅, and σ1, σ2 are isometries such that
σ1(E ) = A and σ2(E ) = B. Each σ n

i maps E into a proper subset and therefore
is not the identity; hence σ1 and σ2 have infinite order. This means that σ1 and
σ2 are not reflections, but in fact they cannot be translations or glide reflections
either. For if σi is a translation by ⇀

v , choose P in E such that any other point of E
is to the left of P in the direction determined by ⇀

v . Then P+ ⇀
v /∈ E, contradict-

ing σi(E ) ⊆ E, which follows from σi(E ) ⊆ E. An identical argument works if σi

is a glide reflection; use the fact that the translation vector may be assumed to be
parallel to the line of reflection.
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So σ1 and σ2 must both be rotations; denote their fixed points by P1, P2, respec-
tively. We first prove that P1 = P2. Let C be the smallest circle such that E is con-
tained in C and its interior. Because A ⊆ E and σ−1A = E, it follows that E is
also contained in σ−1

1 (C) and its interior. But by the choice of C, this means that
σ−1

1 C = C, and therefore σ1 leaves the center of C invariant; that is, P1 is the cen-
ter of C. Similarly, the same is true of P2. Hence P1 = P2. This means that σ1 and
σ2 commute. Now choose any Q ∈ E and obtain a contradiction by observing that
σ1σ2Q, which is in A, equals σ2σ1Q, which is in B.

A general question in this area is: Can one characterize those groups of isome-
tries G of Rn that lead to the existence of bounded G-paradoxical sets? The ques-
tion is related to the question at the end of §8.1, but there is another motivation.
Here we ask about the properties of a group that suffice for bounded paradoxes.
For example, what properties of a subgroup of G2 give bounded paradoxes like
those of Just and Sherman? One possible approach is to investigate the structure of
the graph associated with a paradoxical decomposition as in the proof of Theorem
14.16.

14.3 Group Growth

We now discuss growth rates in groups and their connection to supramenability
and the proof of Theorem 14.4(b). The length of a reduced word gm1

1 · · · gmr
r (gi

not necessarily distinct, gi 
= gi+1, mi ∈ Z \ {0}) is m1 + · · · + mr; the length of
the identity e is 0.

Definition 14.19. If S is a finite subset of a group G, then the growth function
(with respect to S) γS : N → N is defined by setting γS (n) equal to the number
of distinct elements of G obtainable as a reduced word of length at most n using
elements of S ∪ S−1 as letters.

Of course, γS is nondecreasing. Also, γS (0) = 1 and γS (1) = |{e} ∪ S ∪ S−1|.
Because γS (n+ m) ≤ γS (n)γS (m), it follows that γS (n) ≤ γS (1)n, so γS is always
bounded by an exponential function. We are interested in whether γS really
exhibits exponential growth. If G contains a free subsemigroup of rank 2, and
S contains two free generators of such a semigroup, then γS (n) ≥ 2n, the number
of words in S with positive exponents and length exactly n. Hence if G contains a
free subsemigroup (or free subgroup) of rank 2, then the growth function exhibits
exponential growth with respect to some choice of S. At the other extreme lie the
Abelian groups. For suppose S = {g1, . . . , gr} ⊆ G, which is Abelian. Any word
in S is equal, in G, to a word of the form gm1

1 gm2
2 · · · gmr

r where mi ∈ Z. Hence the
number of group elements that arise from words of length n is at most (2n+ 1)r

(because each mi ∈ [−n, n]). Hence γS (n) is dominated by (n+ 1)(2n+ 1)r, a
polynomial of degree r + 1, which shows that Abelian groups have slow, that is,
nonexponential, growth for any choice of S. (A more careful word count shows
that in fact γS (n) is dominated by a polynomial in n of degree r [Wol68].)
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Definition 14.20. A group G is exponentially bounded if, for any finite S ⊆ G and
any b > 1, there is some n0 ∈ N such that γS (n) < bn whenever n > n0; equiva-
lently, limn→∞ γS (n)1/n = 1. If G fails to be exponentially bounded, G is said to
have exponential growth. The class of exponentially bounded groups is denoted
by EB.

We shall give more examples of exponentially bounded groups, but first we
point out the important connection with supramenability.

Theorem 14.21. (a) (AC) If G is exponentially bounded, then G is supra-
menable.

(b) If G is exponentially bounded, G acts on X , and A is a nonempty subset of
X , then A is not G-paradoxical.

Proof. We first prove (b) (without using AC). Tarski’s Theorem then yields a
finitely additive, G-invariant measure on P (X ) that normalizes A; this in turn
yields (a), if one considers the left action of G on itself.

Suppose, to get a contradiction, that A is G-paradoxical. Then there are two
one-one piecewise G-transformations, F1 : A → A and F2 : A → A, such that
F1(A) ∩ F2(A) = ∅. Let S = {g1, . . . , gr} be all the elements of G occurring as
multipliers in F1 and F2. Because G is exponentially bounded, there is an integer n
such that γS (n) < 2n. Consider the 2n functions Hi, obtainable as compositions of
a string of n F1s and F2s. Each Hi : A → A, and if i 
= j, then Hi(A) ∩ Hj(A) = ∅.
To see this, let p be the first (i.e., leftmost) of the n positions where Hi and Hj dif-
fer. Because F1 and F2 map A into disjoint sets, and because the function obtained
by restricting Hi and Hj to the first p− 1 positions is one-one, Hi and Hj must
map A into disjoint sets too. If we now choose any x ∈ A, it must be that the set
{Hi(x) : 1 ≤ i ≤ 2n} has 2n elements. But each Hi(x) has the form wx, where w is
a word of length n composed of elements of S, and this contradicts the fact that
γS (n) < 2n.

We have seen why Abelian groups are exponentially bounded and therefore, by
the theorem just proved, such groups are supramenable. In particular, this yields
a proof that Abelian groups are amenable that is completely different from the
proof of Theorem 12.4(b). This new proof is somewhat more informative, because
in addition to proving the stronger conclusion regarding supramenability, it shows
quite clearly and effectively why the existence of a G-paradoxical set in any action
of G means that G has exponential growth.

By Proposition 14.3 and Theorem 14.21, we have the containments EB ⊆
AG+ ⊆ AG ∩ NS. When restricted to elementary groups, these three classes coin-
cide: By Theorem 14.27, they all coincide with the class of groups with the prop-
erty that all finitely generated subgroups have a nilpotent subgroup of finite index.
But it is not known whether the first equality holds in general. For the second,
R. Grigorchuk [Gri87, CGH99, Ex. 69] constructed p-groups GG,p showing that
AG+ is properly contained in AG ∩ NS. Figure 14.5 shows several relationships

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.017
https://www.cambridge.org/core


284 14 Growth Conditions in Groups and Supramenability

G3A5 F2

B G2 BGLM

G2 GH

G

G2G1

NF

AG

EG

AG

EB

solvable

GG,p

?

linear groups

NS
B: the Burnside group B 2, 665
G: Grigorchuk’s group with growth

neither polynomial nor exponential
H: Grigorchuk’s finitely presented group

GG,p: Grigorchuk’s p-group

GLM: Lodha–Moore group:
3 generators and 9 relations

A5: alternating group on 5 elements

NS: no free non-Abelian subsemigroup

AG : supramenable groups
EB: exponentially bounded growth

Figure 14.5. Subclasses of NF , the groups with no free subgroup of rank 2. Each label
describes the area below and left. Gn is the isometry group of Rn, and H , G, GG,p refer to
groups found by Grigorchuk (GG,p is a p-group). The group GLM is presented in §14.4.

and examples. A finite presentation for H is given after Theorem 12.5; H does
contain a free semigroup of rank 2 [Gri15].

Question 14.22. Is every supramenable group exponentially bound? That is, does
EB = AG+?

The proof of Theorem 14.21 used only the fact that for all finite S ⊆ G, γS (n) <
2n for n sufficiently large, but there was no loss of generality in assuming the
ostensibly stronger hypothesis that for all finite S and all b > 1, γS (n) < bn for
n sufficiently large. The equivalence of these two conditions can be proved quite
simply as follows.

Proposition 14.23. (a) For any finite subset S of a group G, the sequence
{γS (n)1/n} converges.

(b) If G is not exponentially bounded, then for any c > 1, there is some finite
S ⊆ G such that γS (n) ≥ cn for arbitrarily large n.

Proof. (a) Let γ denote γS and fix a positive integer m. Then, for any n, let
k = ⌊

n
m

⌋+ 1. It follows that γ (n) ≤ γ (km) ≤ γ (m)k ≤ γ (m) · γ (m)�n/m�, and
because γ (m)1/n → 1 as n →∞, this means that lim sup γ (n)1/n ≤ γ (m)1/m.
Now, letting m vary, lim sup γ (n)1/n ≤ inf {γ (m)1/m} ≤ lim inf γ (n)1/n, yielding
the existence of a limit of γ (n)1/n.

(b) If G is not exponentially bounded, then for some finite S ⊆ G, γS (n)1/n →
	 > 1. Choose r such that 	r > c and let S′ consist of the identity of G together
with all words of length exactly r from S. Any word of length at most rn from

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.017
https://www.cambridge.org/core
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S may be viewed (using e ∈ S′) as a word of length at most n from S′. Hence
γS (n) ≥ γS (rn), and because γS (rn)1/n → 	r as n →∞, this means that γS (n) >
cn for arbitrarily large n.

The next proposition gives some simple closure properties of the class of expo-
nentially bounded groups, which are sufficient for some geometric applications on
the line and in the plane. But there are more exponentially bounded groups than
the ones provided by Proposition 14.24; we return to this class later in the chapter
and mention a possible characterization of exponentially bounded groups.

Proposition 14.24. (a) Finite and Abelian groups are exponentially bounded.
(b) A subgroup or a homomorphic image of an exponentially bounded group

is exponentially bounded.
(c) If H is an exponentially bounded subgroup of G and H has finite index in

G, then G is exponentially bounded.
(d) A direct union of exponentially bounded groups is exponentially bounded;

in particular, a group is exponentially bounded if (and only if) all of its
finitely generated subgroups are.

Proof. The case of finite groups is trivial, and the Abelian case has already been
discussed. The subgroup case is also trivial, and if S is a finite subset of H , a
homomorphic image of G, let S′ be a finite subset of G whose image is S. Then
γS (n) in H is bounded by γS′ (n) in G. For (c), choose a set of representatives
g1, . . . , gm of the right cosets of H in G, with g1 = e. Then, given a finite S ⊆ G,
let S′ consist of the finitely many h ∈ H that arise when each gis, where s ∈ S and
1 ≤ i ≤ m, is written in the form hgk . We claim that each w ∈ G that arises as
a word of length at most n from S may be represented as w′gi, where 1 ≤ i ≤ m
and w′ is a word of length at most n from S′. Suppose w = s1 s2 · · · with si ∈ S.
Because s1 = es1 = g1s1, there is some h1 ∈ H and k1 ≤ m such that s1 = h1gk1 .
Similarly, there are h2 and k2 such that gk1 s2 = h2gk2 . Continuing to the end of
w and substituting into w transforms w to h1 · · · hrgkr , where r is the length of
w, as required. This claim yields that γS (n) in G is at most m γS′ (n) in H . There-
fore lim γS (n)1/n ≤ lim m1/nγS′ (n)1/n = 1, so γS , and hence G, is exponentially
bounded. Finally, suppose G is the union of the directed system of subgroups
{Gi : i ∈ I} and G fails to be exponentially bounded. If this failure is witnessed by
γS , choose i ∈ I such that S ⊆ Gi. Then, because γS only refers to elements in the
group generated by S, Gi must have exponential growth too.

Corollary 14.25. The isometry group of the line, G1, is exponentially bounded.
Therefore no nonempty subset of R is paradoxical.

Proof. If T is the group of translations of R, then T is a normal subgroup of G1,
G1/T ∼= Z2, and T is Abelian. It follows from Proposition 14.24(a) and (c) that G1
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is exponentially bounded. The rest of the corollary follows from the supramenabil-
ity of G1 (Thm. 14.21(a)), but this would use the Axiom of Choice. Instead, use
Theorem 14.21(b).

Note that this corollary, which shows why there is no Sierpiński–Mazurkiewcz
Paradox in R1, also yields Corollary 12.10 for R1 without using the Axiom of
Choice. The elimination of Choice from the R2 case is more complicated (see
Cor. 15.11).

We now return to the problem of classifying the exponentially bounded groups.
Groups with a free subsemigroup of rank 2 are the only examples of groups having
exponential growth presented so far, but there are more. Adian [Adi79] showed
not only that the Burnside group B(r, e) with r ≥ 2 and e ≥ 665 is infinite but also
that it has exponential growth. (An interesting open question [Sha06] is whether
every Burnside group B(m, n) has Property (T); see Definition 13.9.) Indeed, the
number of group elements in B(2, 665) corresponding to words in the two given
generators of length exactly n is at least 4 (2.9)n−1, whereas F2 has 4 · 3n−1 such
words. Now, because all elements of B(r, e) have finite order, the group has no
free subsemigroup. Hence the class of exponentially bounded groups is a proper
subclass of the class of groups without a free subsemigroup of rank 2. To study the
class of exponentially bounded groups in more detail, it is useful to delineate those
groups that, like Abelian groups, have growth functions bounded by a polynomial.
Note that the next definition applies only to finitely generated groups.

Definition 14.26. A finitely generated group G has polynomial growth if, for any
finite S ⊆ G, there are positive constants c, d such that for all n, γS (n) ≤ cnd.

It is easy to see that for a finitely generated group to have polynomial growth,
it is sufficient that γS have polynomial growth for a single finite generating
set S. For if S′ is another finite subset of G, then there is an integer k such
that γS′ (n) ≤ γS (kn). (This observation also shows that if a finitely generated
group has exponential growth, then lim γS (n)1/n > 1 for any finite generating
set S.) The proof given earlier that Abelian groups are exponentially bounded
shows that a finitely generated Abelian group has polynomial growth. This was
extended by Wolf [Wol68] to nilpotent groups. Recall that G is nilpotent if there
is a sequence of normal subgroups {e} = N0 � N1 � · · · � Nn = G such that for
each i ≤ n, Ni+1/Ni is contained in the center of G/Ni; G is solvable if each
Ni+1/Ni is Abelian; therefore nilpotent groups are solvable. Wolf showed that a
finitely generated nilpotent group has polynomial growth; hence by Proposition
14.24(c) (modified for polynomial growth), any finitely generated almost nilpotent
group has polynomial growth. The converse was proved first for solvable groups
([Mil68c, Wol68]), then for elementary groups ([Cho80]; see Thm. 14.29), and,
finally, Gromov [Gro81] showed that it is true in general, thus yielding the follow-
ing beautiful characterization of groups with polynomial growth.

Theorem 14.27. A finitely generated group has polynomial growth if and only if
it is almost nilpotent.
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Note that the definition of polynomial growth asserts only that γS (n) is bounded
above by a polynomial. It is not clear that there is a single d such that for any S and
appropriate positive constants ci, c1nd ≤ γS (n) ≤ c2nd . However, it does follow
from the remark after Definition 14.26 that the lowest possible degree of a polyno-
mial bound on γS (n) (as S varies over finite generating sets) is a well-defined inte-
ger that is independent of the choice of generators. Bass [Bas72] refined Wolf’s
work to show that if G is finitely generated and almost nilpotent, then there is an
integer d such that for any finite generating set S, there are constants c1 and c2

so that c1nd ≤ γS (n) ≤ c2nd for all n. Thus the degree of polynomial growth is a
well-defined invariant of all groups having polynomial growth.

The characterization of Theorem 14.27 was conjectured by Milnor [Mil68a],
but Wolf [Wol68] conjectured even more. A function of n that dominates all poly-
nomials is not necessarily greater than some nontrivial exponential function cn

(c > 1); for example, consider 2
√

n or nlog n. Wolf conjectured that if a group’s
growth function dominates all polynomials, then it does dominate a nontrivial
exponential function (this became known as the Milnor–Wolf Conjecture). This
conjecture is true for many interesting groups, but Grigorchuk [Gri83] showed
that it is not true in general. It is an open question whether there is a finitely
presented example that is exponentially bounded but does not have polynomial
growth.

Theorem 14.28. There exist finitely generated periodic groups that are exponen-
tially bounded but do not have polynomial growth.

Milnor and Wolf [Mil68c, Wol68] had proved their conjecture for solv-
able groups, and their work was strengthened by Rosenblatt [Ros74] and Chou
[Cho80], who proved the following theorem.

Theorem 14.29. If G is a finitely generated elementary group, then either G is
almost nilpotent (and hence has polynomial growth) or G has a free subsemigroup
of rank 2 (and hence has exponential growth).

This theorem shows that the Milnor–Wolf Conjecture is valid in EG. There-
fore the example of Theorem 14.28 is a nonelementary amenable (in fact, supra-
menable) group.

By Theorem 14.21 and Proposition 14.24(d), the preceding theorem shows
that the strongest possible characterization of supramenability is valid in EG, the
class of elementary groups: G is supramenable if and only if G has no free sub-
semigroup of rank 2. It is also known that AG+ = NS is valid when restricted
to connected, locally compact topological groups [Ros74, Cor. 4.20]. Theorem
14.29 also settles the Milnor–Wolf Conjecture in EG in the strongest possible
way, because it yields that a finitely generated group in EG fails to have poly-
nomial growth if and only if it has a free subsemigroup of rank 2. Even before
Theorem 14.28 was proved, it was known that this strong form of the Milnor–
Wolf Conjecture is not valid, because B(2, 665) has exponential growth and is
periodic.
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To summarize, we have that each of the following statements implies the next
(and (a) and (a′) are equivalent):

(a) All finitely generated subgroups of G have polynomial growth.
(a ′) All finitely generated subgroups of G are almost nilpotent.
(b) G is exponentially bounded.
(c) G is supramenable.
(d) G has no free subsemigroup of rank 2.

Moreover, (d) implies (a) in EG, and so these statements are all equivalent for
elementary groups. In general, (d) does not imply (c) (Thm. 12.5) and (b) does
not imply (a) (by Thm. 14.28). Whether (c) implies (b) is Question 14.22.

Another large class of groups for which the four statements are equivalent
is the class of all linear groups, that is, subgroups of GLn(K ) for some positive
integer n and field K. For any group G that satisfies (d) can have no free subgroup
of rank 2, and hence by Tits’s Theorem (Thm. 12.6), a linear group that satisfies
(d) is elementary. Hence for linear groups—in particular, all groups of isometries
of Rn—both the Milnor–Wolf Conjecture and the equality AG+ = AG ∩ NS are
valid. Note that, by the preceding remarks about elementary groups, the lower
left square in Figure 14.5 consists of precisely the groups all of whose finitely
generated subgroups have polynomial growth (equivalently, all such subgroups
are almost nilpotent).

In light of Theorem 14.28, the following result pertaining to the Milnor–Wolf
Conjecture is quite interesting. As a consequence of their investigation into Gro-
mov’s proof of Theorem 14.27, van den Dries and Wilkie [WD84] constructed a
computable nondecreasing unbounded g : N → N such that ng(n) is exponentially
bounded, and for any constant k, no group has a growth function lying in the gap
between all polynomials and kng(n).

Just as with actions of free groups, the mere presence of a free subsemigroup
in a group acting on a set does not guarantee that the set has a paradoxical sub-
set. Proposition 1.9 gives an extra condition on the action that is sufficient; in
general, some condition is necessary, because of the trivial actions where g(x)
always equals x. Nevertheless, in the special case of groups of Euclidean isome-
tries acting on Rn, no extra condition is necessary. The following result, which is
analogous to Theorem 13.21, gives a complete characterization of the subgroups
of Gn with respect to which Rn has a paradoxical subset.

Theorem 14.30 (AC). Suppose G is a subgroup of Gn. Then the following state-
ments are equivalent to each other and to statements (a)–(d) following Theorem
14.29:

(a) G has no free subsemigroup of rank 2.
(b) G is supramenable.
(c) For any nonempty E ⊆ Rn, there is a finitely additive, G-invariant measure

on P (Rn) that normalizes E.
(d) No nonempty subset of Rn is G-paradoxical.
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(e) No nonempty subset E of Rn contains two disjoint subsets, each of which
is congruent, via G, to E.

Proof. As pointed out before, Tits’s Theorem and Theorem 14.29 yield (a) ⇒
(b). That (b) ⇒ (c) ⇒ (d ) is just Theorem 14.2, and (d ) ⇒ (e) is obvious. For
(e) ⇒ (a), suppose that G does have a subsemigroup S freely generated by σ and
τ . Let H be the subgroup of G generated by σ and τ . Because H is countable
and because the set of fixed points of a single w ∈ H \ {e} has Lebesgue measure
zero, there must be some P ∈ Rn that is not fixed by any element of H \ {e} (see
the proof of Thm. 13.21). Now, let E = {sP : s ∈ S} and let A = σ (E ), B = τ (E ).
Then A and B are subsets of E, and each is congruent to E. Moreover, A ∩ B =
∅, for suppose σ s1(P) = τ s2(P) for some si ∈ S. By freeness of S, σ s1 and τ s2

must be distinct elements of G, because they have distinct leftmost terms. But
then (τ s2)−1 σ s1 is a nonidentity element of H fixing P, in contradiction to the
choice of P. Because the conditions (a)–(d) after Theorem 14.29 are equivalent
for groups of isometries, the theorem is proved.

This result clarifies the Sierpiński–Mazurkiewicz Paradox because it shows
that any free subsemigroup of G2 of rank 2 yields a paradoxical subset of the
plane. The proof of Theorem 1.7 given in Chapter 1, however, gives an especially
succinct description of the paradoxical set. Moreover, the set E of that proof splits
into two sets, each congruent to E. Theorem 14.30, except for the exceptional
case where P is fixed by some nonidentity element of S, yields two subsets whose
union is E \ {P}, a proper subset of E.

Recall from Corollary 5.9 that if a group is paradoxical using four pieces, as
it is if it has a free subgroup of rank 2, then, indeed, the group contains such a
subgroup. For free semigroups an analogous result is valid, which we derive as a
corollary to the more general theorem that follows.

Theorem 14.31. Suppose a group G acts on X and σ, τ ∈ G. Then the following
are equivalent:

(a) Some nonempty E ⊆ X is such that σ E and τ E are disjoint subsets of E.
(b) There is some x ∈ X such that whenever w1 and w2 are nonidentity

(semigroup) words in σ and τ beginning with σ , τ , respectively, then
w1(x) 
= w2(x). (It follows that σ , τ are free generators of a free subsemi-
group.)

Proof. The fact that (b) implies (a) is just a restatement of Proposition 1.9 and its
proof; E is simply the orbit of X using the generated semigroup. For the converse,
let X be any point in E. Because of the hypothesis on words, w1 E ⊆ σ E and
w2E ⊆ τ E, or vice versa. In any event, w1(x) and w2(x) lie in disjoint subsets of
E and are therefore unequal. The fact that the condition on σ , τ expressed in (b) is
sufficient to guarantee that they are free generators of a subsemigroup of G was,
in essence, proved at the beginning of Theorem 1.8’s proof.
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Corollary 14.32. A group G has a nonempty subset E and two elements, σ , τ ,
such that σE and τE are disjoint subsets of E if and only if σ and τ are free
generators of a free subsemigroup of rank 2.

In fact, a slightly stronger result is true. If E ⊆ G, E 
= ∅, σE ∪ τ E ⊆ E, and
σ , τ fail to be free generators of a subsemigroup, then for some w ∈ G, wE ⊆
σE ∩ τ E. To prove this, choose w1 and w2, two distinct words in σ , τ , so that
w1 = w2 in G. Repeated left cancellation allows us to assume that either (a) w1 =
σ · · · and w2 = τ · · ·, (b) w1 = σ · · · and w2 = e, or (c) w1 = τ · · · and w2 = e.
In case (a), let g be the common value of w1 and w2 in G; in case (b), let g = τ ;
and in case (c), let g = σ . It is easy to see, using σE ∪ τ E ⊆ E, that these choices
work. This result strengthens the corollary by showing that σE ∩ τE is not only
nonempty but contains a set congruent to E.

We have seen that the major difference between an action of a free group on
a set X and an action of a group with a free subsemigroup is that the former
(under appropriate additional hypotheses) causes a paradoxical decomposition of
X while the latter causes such a decomposition of a subset of X . But this analogy
cannot be pushed too far. For instance, it is not the case that whenever a group
with a free subsemigroup of rank n (n ≥ 2) acts on X without nontrivial fixed
points, given a proper system of n congruences, some nonempty subset of X , can
be partitioned to satisfy the congruences. To see this, consider the congruences
A2
∼= A2 ∪ A3 ∪ A4 and A1

∼= A1 ∪ A2 ∪ A4. If some nonempty subset E of X
splits into Ai such that σ (A2) = A2 ∪ A3 ∪ A4 and τ (A4) = A1 ∪ A2 ∪ A4, where σ
and τ come from a group acting on X , then it can be shown that σ , τ are free gen-
erators of a free group. The two equations just mentioned yield σ (A2) ⊆ X \A1,
σ−1(A1) ⊆ X \A2, τ (A4) ⊆ X \A3, and τ−1(A3) ⊆ X \A4; these four relations
were proved in Theorem 5.8 to guarantee the independence of σ , τ as group
elements. So, for example, in the case of the action of the solvable group G2 on
itself, no subset of G2 can be partitioned to solve the system despite the existence
in G2 of a free subsemigroup of rank 2 and the lack of fixed points in the action.

Nevertheless, these systems can be solved provided we allow the congruences
to be witnessed by a piecewise G-transformation; more precisely, we interpret ∼=
as ∼2.

Theorem 14.33. Suppose a group G, acting on X , contains a free subsemigroup
S of rank κ generated by {ρα : α < κ}, where κ is an infinite cardinal. Suppose
further that there is some x ∈ X satisfying that whenever w1 and w2 are semigroup
words in {ρα} beginning on the left with ρα , ρβ , respectively, where α 
= β, then
w1(x) 
= w2(x). Then E, the S-orbit of X , may be partitioned into κ sets, {Aβ :
β < κ}, such that for any two nonempty subsets of κ , L and R,

⋃{Aβ : β ∈ L}
and

⋃{Aβ : β ∈ R} are G-equidecomposable using two pieces.

Proof. By Proposition 7.12, the hypotheses imply that the sets ρβ (E ) are pair-
wise disjoint subsets of E. Let Aβ = ρβ (E ) except when β = 0; in order that
the sets Aβ partition E, A0 is defined to be E \ ⋃{Aβ : 0 < β < κ}. To show
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that this partition of E works, let L and R be two nonempty subsets of κ and
choose γ , δ to lie in L, R, respectively. Because each ρβ (E ) is a subset of Aβ ,
it must be that ργ (

⋃{Aβ : β ∈ R}) ⊆ Aγ ⊆
⋃{Aβ : β ∈ L} and ρδ (

⋃{Aβ : β ∈
L}) ⊆ Aδ ⊆

⋃{Aβ : β ∈ R}. Hence, by the Banach–Schröder–Bernstein Theo-
rem,

⋃{Aβ : β ∈ L} ∼G
⋃{Aβ : β ∈ R} using two pieces.

Because G2 satisfies the hypothesis of Theorem 14.33 (Thm. 7.13), it follows
that systems of congruences can be solved using subsets of the plane and ∼2. For
example, there exists a nonempty E ⊆ R2 such that E has a subset A such that for
any κ between 2 and 2ℵ0 inclusive, E can be split into κ sets, each of which is ∼2

to A.

14.4 Cogrowth and Amenability

Though the growth of a group has connections with supramenability, work by
Grigorchuk [Gri77] and Cohen [Coh82] has led to a refinement of this concept,
called cogrowth, that has proven to be very important because it yields a charac-
terization of amenability.

To discuss the growth of an arbitrary group, define γ (G) to be the supremum
of limn→∞ γS (n)1/n over all finite subsets S of G. By Proposition 14.23, γ (G) is
well defined and either γ (G) = 1 (G is exponentially bounded) or γ (G) = ∞ (G
has exponential growth). This is a rather coarse classification, and the point of
the cogrowth function is that it resolves the class of groups having exponential
growth into more levels, perhaps even a continuum of levels.

Suppose a group G is finitely presented, which means it is given by generators
and relations: G = 〈a1, . . . , ar : b1, b2, . . .〉where r <∞. Then G ∼= Fr/N , where
Fr is the free group with free generators a1, . . . , ar and N is the smallest normal
subgroup of Fr containing {b1, b2, . . .}. Let En be the set of all (reduced) words
in Fr of length at most n. It is easy to see that if r ≥ 2, En has (r(2r− 1)n − 1)/
(r − 1) elements; but the important point here is that |En|1/n → 2r − 1 (even if
r = 1). Let π be the canonical homomorphism, π : Fr → Fr/N = G. The growth
function γS (n), where S = {a1, . . . , ar}, is simply |π (En)|, the size of the image
of π restricted to En. For finite groups the size of the kernel of a homomorphism
is inversely proportional to the size of the image. But En is not a group, and so the
size of the kernel might behave quite differently than the size of the image. This
leads to the following definition.

Definition 14.34. If G is presented as just discussed, then γ̃ (n), the cogrowth
function of the presentation, is defined to be |N ∩ En|; that is, γ̃ counts the number
of words of length at most n that vanish when interpreted in G.

As with the growth function, it will be the sequence γ̃ (n)1/n and its limit that
interest us. If there are no relations at all in the presentation, that is, G = Fr and
the presentation is the standard presentation of Fr, then N = {e} and γ̃ (n) = 1
for all n. On the other hand, suppose G is exponentially bounded. It is true for
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all presentations that some N-coset in Fr/N must contain at least |En|/π (En)
words of length at most n. Hence there are at least this many words in N ∩ En and
so |En| ≥ γ̃ (n) ≥ |En|/γ (n). Because γ (n)1/n → 1, it follows that lim γ̃ (n)1/n =
lim |En|1/n = 2r − 1.

These two examples illustrate behavior at opposite ends of the cogrowth spec-
trum. It turns out that, for any presentation (with r many generators, r finite) of a
group, the sequence γ̃ (n)1/n tends to a limit that lies between 1 and 2r − 1. The
proof of this is elementary, but more complicated than for the ordinary growth
function, and we refer the reader to [Coh82] for details. The proof yields that the
limit, when not equal to 1, is at least

√
2r − 1; that this last inequality is in fact

strict is a more difficult result. The following theorem summarizes the basic facts
about cogrowth.

Theorem 14.35. Let a group G with a fixed presentation using r generators,
where 2 ≤ r <∞, be given. Then

(a) lim γ̃ (n)1/n exists
(b) 1 ≤ lim γ̃ (n)1/n ≤ 2r − 1
(c) lim γ̃ (n)1/n = 1 if and only if there are no relations in the presentation (in

which case G = Fr)
(d) if lim γ̃ (n)1/n > 1, then

√
2r − 1 < lim γ̃ (n)1/n ≤ 2r − 1

It must be emphasized that lim γ̃ (n)1/n is generally dependent on the choice
of a representation. For example, let G = 〈a1, a2, a3 : a2a−1

3 〉; G is isomorphic to
F2. Because γ̃ (n)1/n ≥ |En|/γ (n) and γ (n) is bounded by the number of words of
length at most n in the standard presentation of F2, lim γ̃ (n)1/n ≥ 5/3. This shows
that case (d) of Theorem 14.35 can include free groups.

Now we can define η, the cogrowth of a presentation, by η =
log(lim γ̃ (n)1/n)/ log(2r − 1). It then follows that η ∈ {0} ∪ (1/2, 1]; η = 0 if and
only if there are no relations in the presentation (assuming r ≥ 2); and η = 1 if G
is exponentially bounded. Thus the standard presentation of a free group has zero
cogrowth (no words get killed), whereas an exponentially bounded group has full
cogrowth (the number of words in En that get killed is, in an asymptotic sense, the
same as the total number of words in En). Now, here is the remarkable theorem.

Theorem 14.36 (AC). Let G be a finitely generated group. Then G is amenable
if and only if η = 1 for all presentations of G with finitely many generators.

Thus, for a group G presented as in the theorem, amenability is characterized
by the asymptotic behavior of the number of words of length at most n that col-
lapse to the identity. This number, as n approaches infinity, must be very large.
Theorem 14.36 is due to Grigorchuk [Gri77] and, independently, Cohen [Coh82].
The proof of both directions appears in [Coh82] and is moderately difficult, using
techniques from C∗-algebras and Kesten’s characterization of amenability (dis-
cussed after the proof of Theorem 12.11). It would be nice if the method of para-
doxical decompositions, which yields (Thm. 14.21’s proof) such a succinct proof
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that nonamenable groups have exponential growth, could be used to obtain a proof
that a nonamenable group has cogrowth less than 1.

One consequence of Theorem 14.36 is that for a finitely generated amenable
group, the cogrowth is independent of the presentation, provided the latter uses
finitely many generators. Another consequence concerns a notion of dimension
introduced by Cohen [Coh82]. Given a presentation using r generators, we may
metrize Fr by setting d(u, v ), in the case u 
= v , equal to (2r − 1)−k , where k is
the smaller of the lengths of u and v . Then η is the entropic dimension of N as
a subspace of Fr (see [Coh82] for a definition and proof). This leads to a natural
definition of the dimension of a presentation as 1− η. Thus a finitely generated
group is amenable if and only if all of its presentations are zero-dimensional.

To apply these ideas to all groups, simply let η(G) be defined to be the greatest
lower bound of η taken over all presentations with r generators, 2 ≤ r <∞, of a
subgroup of G.

Corollary 14.37 (AC). A group G is amenable iff η(G) = 1; G has no free sub-
group of rank 2 iff and only if η(G) ≥ 1/2; G has a free subgroup of rank 2 if and
only if η(G) = 0.

Although it is not known whether η(G) can take on all values in
[

1
2 , 1

]
,

Ol’shanskii [Ols80] has shown that for a certain periodic group G, η(G) = 1
2 .

Such a group is nonamenable but has no free subgroup of rank 2. Although it
had been conjectured that AG = NF when restricted to finitely presented groups,
that is false. In 2003 Ol’shanskii and Sapir [OS03] found an example of a finitely
presented group in NF \AG. And there has been much work since then. Lodha
and Moore [LM∞], building on work of Monod [Mon13] and others, gave a spe-
cific and simply described example of a group in NF \AG: it has a succinct finite
presentation with three generators and nine relations. A torsion-free group is one
having no nonidentity elements of finite order.

Theorem 14.38. Let GLM be the group generated by the following three homeo-
morphisms of the real line:

a(t ) = t + 1; b(t ) =

⎧⎪⎪⎨
⎪⎪⎩

t if t ≤ 0,
t

1−t if 0 ≤ t ≤ 1
2 ,

3− 1
t if 1

2 ≤ t ≤ 1,
t + 1 if 1 ≤ t;

c(t ) =
{ 2t

1+t if 0 ≤ t ≤ 1,
t otherwise.

Then GLM is nonamenable, has no free subgroup of rank 2, is torsion-free,
and has the finite presentation given by setting the following nine words in
a±1, b±1, c±1 to the identity; where [·] denotes the commutator:

[ba−1, a−1ba], [ba−1, a−2ba2], [c, a2b−1a−1],

[c, ab2a−1b−1ab−1a−1], [c, a−1ba], [c, a−2ba2],

[c, aca−1], [c, a2ca−2],

c−1b [b, a−1] cb−2ab−1c−1b [a−1, b] ab−1cba−1ba−1.
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294 14 Growth Conditions in Groups and Supramenability

The Lodha–Moore example is closely related to the Thompson group; F =
〈a, b : [ab−1, a−1 ba] = [ab−1, a−2 ba2] = e〉, though it has other, more natural
representations. Richard Thompson put forward F as a possible example of a
nonamenable group in NF. That is still unresolved. It is noteworthy that the sub-
group of GLM generated by a and b is isomorphic to F (and so GLM has a free
subsemigroup of rank 2).

Conjecture 14.39 (R. Thompson). The Thompson group F is nonamenable.

Notes

The definition of supramenable groups was introduced by Rosenblatt [Ros74], but
the idea goes back to Tarski and Lindenbaum. The idea of using a free subsemi-
group to construct a paradox was first used in the Sierpiński–Mazurkiewicz Para-
dox (Thm 1.7). However, Proposition 14.3 was not explicitly stated until the paper
of Rosenblatt [Ros74], who, in fact, proved the stronger form given in Corollary
14.21. This latter result was discovered independently by Sherman [She75, Thm.
1.7].

The fact that Abelian groups are supramenable (Thm. 14.4(b)) was first proved
by Lindenbaum and Tarski in the 1920s. A proof appears in [Tar49, pp. 224–227].
Their proof is essentially the same as the one presented here (Thm. 14.21), and
the only property of the Abelian group that is used is the fact that it is expo-
nentially bounded. Moreover, Tarski was aware that the result is valid for more
than just Abelian groups; in [Tar38a, p. 223], he points out that groups satisfying
some “schwachere, aber kompliziertere Voraussetzungen” are supramenable. So
even though growth conditions in groups were not introduced until much later,
the result that exponentially bounded groups are supramenable must be credited
to Tarski and Lindenbaum. Explicit use of the notion of exponential boundedness
first appeared in a paper by Adelson-Velsky and Shreider [AS59], who proved that
exponentially bounded groups are amenable. The result also appears in [Mil68b]
(where Kesten’s characterization of amenability is used) and in [Cho80] and
[Ros74] (where linear functionals are used).

Question 14.5 is due to Rosenblatt [Ros74]. The second part of Corollary
14.25, asserting that no nonempty subset of the real line is paradoxical, is due
to Sierpiński [Sie54, Thm. 19], and his proof is essentially the same as that pre-
sented here; that is, it uses the fact that G1 is exponentially bounded. Theorem
14.14 was first proved by Lindenbaum [Lin26, p. 218n1]; the proof presented
here was discovered by Hadwiger and Debrunner [HDK64, p. 80]. Theorem 14.5
is due to G. Tomkowicz.

The concept of the growth of a group first appeared in the paper of Adelson-
Velsky and Shreider [AS59], but Milnor and Wolf provided the first detailed anal-
ysis of growth conditions in groups. Milnor [Mil268b] proved Proposition 14.23
and introduced the term exponential growth for finitely generated groups such
that lim γS (n)1/n > 1. Wolf [Wol68] initiated the study of groups with polynomial
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growth, and generalizing an example of Milnor [Mil268b], he proved the funda-
mental result that almost nilpotent groups have polynomial growth. In fact, it had
been proved earlier by A. Hulanicki [Hul66].

The proof of Proposition 14.24(c) is essentially due to Wolf [Wol68]. Milnor
[Mil68a] conjectured that the degree of growth of a group that has polynomial
growth is a well-defined integer; that is, that for constants c1 and c2, there is an
integer d such that c1nd < γS (n) < c2nd . He also raised the possibility that all
finitely generated groups of polynomial growth are almost nilpotent. Bass [Bas72]
improved the results of Wolf to settle Milnor’s first conjecture for almost nilpotent
groups, and Milnor’s second conjecture was proved by Gromov [Gro81]. A use-
ful appendix to [Gro81] by Tits contains proofs of enough of the work of Milnor
and Wolf to make Gromov’s paper independent of theirs. The appendix also con-
tains a proof of Bass’s result. Gromov’s characterization had been known in some
special cases: Its validity for solvable groups was proved by Milnor and Wolf
[Mil68c, Wol68], and Chou [Cho80] proved it for elementary groups. Indeed,
Chou [Cho80], extending results of Rosenblatt [Ros74], proved the even stronger
Theorem 14.29. An elementary proof of a different sort of special case of Gro-
mov’s Theorem—where it is assumed that the growth function is linear—is given
by Wilkie and van den Dries [WD84].

Milnor had conjectured that all groups of polynomial growth are almost nilpo-
tent, and Wolf [Wol68] conjectured even more, that all finitely generated expo-
nentially bounded groups are almost nilpotent. By Theorem 14.27, this is equiv-
alent to the Milnor–Wolf Conjecture as stated here. Theorem 14.28, which pro-
vides a counterexample to this conjecture, was announced by Grigorchuk at the
1983 International Congress of Mathematicians in Warsaw; a sketch of his proof
appears in [Gri83].

Theorem 14.31 and Corollary 14.32 are due to Rosenblatt [Ros74]. Theorem
14.33 is due to Mycielski [Myc56].

The notion of cogrowth, which is more important for the theory of amenable
groups than is growth, was introduced independently by Grigorchuk [Gri77] and
Cohen [Coh82]. Cohen conjectured that Theorem 14.36 could be used to con-
struct a nonamenable group that has no free subgroup of rank 2, and as stated by
Ol’shanskii [Ols80], this has turned out to be the case.

See [Boz80] for further work on growth conditions and amenability.
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15

The Role of the Axiom of Choice

The Banach–Tarski Paradox is so contrary to our intuition that it must have some
implications for the foundations of mathematics and the unrestricted use of the
Axiom of Choice (AC). In this final chapter, we give a detailed account of such
implications and discuss various technical points related to the use of AC. Ever
since its discovery, the paradox has caused some mathematicians to look critically
at AC. Indeed, as soon as the Hausdorff Paradox was discovered, it was challenged
because of its use of that axiom; E. Borel [Bor14, p. 256] objected because the
choice set was not explicitly defined. We address these criticisms in more detail in
§15.3, but we start with several technical points that are essential to understanding
the connection between AC and the paradox.

15.1 The Axiom of Choice Is Essential

The standard axioms for set theory are the Zermelo–Fraenkel Axioms; they are
called ZF. When the Axiom of Choice is included, the theory is called ZF+ AC,
or usually just ZFC.

Results of modern set theory can be used to show that AC is indeed necessary
to obtain the Banach–Tarski Paradox, in the sense that the paradox is not a theo-
rem of ZF alone. Before we can explain why this is so, we need to introduce some
notation and discuss some technical points of set theory. If T is a collection of sen-
tences in the language of set theory, for example, T = ZF or T = ZF+ AC, then
Con(T ) is the assertion, also a statement of set theory in fact, that T is consistent,
that is, that a contradiction cannot be derived from T using the usual methods of
proof. We take Con(ZF) as an underlying assumption in all that follows. Gödel
proved in 1938 that Con(ZF) implies (and so is equivalent to) Con(ZF+ AC);
thus AC does not contradict ZF (see [Jec73, Jec78]). Let LM denote the assertion
that all sets of reals are Lebesgue measurable; of course, LM contradicts AC (Cor.
1.6). Because LM implies that all subsets of each Rn are Lebesgue measurable
(see the proof of Thm. 8.17(a)), ZF+ LM implies that there is no Banach–Tarski
Paradox.

296
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15.1 The Axiom of Choice Is Essential 297

Ever since nonmeasurable sets were first constructed, mathematicians won-
dered whether it was possible to construct a nonmeasurable set without using the
Axiom of Choice. All known constructions used AC in apparently unavoidable
ways. The feeling that AC was necessary was confirmed in 1964 when Solovay,
using Paul Cohen’s just-discovered method of forcing, proved, with a complica-
tion to be discussed, Con(ZF+ LM) (see [Jec78]). It follows that ZF+“There is
no Banach–Tarski Paradox” is consistent; therefore the Banach–Tarski Paradox is
not a theorem of ZF.

To understand the extra complication in Solovay’s result, we must introduce
inaccessible cardinals. A cardinal κ is inaccessible if it is not the sum of fewer than
κ cardinals, each of which is less than κ , and it is greater than 2η for any cardinal
η < κ . For example, ℵ1 is not greater than 2ℵ0 and so is not inaccessible; ℵω is
the sum of the ℵn, n = 0, 1, . . . and so is not inaccessible. An example of an inac-
cessible cardinal is ℵ0; any others must be very large. However, the existence of
an uncountable inaccessible cardinal cannot be proved in ZF or ZFC. To see this,
let IC denote the assertion that an uncountable inaccessible cardinal exists, and
suppose that IC can be proved in ZFC. Then if κ0 denotes the least uncountable
inaccessible cardinal, the sets of rank less than κ0 form a model of ZFC in which
IC is false (see [Dra74, Jec78]), contradiction. Even more is true: Con(ZF+ IC)
cannot be proved from Con(ZF); for if ZF+ Con(ZF) implies Con(ZF+ IC),
then Con(ZF+ Con(ZF)), contradicting Gödel’s second incompleteness theorem.
This contrasts IC with AC: ZF can neither prove nor disprove AC, and ZF cannot
prove IC, but it is not known (and cannot be proved) that ZF cannot disprove IC.
Thus ZF+ IC is a substantial strengthening of ZF; although it is presumed to be a
consistent extension, this cannot be proved. Much study has been devoted to inac-
cessible cardinals, and it would be a great shock if in ZF it could be proved that
uncountable inaccessible cardinals do not exist. Indeed, set theorists have studied
much larger cardinals (e.g., measurable cardinals) whose existence would imply
the existence of many inaccessible cardinals, and it is generally felt that these
larger large cardinals yield consistent extensions of ZF. But, as pointed out, the
consistency of ZF+ IC cannot be proved, and one cannot completely ignore the
possibility that IC contradicts ZF.

One technical point arises when discussing Lebesgue measure in the absence
of AC. Without any form of Choice at all, Lebesgue measure might behave in
a way that makes it an object much less worthy of study in the first place. For
instance, the property that a countable union of countable sets is countable uses the
Axiom of Choice in a subtle but necessary way: It is consistent with ZF that R is a
countable union of countable sets! This assertion implies that Lebesgue measure is
not countably additive. Thus it is customary to allow a modest amount of Choice,
enough so that measure and category behave as expected, but not so much that
the reals can be well-ordered or a nonmeasurable set constructed. One possibility
is to add the Axiom of Countable Choice, which allows selections to be made
from an arbitrary countable collection of sets and yields the countable additivity
of both Lebesgue measure and the ideal of meager sets. But a slightly stronger
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298 15 The Role of the Axiom of Choice

axiom, the Axiom of Dependent Choice (DC), which guarantees the existence of
a countable choice set {an}, where an+1 depends on an, turns out to be more useful.
It allows more of the classical arguments of analysis and descriptive set theory to
be retained but does not yield a well-ordering of the reals. Thus the assertion LM
is usually considered in the context of ZF+ DC rather than just ZF. See [Jec78,
Mor82] for more details on these weaker forms of AC and further references to a
variety of consistency results.

With the preceding set-theoretical points in hand, we can state the fundamental
result that connects IC and LM.

Theorem 15.1. Con(ZF+ IC) is equivalent to Con(ZF+ DC+ LM).

Some remarks on the history of this remarkable result are in order. Soon after
Cohen invented the method of forcing to prove the independence of both AC
and the Continuum Hypothesis from the ZF axioms, Solovay [Sol70] saw how
to obtain Con(ZF+ DC+ LM). The complication of Solovay’s result alluded to
before is that he needed to assume that the existence of an uncountable inaccessi-
ble cardinal was noncontradictory, that is, Con(ZF+ IC). With this extra assump-
tion, it follows from Solovay’s result that ZF+ DC is not strong enough to produce
a nonmeasurable set.

For many years it was felt that the hypothesis regarding IC would eventually
be eliminated from this result. But in 1980, S. Shelah (see [Rai84, She84]) proved
the reverse direction of Theorem 15.1, thus establishing the necessity of Solovay’s
assumption. Although it is most likely that both ZF+ IC and ZF+ DC+ LM
are consistent, it is remarkable that these two questions should be so inextricably
linked. Reinterpreting Shelah’s theorem slightly, it states that if someone does
succeed in proving from ZF that uncountable inaccessible cardinals do not exist,
then it will follow that there is also a proof from ZF+ DC that a nonmeasurable
set exists.

Theorem 15.1 shows that, assuming Con(ZF+ IC), the Banach–Tarski Para-
dox is not a theorem of ZF alone, nor of ZF+ DC. In fact, this conclusion can
be derived without any additional metamathematical assumptions, thus separat-
ing it from the status of inaccessible cardinals. This follows from a different, less
well known, measure-theoretic consistency result of Solovay, one that deals with
measures more general than Lebesgue measure.

Let GM denote the assertion that there is a countably additive, isometry-
invariant measure on all subsets of Rn that normalizes the unit cube. Recall that
the classic example of a nonmeasurable set actually negates GM, not just LM
(Cor 1.6). Thus ZF+ AC yields that GM is false. Note also that by Proposi-
tion 11.18, a general measure as in GM must agree with Lebesgue measure on
the Lebesgue measurable subsets of Rn. If, however, the Axiom of Choice is
not assumed, then LM and GM differ dramatically; the latter is a much weaker
statement.

Theorem 15.2. Con(ZF) is equivalent to Con(ZF+ DC+ GM).
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Theorem 15.2 shows that while the theory ZF+ DC+ LM is equiconsistent
with ZF+ IC, the theory ZF+ DC+ GM is equiconsistent with ZF, a theory
strictly weaker than ZF+ IC in consistency strength. Many consequences of
ZF+ DC+ LM can be derived from ZF+ DC+ GM, because the latter yields
measures defined on all subsets of Rn. In particular, GM is sufficient to guarantee
the nonexistence of the Banach–Tarski Paradox.

Corollary 15.3. The Banach–Tarski Paradox is not a theorem of ZF, nor of ZF+
DC.

Proof. Suppose ZF+ DC is sufficient to derive the Banach–Tarski Paradox (of a
ball in R3). Then ZF+ DC would imply that there is no finitely additive, isometry-
invariant measure defined on all subsets of R3 and normalizing the unit cube.
This contradicts Theorem 15.2, which guarantees that even GM, which provides
a countably additive invariant measure, is not inconsistent with ZF+ DC.

The proofs of Theorem 15.2 and the forward direction of Theorem 15.1 are
similar in that both use forcing with a measure algebra to construct the desired
models. The proof of the forward direction of Theorem 15.1 can be found in
[Jec78]. The proof of Theorem 15.2 starts by forming L[G], the generic extension
of the constructible universe L that adds ℵ1 “random reals,” a variation on Cohen’s
original forcing technique due to Solovay. One then forms the submodel N con-
sisting of all sets in L[G] that are hereditarily ordinal definable over the subclass
of L[G] consisting of all countable sequences of ordinals. Then N is a model of
ZF+ DC [Jec78, p. 546], and Solovay proved that GM is true in N . Note that by
Theorem 15.2, LM is necessarily false in N ; indeed, the set of constructible reals
is a nonmeasurable set [Jec78, p. 568]. For more details of the proof of Theorem
15.2, see [PS77, Sac69].

The preceding discussion shows that some form of Choice is necessary to
obtain the Banach–Tarski Paradox. The same is true for many of the results in
the other direction, for example, the existence of a finitely additive, translation-
invariant measure on P (R) that normalizes [0, 1]. We shall give some indication
of how such unprovability results are obtained by showing why ZF+ DC is not
strong enough to yield the Measure Extension Theorem or the amenability of
Abelian groups.

At the same time as he proved Theorem 15.2, Solovay showed that Con(ZF+
IC) implies Con(ZF+ DC+ PB), where PB denotes the assertion that all sets of
reals have the Property of Baire. (Recall that AC yields a set without the Property
of Baire; see the discussion following Thm. 3.12.) As with LM, it was generally
expected that the seemingly extraneous hypothesis about inaccessible cardinals
would be eliminated; unlike the case with LM, this expectation turned out to be
correct. The following theorem of Shelah (see [Rai84]), together with Theorem
15.2, shows that there is a deep and unexpected metamathematical distinction
between measure and category. This distinction also arises from the Dougherty–
Foreman work (§11.2): There is a Banach–Tarski Paradox using pieces with the
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Property of Baire, but no such paradox can exist using Lebesgue measurable sets.
A proof of Solovay’s version of the PB result, assuming Con(ZF+ IC), can be
found in [Jec78]; Shelah’s work is in [She84].

Theorem 15.4. Con(ZF) implies Con(ZF+ DC+ PB).

This theorem asserts that ZF+ DC is not strong enough to yield a set of reals
that fails to have the Property of Baire. We now show that certain statements about
measures—for example, the Measure Extension Theorem or the amenability of
Abelian groups—do yield a set without the Property of Baire. It follows that the
measure theory statements, which are theorems of ZF+ AC, are not theorems of
ZF+ DC. The next result shows why certain measures yield topologically bad
sets.

Theorem 15.5. If there is a σ -algebra A that bears a finitely additive measure of
total measure 1 that fails to be countably additive, then there is a set of reals that
does not have the Property of Baire.

Proof. Given μ, a measure on A as hypothesized, let {An : n ∈ N} witness the
failure of countable additivity. Because μ is finitely additive, it follows that a =
μ(
⋃

An)−∑μ(An) > 0. Now, define ν on P (N) by ν(X ) = (1/a)(μ(
⋃{An :

n ∈ X )−∑{μ(An) : n ∈ X }); ν is a finitely additive measure on P (N) having
total measure 1 and vanishing on singletons. The proof will be complete once it
is shown that the collection I of subsets of N with ν-measure zero fails to have
the Property of Baire when viewed as a subset of the space 2N, topologized as a
product. (In this proof, we identify 2 with {0, 1} and m with {0, 1, . . . ,m− 1}.)
For it then follows that the subset of [0, 1] consisting of reals whose binary repre-
sentation correspond to the sequences of I fails to have the Property of Baire.

Suppose, by way of contradiction, that I does have the Property of Baire.
Because ν vanishes on finite subsets of N, I is a tail set in 2N and hence [Oxt71,
pp. 84–85] either I is meager or Ic, the complement of I in 2N, is meager. The
latter possibility cannot occur, for if Ic is meager, then so is {N \A : A /∈ I},
because this set is obtained by simply switching 0s and 1s in the sequences in Ic,
and this operation preserves nowhere dense sets. But then Ic ∪ {N \A : A /∈ I},
which equals all of 2N, is meager, which contradicts the Baire Category Theorem.

Thus we may assume that I is meager, say, I =⋃{Xn : n ∈ N}, where each Xn

is a nowhere dense subset of 2N. We shall obtain a contradiction by constructing
uncountably many sets in P (N) \ I with finite pairwise intersections. For such a
family, there must be a positive integer n such that uncountably many sets in the
family have ν-measure at least 1/n, and this contradicts ν(N) = 1.

Consider 2N as the set of all branches (i.e., maximal totally ordered subsets)
through the full binary tree. Recall that a basis for the product topology on 2N

consists of all sets of the form [s] = {b ∈ 2N : b extends s}, where s : m → 2 for
some finite m. Each Xn, being nowhere dense, has the property that any s ∈ 2m may
be extended to a longer sequence t such that [t] ∩ Xn = ∅. Now, build a subtree of
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the full binary tree as follows. Extend the sequence 〈0〉 to some t with [t] disjoint
from X0. Then extend 〈1〉 to 〈100. . .0〉, with the same length as t, and extend this
new sequence further to t ′, where [t ′] is disjoint from X0. Then replace t by the
sequence obtained by adding 0s to t to bring its length up to that of t ′. Note that
no extension of t or of t ′ lies in X0. Now, consider the two sequences t

"
0 and t

"
1

and extend them in the same way that 〈0〉 and 〈1〉 were extended, but this time
avoid X1 rather than X0. Then add enough 0s to t ′ to bring its length up to that
of the two sequences just constructed, split the resultant sequence by adding a 0
and a l, and extend these two sequences in the same way as t

"
0 and t

"
1 were

extended, that is, to avoid X1. Then bring the two extensions of t
"

0 and t
"

1 up to
the same length by adding zeros. We now have four sequences of the same length,
and no extension of any of them lies in X0 ∪ X1. Moreover, the insertion of all the
0s guarantees that any two branches through the subtree under construction will
yield subsets of N that are disjoint past the level at which the branches diverge.

Continue the construction, dodging each Xn in turn, and always adding enough
0s to preserve the property that each level of the tree has at most one 1. This yields
a subtree of 2N with the property that every node has an extension that splits. It
follows that there are 2ℵ0 branches through the subtree, and by the construction
the subsets of N corresponding to these branches have finite pairwise intersections
and fail to lie in

⋃
Xn = I, as desired.

Corollary 15.6. The following assertions, which are theorems of ZF+ AC, are
not theorems of ZF+ DC:

(a) The Measure Extension Theorem (Thm. 12.7).
(b) Abelian groups are amenable (Thm. 12.4(b)).
(c) A direct union of a directed system of amenable groups is amenable (Thm.

12.4(f)).

Proof. Because of Theorems 15.4 and 15.5, it is sufficient to show that each of
(a)–(c) yields the existence of a measure as in the hypothesis of Theorem 15.5.
For (a), let A = P (N) and let A0 be the subalgebra of A consisting of all finite
sets and their complements. If μ is the {0, 1}-valued measure on A0 that vanishes
on finite sets, then the Measure Extension Theorem yields an extension of μ to
all of A. This finitely additive extension vanishes on singletons and so fails to
be countably additive, as required. For (b), simply consider Z. Any measure wit-
nessing the amenability of Z must, by invariance and finite additivity, vanish on
singletons and so is not countably additive. For (c), let G be the direct union of
ℵ0 copies of Z2. Then G is the direct union of groups isomorphic to Z2, Z2 × Z2,
Z2 × Z2 × Z2, . . . each of which is finite and hence amenable. But a measure wit-
nessing G’s amenability vanishes on each summand, and so countable additivity
would imply it vanishes on G.

The proof of Corollary 15.6 shows that ZF+ DC does not yield the amenabil-
ity of Z. A much stronger result, due to Pincus and Solovay [PS77], is that
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ZF+ DC+ NM is consistent, where NM states that no infinite set bears a finitely
additive measure of total measure 1 that is defined on all subsets and vanishes
on singletons. This yields the unprovability in ZF+ DC of the existence of a
finitely additive, translation-invariant measure on P (R1) or P (R2) that normal-
izes an interval (Cor. 12.9): The restriction of such a measure to subsets of the
interval would violate NM. Their result also yields the unprovability in ZF+ DC
of the existence of an infinite amenable group: NM implies that AG consists of
precisely the finite groups.

The proofs of three of the six closure properties of the class of amenable groups
(Thm. 12.4) use AC. Corollary 15.6 shows that two of the three are not theorems
of ZF+ DC. The remaining assertion—that a subgroup of an amenable group
is not amenable—must be handled differently. Solovay’s original work on Theo-
rems 15.1 and 15.4 showed that the assertions were jointly consistent; that is, he
proved that Con(ZF+ IC) implies Con(ZF+ DC+ LM+ PB). Now, it is a con-
sequence of ZF+ DC+ LM that S1 is amenable: Lebesgue measure witnesses
amenability because all subsets of the circle are measurable. But, as shown in
Theorem 15.5 and Corollary 15.6, ZF+ DC+ PB implies that Z is not amenable.
Because S1 has a subgroup isomorphic to Z, this means that it is a theorem of
ZF+ DC+ LM+ PB that some amenable group has a nonamenable subgroup.
Hence, assuming the consistency of an uncountable inaccessible cardinal, The-
orem 12.4(c) is not a theorem of ZF+ DC. In fact, inaccessible cardinals are
not needed for this, because Solovay has shown that a Cohen extension of the
constructible universe followed by a random real extension can be used to get a
model of GM where Z is not amenable.

These ideas also yield the unprovability of Tarski’s Theorem (Thm. 11.1 and
Cor. 11.3) in ZF. For let G be the group of all permutations of Z that equal
the identity on all but a finite set. It is easy to see that for each n = 1, 2, . . . ,
(n+ 1)Z � nZ in S (Z), the type semigroup for G-equidecomposability. But,
assuming ZF+ DC+ PB, there is no finitely additive, G-invariant measure on
P (Z) with total measure 1, because such a measure would vanish on singletons.

In analyzing the necessity of the Axiom of Choice for certain results, two
approaches are possible. The first, which we have followed in the previous discus-
sion, is to show that the result is not provable in ZF alone. The second approach
is to show that the result is provably equivalent to AC (in ZF). It is not reason-
able to expect that the Banach–Tarski Paradox is fully equivalent to AC because
it requires only a well-ordering of R, while AC is equivalent to the assertion that
all sets can be well-ordered. But the question arises whether some of the more
general theorems, such as the Measure Extension Theorem, are equivalent to AC.
Such questions have been well studied, and the situation is summarized in Fig-
ure 15.1. The statements in each group are provably equivalent, and no statement
implies a statement of a group above it; by Corollary 15.6, none of the statements
are theorems of ZF+ DC. For proofs of these and many other related results, see
[Jec73].
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  Axiom of Choice
  Zorn’s Lemma
  Every set can be well-ordered
  |X2| = |X| for all infinite sets X
  Tychonoff’s Theorem (a product of compact topological spaces is compact)

  Boolean Prime Ideal Theorem (all Boolean algebras bear a 2-valued measure)
  A product of compact Hausdorff spaces is compact
  [0, 1]X  is compact for all sets X
  Stone Representation Theorem (any Boolean algebra is isomorphic to a field of sets)
  Compactness Theorem for first-order logic

  Hahn–Banach Theorem
  Measure Extension Theorem
  All Boolean algebras admit a [0, 1]-valued finitely additive measure

  The Banach–Tarski Paradox

Figure 15.1. The logical relationship among variations of the Axiom of Choice.

A natural question arising from the nonimplications in Figure 15.1 is whether
the classic Banach–Tarski Paradox can be derived from a theory weaker than ZFC.
Inspired by work of Foreman and Wehrung [FW91], who showed that the Hahn–
Banach Theorem yields a nonmeasurable set, J. Pawlikowski [Paw89] showed that
this can be done: The paradox is a consequence of the Hahn–Banach Theorem.
The assertion about free groups in the next result is the only place in the classic
paradox where AC is used.

Theorem 15.7. If the Hahn–Banach Theorem is true and F, a free group of rank
2, acts on X with no nontrivial fixed points, then X is F-paradoxical using six
pieces.

Proof. Assume the action is on the right: xg ∈ X ; to convert a left action to a right
one, just set xg to be g−1x. Let σ and τ generate F . Partition X into F -orbits and,
for an orbit Z, let AZ = P (Z). Let B be the free product of the algebras AZ ; this
is the power-set algebra P (

∏
AZ ). So if Y is contained in an orbit Z, then Y is the

element of B consisting of all sequences (∗, ∗, . . . , ∗, Y , ∗, ∗, . . .), where ∗ is
any possible subset of one of the other orbits.

A consequence of the Hahn–Banach Theorem (see [Lux69]) is that every
Boolean algebra admits a finitely additive measure of total measure 1; let μ
be such a measure on B. Working as in Theorem 1.2, where W (α) denotes
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“words whose leftmost entry is α,” let A1 =W (σ ), A2 =W (τ ), A3 =W (σ−1),
and A4 =W (τ−1). These sets are pairwise disjoint and

A3 ∪ σ−1A1 = A4 ∪ τ−1A2 = A1 ∪ σA3 = A2 ∪ τA4 = F.

If A ⊆ F and x ∈ X , let xA denote {xg : g ∈ A}, and then, for 1 ≤ i ≤ 4, let
Xi = {x ∈ X : μ(xAi) >

1
2 }, where Y is the natural image of Y in B.

Claim 1. X = X1σ ∪ X2τ ∪ X3σ
−1 ∪ X4τ

−1.

Proof of claim. The sets xAi are pairwise disjoint because of the fixed point
hypothesis and the disjointness of the Ai. So one of these sets has μ-measure
less than 1/2. Suppose μ(xA1) < 1/2 (the other cases are similar). Because
A1 ∪ σA3 = F , we have that, in B, xA1 ∨ xσA3 = 1. Therefore μ(xσA3) > 1/2,
so xσ ∈ X3, so x ∈ X3σ

−1.

Claim 2. X1 ⊆ X1σ ∩ X2τ ∩ X4τ
−1; X2 ⊆ X1σ ∩ X2τ ∩ X3σ

−1; X3 ⊆ X2τ ∩
X3σ

−1 ∩ X4τ
−1; X4 ⊆ X1σ ∩ X3σ

−1 ∩ X4τ
−1.

Proof of claim. We prove the first only; the rest are similar. First show X1 ⊆
X1σ . Because A1 ⊆ F = A3 ∪ σ−1A1, we have A1 ⊆ σ−1A1. Now, if x ∈ X1, then
μ(xA1) > 1/2, so μ(xσ−1A1) > 1/2, so xσ−1 ∈ X1, so x = (xσ−1)σ ∈ X1σ . The
other three containments are similar; and the cases of X2, X3, X4 are similar.

To conclude, let Y1 = X \ (X1σ ∪ X2τ ) and Y2 = X \ (X3σ
−1 ∪ X4τ

−1). Then
X1σ ∪ X2τ ∪ Y1 = X3σ

−1 ∪ X4τ
−1 ∪ Y2 = X . Now to get the paradox, it suffices

to show that the sets Y1,Y2,X1,X2,X3,X4 are pairwise disjoint. Claim 1 immedi-
ately implies that Y1 ∩ Y2 = ∅. The definition of Xi and the disjointness of xAi and
xAj for i 
= j (which follows from the action’s lack of fixed points) imply that the
Xi are pairwise disjoint. The first assertion of claim 2 immediately implies that X1

is disjoint from Y1 and Y2; the cases of the other Xi are similar.

A curiosity about the preceding proof is that a measure of one type is used to
prove—by yielding a paradox—that a measure of another type cannot exist.

15.1.1 The Axiom of Determinacy

The Solovay model (Thm. 15.1) is a possibility for those who wish to have a
theory in which all sets are Lebesgue measurable (and so the counterintuitive
Banach–Tarski Paradox disappears). But there are other approaches, a notewor-
thy one involving the Axiom of Determinacy. Here we will describe the theory
ZF+ DC+ AD and a certain model for it called L(R). First we need some back-
ground from game theory. Let X ⊆ {0, 1}ω, and consider the game played by two
players Alice (A) and Bob (B). The game starts with Alice choosing a0 in {0, 1}.
Then Bob chooses b0, Alice chooses a1, and so on. If the resulting sequence
a0, b0, a1, b1, . . . is an element of X , then Alice wins; otherwise, Bob wins. A
strategy for either Alice or Bob is a rule that specifies which element to choose.
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The nth move described by a strategy depends on the moves up to the current
stage of the game.

So a strategy for Alice is a function SA :
⋃

n∈ω{0, 1}n → {0, 1} so that Alice’s
play at the nth move is given by an = SA(b0, b1, . . . , bn−1); similarly, a strategy
for Bob tells him what to do given what has been done. A strategy is a winning
strategy if it yields a win for the player regardless of the opponent’s moves. A
game is determined if one of the players has a winning strategy. The following
axiom was introduced by J. Mycielski and H. Steinhaus in [MS62].

Axiom of Determinacy (AD). For every A ⊆ {0, 1}ω, the game defined by A is
determined.

This axiom has many interesting consequences. Using AC, it is not hard to
show (by a standard diagonalization technique over the set of possible strate-
gies, which has size continuum) that some game is not determined (see [JW96,
pp. 148–149] for a different simple proof). Therefore ZF+ AD implies that the
Axiom of Choice is false. Much more is true: Determinacy yields that all sets
of reals are Lebesgue measurable and have the Property of Baire, and also all
uncountable subsets of reals have perfect subsets. Therefore ZF+ AD eliminates
the Banach–Tarski Paradox.

Under the assumption of the existence of some uncountable large cardinal anal-
ogous to ℵ0 (in particular, strongly compact cardinals, also known as Tychonoff
cardinals), the theory ZF+ DC+ AD is consistent. This is because a difficult
theorem of Steel and Woodin [Lar04] and [Ste96] asserts that, under the large
cardinal assumption, these axioms are true in L(R), the least class of sets that is a
model of ZF and contains of all the real and ordinal numbers.

Taking these facts and theorems into account, Mycielski [Myc06, MT∞b] sug-
gested that the theory ZF+ DC+ AD+V=L(R) is a reasonable axiomatization
of set theory (and hence mathematics) for use in science. Severely counterintu-
itive results such as the Banach–Tarski Paradox are false in this theory because all
sets are Lebesgue measurable; there is enough choice so that Lebesgue measure
works as expected; the universe does not contain any “unnecessary sets”: It con-
tains only the sets that must exist given that all reals and all ordinals are present;
and all sets have the Property of Baire.

The theory ZF+ DC+ AD+V=L(R) has an interesting connection to the
Ruziewicz Problem. Recall that it is a deep theorem of Drinfeld and Margulis
(Thm. 13.13) that Lebesgue measure is unique as a finitely additive measure on
the measurable subsets of Rn, n ≥ 3. In ZF+ DC+ AD+V=L(R), the result
becomes very simple [MT∞b]. Here is the proof, which uses PB, a consequence
of AD.

Theorem 15.8. ZF+ DC+ PB implies that Lebesgue measure is unique as a
finitely additive measure on the measurable subsets of Rn (resp., Sn) that normal-
izes the unit cube (resp., sphere).
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Proof. Consider Rn first. Let μ be a finitely additive, isometry-invariant measure
on L that normalizes the unit cube. Because of PB, Theorem 15.5 implies that μ
is countably additive. Now just use Proposition 11.18. In the case of S2, all we
need is to show that μ agrees with λ on the spherical triangles, for then we can
apply the same reasoning as in Proposition 11.18. But it follows from the proof
of Girard’s theorem that the supposed measure agrees with Lebesgue measure on
spherical triangles, which are intersections of some three hemispheres. The proof
for general n is similar, using spherical simplices, which are intersections of n+ 1
hemispheres.

Note that the preceding result fails in ZFC (there are exotic Banach measures,
such as the Marczewski measures; see §13.1). But in ZF+ DC+ PB, the result is
true in all dimensions: Lebesgue measure is unique. So while one imagines that
Lebesgue, who did not believe in the Axiom of Choice or nonmeasurable sets,
would be a proponent of the theory ZF+ DC+ LM (see §15.3 for why ZF+
LM would not suffice for Lebesgue), in fact it is ZF+ DC+ PB that gives the
uniqueness of Lebesgue measure. Of course, one can have it both ways because
there are models of ZF+ DC+ LM+ PB, either Solovay’s model or L(R) under
a large cardinal assumption.

Because Proposition 11.18 is valid for Borel sets in place of measurable sets,
the preceding proof works also when restricted to the Borel sets (in ZFC, that
question is open; see Question 13.15).

15.2 The Axiom of Choice Can Sometimes Be Eliminated

The previous discussion concerns the noneliminability of AC from various results
concerning measures. But AC can be eliminated in some special cases of a geo-
metric nature. The most important consequence of Corollary 12.9 for paradoxical
decompositions is that neither an interval in R1 nor a square in R2 is paradoxical.
We have already seen (Cor. 14.25) that a proof of the linear case can be given in
ZF, using the fact that G1 is exponentially bounded. In fact, as we shall show, AC
can also be eliminated from the proof that a square is not paradoxical. The main
idea is the observation that one does not require a measure on all of P (R2), but
only on a countable subalgebra, and such a measure can be constructed without
having to use the Axiom of Choice. The proof requires the following result that
shows that, despite the inability of ZF to yield the amenability of Abelian groups,
ZF is strong enough to get a weakened form of amenability for solvable groups.

Theorem 15.9. If G is a solvable group and A is a countable left-invariant subal-
gebra of P (G), then there exists μ :A→ [0, 1], a left-invariant, finitely additive
measure with μ(G) = 1.

Proof. Let {e} = H0 � H1 � · · · � Hn = G, where each Hi/Hi−1 is Abelian, wit-
ness the solvability of G. We use induction on n. Because A0 = {A ∩ Hn−1 : A ∈
A} is a left-invariant subalgebra of P (Hn−1), we may assume that there is an
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Hn−1-invariant measure ν :A0 → [0, 1]. Define ν on A by ν(A) = ν(A ∩ Hn−1);
ν is an Hn−1)-invariant measure on A.

Now, it is sufficient to show that for each finite W ⊆ G and each ε > 0, there is
a measure μW,ε on A that is invariant within ε for left multiplication by members
of W . For then the usual compactness technique can be applied to the family of
subsets MW,ε of [0, 1]A (see the proof of Thm. 12.4(b)) to obtain the desired
measure. Note that because A is countable, the compactness of [0, 1]A does not
require any Choice (Prop. 11.4).

The key point in the construction ofμW,ε is the observation that for each A ∈ A
and g1, g2 ∈ G, ν(g1g2A) = ν(g2g1A). This holds because the commutativity of
G/Hn−1 implies that Hn−1g1g2 = Hn−1g2g1, whence g1g2g−1

1 g−1
2 ∈ Hn−1. Now,

ν(g1 g2 A) = ν(Hn−1 ∩ g1 g2 A) = ν(Hn−1 ∩ g1 g2 g−1
1 g−1

2 g2 g1 A)

= ν(g1 g2 g−1
1 g−1

2 (Hn−1 ∩ g2 g1 A)g2 g1 A)

= ν(Hn−1 ∩ g2 g1 A) = ν (g2 g1 A).

We may now construct μW,ε in a manner similar to the proof of The-
orem 12.4(b). Let W = {g1, . . . , gm} and choose N so that 2/N ≤ ε. Then
define μW,ε (A) to be (1/Nm)

∑{ν(gi1
1 · · · gim

m A) : 1 ≤ i1, . . . , im ≤ N}. This yields
a finitely additive measure, and because ν(gi g j A) = ν(g j gi A), μW,ε (gk A) differs
from μW,ε (A) by no more than

1

Nm

∑
1≤k≤m

μ(gi1
1 · · · gik−1

k−1gik+1

k+1 · · · gim
m A)+ μ(gi1

1 · · · gN+1
k · · · gim

m A),

which is at most 2Nm−1/Nm = 2/N ≤ ε. This completes the proof.

The previous result can be used to obtain a Choiceless version of the Invariant
Extension Theorem for solvable groups.

Theorem 15.10. Suppose G is a solvable group of automorphisms of a countable
Boolean algebra A, and suppose μ0 :A0 → [0,∞] is a G-invariant measure on
A0, a G-invariant subalgebra of A. Then μ0 has a G-invariant extension to A.

Proof. Because A is countable, we may use the Theorem 12.7 (see the remarks
following its proof) to extend μ0 to a measure μ :A→ [0,∞]. Now, for a ∈ A
and rationals r, s, let Sa,r,s = {g ∈ G : r ≤ μ(g−1a) < s}, and let C be the subal-
gebra of P (G) generated by these countably many sets Sa,r,s. Then C is countable,
and because hSa,r,s = Sha,r,s, C is G-invariant. By Theorem 15.9, then, there is a
left-invariant measure ν :C → [0, 1].

Now, for any a ∈ A, let fa : G → [0,∞] be defined by fa(g) = μ(g−1a). By
the way C was defined, fa is a C-measurable function, and so we may define μ(a)
to be

∫
fa dν if fa is bounded and let μ(a) = ∞ otherwise. It is easy to check that

μ is a measure on A, μ extends μ0, and μ is G-invariant.
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By applying the preceding theorem to the (countable) algebra generated by the
pieces of a purported paradoxical decomposition, one obtains a proof in ZF that a
square is not paradoxical.

Corollary 15.11. If G is a solvable group of isometries of Rn and A, B are two
measurable sets that are G-equidecomposable, then λ(A) = λ(B). In particular, a
square in the plane is not G2-paradoxical.

Proof. Suppose the equidecomposability of A and B uses m pieces and is wit-
nessed by A =⋃

Ai and B =⋃
gi(Ai). Let H be the subgroup of G generated by

{gi : 1 ≤ i ≤ m} (H is countable and solvable), and let A be the H -invariant sub-
algebra of P (G) generated by the 2m sets Ai, gi(Ai). Then A contains A, B, and
all the pieces of the decomposition. By Theorem 15.10, Lebesgue measure on the
H -invariant subalgebra A ∩ L may be extended to a measure on all of A. Because
A and B are H -equidecomposable in A, this extension must assign them the same
measure, and therefore λ(A) = λ(B).

The preceding proof also yields that Rn is not G-paradoxical if G is any solv-
able group acting on Rn. If a paradox exists, let A be the H -invariant algebra
generated by the pieces and extend the two-valued measure on {∅,Rn} to an H -
invariant measure on A.

15.3 Foundational Implications of the Banach–Tarski Paradox

What are the implications of the Banach–Tarski Paradox for the axiomatic basis
of set theory? Does the paradox, so clearly false in physical reality, mean that the
Axiom of Choice yields unreliable results and should be discarded? Many critics
of AC have buttressed their arguments by citing the Banach–Tarski Paradox. For
example, E. Borel [Bor46, p. 210], using probability theory to make his point,
argued as follows: “Hence we arrive at the conclusion that the use of the Axiom
of Choice and a standard application of the calculus of probabilities to the sets A,
B, C [of the Hausdorff Paradox of S2] that this axiom allows to be defined, lead to
a contradiction: therefore the Axiom of Choice must be rejected.” Before turning
to a defense of AC, we point out how the technical results of this chapter bear
upon the issue.

To those who feel that the Banach–Tarski Paradox is absurd, it seems evident
that the Axiom of Choice is the culprit. The whole situation would have to be
considered in an entirely different light if somehow AC could be completely elim-
inated from the proof and the paradox turned out to be a theorem of ZF. That this
cannot happen is precisely the content of Corollary 15.3. Thus it is fair to say that
AC is indeed to blame for the classic paradox. But it is not true that the rejec-
tion of AC yields a system that is free of counterintuitive geometric paradoxes.
Much of the Dougherty–Foreman work (§11.2) is valid in ZF, and their results
yield a striking paradox (Thm. 11.15) for bodies in 3-space that is almost as
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counterintuitive as the classic Banach–Tarski Paradox: These are paradoxes in
which one ignores certain nowhere dense sets.

In their original paper [BT24, p. 245], Banach and Tarski anticipated the con-
troversy that their counterintuitive result would spawn, and they analyzed their
use of the Axiom of Choice as follows: “It seems to us that the role played by
the Axiom of Choice in our reasoning deserves attention. Indeed, consider the
following two theorems, which are consequences of our research:

I. Any two polyhedra are equivalent by finite decomposition.
II. Two different polygons, with one contained in the other, are never equiva-

lent by finite decomposition.

Now, it is not known how to prove either of these theorems without appealing to
the Axiom of Choice: neither the first, which seems perhaps paradoxical, nor the
second, which agrees fully with intuition. Moreover, upon analyzing their proofs,
one could state that the Axiom of Choice occurs in the proof of the first theorem
in a more limited way than in the proof of the second.”

Thus Banach and Tarski pointed out that if AC is discarded, then not only
would their paradox be lost, but also the result that such paradoxes do not exist in
the plane. The last sentence of the excerpt refers to the fact that statement II uses
choices from a larger family of sets than does statement I. But Corollary 15.11,
which was proved by A. P. Morse [Mor49] in 1949, shows that statement II is
indeed provable in ZF and is therefore not relevant to a discussion of AC. The
exact role of AC can therefore be loosely summarized as follows. It is necessary
to disprove the existence of various invariant measures on P (Rn) and to construct
such measures, but it is not necessary to disprove the existence of paradoxes.

Despite the Banach–Tarski Paradox and other objections to the Axiom of
Choice, often focusing on its nonconstructive nature, the great majority of con-
temporary mathematicians fully accept the use of AC. It is generally understood
that nonmeasurable sets (either of the Vitali type or of the sort that arise in the
Banach–Tarski Paradox) lead to curious situations that contradict physical reality,
but the mathematics that is brought to bear on physical problems is almost always
mathematics that takes place entirely in the domain of measurable sets. And even
in this restricted domain of sets, the Axiom of Choice is useful, and ZFC provides
a more coherent foundation than does ZF alone. One can also wonder whether
the paradox has any implications for our physical world. B. Augenstein presented
in [Aug84] some speculations linking hadronic physics and paradoxes like the
Banach–Tarski Paradox.

Perhaps the most important use of AC in the domain of measurable sets has
to do with Lebesgue measure. As pointed out earlier in this chapter, it is consis-
tent with ZF that Lebesgue measure fails to be countably additive; some form of
Choice is needed to make Lebesgue measure the useful concept that it is. While
either DC or the Axiom of Countable Choice suffices, these are somewhat unnat-
ural weakenings of AC. If some nonconstructive choice is allowed, why not per-
mit all nonconstructive choice? One fear of this liberal attitude, that unlimited
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choice will lead to a contradiction, is unfounded because of Gödel’s famous theo-
rem, using the constructible universe L, that ZFC is noncontradictory. Of course,
choosing AC over DC means that duplication of the sphere is possible, but this is
simply not very relevant to the mathematics of the Lebesgue measurable sets.

It is worth noting that the fact that Choice creeps into the basic results on
Lebesgue measure is a subtle one, and it went unnoticed by the early practitioners
in the field, some of whom (Lebesgue and Borel) went on to become strong critics
of the use of nonconstructive choice. Moore [Moo83] points out that Lebesgue’s
“work reveals how a mathematician of the first rank may subtly fail to see that he
is fundamentally violating his philosophical scruples in his own work.”

The preceding remarks should not be construed as implying that the countable
additivity of Lebesgue measure is more self-evident than other alternatives. The
point is that Lebesgue measure, in its usual form, has become a valuable tool of
modem mathematics and the use of spaces of Lebesgue integrable functions pro-
vides a simpler and clearer approach to topics of classical analysis, for example,
Fourier series. An analogous problem arises with the question of the existence of
infinite sets. Suppose all mathematicians and scientists become firmly convinced
that all aspects of our universe are finite, that a true continuum of points simply
does not exist. This does not mean that infinite sets or real numbers must be dis-
carded as mathematical tools. It may well be that calculus is best understood and
taught in the context of the real numbers, whether or not the set R has physical
existence. The case for AC is similar: ZFC is a natural and simple foundation for
mathematics that is rich enough to provide mathematicians and scientists with the
tools that have proved most useful in practice.

Despite the general acceptance of AC, it is recognized that this axiom has a
different character than the others. Because of the nonconstructivity it introduces,
AC is avoided when possible, and proofs in ZF are considered more basic (and
are often more informative) than proofs using AC. A purist might argue that once
accepted as an axiom, AC should be accorded the same status as the other axioms:
A statement that is proved in ZFC is just as mathematically true as one proved in
ZF. But there are sometimes beneficial side effects of a discriminating attitude
toward the use of AC. For instance, consider the Schröder–Bernstein Theorem
for cardinality, which is much easier to prove in ZFC than in ZF (see remarks
following Cor. 10.23). But the ZF-proof, essentially presented here in Theorem
3.6, is much more valuable because it generalizes in a way that the ZFC-proof does
not. In particular, one obtains the Banach–Schröder–Bemstein Theorem for the
equidecomposability relation in an arbitrary countably complete Boolean algebra.
On the other hand, the Cancellation Law for equidecomposability (using arbitrary
pieces) uses the Axiom of Choice (despite the fact that the corresponding result
for cardinality avoids AC), and therefore it is not clear that it can be generalized
to more general equidecomposability, such as the case where the pieces are Borel
sets.

The interplay between ZF and ZFC works the other way as well. For instance,
the ZF-proof that a square is not paradoxical (Cor. 15.11) was found by
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closely analyzing the original ZFC-proof. If a more restrictive attitude toward
AC had prevailed, the original ZFC-proof might not have been discovered so
soon, and the proof (in ZF) that squares are not paradoxical might have been
delayed.

Despite how often it is cited in discussions of the Axiom of Choice, the
Banach–Tarski Paradox is more important to pure mathematics than it is to foun-
dational questions. The role of the Banach–Tarski Paradox in discussions about
AC is, for the most part, the same as the role of nonmeasurable sets; indeed,
the paradox of the sphere simply reinforced the views of those whose ideas were
shaped by the question of nonmeasurable subsets of the real line. But, as we have
emphasized throughout this book, the Banach–Tarski Paradox has spawned some
valuable mathematical ideas (principally amenability in groups, but also addi-
tional ideas both geometric and algebraic). Thus the Banach–Tarski Paradox has
a historical importance for mathematics that is completely independent of foun-
dational questions and the axioms of set theory.

Notes

See [Jec78] for an exposition of several fundamental consistency results
such as Con(ZF+ AC), Con(ZF+¬AC), Con(ZFC+ IC), Con(ZF+ R
is a countable union of countable sets), and a proof of Solovay’s theorem:
Con(ZF+ IC) implies Con(ZF+ DC+ LM+ PB). More technical consistency
results concerning the interplay between AC, its variants, and certain mathemat-
ical statements (such as those in Fig. 15.1) may be found in [Jec73]. For a dis-
cussion of the role of DC and the Axiom of Countable Choice in the theory of
measure and category, see [Moo83]. This topic is also discussed in Moore’s book
[Moo82], which provides a valuable historical account of many of the controver-
sies concerning AC.

Solovay’s theorem (the forward direction of Thm. 15.1) and the result of The-
orem 15.4 using Con(ZF + IC) was proved in 1964; complete details were pub-
lished in [Sol70]. The problem of using forcing to prove the consistency of LM
was suggested by Paul Cohen, the discoverer of forcing. It is noteworthy that
Solovay first proved, assuming only Con(ZF), Con(ZF+ LM) (see [Moo82, p.
304]), but DC failed in his model of ZF+ LM. Thus he persisted to get Con(ZF+
DC+ LM), which, however, required the consistency of Con(ZF+ IC). Shelah’s
refinements of Solovay’s results (the reverse direction of Thm. 15.1 and Thm. 15.4
without IC) were proved in 1980 [She84]. His proof that Con(ZF+ DC+ LM)
implies Con(ZF+ IC) was improved by Raisonnier [Rai84] (see also [Rai82]).
It is worth noting that the full strength of LM is not required. Shelah proved that
ZF+ DC+ “Every � 1

3 set of reals is Lebesgue measurable” yields that ℵ1 is inac-
cessible in L. Moreover, Raisonnier showed that

ZF+ DC+ Every �1
2 set is Lebesgue measurable and every

�1
3 set has the Property of Baire
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312 15 The Role of the Axiom of Choice

also yields the inaccessibility of ℵ1 in L. The latter result is noteworthy because
Con(ZF+ DC+ PB) can be proved assuming only Con(ZF); this is Theorem
15.4.

Theorem 15.2, which is important for us because it yields Corollary 15.3, was
proved by Solovay in 1964. A proof appeared in [Sac69], while a proof of a sim-
ilar result, which contains arguments very similar to those in the sketch of The-
orem 15.2’s proof given here, appears in [PS77]. Originally Solovay proved only
Con(ZF+ DC+ GM1), where GMn denotes the assertion of GM for Rn only.
But, as he pointed out to the authors, only a slight modification is needed to get
that each GMn holds in the model N discussed after Corollary 15.3.

Corollary 15.6 was known to Solovay [Sol70, p. 3]. A proof of Theorem 15.5
along a somewhat different line than the proof presented here (which is due to A.
Taylor) is presented by Pincus [Pin74].

The Axiom of Determinacy was first presented by Mycielski and Steinhaus
in 1962 [MS62], where it is shown that AD implies LM. Mycielski [Myc64b]
showed that AC implies PB.

Corollary 15.11 is due to A. P. Morse [Mor49]. The proof presented here
was inspired by an argument of Mycielski [Myc79, Thm. 3.6], who showed that
the conclusion of Theorem 15.7 is valid for countable groups satisfying Følner’s
Condition.
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A

Euclidean Transformation Groups

The types of transformations that are used to produce paradoxes in Euclidean
spaces and on spheres are usually the Euclidean isometries, but occasionally
more general affine maps arise. Because the affine group is useful in studying
and classifying isometries, we summarize the relevant facts about affine transfor-
mations. The book by Hausner [Hau65] is a good reference for a more detailed
presentation.

Definition A.1. A bijection f : Rn → Rn is called affine if for all P,Q ∈ Rn and
reals α, β with α + β = 1, f (αP+ βQ) = α f (P)+ β f (Q). The affine transfor-
mations of Rn form a group, which is denoted by An(R).

Geometrically, a bijection is affine if and only if it carries lines to lines and pre-
serves the ratio of distances along a line. Any nonsingular linear transformation
is affine, because a linear transformation satisfies Definition A.1 for all α, β, not
just pairs summing to 1. The group of nonsingular linear transformations of Rn

is denoted by GLn(R) (general linear group). Linear maps leave the origin fixed,
but affine maps need not do so; all translations of Rn are affine. Let Tn denote
the group of translations of Rn. Then Tn is isomorphic to the additive group of
Rn because composition of translations corresponds to addition of the transla-
tion vectors. It is an extremely useful fact that every affine map has a canonical
representation in terms of linear maps and translations.

Theorem A.2. If f ∈ An(R), then there are uniquely determined maps τ ∈ Tn,

and 	 ∈ GLn(R) such that f = τ	. Moreover, the map π : An → GLn(R) defined
by π ( f ) = 	 is a group homomorphism with kernel Tn. Hence Tn is a normal
subgroup of An(R) and An(R)/Tn

∼= GLn(R).

To prove the first part of this theorem, one shows τ f is linear, where τ is the
translation by − f (0); the rest follows in a straightforward manner. (For details,
see [Hau65, Chap. 8].) A useful consequence of this theorem and the fact that a
member of GLn(R) is determined by its values at n linearly independent vectors,
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316 Euclidean Transformation Groups

is that an affine map is completely determined by its values at n+ 1 points, no
three of which are collinear.

Theorem A.2 allows us to define the determinant of an affine map to be
the determinant of the corresponding linear map, that is, det f = detπ ( f ). Let
SLn(R) (special linear group) denote the group of linear transformations of
determinant 1; SAn(R) the group of affine maps of determinant 1. Note that
Tn ⊆ SAn(R).

Definition A.3. An isometry of Rn (or of any metric space) is a distance-
preserving bijection of Rn to itself. Let Gn denote the n-dimensional isometry
group.

We are using the word isometry in a global sense. Occasionally we refer to
partial isometries: bijections from a subset A to a subset B that preserve distance.
In Euclidean space, and on spheres, any partial isometry may be extended to an
isometry.

Theorem A.4. (See [Hau65, §9.4]) Every isometry of Rn is affine; that is, Gn ⊆
An(R).

The group of isometries of Rn that are also linear transformations is quite
important, because it is the group of isometries of the unit sphere, Sn−1. Such
linear transformations are characterized by their representation by orthogonal
matrices, matrices A for which AT = A−1 (AT denotes the transpose of A). Hence
On(R) is used to denote this group; that is, On(R) = Gn ∩ GLn(R), and On(R)
is called the orthogonal group. The transformations in On(R) are exactly those
linear transformations of Rn that preserve the dot product, that is, 	(P) · 	(Q) =
P · Q. Because det A = det AT , and if A is orthogonal, AAT = I , it follows that if
	 ∈ On(R), then (det 	)2 = 1. This yields the following theorem.

Theorem A.5. If 	 ∈ On(R), then det 	 = ±1.

The homomorphism π takes the isometry group Gn to On(R), and because
Tn ⊆ Gn, it follows that Tn is a normal subgroup of Gn and Gn/Tn

∼= On(R). Thus
every isometry is an orthogonal transformation followed by a translation. We
use SOn(R) (special orthogonal) to denote the orthogonal transformations having
determinant +1; these are the orientation-preserving orthogonal transformations.
By analogy with R2, transformations in SOn(R) are sometimes called rotations,
and SOn(R) may be called the rotation group of the sphere Sn−1. It is sometimes
useful to have a notation for the orientation-preserving isometries of Rn; thus let
SGn = {σ ∈ Gn : det σ = +1}.

Because for any f ∈ An(R), | det f | is the factor by which f changes area (or
Lebesgue measure; see [Hau65, §9.2] or [Wei73, §6.3]), Theorem A.5 implies
that distance-preserving maps preserve area as well. Thus Gn and SAn(R) con-
tain only measure-preserving transformations. Because det is a homomorphism,
On(R)/SOn(R) and Gn/SGn are each isomorphic to Z2. This allows us to extend
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results proved for certain maps of determinant +1 to maps of the same sort, but
with determinant ±1.

A useful consequence of the preceding representation of Gn is that Gn is iso-
morphic to a subgroup of SLn+1(R). If σ ∈ Gn has the form τ	 where τ is the
translation by (vl, . . . , vn) and 	 is represented by the orthogonal matrix (ai j ),
then let M (σ ) be the (n+ 1)× (n+ 1) matrix:

⎡
⎢⎢⎢⎢⎢⎣

υ1

υ2

ai j

...
υn

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

The mapping M is an isomorphism of Gn with a subgroup of SLn+1(R).
In low dimensions we can be more explicit about these groups; proofs may be

found in [Hau65, Chap. 9].
In R1 the only orthogonal maps are the identity, I , and the flip taking x to −x.

Hence SO1(R) = {I} and O1(R) = {I, x �→ −x}. By Theorem A.2 and Theorem
A.4, it follows that G1 = {x �→ ±x+ a : a ∈ R}. Because G1/T1

∼= O1(R) ∼= Z2

and T1
∼= R, the normal series {I}	 T1 	 G1 shows that G1 is solvable. Because

A1(R) consists of transformations of the form x �→ ax+ b, it follows that the
length-preserving affine maps (those with |a| = 1) are just the isometries.

Let ρθ denote the counterclockwise rotation about the origin in R2 through
θ radians; ρθ is represented by

[
cos θ − sin θ
sin θ cos θ

]
. Let φθ denote the reflection in the

line through the origin making an angle θ with the x-axis. Then SO2(R) = {ρθ :
0 � θ < 2π}, which is Abelian and isomorphic to the circle group (the set of
complex numbers of unit modulus under multiplication), and O2(R) = SO2(R) ∪
{φθ : 0 � θ < π}. To see that G2 is solvable, consider the sequence {I}	 T2 	
SG2 	 G2. Because T2 is the kernel of π : SG2 → SO2(R), SG2/T2 is isomorphic
to the Abelian group SO2(R). Because G2/SG2

∼= Z2, this sequence witnesses the
solvability of G2.

A planar isometry, ψ , may be written uniquely as τ	 with τ ∈ T2 and 	 ∈
O2(R), and ψ can be characterized according to the choice of τ and 	:

� If 	 = 1, then ψ is a translation.
� If 	 = ρθ , then ψ is a counterclockwise rotation through θ radians about some

point in R2.
� If 	 = φθ , then ψ is a glide reflection, that is, a reflection in some line followed

by a translation in the direction parallel to the line of reflection. If the compo-
nent of τ in that direction is the identity (i.e., τ is a translation perpendicular
to the line of reflection), then ψ is simply a reflection.

If we let SL2(Z) denote the subgroup of SL2(R) that carries Z× Z to itself
(matrices with coefficients in Z), then there are elements of SL2(Z) that are not
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318 Euclidean Transformation Groups

orthogonal. For example,
[

1 1
0 1

] ∈ SL2(Z) \ O2(R). Thus, unlike R1, the area-
preserving affine transformations consist of more than just the isometries. In fact,
G2 is solvable, while SL2(Z) has a free non-Abelian subgroup (see §8.1).

A solvable group cannot contain a free group of rank 2, because it follows
from the characterization of solvability in terms of the finiteness of the series of
commutator subgroups that a solvable group universally satisfies a nontrivial rela-
tion w = 1, where w is a nontrivial reduced word in the variables x, x−1, y, y−1.
But we can be more explicit for G1 and G2. Because σ 2∈T1 for any σ ∈G1, the
equation x2y2x−2y−2 = 1 is satisfied by all pairs x, y in G1. In G2, the normal
series {I}	 T2 	 SG2 	 G2 yields that σ 2ρ2σ−2ρ−2 lies in T2 for any σ, ρ∈G2.
Hence σ 2ρ2σ−2ρ−2 commutes with σ−2ρ−2σ 2ρ2, yielding a nontrivial relation
in G2. This shows directly why neither G1 nor G2 contains a pair of independent
elements.

A complete classification of isometries gets more complicated as the dimen-
sion increases. In R3, we do not need such a classification, but we do require more
information about SO3(R). Using the fact that any element of SO3(R) has +1 as
an eigenvalue, it can be shown (see [Hau65]) that SO3(R) consists of rotations
about a line (axis) through the origin. Hence the composition of two rotations
of R3 that fix the origin is another such rotation. Moreover, using the fact that
orthogonal transformations preserve angles, it follows that if ρ, σ ∈ SO3(R), then
ρσρ−1 is a rotation whose rotation angle is the same as that of σ . Unlike SO1(R)
and SO2(R), SO3(R) is not solvable, because it contains a free subgroup of rank
2 (see Thm. 2.1).

The matrix representation of an element of SO3(R) with respect to an orthonor-
mal basis whose first element is the x-axis is simply

⎡
⎣1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ ,

where θ is the angle of rotation. In fact, one can compute the axis and the angle
of a rotation from its matrix representation with respect to any orthonormal basis,
as the following theorem shows.

Theorem A.6. Let (ai j ) be the matrix of a rotation ρ of R3 through an axis
containing 0. Let θ be ρ’s angle of rotation (0 � θ < 2π ), and let

⇀
A be a unit vec-

tor along ρ’s axis so oriented that the rotation obeys the right-hand rule. Then
2
⇀
A sin θ = (a32 − a23, a13 − a31, a21 − a12).

Proof. Let
⇀
A = (b1, b2, b3) and ρ1 be the rotation represented by

⎡
⎣b1 0 b

b2 −b3/b −b1b2/b
b3 b2/b −b1b3/b

⎤
⎦ ,
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where b =
√

b2
2 + b2

3; ρ1 takes (1, 0, 0) to (b1, b2, b3). Then

ρ = ρ1

⎡
⎣1 0 0

0 cos θ −sin θ
0 sin θ cos θ

⎤
⎦ ρ−1

1 ,

and a computation, using the fact that ρ1, is orthogonal and hence ρ−1
1 = ρT

1 ,
shows that the right-hand side of the desired equation is

(2(b1b2
2 + b1b2

3) sin θ/b2, 2b2 sin θ, 2b3 sin θ ),

which equals 2
⇀
A sin θ , as required.

One important fact about orientation-preserving isometries of R3 is that it is
easy to recognize when there is a fixed point. For if σ ∈ SG3 has the representation

τ	 where τ is the translation by a vector
⇀
V and 	 is a rotation about the axis

⇀
A ,

then a has a fixed point in R3 if and only if
⇀
V is perpendicular to

⇀
A .

Finally, we note that the groups considered here contain the corresponding
groups in lower dimensions. If m < n, then simply decompose Rn into Rm × Rn−m

and extend the transformations of Rm by letting them be the identity in the n− m
new coordinates.

Occasionally we will use the fact that GLn(R) is a topological group, where
the topology is obtained by embedding the group in Rn2

. This implies that any
subgroup of Gn is a topological group with topology inherited from Gn.
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B

Jordan Measure

This appendix contains some of the basic facts about Jordan measure, which is a
more elementary notion than Lebesgue measure. Lebesgue measure uses count-
able collections of intervals (or cubes) to cover a set, but Jordan measure uses only
finite collections of intervals. We use v , for volume, to denote Jordan measure

Definition B.1. Let A be a bounded subset of Rn. Define v∗(A) to be inf {�n
i=1

volume(Ki) : {Ki} is a pairwise interior-disjoint collection of finitely many cubes
such that A ⊆⋃

Ki} and v∗(A) to be sup{�n
i=1 volume(Ki) : {Ki} is a pairwise

interior-disjoint collection of finitely many cubes such that
⋃

Ki ⊆ A}. If v∗(A) =
v∗(A), then A is called Jordan measurable and this common value, the Jordan
measure of A, is denoted by v (A). The collection of bounded Jordan measurable
sets is denoted by J .

Some authors use rectangles rather than cubes in the definition of v∗ and v∗, but
because any rectangle may be approximated arbitrarily closely by finitely many
cubes, the two definitions are equivalent. Because

v∗(A) � λ∗(A) � λ∗(A) � v∗(A),

where λ∗, λ∗ denote Lebesgue outer and inner measure, respectively, J ⊆ L,
the collection of Lebesgue measurable sets, and λ agrees with υ on the sets in
J . But J is much smaller than L: If A is the set of rationals in [0, 1], then
v∗(A) = 0 and v∗(A) = 1. Or, choose an open set E containing A with λ(E ) < 1;
then v∗(E ) < 1 = v∗(E ), so J does not even contain all open sets. The following
characterization is central to the study of Jordan measurable sets; for a proof, see
[Olm59, §1305]. The boundary of a set A (i.e., A\Int(A)) is denoted by ∂A.

Theorem B.2. A bounded subset A of Rn is in J if and only if v (∂A) = 0.

One consequence of this characterization is that if A,B ∈ J , then A ∪ B,
A \B ∈ J ; that is, J is a subring of P (Rn). Moreover, if A ∈ J , then A \A, which
is contained in ∂A, is nowhere dense; therefore A differs from A by a meager
set, which implies that A ∈ B, the collection of sets with the Property of Baire.

320

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.020
https://www.cambridge.org/core


Jordan Measure 321

So J ⊆ L ∩ B. It was pointed out before that J does not contain the Borel sets;
but neither is J contained in the Borel sets. If C is the Cantor subset of [0,1],
then the usual proof that λ(C) = 0 shows that, in fact, v (C) = 0. It follows that
all subsets of C lie in J ; but |C| = 2ℵ0 , so the number of subsets of C is greater
than 2ℵ0 , the number of Borel sets.

From the definition of v∗, it follows that a set A ∈ J has Jordan measure zero
if and only if A has no interior. Because for A ∈ J , v (A) = v (A), this yields that if
A ∈ J , then v (A) = 0 if and only if λ(A) = 0 if and only if A is nowhere dense if
and only if A is meager. Thus v is unbiased as regards Lebesgue measure and cat-
egory. A set in J has Jordan measure zero if either the set has Lebesgue measure
zero or the set is meager.

See Proposition 11.8 for a result about Jordan measure’s uniqueness. The his-
torical importance of Jordan measure stems from its connection with the Riemann
integral. A function is Jordan measurable if and only if it is Riemann integrable
(if and only if the set of points at which it is discontinuous has Lebesgue measure
zero).
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C

Graph Theory

A graph consists of a vertex set V and an edge set E, where each edge, written
u � v , consists of two vertices; a vertex in an edge is said to be a neighbor of
the other vertex. A simple graph is one in which there are no multiple edges (any
edge occurs at most once in E) and no loops (u � u). In this book, graph means
simple graph. If multiple edges are allowed, the term multigraph is commonly
used, though in this book we will say only that multiple edges are allowed. If the
edges have a direction, then the graph is called a directed graph and edges are
written u � v . This book makes much use of infinite graphs, where the vertex set
is infinite. The degree of a vertex is the number of edges containing it.

A path in a graph is a (possibly infinite) sequence of vertices (v1, v2, . . .) such
that each vi � vi+1 is an edge. A cycle is a path that is finite and whose last vertex
is the same as the first. The vertices in a path or cycle are generally assumed to be
distinct (except for the first and last vertex of a cycle). A tree is a graph with no
cycles. A graph is connected if for every two vertices there is a path from one to
the other. Any graph can be partitioned into maximal connected subgraphs, called
the connected components.

A graph is k-regular if all vertices have degree k. A finite graph that is 2-
regular can be partitioned into disjoint cycles. A graph in which every vertex has
degree 1 or 2 splits into cycles and paths. A degree-1 vertex is often called a leaf.
A graph is locally finite if every vertex has finite degree; for such a graph, any
connected component is countable.

A bipartite graph is one whose vertices split into A and B so that every edge
has one end in A and the other in B. It is easy to prove that a graph is bipartite iff
every cycle has even length.

A matching in a graph is a set of disjoint edges. A perfect matching is one
whose ends cover all vertices; a graph with an odd number of vertices cannot
have a perfect matching. We care most about infinite graphs, because matchings
can yield equidecomposabilty of sets. This next theorem, due to P. Hall and R.
Rado, is also known as the Marriage Theorem; the condition about neighbors is
the marriage condition. For the rest of this section, we allow multiple edges; this
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has no impact on the next results because the removal of duplicate edges does not
affect the marriage condition.

Theorem C.1. A finite bipartite graph with parts A, B has a matching that covers
all vertices in A iff, for any k, every set of k vertices in A has at least k neighbors
in B.

A proof can be found in most graph theory texts (see, e.g., [BM76]). The exten-
sion to the infinite case was first done by Marshall Hall.

Theorem C.2 (Hall–Rado–Hall Theorem) (AC). A bipartite graph with parts
A, B so that every vertex in A has finite degree admits a matching of every vertex
in A iff for any finite k, every set of k vertices in A has at least k neighbors.

Proof. Give B the discrete topology (all sets are open; compact sets are the finite
sets) and for a ∈ A, let Na ⊆ B be the neighbors of a. Then, by Tychonoff’s Theo-
rem and the compactness of each Na, the product Y = !a∈ANa is a compact sub-
space of BA, the space of all functions from A to B. Now, for any finite nonempty
H ⊆ A, let M (H ) be all f ∈ BA such that each f (a) ∈ N (a) and f is a matching
when restricted to H . By Theorem C.1, each M (H ) 
= ∅. Also each M (H ) is a
closed subset of Y (because not being in M (H ) depends only on the behavior at
two points, Y \M (H ) can be written as a union of open sets in the product topol-
ogy). And the family {M (H )} has the finite intersection property because, again
by Theorem C.1, a matching exists for any finite set. Therefore there is some
f ∈ ∩{M (H ) : H finite and nonempty}; such an f is a matching of all of A.

Theorem C.3 (Two-Sided Marriage Theorem) (AC). A locally finite bipartite
graph that satisfies the marriage condition for finite subsets of either part admits
a perfect matching.

Proof. Let A and B be the two parts of the graph. By Theorem C.2, there is a
matching MA covering A, and another one MB covering B. Start constructing the
perfect matching by using the edges of MA ∩MB, removing them from consider-
ation. Now the graph determined by the remaining edges in MA ∪MB has max-
imum degree 2. It therefore decomposes into even cycles and singly or doubly
infinite paths. Each such admits a perfect matching, and so we have the desired
matching covering the whole graph.

Historically, these marriage theorems were preceded by König’s Theorem,
which is closely related: A k-regular bipartite graph with k finite has a perfect
matching. The preceding results have what might be called bigamist’s variations;
the proof is easy and the extension is very useful for equidecomposability (see
§12.4.1).

Theorem C.4 (AC). (a) Suppose G is bipartite on A and B, every vertex in A has
finite degree, and, for a fixed positive integer d, the marriage condition holds in
the stronger form: Every set of k vertices in A has at least dk neighbors. Then
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there are d matchings of the vertices in A so that the B-ends of the edges in all the
matchings are distinct.

(b) Suppose G is locally finite and bipartite, the marriage condition of (a)
holds, and, in addition, the classic marriage condition holds for vertices in B.
Then there are d matchings, as in (a), and every vertex of B is matched.

Proof. For (a), replace each ai ∈ A by d copies, connecting each to all the neigh-
bors of ai; the condition then becomes the normal marriage condition, and The-
orem C.2 can be applied. For (b), the same proof idea works, using Theorem
C.3.
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Bull. Acad. Pol. Sc. Cl. III 2 (1954), 125–126.
[Myc55a] , About sets with strange isometrical properties (I), Fund. Math. 42

(1955), 1–10.
[Myc55b] , On the paradox of the sphere, Fund. Math. 42 (1955), 348–355.
[Myc56] , On the decompositions of Euclidean spaces, Bull. Acad. Pol. Sc. Cl. III

4 (1956), 417–418.
[Myc57a] , On the decomposition of a segment into congruent sets and related

problems, Coll. Math. 5 (1957), 24–27.
[Myc57b] , Problème 166, Coll. Math. 4 (1957), 240.
[Myc58a] , About sets with strange isometrical properties (II), Fund. Math. 45

(1958), 292–295.
[Myc58b] , About sets invariant with respect to denumerable changes, Fund. Math.

45 (1958), 296–305.
[Myc64] , Independent sets in topological algebras, Fund. Math. 55 (1964), 139–

147.
[Myc64b] , On the axiom of determinateness, Fund. Math. 53 (1964), 205–224.
[Myc73] , Almost every function is independent, Fund. Math. 81 (1973), 43–48.
[Myc74] , Remarks on invariant measures in metric spaces, Coll. Math. 32 (1974),

105–112.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107337145.022
https://www.cambridge.org/core


Bibliography 333

[Myc77a] , Two problems on geometric bodies, Am. Math. Monthly 84 (1977), 116–
118.

[Myc77b] , Can one solve equations in groups?, Am. Math. Monthly 84 (1977),
723–726.

[Myc79] , Finitely additive measures, I, Coll. Math. 42 (1979), 309–318.
[Myc80] , Problems on finitely additive invariant measures, in General Topology

and Modern Analysis, ed. McAuley and Rao, 431–436, Academic Press, 1980.
[Myc89] , The Banach–Tarski Paradox for the hyperbolic plane, Fund. Math. 132

(1989), 143–149.
[Myc98] , Non-amenable groups with amenable action and some paradoxical

decompositions in the plane, Coll. Math. 75 (1998), 149–157.
[Myc06] , A system of axioms of set theory for the rationalists, Notices Am. Math.

Soc. 53 (2006), 206–213.
[MS62] Mycielski, J., and H. Steinhaus A mathematical axiom contradicting the axiom

of choice, Bull. Acad. Pol. Sc. Cl. III 10 (1962), 1–3.
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List of Symbols

λ Lebesgue measure
λ∗ Lebesgue inner measure
λ∗ Lebesgue outer measure
v Jordan measure
Rn Euclidean n-space
Sn The unit sphere in Rn+1

Hn Hyperbolic n-space
Ln Elliptic n-space
J The unit cube in Rn

C The field of complex numbers
N The natural numbers (the nonnegative integers)
Z The set of all integers
L The set of Lebesgue measurable subsets of Rn or Sn

M The family of meager subsets of Rn

N The family of null sets (measure zero sets) of Rn

J The set of Jordan measurable subsets of Rn

B The set of subsets of Rn or Sn having the Property of Baire
LB The set of subsets of Rn or Sn that are Lebesgue measurable and have

the Property of Baire
R The Boolean ring of bounded, regular-open subsets of Rn or Sn

R1 The Boolean ring of bounded, regular-open, Jordan measurable subsets
of Rn or Sn

Aa The relativization of a Boolean algebra A to an element a
ℵ0 The cardinality of N
2ℵ0 The cardinality of the continuum
∼ The equidecomposability relation
∼n Equidecomposability using n pieces
X ∼T Y X and Y are equidecomposable using translations
A � B A is equidecomposable to a subset of B
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340 List of Symbols

S The semigroup of equidecomposability types
e The identity in a group
I The identity matrix
Tn The group of all translations of Rn

On(R) The group of n× n real orthogonal matrices
SOn(R) The group of matrices in On(R) having determinant +1
SOn(Q) The group of matrices in SOn(R) having rational entries
Gn The group of all isometries of Rn

SGn The group of all orientation-preserving isometries of Rn

An(R) The group of all affine transformations of Rn

SAn(R) The group of all affine transformations of Rn having determinant +1
GLn(R) The group of all real matrices with nonzero determinant
SLn(R) The group of all real matrices with determinant +1
π The canonical homomorphism from An(R) to GLn(R)
SLn(Z) The group of matrices in SLn(R) with integer entries
SLn(C) The group of complex matrices with determinant +1
PSLn(Z) SLn(Z)/{±I}
PSLn(C) SLn(C)/{±I}
AG The class of amenable groups
EG The class of elementary groups
NF The class of groups without a free subgroup of rank 2
SG The class of supramenable groups
NS The class of groups without a free subsemigroup of rank 2
EB The class of exponentially bounded groups
B(m, n) The Burnside group with m generators and having exponent n
W (σ ) A word beginning on the left with σ
ZF The Zermelo–Fraenkel axioms of set theory
AC The Axiom of Choice
ZFC ZF + AC
LM The assertion “all sets of reals are Lebesgue measurable”
PB The assertion “all sets of reals have the Property of Baire”
DC The Axiom of Dependent Choice
IC The assertion “that an uncountable inaccessible cardinal exists”
Int(A) The interior of the set A
A The closure of the set A
∂A The boundary of the set A
dom( f ) The domain of the function f
0 The origin of Rn

frac(x) The fractional part of the real number x
‖ · ‖ The Euclidean norm in Rn or a matrix norm
G ∗ H The free product of two groups
Fn The free group of rank n
⇀a A vector in Rn
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List of Symbols 341

〈x〉 The distance from the real number x to the nearest integer
�x� The integer part of the real number x
D(S,H ) The discrepancy of a finite set S ⊂ [0, 1)n of cardinality

N with respect to a Lebesgue measurable subset H of
[0, 1)n and expressed by the formula
D(S,H ) = ∣∣ 1

N |S ∩ H | − λ(H )
∣∣

�(S,H ) The expression �(S,H ) = ||S ∩ H | − λ(H )|, where S is a
discrete subset of R2 and H is a bounded Lebesgue mea-
surable subset of R2

s(Q) The side-length of the square Q
ln x The logarithm of x using base e
log10 x The logarithm of x using base 10
log2 x The logarithm of x using base 2
diam(A) The diameter of set A
χA The characteristic function of the set A
[g, h] = ghg−1h−1 The commutator of the elements g and h in a group

g f The function x �→ f (g−1x) for a real-valued function f and
a group element g
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almost solvable group, 225
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263–267, 270–273, 283–284, 291–294,
299–302

amenable pseudogroup, 240–243
amenable semigroups, 236
Angels and Devils, 47–48, 51
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217–218, 245, 251, 267, 268, 309
Banach–Alaoglu Theorem, 232

Banach–Schröder–Bernstein Theorem, 27–29,
60, 120, 125, 127, 131, 170, 175–176, 178,
184, 194, 200–201, 205, 208, 211, 238,
257–259, 291, 310

Banach–Tarski Paradox, 3–4, 11–12, 18, 25,
29–32, 42, 53, 67, 76, 121, 127, 135, 168,
171, 199–200, 203–206, 219, 229, 249, 251,
254, 256, 277, 296–299, 302–305, 308–309,
311

Banach measure, 29, 197, 229, 275–277, 306
Banach space, 74
Banach–Ulam Problem, 33, 198, 243
Bandt, C., 33
Baraki, G., 33
Bass, H., 21, 287, 295
Becker, H., 210
Benford’s Law, 245
Bennett, C., 48, 61
Bernstein, F., 176, 188
bipartite graph, 124, 140, 164, 239, 241,

322–324
B-measure, 200, 203–205
Bolyai, F., 34
Bolyai–Gerwien Theorem, 23, 29, 53, 133, 135,

154, 185, 215
Boolean algebra, 183, 226–227, 247, 257–259,

303, 307
Boolean algebra, countably complete, 258
Boolean Prime Ideal Theorem, 228, 304
Borel, A., 82–83, 91, 102, 104, 114, 269
Borel, E., 296, 308, 310
Borel equidecomposability, 163
Borel hierarchy, 110
bounded bijection, 140, 236
bounded space, 237
Brenner, J., 132
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Burnside group, 224, 284, 286–287
Burnside Problem, 224

Cancellation Law, 168, 170, 175–184, 187, 198,
200, 204, 209–210, 259, 310

Cantor, G., 3
Cantor set, 197, 321
cardinal algebra, 210
cardinality, 7
Cayley graph, 52, 255
Cayley transformation, 53
Ceccherini-Silberstein, T., 236, 241
Chen, S., 246
Chou, C., 287, 295
Chuaqui, R., 209–210, 217–218
Circle Limit IV, 47
circle-squaring, 29
cogrowth of a group, 291–293
Cohen, J., 235, 291–293, 295
Cohen, P., 297–299, 311
comeager set, 16, 98, 102, 205, 213
commutator, 117
compressible set, 109–110
congruences, system of, 69–76, 79, 82–84,

86–88, 93–95, 106, 118
congruent, 33
congruent by dissection, 23, 28, 133
constructible universe, L, 310
Continuum Hypothesis, CH, 211, 252, 298
contraction, 128, 131
countably additive measure, 8–9, 207–212, 220,

230, 251, 297–298, 309–310
countably paradoxical, 8, 208–209, 213
counting measure, 226
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Davies, R., 33, 268
M. M. Day, 219, 245–246
Debrunner, H., 279, 294
De Groot, J., 21, 34–35, 91, 113–114, 171, 174
Dehn, M., 25, 35
Dekker, T. J., 21, 61, 76, 82, 88, 91–92, 113–114
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directed system of subgroups, 223–224, 272,

301
direct product of groups, 273
discrepancy, 142, 151–153
discrete group, 38, 102

divisible set, 72–74, 83–84, 106–107
Dixmier’s Condition, 231
Dixmier, J., 245
doubling condition, 241–242
Dougherty, R., 32, 175, 183–184, 200, 204, 206,

212, 217, 248, 299, 308
Drinfeld, V., 256, 268, 305
Dubins, L., 134, 166

Edelstein, M., 77
elementary groups, EG, 220–221, 223–224, 271,

283, 287–288
Elgersma, M., 91–92
elliptic isometry of H2, 37, 87, 102–105
elliptic space, 86–88, 101, 113
Emerson, W., 246
equidecomposable sets, 25–28, 125, 133–135,

142, 154, 168, 170, 171, 175, 180, 182, 185,
187, 257, 308

equidecomposability, continuous, 171–175, 207
equidecomposability, countable, 208, 210–216
equidecomposability, almost countable, 213–214
equidecomposability criterion, 143, 155, 157,

162
Erdős–Turán–Koksma formula, 151
Erdős–Turán Theorem, 135, 152–154, 157
ergodic transformations, 165, 255–256
Escher, M. C., 38, 47–48, 61
exotic measure, 247, 251–254, 259–260, 306
exotic measure, absolutely continuous, 251–257,

260
expander graphs, 234, 254–255
exponential growth, group with, 282–283, 287,

291
exponentially bounded groups, EB, 283–286,

288, 291–292, 306
extricable family of sets, 172–174

finite intersection property, 194–195, 222–223,
228, 234, 272, 323

finitely generated groups, 222, 255, 263, 283,
287–288, 292–293

finitely presented group, 291
Følner’s Condition, 231, 234–236, 240–244,

253, 255, 260
Følner, S., 234, 245
Foreman, M., 32, 175, 183–184, 200, 204, 206,

212, 217, 248, 252, 299, 303, 308
free group, 4–5, 12, 14–16, 30, 37–38, 46,

50–53, 63–67, 72, 78–79, 81–88, 93–96,
99–106, 111–113, 117, 121, 124–128, 168,
170, 219, 224–225, 244, 263–265, 271, 288,
290, 292, 303, 318

free semigroup, 5, 271
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free subsemigroup, 5, 9–11, 107–108, 118,

271–272, 282, 284, 286–290, 294
Fricke, R., 38, 58
Freyhoffer, H., 217
Fubini’s theorem, 215
fundamental domain, 38, 50–51

Galileo, G., 3, 7, 13
Gardner, R., 34, 163, 179–180
geometrically absolutely measurable set,

197
geometric bodies, 185, 187–188
geometric dissection, 23–25, 179
Gerwien, P., 34–35
GM, 298–299
Gödel, K., 35, 296–297, 310
Goldberg, K., 117
Grabowski, Ł., 34, 162–163, 166
Granirer, E., 246
graph equidecomposability, 157
Greenleaf, F., 244, 246, 269
Grigorchuk, R. I., 224, 236, 241, 271, 283–284,

287, 291–292, 295
growth function of group, 282
Grünbaum, B., 218
Gromov condition, 241–242
Gromov, M., 286, 295
Gustin, W., 77
Gysin, W., 77

Haar measure, 33, 215, 217, 234, 244, 260
hadronic physics, 309
Hadwiger–Glur Theorem, 24–25, 157
Hadwiger, H., 189, 279, 294
Hahn–Banach Theorem, 217, 226, 228, 231,

303–304
Hahn–Banach Extension Property, 231, 235–236
Hamel basis, 181
Hall, M., 323
Hall, P., 322–323
Hall–Rado–Hall Marriage Theorem, 135,

140–141, 177–178, 239
Hanf, W., 258
Hausdorff, F., 9, 13, 15, 21–22, 39, 61, 102
Hausdorff measure, 165–166
Hausdorff Paradox, 17–18, 20, 23, 30, 38–44,

51, 73, 76, 262, 296, 308
Hausdorff relations, 39–40
Hausner, M., 315
Henle, J., 166
Hilbert space, 254–255
Hilbert’s third problem, 25, 34, 163
Hirsch, M., 134, 166

Horn, A., 245
Hulanicki, A., 295
hyperbolic isometry of H2, 37, 102
hyperbolic plane, 36–61, 66, 87–88, 97,

101–105, 113, 260–261, 277

ideal, 236, 247, 251–252, 257, 259
inaccessible cardinal, 199, 211, 228, 297–300,

302
independent set in a group, 14–16, 37, 42,

67–68, 79, 87, 93, 96–97, 102, 116–119,
125

Invariant Extension Theorem, 221, 229, 231,
247, 250, 307

Invt(μ), 264–265
inverse-invariant measure, 226
isometry, 4, 9

Jónsson, B., 76
Jordan domain, 133, 135, 185
Jordan measure, 185–187, 197, 202, 247–250,

320–321
Just, W., 273, 278–279

Kallman, R., 268
Kandola, S., 132
Karush, J., 134, 166
Kazhdan, D. A., 254
Kechris, A., 210
Kesten, H., 235, 292, 294
Kiss, G., 73
Kinoshita, S., 258
Klee, V., 166, 267, 279
Klein, F., 21, 38, 58
Kolmogorov, A., 162
König, D., 177, 188–189
König Tree Lemma, 188
König’s Theorem, 323
Krasa, S., 252
Kronecker’s Theorem, 275, 281
Kummer, E., 189
Kuranishi, M., 225
Kuratowski, C., 177, 188

Laczkovich, M., 29, 73, 121, 123, 128, 131–133,
135, 146, 152, 154–155, 157, 159, 162–163,
166, 179–180, 182, 185–187, 236, 239

Lang, R., 217
lattice polygon, 136–137
lattice square, 136, 141
Lebesgue, H., 114, 202, 207, 217, 251, 267–268,

310
levels, 169
Lie groups, 82, 217, 225
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Lindenbaum, A., 109, 114, 279, 281, 294
linear group, 16, 118–119, 284, 288, 315
linear fractional transformations, 36–37, 41, 128
Liouville number, 95
LM, 199, 296, 298, 302, 305
locally commutative, 37, 64–66, 68, 72, 78,

81–83, 86, 88, 94–97, 99–101, 106, 112, 117,
123–124, 168, 170, 262, 264

locally finite group, 225, 252
Lodha, Y., 224, 284, 293–294
Ło, J., 217
Losert, V., 268
Lyndon, R., 21

Mabry, R., 250
Macbeath’s Lemma, 76
Magnus, W., 106, 132
Magnus–Neumann matrices, 106, 120
Marczewski, E., 199, 217, 267
Marczewski measure, 200, 205, 207, 249–251,

306
Marczewski Problem, 178, 183–184, 199–200,

204, 207, 212, 216, 248
Margulis, G., 255–256, 268, 305
Markov–Kakutani Fixed Point Theorem, 231,

234, 244
Marks, A., 206
Marriage Theorem, 322–323
Martin’s Axiom, 252
Mason, J. H., 92
Máthé, A., 34, 162–163, 166
Mathematica, 21
Mazurkiewicz, S., 9, 13, 114
meager set, 32, 58–59, 97, 102, 110, 117, 185,

199–201, 203–205, 247–249, 297, 300,
320–321

mean, invariant, 252–257, 260
mean, left-invariant, 220–221, 231–232
mean, right-invariant, 220–221
measurable cardinal, 211, 297
Measure Extension Theorem, 227–228, 247,

299–302, 304, 307
measure-preserving transformations G (λ),

126–127
metric space, 4, 32–33, 96–99, 109–110, 117,

126, 140, 178, 198, 236–237, 240–242
metric outer measure, 164
Milnor, J., 287, 294–295
Milnor–Wolf Conjecture, 224, 287–288
modular group, 38–39, 41–42
Monod, N., 293
monotone convergence theorem, 149–150, 267
Moore, G., 310–311
Moore, J. T., 224, 284, 293–294

Morse, A. P., 245, 309, 312
Mycielski barrel, 54–60
Mycielski, J., 21, 34, 53, 57, 60–61, 76–77, 91,

96, 111–115, 117, 121, 189, 197, 207, 217,
225, 268, 277, 295, 305, 312

Mycielski measure, 261–262
Mycielski set, 51–52, 111–114

Namioka, I., 245, 268
negligible set, 17–18, 64–65, 193, 209
Newman, M., 117
Neumann, B., 132
NF, 224, 284, 293–294
nilpotent group, 117, 283, 286–288
Nisnewitsch, V. L., 114
NM, 302
nonmeasurable set, 9, 30, 73, 210, 298, 303,

309, 311
nonprincipal ultrafilter, 228, 253, 261
Novikov, P., 224
NS, 271–273, 284, 287

Ol’shankskii, A., 270, 293, 295
Osofsky, B., 15
Ostaszewski, A., 33

parabolic isometry of H2, 37, 102
paradoxical group, 4–5, 12, 39, 69, 231, 270
paradoxical set, 4–7, 10–12, 14, 17, 20, 25–27,

30, 38, 45, 60, 64, 78, 101, 108, 118, 121,
123, 127, 168–170, 174–176, 193, 200–201,
205, 230, 243, 251, 257, 259, 265–266, 273,
275, 279, 283, 285, 288–290

paradoxical using r pieces, 62–69
partial isometry, 33, 109, 198, 243, 315
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Pawlikowski, J., 303
PB, 199, 299, 302, 305–306
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periodic group, 224, 271
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322–323
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