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Preface

THE CONTENTS OF these Notes have been given as a one month
course of lectures in the Tata Institute of Fundamental &ekein
March 1974. The present reduction by Mr. S. Ramaswamy givéena
very short form the main results of my paper “Surmartingadggilieres
a valeurs mesures et désintégrations régulieresedmeasure” which
appeared in the Journal d’Analyse Mathematique, Vol XX\@i73. For
a first reading these Lecture Notes are better than the ctenpéper
which however contains more results, in more general sitast Noth-
ing is said here about stopping times. On the other hand,ntegral
representation with extremal elements§afin Chapter VII here, had
not been published before.

L. Schwartz






Note

The material in these Notes has been divided into two parspatt
I, disintegration of a measure with respect to a singlalgebra has
been considered rather extensively and in part I, measlued super-
martingales and regular disintegration of a measure wipeaet to an
increasing right continuous family ef-algebras have been considered.
The definition, remarks, lemmata, propositions, theorenascarollar-
ies have been numbered in the same serial order. To eachtidefini
(resp. remark, lemma, proposition, theorem, corollargrehcorre-
sponds a triplet (a, b, ¢) where ‘stands for the chapter and'‘the
section in which the definition (resp. remark, lemma, prajms theo-
rem, corollary) occurs and” denotes its serial number. References to
the bibliography have been indicated in square brackets.

The inspiring lectures or Professor L. Schwartz and the ndésous-
sions | had with him, have made the task of writing these Neéesser.

S. Ramaswamy
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Chapter 1

Conditional expectations and
disintegrations

1 Notations

Throughout these Notes the following notations will bedaled. R will 1
stand for the set of all real numbei, for the set of all extended real
numbers, i.eR together with the ideal pointsco and+co, N for the set
of all natural numbersZ for the set of all integers and for the set of
all rational numbersR* (respR™) will stand for the positive elements
of R (respR).

Let X be a non-void set. Lek be a subset ok. Them( A will stand
for the complementary set &, i.e. CA= {xe X | x ¢ A}.

Let X be a non-void set andl a o-algebra of subsets of. Then
the pair K, X) is called ameasurable spacelf f is a function on a
measurable spac&, (%), with values in a topological spad€ Y # 0,
we sayf belongs toX and writef € X if f is measurable with respect
to X. (For measurablility concepts, we always consider on tgiohl
spaces only theiBorel o-algebra i.e., theo-algebra generated by all
the open sets).

By a measure spacéX, X, u) we always mean a measurable space
(X, X) and a positivez 0 measure: on X.

Let (X, X, u) be a measure space. L&be a subset oK. We sayu

3



4 1. Conditional expectations and disintegrations

is carried by A if u(CA) = 0in caseA € X and in case\ ¢ X, if u(B)
for everyB € X, B c CAis zero.A c X is said to be a-null set if there
exists aB € X with u(B) = 0 andA c B. .4, will stand for the class of

all u-null sets ofX. 56,1 will stand for theo-algebra generated by and
N -
§Eﬂ is called thecompletionof X with respect tqu. If X = )A<#, we say
X is completewith respect tqu. If f is a function onX with values in a
topological spac®,Y # 0 andif f € 56#, we sayf is y-measurable If
% is anyo-algebra orX, we denote by?'V.14,, thec-algebra generated
by # and.;. Thus, X, = XV.4,.

The symbolv, x will stand for ‘for u-almost all X.

If his any non-negative functiori%#, h, u will stand for the measure

on X, given byh - u(B) = [ h(w)du(w) for all B € X,.
B

If E is a Banach space over the real numbérgX; X; u; E) will
stand for the Banach space of alequivalence classes of functions on
X with values inE which belong toaAEH and which ares-integrable.

LY(X; ¥; 1) will stand for the Banach space of alkequivalence

classes of functions with values i which belong toX, and which
areu-integrable.

Let .o/ (X; X; 1) denote the set of all extended real valued functions
on X which belong to%ﬂ and lete7*(X; X; u) denote the set of all non-
negative elements o/ (X; X; ).

If feo/ (XX u)orif fel'(X;X;u)ofif fel'(X;X;u;E), then
u(f), [ fw)du(w), [ f(Wu(dw), [ fdu will all denote the integral of
f with respect tqu, over X

2 Basic definitions in the theory of integration for
Banach space valued functions

The theory of integration for Banach space valued functmms mea-
sure space is assumed here. However, by way of recalling,ivee g
below a few basic definitions.

Let (Q, 0, 1) be a measure space. LEebe a Banach space over the



3. Conditional Expectations and Disintegrations;... 5

real numbers. I8 is anyo-algebra orf2, a functionf on Q with values
in E is said to be atep functiorbelonging tosS, if there exist finitely
many setsAi)izi2. nA €S, i =1..n,ANA =0ifi # jand
finitely many points X)i=1..n, Xi € E Vi = 1,...n such thatvw € Q,

n
f(w) = 2 xa(W)x. A function f on Q with values inE is said to be

stronglyI measurablé there exists a sequencé, ] of step functions,
f, € O,¥n € N, such that/,w, f,(w) — f(w) in E, ash — oo. Note
that a strongly measurable function belongﬁp A function f on Q
with values inE is said to bet-integrableor integrable in the sense of
Bochnerif f is strongly measurable andﬁlfl(w)d/l(w) < oo, Where
|f] is the real valued function of assigning to eactv € Q, the norm
of f(w) in E. One can prove that if is ao-algebra contained i,
and if f € Sis A-integrable, then one can find a sequenii{y of step
functions belonging taS and a real valued non-negativeintegrable
functiong belonging taS such that

Yaw, fo(w) — f(w)in E asn — oo and
vn, VoW, |fol(w) < g(w).

For further properties of Bochner integrals, the readeefisrred to
Hille and Phillips [1].

3 Conditional Expectations and Disintegrations;
Basic definitions

Let (2, £, 1) be a measure space. 1#€the ao-algebra contained i)

Definition 1. Let f be ad-integrable function orf2 with values in a
Banach space E over the reals (resp. f extended real valued) &nd
fe é’ﬂ). A function f onQ with values in E (resp. extended reals) is
said to be a conditional expectation of f with respecttdf
(i) f% € € and isA-integrable (resp. (i) f € € and is> 0)
and (i)Y Ae @, f % (w)da(w) = f f(w)da(w).

A A
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Here, [ f(w)dA(w) (resp. [ f%(w)dA(w)) stands for the integral of
A A

xa. T (resp. ya. %) with respect tol. These exist sincé and f¢ are
A-integrable (respf and f¢ are> 0).

Definition 2. A family (1%)weq Of positive measures off, indexed by
Q is called a system of conditional probabilities with respecs” or a
disintegration of1 with respect to#’ if it has the following properties,
namely

(i) VB € 0, the function w— 17 (B) belongs to¢’

and (i) VB € &, the function w— 1% (B) is a conditional expectation
of yg with respect tos’.

We remark that (i) implies that for every functidnon Q, f > 0,
f € 0, the functionw — 1% (f) belongs to¢ and that (i) implies that
v function f onQ, f > 0, f € &, the functionw — A% (f) belongs tg¢’
and that (ii) implies tha¥ function f onQ, f > 0, f € &, the function
w — A% (f) is a conditional expectation df with respect tgg. From
(ii), taking B = Q, we see tha¥,,w, A% is a probability measure.

Note that the existence of a disintegratiomafith respect t” im-
plies immediately the existence of conditional expectatiwith respect
to & for non-negative functions belonging & We shall see below that
if Arestricted tog is o-finite, conditional expectation with respect#6
for any non-negative function belonging &0, and for anyl-integrable
Banach space valued function exists. But a disintegratiohreed not
always exist without any further assumptions abQuand &’ as can be
seen by an example due to J. Dieudoriné [1].

4 lllustrations and motivations

Let (Q, £, 2) be a measure space. Before we proceed to prove the exis-
tence theorems of conditional expectations, we shall seatbve no-
tions whers’ is given by a partition of.

A A
Let A e &, be such that & A(A) < . We call the measur/g/lA(T)
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[ fda
A
m, the
conditional expectatiomof f given A, wheref is either a Banach space
valuedAa-integrable function or a non-negative function belong'mej?’i.
Note that the conditional probability is always a probapiineasure
whetherAa is or not.

Suppose also that @ A(CA) < . (This will happen only ifi
is a finite measure and when® A(A) < A(Q2)). Then, consider the
o-algebraz = (0, A, CA, Q).

Let E be a Banach space over the real numbers and st aA-
integrable function o® with values inkE (resp.f >0, f € @). Define

on ¢, the conditional probabilityof A1 given A. We call

[ fda

A/I(_A)’ if we A

C AN —
FPW) =19 fan
CA .
A if we CA

Then % is with values inE, f¢ e ¥ and isA-integrable (respf?
is>0, {7 € 7).
We have

(i) [f%w)diw) = [ f(w)daw) and
A A

(i) [FEm)daw) = [ fw)da(w).
A CA

Thus, % is a conditional expectation dfwith respect tos’.

Consider the family/(f,)weg of measures o defined as 6
xa-4 .
if we A
y AA)
/IV(C = X[j(A)' 4
TR if we CA.

This family (1%)weq satisfies the conditions (i) and (ii) of definition
@, $3,) and hence is a disintegration.bivith respect tas .
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Thus, we see that the conditional expectation of any Banpabes
valueda-integrable function, that of any non-negative functiotohg-
ing to &, and a disintegration of with respect to&¢’, always exist when
% is of the form @, A, CA, Q) with 0 < A(A) < co and 0< A(CA) < c.

Next, let us consider the following situation.
Suppose = |J An, WhereVn, An € G, An N An = 0, if n # m

neN
and 0< A(An) < o ¥n € N. We call such a sequenc8)ney Of sets,

a partition of Q. Let| be any subset df. Then, the collection of all
sets of the form_J A;, asl varies over all the subsets fis ac-algebra.

Let us denote Itehliasr-algebra by#. We say then that’ is given by the
partition (An)nen-

If fis aA-integrable function with values i& or if f is > 0 and
belongs toﬁA’ﬂ, consider the functiori® defined as

[ fda

% () — ;
fow) = A if we A,

Then f% is easily seen to be a conditional expectationf afvith
respect tos’.

Consider the family {4 )weq of measures ow defined as

/l\,fz)(/{A("—ASifweAn.

Then the family Q% )weq of measures satisfies the condition (i) and
(ii) of definition (@, § B,[d) and hence is a disintegrationofvith respect
to %.

Thus, we see that whe# is given by a partition Ay)nen With 0 <
A(An) < oo, conditional expectation of any Banach space valded
integrable function, that of any non-negative functionoinging to0,
and a disintegration of with respect tog’, always exist.
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5 Existence and uniqueness theorems of conditional
expectations for extended real valued functions;
A few properties

Let (Q, 0, 1) be a measure space. Létbe ac-algebra contained in
0. Let further, A restricted tgg” be o-finite.

Proposition 3. Let f € LY(Q; ;) (resp. fe «/*(Q;0; ). Then
a conditional expectation of f with respect@fexists. Moreover, it is
unigue in the sense that if @nd @ are two conditional expectations of
f with respect taog’, then¥ w, g1 (W) = g2(W).

Proof. The proof of this proposition follows just from a straightvi@rd

application of the Radon-Nikodym theorem. More precisilyA € €,

definev(A) = ff(w)d/l(w). Thenv is a finite signed measure (resp. a
A

positive measure) of#’ and is absolutely continuous with respectito
which iso-finite on%. Hence, by the Radon-Nikodym theorem, there
exists a functiorg € ¥ which is A-integrable (respg € ¢ and is> 0)
and which is unique upto a set of measure zero, such that

V(A) = f Fw)dA(w) = f g(W)dAw) VA € 7.
A

A

O

Note that for any giverf € LY(Q; @; ) (resp. f € &/*(Q; 0; 1), 8
we get a class of functions as conditional expectationswith respect
to ¥, any two functions in the classftiring by a%-set of measure
zero at most. Also note that #f;, and f, are any two functions belong-
ing to &7 *(Q; 0; 1) and are equal almost everywhere, then also we have
Vaw, £(w) = ££(w). Thus, we have a mapy« (resp. Vo) from
LY(Q; 05 2) to LY(Q; 6; 2) (resp. fromer*(Q; 6; 1) to o whereA!,
stands for the set of all-equivalence classes of non-negative functions
which belong td%’). Here, we are making as abuse of notation by de-
noting by the same symbdl a function as well as the class to which it
belongs.
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The mapus « is a continuous linear map from the Banach space
€
LY(Q; &; ) to LY(Q; %; 2) with [Jug || = 1 wherel|ug || = sup%.
f+0
We have the following properties of the maps, andvg «.
() ugx(f%) = 9V e LY(Q; 0; 1) i.e. us is a projection onto the
subspace.}(Q; ¢; 1) of LYQ; ;1)
Vo (f7) = 199 € 77(Q; 03 2)
(i) usz(F)l < ugz(f]) in the sense thatf e LY(Q; 0; 1), VW,
lug % (FI(W) < ug (I f)(w).
(i) f>0= ugsyx(f)=0inthe sense thatf e LY(Q;6; 2) which is
such thatv,w, f(w) > 0, we havey,w, ug «(f)(w) > 0.

(iv) If gis non-negative and belongs®andf € L(Q; &; A) and if
gf is A-integrable or ifg is A-integrable and belongs t¢ such
thatgf is A-integrable, we have

Uoz(fg) = 9- ug e (f).

(If gis non-negative and belongs %) and if f € .&/*(Q; 7; 1),
then
(Vaw, Vo iz (fa)(W) = g(w) - Vo ¢ (f)(W)).

(v) If . is anyo-algebra contained i),

Ug,» oUgs = Uo7
i.e. the operation of conditional expectation is transitiv

(Vg7 o Voo =Vo,7)

(vi) Ug,c = ldentity.
(Vfed™(Q 0,0, Yaw, Vg o(f)Ww) = f(w))
(vii) Ug o)) = Tz) [ fdA if (@) is finite
(Vf € TR 02, VW Vee(flw) = ﬁffd/l

if A(Q) < o)
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6 Existence and Uniqueness theorems of
conditional expectation for Banach space
valued integrable functions

Let (@, 7, 1) be a measure space, and#ébe ac-algebra contained in
O,. Let A restricted to& be o-finite. LetE be a Banach space over the
real numbers.

Now, we are going to prove the existence and uniquenessetimsor
of conditional expectations for anfy € LY(Q; ¢; 1;E). To prove the
existence theorem, we have to adopt essentiallyfardint method than
the one in§ B for extended real numbers as the Radon-Nikodym theo-
rem in general is not valid for Banach spaces. By the Radd&adyim 10
theorem for Banach spaces we mean the following theorem:

Let (X, X,u) be a measure space. LEtbe a Banach space over
the real numbers. Letbe a measure ok with values inE and lety be
absolutely continuous with respectitoThen, there exists&integrable
functiong on y with values inE such that

VAcX, v(A):fgdy.
A

Theorem 4. Let f € LY(Q; €; A; E). Then,
(i) Existence: A conditional expectation of f with respect to exists.

(i) Uniqueness: If g1 and @ are two conditional expectations of f
with respect tag’, thenV w, g1 (W) = g2(W).

Proof. (i) Existence.Let LY(Q; @, 1) X) E be the algebraic tensor
R

product of L1(Q; ¢; 1) and E over the real numbers. There is
an injective linear map fronb}(Q; 0; 1) X) E to LY(Q; 0; A; E)

R
which takes an elemerit® x of L1(Q; ¢; 1) @) E to f.xof L1(Q;
R
0; X, E). Hence, we can consider(Q; ﬁ;/l)(g) E as a sub-
R

space ofL(Q; ¢; 1; E). A theorem of Grothendieck says that
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LY(Q; 0; A, E) is the completion otL.}(Q; ;1) X) E for the ‘n-
R
topology’ onLY(Q; 0; 1) Q) E.
R

The linear mapv from LY(Q; ;1) Q E to LY €)X E
R R
which takes an elemerit® x of L1(Q; 0’; 1) X) E to ug () ® x
R

of LY(Q;%; 1) X E is a contraction mapping of these normed

spaces under tﬁe respectivetopologies’ and hence extends to a
unique continuous linear mapping b(Q; ¢; 1; E) to LY(Q; ¥

A; E), which we again denote by, Now, it is easy to see that
vV e LY(Q; 0; 2, E), V(f) is a conditional expectation df with
respect tcs’.

Uniqueness. To prove uniqueness, it is flicient to prove that if
f is a-integrable function o2 with values inE and belongs to
¢ and iff fdi = OYA € &, thenV,w, f(w) = 0.

A

So, letf € LY(Q;¢; 4;E) with [ fd1=0 YA€ %.
A

Let E’ be the topological dual d&. If X' € E’ andx € E, let{xX’, x)
denote the value of atx, VX € E’, YA € ¥, we have[(x’, f(w))
A

dA(w) = 0, and thereforeyx’ € E’, ¥, w, (X, f(w)) = 0.
m]

Now, there exists a sd; € % with A(N1) = 0, and aseparable

subspacé of E such that ifw ¢ Ny, f(w) € F. This is becauss, is the

limit almost everywhere of step functions. SinEds separable, there

exists a countable set/)nen, X, € F’ ¥n € N, such that

Vx e F,[IXI = supl{x;, X)|
n

(See Hille and Phillips]1], p.34, theorem 2.8.5). Therefdf w ¢

N,

| fi(w) = SEIOI(XG, f(w))l
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where|f|(w) is the norm of the elemerft(w).

SincevYx € E’, Y w, (X, f(w)) = 0, we can find a sé\l, € ¥ with
A(N2) = 0 such that ifw ¢ N, (x;,, f(w)) =0 ¥ne N.

Therefore, ifw ¢ N7 U Ny,

Ifl(w) = Sthpra, f(w))l = 0.

This shows that ¥,w, f(w)=0.

7 Another way of proving the existence theorem of
conditional expectations for Banach space valued
integrable functions

The existence of conditional expectation for Banach spatiged inte- 12
grable functions can be proved in the following way also.

As before, let , 0, 1) be a measure space. L€tbe ac-algebra
contained in@. Let A restricted to¢ be o-finite. LetE be a Banach
space over the real numbers. LEtbe the topological dual of. If
X € E’ andx € E, (X, x) will stand for the value o atx. If f is a
function onQ with values inE and if¢ is a function o2 with values in
E’, &, ) will stand for the real valued function g associating to each
w € Q, the real numbet£(w), f(w)). If f and¢é are as abovéf| (resp.
|€]) will denote the function oif2 associating to eac € Q, the norm
in E of the elementf (w) (resp. the norm i’ of the elemeng(w)).

Let f be a function o2 with values inE such thatf (Q2) is contained
in a finite dimensional subspace Bf We call such a function finite
dimensional valued functionLet F be a finite dimensional subspace
of E containingf(Q2) and letey, e, ..., e, be a basis foF. Then there
exist n real valued functionsyy, ao, ..., @y On Q such thatvw € Q,

n

f(w) = Y ai(w)g. If Sis anyco-algebra on, it is clear thatf € S
i=1

ifandonly if Vi = 1,2,...n, aj € S and that iff e Sand if S c 0,

then f is A-integrable if and only ifvi = 1,...n, q; is A-integrable. If
f is A-integrable, then a conditional expectatibf of f with respect to
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n
% is defined af?(w) = ¥, o’ (w)g Yw € Q, whereVi = 1,...n, af
=

is a conditional expectation of with respect tos’. Note thata? exist

Vi = 1,...,n. It can be easily seen that this definition is independent
of the choice of the basis & and also in independent of the finite
dimensional subspace &fcontainingf (€2).

Remark 5. If f is a finite dimensional valued-integrable function on
Q with values inE and if ¢ is any function or2 with values inE’ such
thaté € € (on E’ we always consider the Boret-algebra of the strong

topology) andf is bounded in the sense that $€ipw) is a real number,
weQ)
then,

Vaw, (€, £)7(w) = (&, F9)(w).

This is a consequence of the property (iv) of conditionaleexa-
tions of extended real valued functions listeds i of this chapter.

The alternative proof of the existence of conditional exagons of
Banach space valued functions depends on the followingéheo

Theorem 6. Let f be a finite dimensional valuedintegrable function
on Q with values in a Banach space E. Then,

Vaw, 1) < [F[%(w).
To prove this theorem, we need the following lemma.
Lemma 7. LetS be ac-algebra onQ.

(i) Let f be a step function of with values in E, belonging t&.
Then there exists a functign: Q — E’, £ € S, |£] < 1 such that
Yw e Q, (g(w), F(w)) = [fI(w).

(i) IfSc 0, andif f is anyt-integrable function o2 with values in
E belonging taS, then there exists a sequenég)nen Of functions
on Q with values in E &, € Sand|é, < 1V n e N, such that

Vaw, lim (o), Fw)) = [I(w).
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14

n
Proof. (i) Let f, a step function be of the fornY, yax, A € S
i=1

Vi=1....,n, ANA =0ifi#jxeEVi=1..,n By
Hahn-Banach theorem, there exisisi = 1,...,n, an element
n

& € E' such thatg, x) = [Ixll and|l&i]] < 1. Leté = -21““' - X
1=
Then it is easily seen thathas all the required properties.

(ii) Let f be an arbitraryl-integrable function belonging t8. Then
there exist a sequencd, ) Of step functions belonging t&
such that

Yaw, |fh — fl(w) — 0 asn — oo.

By () ¥n, 34, : Q — E', & € S, &l £ 1 such thaké,(w),
fa(w)) = [fal(W)VYw € Q.
W), F(W)) = IfIw)

= [(entw), (W) = folw)) + &), o)) I FI(W)|

= [¢énw). (W) = fa(W)) + ITal(w) — 1 FI(w)|
< | = fal(w) + [fn = fl(wW)
= 2/ — fol(w).

Hence,Y,w, nIim (&n(w), f(w)) exists and is equal td|(w). O

Proof of the theorem 6. Applying the above lemmdX(%[@,[[) to f¢,
we see that sincé? e ¢, there exists a sequenc® ).y Of functions
on Q with values inE’ such thatt, € ¥ Yn e N, |&] < 1Vn € N and
Vaw, lim (&nw), £ (w)) = 17|(w).

By remark [1.,§[4,3), 15

Y neN, Yaw, EW), F7W)) = (&, (W)
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Therefore,V n € N, Y,w, [(&W), fEW)) = [(&n, FY7(w)| and
Y neN, Yaw, (&, FPIw) < K&, )% (w) by property (i) of the con-
ditional expectations of extended real valued functioissed in§ B of
this chapter.

Now, Y n € N, (&, f)| < &l - |f] < |[f] and henceyY n € N, V,w,
Kén, DT (W) < [f[7(W). HenceY,w, Yn e N, [én, ) (W) < [7(w).
Hence Y w, ¥n € I, [¢én(w), £ (W))| < 11 (w). Hence Y, w, |£*|(w) <

|17 ().

Remark 8. Actually, one can prove that if is a finite dimensional val-
ued A-integrable function, belonging to@algebraS contained ing,,
then there exists a functighon Q with values inE’, ¢ € S, |¢] < 1 such
thatVw € Q, (¢(w), f(w)) = |f|(w). But this is very dfficult. Note that
once this is proved, the proof of theorelth §14,[8) follows more easily.

Now, let us turn to the proof of the existence theorem of cimmtal
expectations for Banach space valueihtegrable functions.

Let m be the vector subspace of all finite dimensional valued func-
tions belonging tof, and A-integrable. Thenn is dense inLY(Q; &;
A; E), as we can approximate ariye L1(Q; ¢; A; E) by step functions.
Consider the linear mapy « from m to LY(Q; €’; A; E) given by

U[/,(g(f) = {7,

f Up e (F)I(w)dAW) = f £ w)daw).

16 By theorem[[L§ [,[8). V.w, | f¢|(w) < [f[% ().
Hence

[ 1) < [1£i¢ odaw
- f £ (W)dA(w).
Hence,|lug.«(f)Il < [Ifll wherellug«(f)ll (resp. ||f|]) denotes the

norm ofug «(f) (resp. norm off) in LYQ; %; A; E) (resp. inLY(Q; 0;
A; E)).
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Henceu, « is a contraction linear map and therefore, there exists a
unique extension of this map to the wholeld{Q; ¢; A; E) which we
again denote byg «. It can be easily seen thap «(f) is a conditional
expectation off with respect tcs.

8 A few properties of conditional expectations of
Banach space valued integrable functions

As before, letQ, &, 1) be a measure spac€,ac-algebra contained in
O, and letA restricted tds” be o-finite. Let E be a Banach space over
the real numbers.

Proposition 9. If f € LY(Q; ¢; A; E), then
Vaw, [ F71(w) < 17 (w).

Proof. There exists a sequencé e Of step functions belonging to
0, such that

(i) fn— finLYQ; 0; 1, E)
(i) VoW, fo(w) — f(W)in E  and
(i) Vaw, 7 (W) = f€(w)in E.

Sincef, — fin LYQ; 0; A, E), |f. — |f] in LY(Q; €; ). Hence
1fa¢ — |f|% in LYQ; €; A). Therefore, there exists a subsequefige
such thatv,,w, |, |% (W) — || (w) in E. Since

Vaw, [ (W) < [fa % (W),

passing to the limit, we see that 17

Vaw, [F4)(w) < | F]% (w).
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Proposition 10. Let f, be a sequence of functions €y belonging to
é’ﬂ with values in E such that, tonverges to a function f in the sense
of the dominated convergence theorem, ivgw, f,(w) — f(w) in E
and there exists a hon-negative real valuehtegrable function g o2
such thatv,w, ¥n € N, |f,|(w) < g(w). Then  converges to f also

in the sense of the dominated convergence theorem.

Proof. Without loss of generality let us assume tliat 0, andf,(w) —
O forallw e Q.

Let c’°(E) denote the vector space of all sequences(Xn)nen, Xn €
EY neNandx, - 0in E asn — o. DefineVx € (E), Xl =
sup||Xnll where||X,|| is the norm of the element, in E. Then, it is easily

n
seen thatx — |||X||| is a norm inc®°(E) and this norm makes’(E), a
Banach space. m|

Let h be a function o2 with values inc’°(E). Then there exists a
sequencehy)ney Of functions onQ with values inE such that'w € Q,

h(w) = (ha(W), ha(W), . . ., hn(W), . . .).

It can be easily seen that is anyo-algebra o2, thenh € S if
and only if¥n € N, h, € S and that ifS c é’ﬂ, thenh is A-integrable if
and only if¥n € N, h, is A-integrable. Moreover, it can be easily seen
that if h € &, and isA-integrable, theiVA € &),.

fhdxlz(fhld/l, fhzd/l,...fd/l,...).
A A A A

18 Hence ifh € &, and isA-integrable, then
Vaw, he (w) = (h? (w), hs (W), ..., hE (w),...)

Consider the sequencgnjnen Of functions onQ with values in
c°(E) given by
Oifm<n
f(W) if m>n

(rn)m(w) = {
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where §n)m(w) stands for then™ coordinate ofn(w). A
Thenv¥w € Q, yn(W) - 0inc’(E). Y ne N, y, € 0, and is
A-integrable since/n € N, Y, w, [ynl(W) = sup|fml(w) < g(w) andg is
m=n

A-integrable.

f[)(n|d/l = fsup| fnl(W)dA(w) | 0 as n — oo.
m>=n
Hence
xn — 0inLYQ; 0; 2; ¢ (E)).

Therefore,
x¢ - 0inLYQ,€; 2;¢°(E)).

Let us prove thaw/,w, x& (W) — 0 in c°(E). Now, ¥, w, [x<|(w)
is a decreasing function af and hence limjy?|(w) existsV,m. Let
Nn—oo

dy = lim lr& I(w) when the limit of|y |(w) exists.

fl)(fl(w)d/l(w) ] fdwd/l(w), asn — oo.

Sincex; — 0in LXQ;%; 4; c°(E)), it follows that [ d,,dA(w) = 0
and hence&/,w, d,, = 0.
Hence,
Vaw, x& (W) — 0in c°(E).

Hence,
vV w, sup| f2|(w) — 0 asn — oo.
m>n
This means that,w, f¥(w) — 0in E asn — . Since|f,| < g,
Vaw, [fal€(w) < g% (w) andg? is A-integrable, since is. Hencef?
converges to zero, in the sense of the dominated convergleacem.

Remark 11.WhenE = R, the above propositioril($,8,[10) is proved
in Doob [1] in the pages 23-24. Though the theory of condélosx-
pectations for Banach space valued functions is not usee #sds done
here, the idea is essentially the same.

19
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The properties (v), (vi) and (vii) stated §8 of this chapter for func-
tions belonging td_1(Q; &; 1) are also true for any € LY(Q; &; 1; E),
as can be easily seen. Property (iv) also is true with the sesemp-
tions ong and ongf as there.

Thus, in this chapter, we have proved the existence and enags
of conditional expectations for Banach space valaedtegrable func-
tions on a measure spac@,(, 1). We shall see ir§ [ of ChaptefB,
that the existence of disintegration.bfs linked to the existence of con-
ditional expectations for measure valued functiongpras defined in
chaptefP.



Chapter 2

Measure valued Functions

1 Basic definitions: Fubini's theorem for extended
real valued integrable functions

In this chapter, we shall study the measure valued functions 20
Let (Q, 0, 1) be a measure space. L& ¢) be a measurable space.
Let m™(Y, %) be the set of all positive measures @n

Definition 12. A measure valued functionon Q with values inm*(Y,
%) is an assignment to each&x, a positive measurg, on %'.

If (1%)weq is a disintegration oft with respect to ar-algebra?’ c
@, it can be considered as a measure valued functforon Q with
values inm*(Q, ©) takingw € Q to 1%.

If vis a measure valued function éhwith values inm* (Y, ') and
if f is any non-negative function ovi belonging to#, thenv(f) will
denote the function oR takingw to v, (f). If B is a set belonging to
%, v(B) will stand forv(yg).

Definition 13. A measure valued functionon Q with values inm™* (Y,
%) is said to bemeasurablevith respect to ar-algebraS on Q or is
said tobelongto S if YV B € %, the extended real valued functie(B)
belongs taS.

If v belongs taS, we writey € S.

21



21

22

22 2. Measure valued Functions

If A% is a disintegration oft with respect to ar-algebra? c oy,
note thatl? € %.

If v € S, we see immediately th&t non-negative functiorf on'Y,
fe®, v(f)eS.

Definition 14. If v is a measure valued function da with values in
m*(Y, %), belonging toZ,, theintegralof v with respect tot is defined
as the measure J oft’ given byvB € %/, J(B) = va(B)d/l(w). Itis
written as J= fvwd/l(w). If A € 0, theintegral ofy over A is defined
as the integral ob with respect to the measuge, - 2. The integral ofy

over A is written asf vy, dA(w).
A

Note that if1% is a disintegration oft with respect to ar-algebra
% c 0,, the integral oft” with respect tol is 4. i.e. A = [ AL da(w).

Note also that from our definition, it easily follows thatJfis the
integral ofv with respect tat, then for every functiorf onY, f > O,
few,J(f) = fvw(f)d/i(w). Hence¥f >0, f € %, J(f) = 0 implies
thatV,w, vw(f) = 0. In particular, ifB € # is such that itsl-measure is
zero, ther¥ w its v,-measure is also zero.

Note that it also follows easily from our definition that fifis an
extended real valued function of) f € # andJ-integrable, thei ,w, it
is vy-integrable. Moreover, the functiom — vy(f) (defined arbitrarily
on the set of pointss wheref is notv,-integrable) belongs t¢, and is
A-integrable. Furtherf vw(F)daw) = J(f).

If Ae 0, note thatf vwdA(W)(f) is equal tof vw(f)dA(w), for every

functionf onY, f >0 andf ev.

The following theorem and the corollaryd (211, [I8) contains as a
special case, as we shall see towards the end of this chtpeassual
Fubini's theorem. Hence we shall call this also as Fubihiéotem.

Theorem 15(Fubini). LetS be ac-algebra contained in0,. Letv be
a measure valued function @& with values inm*(Y, %¢') belonging to
S and with integral J. Let f be an extended real valued funcbary,
f > 0 belonging to%;. Then,

(i) V,w, fisw,-measurable, i.e., € %, .



1. Basic definitions: Fubini’s theorem... 23

(i) The function w— w,(f) (defined arbitrarily on the set of w Q
for which f is notv,-measurable¥ S, and

(iii) [ va()daw) = I(F).

Proof. (i) Since f > 0 belongs to#;, there exist functions; on
Y,.fi>0, fie #,i =12, such thatf; < f < f, everywhere
and the seB = {y € Y | f1(y) # fo(y)} is of J-measure zero. Since
J(B) = 0, VW, v(B) = 0. i.e., there exists a sét € &, such
that A(A) = 0 and ifw ¢ A, wy(B) = 0. Sincef, € ¢/, it follows

therefore that ifv ¢ A, f is w,-measurable i.ef € @AVW.

(i) Since fori = 1,2,w — w,(fi) € S, it follows thatw — wy(f) €

S,
(i) [ vw(f)dAW) = [ wu(F)da(w)
= J(fi)
- J(f)

O

Corollary 16 (Fubini). With S, v and J as in the above theorem, if f is
a J-integrable extended real valued function on g, %3, then

() V.w, fisv,-measurable, i.e., € @AVW, and isvy-integrable

(i) the function w— w,(f) (defined arbitrarily on the set of w Q for
which f is notvy-integrable), belongs t&, and is A-integrable,
and

(iii) fvw(f)d/l(w) = J(f).
Proof. If f = f* — f~ with the usual notation, then the corollary imme-
diately follows from the above theorem by applying itftbandf~. O

Corollary 17. Let% be ac-algebra contained i, Let(1%)weq be a 23
disintegration oft with respect t6¢". Let f be an extended real valued
function onQ, f > 0 (resp. fA-integrable) belonging t@,. Then,

(i) Vaw, fisAf-measurable i.e. & ﬁmﬂ (resp. f isAg-measurable
and A% -integrable).
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(i) the function w— A% (f) {defined arbitrarily on the set of w Q,
for which f is notl% -measurable (resp. f is naf-integrable)
belongs to¢), and isA-integrable and

(iii) [ 4 (F)daw) = A(f).

Proof. Whenf is > 0O (resp.f is A-integrable), this follows immediately
from theorem[(R§ [, [18) (resp. from the above Corollafy @1, [18))
by takingA? instead ofy and observing that? € % and [ A% dA(w) =
A. O

We saw is§ B of Chapteldl, how the existence of a disintegration
(A% )weq OF A with respect to€ implies immediately the existence of
conditional expectations for functions > 0 onQ, f € ¢ and that
w — A% (f) is a conditional expectation df with respect tog. If f is
> 0 onQ and belongs t(ﬁA’A, we see from the above Corollafy ([,
[[7) thatV,w, f is A%-measurable and the function— A% (f) belongs
to . It can be easily checked that the function— /lf(f) is actually
a conditional expectation of with respect to, and hence is almost
everywhere equal to a conditional expectationfofith respect g%’
Similar result holds again whehe &, and isA-integrable.

Thus, we see how the existence of a disintegratiom with respect
to ac-algebra# contained ing;, implies as well the existence of con-
ditional expectations with respect ¥ for A-integrable extended real
valued functions belonging tG).

In § B, we shall extend the results of this section to Banach space
valueda-integrable functions.

2 Fubini’s theorem for Banach space valued inte-
grable functions

Throughout this section, we fix a measure sp&2eA, 1), ac-algebra
S c 5’1, a measurable spac¥, ), a measure valued functionon

Q with values inm* (Y m #) belonging taS, having an integrall with

respect tol and a Banach spadeover the real numbers.
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Proposition 18. Let g be a step function on Y with values in E belonging
to % (resp.%/). Let further, g be J-integrable.
Then

(i)
(ii)

(iii)

YW, g€ @AVW and isvy-integrable (resp¥,w, g isvy-integrable).

The function w— vy(g) with values in E (defined arbitrarily, on
the set of points wve Q where g is not,,-integrable, in such a
way that¥Yw, vy(g) is still an element of E) belongs 1), (resp.
belongs taS) and isA-integrable and

Jvw(@daw) = 3(g).

n ~
Proof. (i) Letg = } xya - X Where fori = 1,...n, A, € % (resp.
i=1

(ii)

A e?),ANA =0ifi # jandx € E. By theorem[R§ I,
IIE),\{i, Yaw, A € %, HenceY,w, Vi, A; € %, . Therefore Y, w,
g€ %,

Sinceg is J-integrable i, J(A)) < +oco. HenceY, w, Yi, vy(A) <
+00. HenceY,w, g is v-integrable.

Let A={we Q| gisw, — integrable}. By (i) A is carried byA

andvyw € A,
n

(@) = D (A

i=1
Vne N, Ywe Q, letgn(w) = 3 inf(u(A), N)X.
i=1

Then,¥n € N g, is a finite dimensional valued function belongings
to S, (resp. belonging t®). Further,gn(w) — vw(g) in E Yw e

A. SinceA is carried byA and since¥Yn € N g, € Sy (resp.

On € S andA € S) it follows that the functiorw — v,(g) belongs

to S, (resp. belongs t®).

Vi, w — wm(A) is a-integrable, sincel(A)) < +oo, and hence
w — wy(Q) is A-integrable, since fow € A,

(@1 < D AL - 1%l
i=1
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(i) [ 3u(@aw) = [(3 va(AD)dW
= & [ (A - X
J(A)x

9)

Il Il
KIMs

O

Corollary 19. Let% be ac-algebra contained ind, and let(A5)wea
be a disintegration oft with respect t&¢’". Let g be a step function dn
with values in E, ¢ 0, (resp. ge ©) and A-integrable. Then

(i) Y.w,ge @;Vg and isA-integrable (resp¥,w, g isA% -integrable).

(i) The function w— A% (g) with values in E (defined arbitrarily, on
the set of points v& Q where g is notl{ -integrable, in such a
way thatvw € Q, 1% (g) is still an element of E) belongs 6,
(resp. belongs t&’) and isA-integrable and

(iii) J A% (@daw) = A(g).

Proof. This follows immediately from the above propositidd &2,
[8), by takingd” instead ofv and observing that? € ¢ and [ A3
da(w) = A. m|

In the following theorem, let us consider the case of an atyitJ-
integrable function ory with values inE. Since this theorem contains
as a special case, the usual Fubini's theorem, as we shdlketme, we
call it also as Fubini’'s theorem.

Theorem 20(Fubini). Let f be a function on Y with values in Ec %;
(resp. fe ') and J-integrable. Then,

(i) Yaw, fe @AVW and isw,-integrable (resp¥,w, f isv,-integrable).

(i) The function w— w,(f) onQ with values in E (defined arbitrarily
on the set of points w Q where f is not-integrable) belongs
to S, (resp. belongs t&) and isA-integrable and
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(iii) [ vu(Fydaw) = I(f).

Proof. Since f € % (resp. %) and is J-integrable, there exists a
sequencegn)nen Of step functions orY with values inE and a non-
negative real valued functiog on Y belonging to#” and J-integrable
such thatvn, g, € %, (resp. ¥n, g, € %) and J-integrable,Vy,

lgnl(Y) < 9(y), Y3y, an(y) — f(y) in EandJ(gn) — J(f) in E.

() By proposition [2,§ B, OI8), vn, YV,w, g, € ZI7VW. SinceV,y,
() = f(y) In E, Yaw, ¥,,.y, ga(y) — f(y) in E. Hence,Y,w,
f e ZI7VW. Further, by the same propositidd 2, [18),vn, ¥,w,
On is wy-integrable. Hencey,w, ¥n, g, is wy-integrable.

Also Y,w, g is vy-integrable.

SinceVy, Vn, |gnl(y) < g(y), we havev,w, ¥,.y, ¥n, [gnl(y) <
g(y) and hence,

Hence, by Fatou’s lemma/,w, f is v,-integrable, and by the
dominated convergence theorem, 27

YW, vin(gn) — vw(f) in E.

(i) By proposition [2,§ &, [18), Vn € N, the functionw — v(gn)
belongs taS, (resp. belongs t®) and since/ ,w, vw(gn) — vw(Q)
in E (resp. since the set af wherevy(gn) converges tay(f)
belongs taS and carriesl) it follows thatw — () also belongs
to S, (resp. belongs t&).

SinceVY w, vw(gn) — vw(f) in E and sincey,w, ¥n € N, |vy(gn)|
< vw(lgnl) < vw(g) and sincew — vy(g) is A-integrable, it follows
by Fatou's lemma again that — w,(f) is A-integrable and again
by the dominated convergence theorem,

f V(@) dAW) — f v(F)dA(w).
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(i) Jan) — I(F)in E.
But¥n € N, J(gn) = [ vw(gn)dA(w) by proposition [R.§ B, [I8).
Since [ v(gn)dA(w) converges tof v,(f)dA(w), it follows that

J(f) = f ya(F)dA(W).
O

Corollary 21. Let% be ac-algebra contained ind,, and let(A% wea
be a disintegration oft with respect t&¢”. Let f be a function o with
values in E, fe 0, (resp. fe ©) andA-integrable. Then

() Yaw, f € O and isAj-integrable

(i) The function w— A7 (f) with values in E (defined arbitrarily on
the set of we Q where f is notl% -integrable in such a way that
A% () still takes values in Ew € Q) belongs tcz, (resp. belongs
to ¥) and isA-integrable. and

(iii) [ AG(FHdaw) = a(f).

Proof. This follows immediately from the above theorel {42, [20)
by applying it toA? instead ofv and observing that* € ¢ and [ A5
da(w) = A. m|

We shall now deduce the usual Fubini’s theorem from the above

theorem[(R§ 2,[20).

Let (X, X, u) and ¢, 3, v) be two measure spaces wijil{resp.v) o-
finite on X (resp. om). LetVx € X, 6x ® v be the product measure of
dx andv on theo-algebraX ® 3 on the seX x Z. Thenx — 6y ® vis a
measure valued function ofwith values inm* (X x Z, ¥®3), belonging
to X and has the measue® v for its integral with respect tp.

Let f be a function onX x Z with values in a Banach spade

fe 3?53#@. Then, by the above theoreld §2,[20).
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(i) Yax f € X®35,6, and iséx ® v integrable; I.e.¥,X, the function
z — f(x,2) belongs tg, and isv-integrable and

Vyx,flfl(x, 2)dv(2) < +oo.

(i) x— 6x®v(f) belongs toBAEH and isu-integrable i.e.x — f f(x, 2
dv(2) is u-integrable and

(iii) f(6X®v)(f)dy(x) = f fdu®v
i.e f(f f(%, 2dv(2))du(x) = f f(X, 2)du ® v(X, 2).

WhenE = R, this is the usual Fubini’'s theorem.

It is now clear how to deduce the Fubini’s theorem for furnsio
which are non-negative (resp. integrable) and extendeédakeed from
theorem[(R§ [,[13) (resp. Corollan(Z [, [18)).

Form Corollary[2§[2,[21), we see that if is aJ-integrable function
onY with values in a Banach spaég f s (resp.f e )and if% is
ac-algebra contained izi% and if (/lf,)weg is a disintegration oft with 29
respect to¢’, then the almost everywhere defined function- A% (f)
belongs ta, (resp. %) and isA-integrable. One can easily check that
w — 15(f) is actually a conditional expectation éfwith respect to
3 (resp. with respect t&) first by considering step functions and
then extending td. Thusw — 17 (f) is almost everywhere equal to
a conditional expectation df with respect tdg” (resp. is a conditional
expectation off with respect tos).

Thus, we see how the existence of a disintegration impliesia
istence of conditional expectations for Banach space dailutegrable
functions as well. Hence the importance of the existencdasifitégra-
tions. In the next chapter, we shall give soméisient conditions for
the existence of disintegration of a measure with respegtt@lgebra.






Chapter 3

Conditional expectations of
measure valued functions,
Existence and unigueness
theorems

1 Basic definition

In this chapter, we shall define the notion of conditional estption 30
for measure valued functions, and prove some existenceraqdaness
theorems. Our results, as we shall see, will give immediaal im-
portant consequence of a result of M. Jiriba [1] on regularddoonal
probabilities.

Let (Q, 0, A1) be a measure space. L€tbe ac-algebra contained
in &,. Let A restricted to%’ be o-finite. Let (Y, %) be a measurable
space. Let be a measure valued function Qwith values inm™* (Y, %),

VS ﬁ,{.

Definition 22. A measure valued functiorf on Q with values inm™* (Y,
%) is said to be aonditional expectatioof v with respect tos” if

(i) Av? e ¢ and

31
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(i) YAe @, f vEda(w) = f vwda(w).
A A

Note thatv* is a conditional expectation fif and only if for every
function f onY, f > 0, f € #, the functionv? (f) € ¥ and

VAe%,fvf(f)dA(w) :fvw(f)f/l(w).
A

A

Thus,»? is a conditional expectation of if and only if for every
function f onY, f > 0, f € #, the functionv? (f) is a conditional
expectation o (f).

We note also that if A )weq is a disintegration oft with respect to
€, then the measure valued functigh on Q takingw € Q to 17 is a
conditional expectation with respect#bof the measure valued function
6 on Q with values inm*(Q, ©), takingw € Q to the measuré,, (the
Dirac measure at). And conversely, every conditional expectation of
the measure valued functi@hs a disintegration oft. Thus, we see how
the existence of disintegration for a measure is relatetig¢cekistence
of conditional expectation of measure valued functions.

2 Preliminaries

Before we proceed to prove the existence and uniquenesgethsmf
conditional expectations for measure valued functions;ellect below
in the subsection$2.1, § 2.2, § 23 and§ 24, some important theorems,
propositions and definitions which will be used in the prauffthe main
theorems of this chapter.

2.1 The monotone class theorem and its consequences

Let X be a non-void set. Le¥” be a class of subsets Xf

We say.” is an-systermon X if it is closed with respect to finite
intersections.

We say.¥ is ad-systenon X if

(i) Xe.7,
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(i) ABe Y, AcB=B\Ae.¥and

(i) YneN,Ape s, A T= UNAneY.
ne

If ¢ is any class of subsets of, we shall denote byl(%) (resp.
o (%)) the smallestd-system (resp.o-algebra) containings. d(%)
(resp. o(%)) will be called thed-system (resp.c-algebra) generated
by % .

In these Notes, the following theorem, whenever it is refgio will
always be referred to as tidonotone class theorem

Theorem (Monotone class thoerem}f . is a n-system, (%) =
o ().

For a proof of this theorem, see R.M. Blumenthal and R.K. @eto
[L]. Chap. 0,§ 2, page 5, theorem (2.2).

Proposition 23. Let(X, &) be a measurable space. Lgt be ar-system 32
containing X and generating. Lety andv be two positivdinite mea-
sures onX. If u andv agree on¥, thenu andv are equal.

Proof. The class¢’ = {A € X | u(A) = v(A)} is ad-system containing
<. Hence% > d(¥). But by the Monotone class theoreni(,¥) is
the o-algebra generated hy” which isX. Hence% > X and therefore
% = X and thusu andv are equal. O

Proposition 24. Letu andy be two positiver-finite measures on a mea-

surable spacéX, X). Let.” c X be ar-system generating and con-

taining a sequencEBp)neny With | Br = X, u(Bn) = v(B) < +0¥ n e
neN

N. If u andv agree on¥, thenu andv are equal.
Proof. First, let us fix an € N.
Consider the clasg” = {A € X | u(An Bp) = v(AN By)}. Then®

is ad-system containing”. Since.¥ is arx-system and generatés by
the Monotone class theoreti c X. Hence,

VAeX, u(An By = v(AN By).
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Sincen is arbitrary, we have

n
if An = U B;j, note that
i=1

vn YAe X, u(ANAy) =v(AN Ap).

Since
An T X, we see that¥A € X, u(A) = v(A).

2.2 The lifting theorem of D. Maharam

Let (X, X, 1) be a measure space wijtho-finite on X. Let L*(X; X; 1)
stand for the Banach space whose underlying vector spale igettor
space of all-equivalence classes of extended real valued functions on
X, belonging toaAE,l, having a finite essential supremum and the norm is
the essential supremum. L&i(X; X) stand for the Banach space whose
underlying vector space is the vector space of all real vhhainded
functions onX belonging to5€,1 and the norm is the supremum.

In the following, we have to keep in mind the fact that when &g s
f is an element oL (X; X; u), we mean byf not a single function on
X, but a class of functions oX, any two functions of a classfi&ring
only on a set ofu-measure zero at most. Thusgifis a function onX
and f € L*(X; X; u), the meaning ofg € f’ is clear i.e. g belongs to
the classf. If his a bounded function oKX, € iﬂ,b € will denote the
unique element oE®(X; X; ) to whichh belongs. Thus, if&’ is a real
number, considered as the constant functeroh X, the meaning oa
is clear. Iff € L*(X; X; u), we sayf is non-negativeand writef > O if

there exists a functiogon X, g € f and a setNg € 3%,1 with u(Ng) = 0
such thag = 0 on CNg. Note that if there exists one function gre f
having this property viz. there exists a $&twith u(Ng) = 0 andg > 0
on CNg, then every function belonging tb also has this property. If
f, and f, are two elements L®(X; X; i), we sayf; is greater than or
equalto f, and writef; > fp, if f; — fo > 0.
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The following important theorem is due to D. Maharam and when
ever we refer this theorem, we will be referring it as lifteng theorem

For a proof of this theorem see D. Mahardrn [1].
34
Theorem D. Maharam The Lifting Theorem There exists a mapping

p from L= (X; ¥; u) to Z(X; X) such that
(i) pislinear and continuous
(i) p(fye f ¥ feL>(X; X;u)
(i) p(f)>=0if f >0and
(iv) p()=1

Such a mapping is called alifting.

2.3 Some theorems o (X; X; u)

In this section, letX; X, i) be a measure space WjifiX) < +oo.

If f e L>(X;X;u), we define the integral of with respect tqu as
fgdy whereg is any function belonging td. Note thatf gdu exists
sinceu is a finite measure anglis essentially bounded. Note also that
the integral off with respect tqu is independent of the choice of the
functiong chosen to belong té. The integral off with respect tqu is
written as [ fdy.

Definition 25. Let (f))ic) be a family of elements of*1(X; X; u). An
element fe L*(X; X; u) is said to be asupremum of the family )i
in the L*-sensdf

(i) f> fvieland
(i) geL°(X; %), 9> fi YViel = g> f.

Note that through a supremum need not always exist, it isugnify
it exists.

If the supremum of a familyf)i¢,, fi € L*(X; X; 1) Vi, exists in the
L*-sense, we sayieISL,JIP. exists and denote the supremum tl)eyI QP
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If I is afinite set sayl, .. .n}, then we write SUR(fy, .. ., f,) instead of

%UP}# fi. If f e L*(X;X;u), we denote byif|l., the essential supre-
1ed,..., n

mum of f.

Proposition 26. If (f,)nen iS an increasing sequence of elemeats

L*(X; X; u) such that it is bounded in norm i.sup||fyllc < +o0, then
n

SneUNP“ f, exists and[ (SUPR, fn)du = ﬁng [ .

Proof. ChooseY n € N, a functionh, on X, hy € 56# such thath, € fp.
Since (fn)new is increasingyn € N, 3 a setk, € X, such thau(E,) = 0
and ifx ¢ Ep, ha(X) < hpr1(X).

LetE = |J En. ThenE € ¥, andu(E) = 0. If x ¢ E, hy(X) < ha(X)

n=1

oo £ ha(X) < hppa(X) < ... Thus, ifx ¢ E, (hn(X))new iS @ monotonic
non-decreasing sequence of extended real numbers and Wengds,
r!im hn(X) exists.

Define

lim hy(X)if x¢ E
i - [, 9
0 if xe E.

Thenh € X,h € L¥(X; ¥; u) since suplfole < +oo.

n
It is clear thath is the supremum offf)ney in the L*-sense.
Since [h du = lim | hady, it follows that

f (SUP, f)du = sup [ fodu.
neN neN

O

Proposition 27. Let (f))ic) be a directed increasing family of elements
of L*(X; ¥; u) such that the family is bounded in norm, iseip|| fille <

iel

+00, Then,SLfPﬂfi exists.
le
Proof. Sincey is a finite measure and since

sup|[fille < +o0, sup | fidu < +oo.
i€l i€l
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Leta = sup| fidu. Thene € R.

i€l
Since (f;)ic| is a directed increasing family, we can find an increasing
sequenceft)ney such thatvn € N, f, belongs to the family )</, and

ffn du T @. From the previous proposition, NSLJR exists. Letf =
ne
SUR, fi.
neN . .
Let us show thaf is the supremum off()ic; in the L*-sense. 36

Fix ani € I.
It is easily seen that

fsua(fi, fo)du 1 fsua(fi, f)du asn — co.

¥ neN, fsua(fi, fn)du <sup | fidu,
jel

since (f;)ic| is a directed increasing family.
Hence,

¥YneN, fSUFL(fi, fodu < a.
Hence,

fsua(fi, fydu < a.

But [ SUR,(f;, f)du > a, since SUR(fif) > f and [ fdu = c.

Hence,
fSUFL(fif)dy :a:ffdy.

This shows thaf > fi.

Sincei € | is arbitrary, it follows thatf > fi Vi € |. Now, let
g e L®(X; X;u) be such thag > fi Viel. Theng> f, ¥ne N and
henceg > f.

This shows thaf is the supremum off()i; in theL*-sense. O

Proposition 28. Let(f;)ic; be a directed increasing family of elements of
L*(X; X; u) and let fe L*(X; X; u). Then, the following are equivalent,

() f=SURf,
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(i) f > fi Vi el and there exists a sequen€)nen, VN € N fy
belonging to the familyf;)ic; such that f= S%P,, fa.
ne

(i) f>% Vieland [fdu=sup[ fidu.
i€l

Proof. (i) = (ii). Since f = SL{P,,fi and f € L*(X; X;p), it follows
le
that the family ()i is bounded in norm. Let = sup | fidyu.
il
Thena € R. Then, if (f))ney IS an increasing seqlejence of el-
ements,Y n € N, f, belonging to the family {)ic; such that
f fadu 7T a, we can show as in the proof of the previous proposi-

tion @3, § Z3,2T) thatf = SL1J\1P“ fa.
ne

(i) => (iii). Let hy = SUR,(fy. fa..... ). Then¥ ne I, hy € L(X;
X;p) and [ hndu T fdu.
Since¥iel, f>fj, [fdu > fidu Viel, and hencef f du >
sup [ fi du.
il
On the other handy n € N, [hydu < supf fidu, (since the

iel

family (f)ic, is directed increasing).

Hence
ff du =sup | fidu.

i€l
(i) = (i). Sincef € L*(X; X;u) andf > f; Vi € I, the family (fi)ic,
is bounded in norm.

Lete = [f du = ¥ [ fidu. Thene € R. Let (gn)new be an

iel

increasing sequence of elements belongind.-t¢X; X; 1) such
thatV n € N, g, belongs to the family )i andfgndp la.

Letg = SLéTP,,gn (S%P,,gn exists because of propositidd @23,
ne ne
28)). Then[g du = @ = [f du. Sincef > fiviel, f >

gn¥ n € N, and hence > g. Since [ f du = [ g dy, it follows
thatf = g.
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If h e L*(X;X;u) is such thah > f; Vi € |, thenh > g,¥Vn e N
and sinceg = f = SUP, gy, it follows thath > f. Hencef =
SUP, fi.

O

Corollary 29. Let(f))ic| be a directed increasing family of elements of
L®(X; X;u) and let fe L*(X; X; u). Then f= SL{B,fi if and only if
le

(i) f=fivieland

(ii) there exists an increasing sequer{¢®neay, fn, ¥ N € N, belong-
ing to the family(fi)ie; such that[ fn du 1 [ f du.

Proof. This is an immediate consequence of the above propositian.

Proposition 30. Let p be a lifting from L°(X; X; i) to %A(X; X). Let 38
(f)ie) be a directed increasing family of elements 6%(K; X; u) bou-
nded in norm. Let & S_LIJF;Ifi. Then,

le

() & SUR,p(f) and¥,x.o(1)0) = supp(f)(x).

In particular,
Supp(fi) € X,.

i€l
Proof. Note thato(f) € SLJIB,p(fi) is clear since ,%U@(fi) = SUR, fi
e e e —
(sincep(fi) € fi¥i € 1), p(f) € f andf = S_LfPHfi. Sinceviel, f > fj,
IS
o(H)(X) = p(fi)(x) for all x e X and hence

p(H)(X) = Siulpp(fi)(x)

for all x e X.
Let (fn)newy be an increasing sequence of elemeiits) € N, f,
belonging to the family f)ic; such thatf = S%P,l fn. (Such a sequence
ne

exists because of the propositidh §2.3,[78)).
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Thenp(fy) Tand [ fn du T [ f du. Hence, [ p(fo)du T [ p(f)du.
Sincep(f,) T, by the monotone convergence theorem,

sup f p(fo)du = f supp(fo)du.
n n

Hence,fp(f)d,u = fsupp(fn)d,u. But supo(fn)(X) < p(f)(x) for
all x € X, since¥ n € N, p(nfn)(x) < p(f)(¥) f?)r all x e X. HenceVv,Xx,
p(F)(X) = Sanpp(fn)(X)-

Now, for all x € X.

p(H)(x) = Siglpp(fi)(x) = supp(fn) ().

Hence,Y, %, p(f)(X) = supe(f)(X). Sincep(f) € 3%,1 and sincev, X,
i€l
supp(f)(x) is equal too(F)(), it follows that

iel

supp(f) € X,,.

i€l

O

Let 3 be a subr-algebra of§Eﬂ. Let f € L*(X; X;u). Letg be any
function onX, g € f. SinceV, x, g(X) < |||l andu is a finite measure, it
follows thatg is u-integrable, and henag, a conditional expectation of
g with respect tg exists.V, x, |9°(X)| < |Ifll. and hencep is essentially
bounded. Since any two conditional expectationg wfith respect tg
are equali-almost everywhere, we have a unique elemehtX; 3; 1)
to which any conditional expectation gfvith respect tg belongs. Note
that this element o> (X; 3; 1) is independent of the functiagm chosen
to belong tof and hence depends only dnWe denote this element by
f3 and call it theconditional expectationf f with respect tg.

Proposition 31. Let3 be a sulvr-algebra ofﬁEﬂ. Let(f)ic be a directed
increasing family of elements of(X; X; 1) bounded in norm. Let £
SUR.fi. ThenSL{Pﬂ f} exists and is equal to’f

IS le
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Proof. Since (fi)ic; is a directed increasing family bounded in norm,
(fi3)i€| is also directed increasing and bounded in norm. Hen%,i}UP
le

exists. m]

To prove thatf? = S,UIP#fiﬁ, it is suficient to prove, because of
le

proposition [B.§ Z3,[28), thatf’ > Vi € | and [ fidu = sup [ fdu.
iel

But this follows immediately, sincé > fiVi € I, [f du = [ fidy,
ffid,u = f fisd,u\li el, andff du = supf fidu.
il

2.4 Radon Measures

Let X be a topological space. (By topological spaces in thesed\Note
always mean only non-void, Hausdittopological spaces). Lét be its
Borelo-algebra i.e. the—-algebra generated by all the open setX of

Definition 32. A positive measurg on X is is said to be &adon mea-
sure on X if

(i) wislocally finitei.e. every point x X has a neighbourhood,V 40
such thatu(Vy) < +c0. and

(i) wisinner regulaiin the sense that

¥ B € X, u(B) =supu(K)
KcB
K compact

Definition 33. Letu be a Radon measure on a topological space X. Let
(Ki)iel be a family of compact sets of X and Ny-aull set. {(K)ici, N}
is said to be au-concassagef X if

(i) X=NUUK;

iel

(i) KinK;=0ifi # j, and
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(i) the family(Kj)i¢ is locally countabldn the sense that every point
has a neighbourhood which has a non-void intersection with a
most a countable number of &

The following important theorem is stated here without firemd
for a proof see L. Schwartzl[2], page 48, theorem 13.

Theorem. If u is a Radon measure on topological space X, there exists
a u-concassagfKi)ici, N} of X.

Proposition 34. Letu be afinite Radon measure on X. Then there exists
a u-concassagé(Kj)ici, N} of X with | countable

Proof. Sinceu is a finite Radon measure, using the inner regularity of
u, we see that there existspanull setN; and a sequenceXf)nen Of
compact sets ak such that

X = Ny U an.
neN

Let {(K;)je3, N2} be au-concassage oX. Since the family Kj)jes
is locally countable, every compact set can have a non-wb@tgection
only with at most a countable number §;j;c;. HenceY n e N, there
exists a countable sé¢f c J such that ifj ¢ I, X, N K; = 0. Let

| = U Ih. Thenitis clear that(Kj)ic|, N} is au-concassage of where
neN
N = N; U N,. Note thel is countable. O

3 Uniqueness Theorem

Let (X, X) be a measurable space. ludbe a positive measure ¢h

Definition 35. X is said to have th@-countability property if there ex-
ists a set Ne X with 4(N) = O such that ther-algebraX n CN on

X’ = XN CN consisting of sets of the formmACN, A€ X is countably
generated.

Examples.SupposeX is countably generated as in the case whies
the Borelo-algebra of a topological spacéhaving the 29 axiom of
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countability, then obviously has theu-countability property for any
positive measurg: on X. Also, it can be easily proved that ¥, is
countably generated, théhhas theu-countability property.

From now onwards, in this section, l€2,(£, 1) be a measure space
and let Y, ) be a measurable space. kdte a measure valued function
on Q with values inm*(Y, %), v € é’ﬂ. Let ¥ be ac-algebra onQ,

% c 0,. Leta restricted to¢’ bec-finite. Letd = [ wudA(w).

Theorem 36 (The Uniqueness theoreml.et J be ac-finite measure
on% and let? have the J-countability property. Thenyif andv
are any two conditional expectations ofwith respect tg¢’, we have
Vaw.(v)w = (v5)w Where(v?), for i = 1,2 stands for the measure

cfztO W.

associated by,

Proof. First note that) = [v¥dA = [v§dA. Sinced is o-finite, it
therefore follows that/,w, (v¢),, and ¢35 )w are botho-finite i.e. 3 a
setN; € &, with A(Ny) = 0 such that ifw ¢ Ny, (V%) and ¢%), are
o-finite measures o' 42

Since?  has theJ-countability property there exists a ddte %
with J(N) = 0 such that the-algebra?’ =  nCNonY’ =Yn (N
is countably generated. Sind@N) = 0, it follows thatV ,w, (vf)W(N) =
(vf)W(N) = 0. i.e., there exists a sbb € &, with A(N2) = 0 such that
if wé¢ Np, (v?)W(N) = (v‘f)w(N) =0.

With our assumptions thal is o-finite and%”’ is countably gener-
ated, we can find a clas® of subsets off’ such that# is countable,
% generates?” and J(B) < +oo VB € #. Let ¥ be the class of
subsets ofy’ formed by the sets which are finite intersections of sets
belonging to#. Then% is countable® is an-system generatingg’
andJ(C) < +o0 YC € ¢. There exists a sdtz € &, with A(N3) = 0
such that ifv ¢ Na, (*¥)w(C) and ¢5 )w(C) are both finite for alC € %

Now VB € &, Y,w, (Y )w(B) = (v )w(B) since bothv¥ (B) and
vf(B) are conditional expectations with respect#oof the extended
real valued functionv(B). Hence in particularyC € %, Y,w, (v}””)W
(©) = (%)wl©).

Since% is countable, we therefore have,

VW, VC € €, (v )w(C) = (V% )w(C) i.e.
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there exists a sy € &, with A(N4) = 0 such that ifw ¢ N,
(I W(C) = (V5 )w(C)

forallCe %.

Letw ¢ Ny U N3 U N4 Then both ¢¥),, and ¢5)w are o-finite,
(w(C) = (V5 w(C) ¥V C € ¥ and ¢)w(C) < +oo, (v Jw(C) < +oo
for all C € ¥. Since% is an-system generatingg’ and countable,
by proposition [(B§ Z1,[73), we conclude that{)w = (v5)w On %",
Hence ifw ¢ Ny U N3 U Ng4, the measures/{),, and ¢35 )., are equal on
9,

Therefore, ifw ¢ Ny U N3 U Ng U Ny, the measures/{),, and ¢5 ).
are equal o1 since ifw ¢ Np, (¥ )w(N) = (v& )w(N) = 0. Hence

Vaw, (] Jw = (V)2 on .

4 Existence theorems

Let X be a topological space and etbe its Borelo-algebra. Leju be
a positive measure ok.

Definition 37. X is said to have th@-compacity(resp. u-compacity
metrizability) property if there exists a set N X with u(N) = O and a
sequencéK)nay Of compact sets (resp. compact metrizable sets) such
that X= | J KyUN and¥ n e N, u(Ky) < +co.
neN

Note that ifu is a o-finite Radon measure oK, X has theu -
compacity property. If further ta being ac-finite Radon measure,
either X is metrizable or every compact subsetoifs metrizable, then
X has theu-compacity metrizability property. In particular, X is a
Suslin space and is a o-finite Radon measure o), then X has the
u-compacity metrizability property. (In a Suslin space, rgveompact
subset is metrizable).

We shall now give some fiicient conditions for the existence of
conditional expectations of measure valued functions.
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Throughout this section, we shall adopt the following riota.

(Q, 7, 1) is a measure space. is a topological space ar# is its
Borel-o-algebra. v is a measure valued function @ with values in
m*(Y, %), v e 0, and having an integral with respect tol.

Theorem 38. Let a sequencéKp)neny Of compact sets of Y and a set
N € % exist with the following properties:

() Y=U KyUN

neN

(i) J(N) =0and 44
(i) ¥V ne N, the restriction of J to K is a Radon measure on,\K

Let% be ac-algebra contained in?, such that¢’ is complete with
respect tod and letA restricted to% be o-finite. Then, a conditional
expectation of with respect tos” exists.

Proof. Let us split the proof in two cases cdde 1 and ¢ase 2. In case
[, we assume that is compact andl is a Radon measure on In
this case, the assumptions (i), (ii) and (iii) mentionechia $tatement of
the theorem are trivially verified. In caBk 2, we shall coesa general
topological spac®, having the properties (i), (ii) and (iii) mentioned in
the statement of the theorem. We shall deduceldase 2 fronfilcase

The proof in casEl1 proceeds in three steps, Btep 1[Btep 2amd S
a.

In Sted, we define a measure valued functiéron Q with values
inm*(Y, %) such that'w € Q, v(ﬁ is a Radon measure &fand such that
v real valued continuous functigéf on'Y, w — v%(¢) is a conditional
expectation with respect tg of the functionw — vy ().

In Step[®, we prove that U open inY, v¢(yy) is a conditional
expectation with respect t of the functionv(yy).

In SteB, we prove thatB € %, v? (yg) is a conditional expectation
with respect tag” of the functionv(yg).

Case 1.Y a compact space arj a Radon measure o
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Step 1.SinceJ is a Radon measure ory, J(Y) < +co. Hencev,w,
vw(Y) < +oo. Without loss of generality, we can assume that € Q,
vw(Y) < +o0. For, consider the measure valued functiéron Q with
values inm*(Y, %) given by

,rwifv(Y) < oo
0 otherwise i.e. the zero measureyfY) = +oo.

Thenyv’ is a measure valued function éhwith values inm* (Y, %),
V' € 0,V has the same integrdlasy and furthery w € Q, v}, is a
finite measure. Alsoy,w, v, = vw. Hence, if a conditional expectation
of v/ with respect to¢” exists, it is a conditional expectation ofwith
respect tog, as well.

Hence, we may assume thatv € Q, v (Y) < +oo.

Let ¢ be any real valued bounded function¥ny € %'. SincevYw €
Q, vy is a finite measure of¥', ¥ w € Q, ¢ is vy-integrable. Consider
the real valued functiom(y) takingw to vy(¢). SinceA restricted tg%’
is o-finite, a conditional expectation foi(y) with respect tos” exists.
Let [v(¢)]? be a conditional expectation ofy) with respect tos’.

Now, let us fix p/(1)]* once and for all atheconditional expectation
of v(1) with respect t&#’ in such a way tha¥ w e Q, 0 < [v(1)]% (W) <

+00.

Let |l¢ll be sude(y)l
yeY

Then,v(p)l < llgll.v(1).
Hence,Y.aw, |[v(@)]%| (W) < v(¢)[¥ (W) < lleli[v(1)]* (w). Hence, if
A= {w: [v(1)]* (W) = 0}, thenA € € andV,w, w € A, [v(¢)]* (W) = 0.

%
Define the quotien V?’g}% to be zero on the sek. On (A, the
4

[ve)]”
[1”

Now, Y, w,

quotient has a meaning.

Eg;}j (W)’ < |l¢ll. Hence the functio% is es-
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sentially bounded. Since it belongs#g

(@)]”
e

(e)]”
v(D)]*
choice of the conditional expectati¢n(¢)]? of v(¢) and hence depends
only ong.

Let p be a lifting fromL®(Q; €’; 1) to Z(Q; €). The existence of 46
a lifting is guaranteed by the lifting theorem mentioned B2 of this
chapter.

Let Z(Y) be the space of all real valued continuous function¥ on

If we Q, define the maps?, on %(Y) taking real value as follows.

4
ivw)]% ] W)

v(1)]

Then, by the properties of the lifting, is a positive linear functional
on Z(Y) and hence defines a positive Radon measur¥.obet v¢ be
the measure valued function énwith values inm* (Y, %) takingw to

a
Viy -

L®(Q: 7; A).

Note that this eleme of L*(Q;%; A) is independent of the

If y € €(Y), definev (v) as p(1)]% (w). p[

[v()]”
v(2)]*
¥ € €(Y), the functionv? () belongs to¢’. Moreover, ifB € ¢,

Since% is completeY ¢ € €(Y), p[ ) € ¢ and hencey

[ewdio - f @1 o0 (L i
B

o b’
f MO S

- f V) ¥ da
B

_ f Va(W)dA(W).

B
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Hencev? (y) is a conditional expectation with respect@bof the
functionv(y).

Step 2.Let U be an open subset &f U # (. SinceU is open,yy is a
lower-semi-continuous function ori and hence there exists a directed
increasing family §;)ic; of continuous functions o such thatv i € I,

0 < ¢j < yu and su; = yu.-

i€l

[v(gi)]”

Yiel, Yaw, <llgill < 1.
Lel, Vaw. ()7 (W)‘ llill
NG
Hence, the directed increasing fam%% of elements of.*(Q;
V (O
[v(ei)]”

%¢’; ) is bounded in norm and hence SUP),

iel [v()]*
sition (3, § 23,[ZT).
We claim that

exists by propo-

o D@’ _ D)l

o QI T L)IE

To prove this, it is sfficient to prove because of Corollafy 2.3,
29) that

DOWI”  Drle]”

RXEH) K EY)
and that there exists an increasing sequeagkdy of continuous func-
tions,¢n ¥n € N, belonging to the family)ic; such that

el (DI’
im. [ YOG ai= | prr

Yiel,

SinceY i € |, ¢i < yu, we have
Yiel, v(g) <V (xu).
HenceY i e |, Y, w, [v(¢i)]% (W) < [v(xu)]? (w). Therefore,

Do) _ i)l

iel .
e LI = e
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SincelJ is a Radon measure, ang )¢ is a directed increasing fam-
ily of continuous functions witlyy = supy;, we have

i€l

Jlvu) = SilglpJ(soi)-

Hence there exists an increasing sequenggndy of continuous
functions,¥Y n € N, ¢n, belonging to the family;)ic; such that

Y3y, en(y) T xu(y).

Hence, 48
Vaw, Yy, ¥s en(y) Txu (),
Therefore,
VW, viw(en) T vwlxu)-
Sincew — [y(1)]Y(w) € € andA € €, by property (iv) of the
conditional expectations of extended real valued funstimentioned in

§ B of ChapteflL (actually the property @ » mentioned there is used),
we have

[v(gn)]” [venl”
YOG (w)da(w) = TG 7 Wda(w)

_ V(¢n)
= (A f b w1

YneN,

[V(sOn)]("”dl: [ Vl¥n) dA(w). SinceY,w,

HencevneN’IW Am

vwlen) T vw(xu),

VW(SDn) Vw()(U)
| b e A ”f[ e w W

Again by the same property fw;g mentioned in (iv) of the condi-
tional expectations of extended real valued functions faeat in§
of ChaptefL,

vw(xu) [v(xu)l?
_YwWWu) 4 -
crw ™™= ) Lo
A Ca

(w)da(w)
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[v(xu)l”
[)1”

bl
f O

e (Wda(w)

Y(gn)]” v(xu)l”

Hence nﬂgc]f [[V( NG d2 exists and is equal tf [[ 7 dA. This
proves tha% SU [[V(("i'))]] and therefore, by propositiofl (3,
§ 23,30),

[V()(u)]‘”] _ [[ (so.)]“)
e [ pan” ™= 5P b )
and su M i i i %
St ¢ YOV € ¥ since¥ is complete. Sinc&w € Q, v, is a

Radon measure,

v (xu) = supvy, (¢i)

i€l

Vv i ¢
- suqy(l)]%(w)p([ 62)) ](w)

el R

[v(ei)]
= (D)]” (w). supp ([ (1)]%0)( ).
[vpi)]”

Hencev® (yu) € €, since both¥(1)]* and sup;( b

) belong

to%.
LetB e ¥. Then,

[v(gi)’]
)1~

f Vi (xu)da(w) = f D)1 (W) SUPP[ )(W)d/l(W)
B B

B
v €
- [ [v(l)]ﬂw)[[f(“lu)ﬁg (w)dA(w)
B
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- f [VGew)] (WdAw)
B

B

- [ i

B

Hencev? (yyu) is a conditional expectation ofyy).

Step 3.Let us prove tha¥ B e #, the functionv? (yg) belongs to¢
and is a conditional expectation with respecétof the functionv(yg).

Consider the clas#’ of all setsB € # for whichv¢ (yg) € € and
is a conditional expectation with respect#oof the functionv(B). It is
easily seen that’ is ad-system.

From StedR% contains the clas$/ of all open sets ofY, U is 50
a m-system generatingg. Hence, by the Monotone class theore#h,
contains? and henc&’ = %'.

HenceVB e #, the functionv? (yg) belongs to¢ and is a condi-
tional expectation of the functionyg) with respect tg¢. This shows
that the measure valued functiof on Q with values inm*(Y, %) is a
conditional expectation of with respect tcs’.

Thus, Cas€ll is completely proved.

Case 2.Let Y be an arbitrary topological space having the properties
stated in the theorem, i.e1 a sequencel)nen Of compact sets o¥
and a selN € " with J(N) = 0 such thaty = |J K, U N and such that

neN
the measurelk,,, the restriction ofd to K, is a Radon measure df,.
Let

Xn = Kn\(Kl Uu...U Kn_l).

ThenV¥Y n e N, X,isaBorelsetofY, X, N Xy =0ifn#mY =

U XnUN and the measuré,, the restriction of to X, is a finite Radon
neN
measure orX,. By proposition [B.§ 2.4,[33),Y n € N, 9 a sequence

(XMMmen of mutually disjoint compact sets of, and a Borel seNy, of
Xn with Jx (Nn) = 0 such tha§(X{)mewn. Nn} is aJx,-concassage of,.
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Thus, there exists a sequend®)fy of compact sets of and a set

M e & with J(M) = 0suchthalty = | YnUM,YaNYn=0if n#m
neN
and the measurdy,, the restriction ofl to Y, is a Radon measure ofy.

Let Vn, %;, be the Boreb-algebra ofY,,.

LetV n € N, v" be the measure valued function Qrwith values in
m*(Yn%p), takingw € Q to the measure), which is the restriction ofyy
toY,. Then,V ne N,V e éﬁ. Y Be %,

[ i@ = [ i - 36 - 3,)

Hence the integral of" with respect tol is the measurdy, which
is a Radon measure ofy. Hence, by Casél ¥ n € N, a conditional
expectation/"" of v with respect to¢’ exists.

DefineV ne N,V we Q, the measures':ﬁ” on% as follows:

If Be %, definev's"(B) as equal torg"(B N Yy).

ThenY ne N, Yw € Q, v’:ﬁ” is a positive measure a# and the me
assure valued functiort® " on Q with values inm* (Y, %) takingw to

v belongs t0%.

Deflnev w e Q, the measur@ on a5v = 3 v"”” [
neN
VBe #,v4(B) = 3 v¢"(B). Then, the measure valued functigif
neN

on Q with values inm* (Y, %) taking w to the measure’’, belongs to
t.
LetC e ¥ andBe #. Then,

f ¢ (B)dAw) = f > vEnE)dIwW)

neN

:Z f Y Z0(B)dA(W)

neN c

= Z f vE (B N Yy)da(w)

neN c

=3 f V(B N Yy)dA(W)

neN c
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sinceV ne N, v*""(BNY,) is a conditional expectation with respect to
¢ of V(BN Yy). So the left side above is

-y f (B O Y)dA(W)

neN c

_ f (> V(B O Yo))dA(w).

c neN

SinceJ(M) = 0,V w, vw(M) = 0. Hence¥YB € %', Y, w, 3, vw(BN 52

neN
Yn) = vw(B) since the sequenc&{)ncn is mutually disjoint andy =
U YaU M.
neN
Hence,

f > (BN Yn)dAw) = f Vw(B)dA(W).

c neN c

Therefore,“(B) is a conditional expectation with respectbof
the functionv(B)VB € #. Hencev'? is a conditional expectation of
with respect tos. O

Remark 39. The assumptions in the above theorem regardfirand J
are fulfilled if J is aco-finite Radon measure ohand these are stronger
than theJ-compacity property foly.

Lemma 40. Let Y be a compact metrizable space. €dte ac-algebra
contained in0,; and let%), be the completion o& with respect tal.
Let v* be a measure valued function @nwith values inm*(Y, %)

belonging to%, such thaty w € Q, v is a Radon measure on Y and
J, the integral ofv“* with respect tol be a finite measure off. Then,
there exists a measure valued functidhon Q with values inm* (Y, )
belonging tojﬁ, such thatvw € Q, v(ﬁ is a Radon measure on Y and

Vaw, vE = ver.

Proof. SinceY is a compact metrizable space, the Banach s@ad8
of all real valued continuous functions dhhas acountable denseet
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D. If y € Z(Y), let ||¥|| be sugy(y)]. We can assume th& has the
yeY
following property, namely, given anf € € (Y), f > 0 and anye > 0,

there exists a functiop, € D, ¢, > 0 such that|f — ¢ | < €. i.e.,
the positive elements &f(Y) can be approximated at will by positive
elements oD. Let a sequencepf)nen Of continuous functions olY,
constitute the sebD. i

Now, V¥ n € N, the functionv®'(¢p) belongs toz, and isA-integra-
ble. HenceY n € N, there exist functiond;' and f]' on Q belonging to
% such that X

Y weQ, W) < v (en) < (W)

and the seB, = {we Q| f(w) # ()} hasi-measure zero.

LetB= | By. ThenB € ¥ andA(B) = 0.
neN

Let ¢ € € (Y). There exists a sequengg, of functions belonging
to D such that

llen, — ¢ll = 0 asng — oo.

Since¥ w, &' is a Radon measure &hand hence/w, v (Y) < +o0
sinceY is compact, we havéw € Q, v (¢n,) — v (¢) asn, — oo.
Hence, ifw ¢ B, lim f(w) and lim fJ*(w) exist and both are
Ng—o0 Ng— o0

equal to_lim v};!(¢n,) Which isvy (¢).
K — 00
Therefore Yy € €(Y), Yw ¢ B, thenlim flnk(w) is independenbf
K— 00

the choice of the sequenacgy() chosen to converge toin ¢(Y).
Hence Yw € Q, define the map\f on%(Y) as,

) lim f*w), ifwgB
V%(SD) :{?)k—mo 1 ( )

if we B.

wherepe? (Y) and (on, )new IS @ sequence such théty € N, ¢, € D
andgy, — ¢ asnk — oo in Z(Y). ¥ w € Q, the mapy; defined or'(Y)

as above is clearly linear anchif¢ B, vE(p) = v:ﬁl (o) for all ¢ € F(Y).

i.e. VW, Yo € B(Y), vile) = v\,('i’{(go). Moreover the linear functionad;,
is positive because of our assumptiondbthat the positive elements of
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% (Y), can be approximated by positive element®ofHence Yw € Q,
vy is a Radon measure ofi )

SinceVw, Yo € €(¢) = v (¢) and sincevw € Q, v§ and vy
are Radon measures, it follows thatw, the measures\%f and v:ﬁl are
equal, i.e. X 54

Vaw, vo = V?.

We have to prove that the measure valued functibron Q taking
wto v belongs toz.

If o € €(Y), itis clear that the functiom® (¢) belongs tag” sincev
neN, fle¢andBe ¥.

Let U be a non-void open set. Sin¥es metrizable, there exists an
increasing sequengg, of continuous functions ol such thatvn € N,
0 <¢n<yuanden(y) Txu(y) forally e Y.

HenceYw € Q, v&(yu) = r!mvf(gan). Therefore, YU open,v?
(xu) e €.

Now, a standard application of the Monotone class theorelh wi
yield thatVC e #, the functionv? (y¢) belongs toz.

Hence the measure valued functioh belongs tog and sincey ,w,
v = vf*, our lemma is completely proved. O
Theorem 41. Let Y have the J-compacity metrizability property. Let
% be aoc-algebra contained in?, and let A restricted to% be o-
finite. Then a conditional expectation wfvith respect tog” exists and
is unigue.

Proof. Let us prove the theorem under the assumption Yhiata com-
pact metrizable space adds a finite measure of#. The general case
will follow along lines similar to casEl2 of theoreid &4,[38).

SinceJ is a finite measure o® andY is a compact metrizable
spaceJ is a Radon measure of Let %, be the completion o¥ with
respect tol. By caséll of theoren)(§4,[38), a conditional expectation
v%t of v with respect t0¢, exists in such a way that w € Q, vﬁ is a
Radon measure on.

f Va Y)da(w) = f y(Y)dAW) = J(Y) < +oo.
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Hence, by the above lemmd @M, [40), there exists a measure valued
function v* on Q with values inm*(Y, %) such thatv? €% and V,w,
2 c@ﬁ

Yw = Yw -

Hence, since/*! is a conditional expectation of with respect to
%,.v¢ is a conditional expectation ofwith respect tcs.

Since the Boreb-algebra of a compact metrizable space is count-
ably generated, we can easily see that Has theJ-compacity metriz-
ability property, % has theJ-countability property. Hence by theo-
rem [3, § B, [38) the conditional expectation efwith respect tas” is
unique. i

5 Existence theorem for disintegration of a
measure. The theorem of M. Jirina

Throughout this section, l&® be a topological space? its Borel o-
algebra andl a positive measure of.

We have already remarked$ffl of this chapter, that a disintegration
of A with respect t&#’ is a conditional expectation of the measure valued
functions on Q with values inm*(Q, ©) takingw to the Dirac measure
6w and vice versa. So, by theorefd @3, [38) we get the following
unigueness theorem for disintegrations and by the theof@m§#, [33)
and [3,§ @,[43), we get the following two theorems for the existence of
disintegrations. More precisely, we have

Theorem 42 (Uniqueness) Let A be ao-finite measure o and let
0 have thel-countability property. Le¥” be ac-algebra contained in
0, and let A restricted to% be o-finite. Then, if{(17)w} and

winOmega
{(/1‘25)\,\,}\1\1EQ are two disintegrations of with respect t¢¢’, we havey w,

D) = (A9)w-

Theorem 43 (Existence(M.Jirina)) Let there exist a sequen¢kn)nen
of compact sets af and a set Ne & such that

() Q= U KhUN,

neN
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(i) A(N) =0, and
(i) ¥ ne N, the restriction oft to K, is a Radon measure on,K

Let ¥ be a completer-algebra contained i, i.e. let¢ = 4.
Then, a disintegration of with respect tos” exists.

Theorem 44 (Existence) Let Q have thei-compacity metrizability
property. Let¢ be ac-algebra contained inv, and let» beo-finite,
where;» stands stands for the restriction anto ¢’. Then, a disinte-
gration of A with respect tog” exists and is unigue.

We remark that the assumptions in the theorgng 8,[43) are ful-
filled if A is ao-finite Radon measure a2. Q has thed-compacity
metrizability property if1 is a o-finite Radon measure df and if Q
is either metrizable or if every compact subsetbfs metrizable. In
particular, ifQ is a Suslin space and ifis ac-finite Radon measure on
Q, thenQ has thel-compacity metrizability property.

When A is a Radon probability measure @hi.e., 2 is a Radon
measure and(Q2) = 1, the theorem[{3§ B, [43) is essentially due to
M. Jirina [1] in the sens that this theorem is an easy conseguef his
theorem 3.2, on page 448 and the ‘note added in proof’ in p&fe 4

6 Another kind of existence theorem for conditional
expectation of measure valued functions

Throughout this section, l&® be a topological space? its Borel o-
algebra,1 a positive measure o, Y a topological space an#’ its
Borel o-algebra.

If ¢ is ac-algebra of,, we saw in Chaptdd 1 how the existence of a
disintegration oft with respect ta¢’, implies immediately the existence
of conditional expectation with respect @ of non-negative, extendeds7
real valued functions of belonging to¢’ and in Chaptefl2, we saw
how the existence of a disintegration @fwith respect toz” implies
the existence of conditional expectation with respeéﬁa)f extended
real valuedi-integrable functions belonging 6, and also of Banach
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space valued-integrable functions belonging 18,. In this section, we
shall consider the case of measure valued functions inael&b their
conditional expectations with respect# when a disintegration of
with respect tog” exists.

Theorem 45. Let % be ac-algebra contained in@. Let (AE)WEQ be a
disintegration oft with respect t¢&¢’. Lety be a measure valued function
on Q with values inm*(Y,#). Letv e &¢. Then the measure valued
functionv” onQ with values inn*(Y, %) defined asy = [ v A (dw)

is a conditional expectation of with respect to%. In particular, a
conditional expectation of with respect td¢” exists.

Proof. Let f be a function orY, f > 0, f € #". Consider the extended
real valued function(f). This function belongs t& sincev € . Since
(A%)weq is a disintegration oft with respect tg#’, the functionw —
[ vw ()25 (dw) is a conditional expectation of the functioff) with
respect to¢. Hence the measure valued functioh on Q with values
in m*(Y, %) defined as®fy = [vw, A% (dw) Yw € Q, is a conditional
expectation o with respect tcs". O

Wheny € &, we cannot apply the above argument sinceffer 0
onY, belonging to#, v(f), though belongs t@,, does not in general
belong to/. Hence, the integr%f v (F)A% (dw) does not have a mean-
ing in general for all functiong onY, f > 0, f € %, since the measures
A% are measures off and not ond, for allw € Q.

However, for functions’ belonging to&,, we have the following
theorem of existence of conditional expectations.

Theorem 46. Let be ac-algebra contained irﬁ]. Let (1%)weq be a
disintegration ofl with respect t¢¢’. Lety be a measure valued function
on Q with values inm*(Y, %), v belonging tod,. Let J= [ v,da(w).
Let J beos-finite and let? have the J-countability property. Then, a
conditional expectation of with respect to¢ exists and is unique.

For the proof of this theorem, we need the following lemma.

Lemma 47. Letv be a measure valued function éhwith values in
m*(Y, %), v belonging to0,. Let J= fvwd/i(w). Let J beo-finite. Let
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% have the J-countability property. Then there exists a nreasaiued
functiony’ on Q with values inm*(Y, %) such thaty’ € ¢ and VY ,w,
Viy = vwon.

Proof. SincelJ is o-finite, there exists an increasing sequeneg)den
of sets belonging t& such thaty = (J E, andJ(E,) < +oV n € N.

neN
Hence,

V ne N, V/IW, Vw(En) < +OO,

Hence,
vJW, Vn € N, Vw(En) < 400,

i.e. dasetN; € & with A(N1) = 0 such that ifw ¢ Ny, v(En) < +o0
forallne N.

Let N € # with J(N) = 0 such that ther-algebra#z’ n CN on
Y’ =Y n CN is countably generated.

SinceJ(N) = 0,3 Ny € & with A(N2) = 0 such that ifw ¢ Ny,
vw(N) = 0.

Let % = (Ci)nen, YN € N, C,, € &7 generateZ’. We can assume
that% is an-system and that’ € €.

ConsiderY n € N, ¥ m € N, the functionw — v,(En N Cyp).
This function belongs t(@ andE,, N C, € . Therefore, there ex-
ist functions f*" and ;""" on Q belonging to& such thatf™"(w) < 59
vw(Em N Cp) < £,*"(w) for all w e © and the set

N™ = {we Q| f*"(w) # 2"(w))

hasi-measure zero.
LetN3 = |J N™". ThenNs € ¢ andA(N3) = 0.
melN

neN
If yo is any point ofY, define the measure valued functignon Q

with values inm* (Y, %) as follows.

Yw =

;) vws if we N7 UNsU N3
6)’0’ if we N7 UN>U N3

From the definition, it is clear that,w, v, = vw. To prove the
lemma, we have to prove only thate &. Now,
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YmeN,¥Yne 4 ,Ywe Q,

Vu(EmN Cyp) = /\/C(NluNZUNg)(W) “Vw(Em N Ch) + xnpunaung (W) - YEmnc, (Vo)

= XC{NyUNUNg} * flmn(W) + XN1uNpUN3 (W) - XEmnc, (Yo)-

Sincef™" € ¢ andN; U N, U N3 € &, it is clear that the function
v (Em N Cp) belongs tod.
Now fix ame N. Let

P#={Be#’"|v(Bn En) belongs tar}.

It is clear that% is ad-system.% contains ther-system% which
generates?”’. Hence, by the Monotone class theoregh= #”. Hence,
sincemis arbitrary,y me N,V Be #”,v' (BN Ep) belongs tar. Since
VB e %'V weQ, v,(B) = Mw V(B N Em), it follows thatv’(B)
belongs tas.

Let

Ae%, A=AnY UANN.

If w ¢ N UN2U Nz, vi{(A) = v,(ANY’), sincev,(ANN) =
vw(AN N) = 0. Hence,

V(A) = XC{NluNZUN?,}(W)‘V\’N(A NY’) + XNNUNs (W) X a(Yo)

forallw e Q. SinceAn Y’ € #”, the functionv’'(A N Y’) belongs tos.
SinceN; U N, U N3 € @, it follows from the above expression gf(A),
thatv’(A) belongs too.

SinceA ia an arbitrary set ¢/, it follows that the measure valued
functionv’ belongs too. m|

Proof of theorem 46 From the above lemm&l(3,8, [41) there exists
a measure valued functiori on Q with values inm*(Y, %) such that
v € 0 andV,w, v}, = w,. From theorem[{3§ B, [43) there exists a
conditional expectation’® with respect t&¢ for v/, sincev’ € &. Since
VW, v, = v, it is clear thav’“ is also a conditional expectation of
with respect tos.

The uniqueness follows from theorebh §83,[38).
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Thus, we see, if a disintegration #fwith respect td¢” exists, how
theorem[(B§ @,[43) guarantees immediately the existence of conditional
expectations with respect ¥ of measure valued functions belonging to
¢ and how theorenf]3[B,[48) guarantees the same for measure valued
functions belonging ta, if Jis o-finite and if% has thel-countability
property where] is the integral ol with respect tol. But theorems[{3,

§ B,[43) and[(B§ B, [E42) give stiicient conditions for the existence of
disintegration oft. Hence, we have the following existence theorem of
conditional expectations for measure valued functions.

Theorem 48. (i) Let ¢ be a completer-algebra contained ind, and
le there exist a sequen€k,)nn Of compact sets @ and a set Ne &

with A(N) = 0 such thatQ = (J K, U N and the restriction ofl to
neN
KnY ne N is a Radon measure on,K

Or (ii) Let ¥ be an arbitraryo-algebra contained i, and letQ 61
have thetl-compacity metrizability property.

Then, under either of the conditions (i) and (ii),»fis any mea-
sure valued function of2 with values inm*(Y, %), v € 0, a conditional
expectation of with respect tos” exists.

If v € @, if J = fvwd/i(w), if Jis o-finite, and if % has thel-
countability property, then under either of the conditighsand (i), a
conditional expectation of with respect tos” exists and is unique.

7 Conditions for a given family (1%)wcq of positive
measures ond, to be a disintegration of 4 with
respect to% and consequences

Throughout this section, lef), &, 1) be a measure space and #te
ac-algebra contained if;. Let (1% )weq be a given family of positive
measures o@’. We shall discuss below some necessary affidcgent
conditions for this family to be a disintegration ofwith respect tog.

Proposition 49. For (1% )weq to be a disintegration of, it is necessary
and syficient that the following three conditions are verified.
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() The measure valued functiorf taking we Q to 1%, belongs to
€

(i) 2= [A%da(w) and

(i) VY Ae%,V,w, A% is carried by A or byCA according as we A
orwe CA.

Proof. NecessityLet (1% )weq be a disintegration of with respect to
% . Then, by the definition of disintegration, (i) and (ii) atdfiiled. Let
us verify (iii).

LetAe %. 2% (CA) is a conditional expectation @ A With respect
to &. Therefore,

[ xeatwaaw = [ 25 CAdw)
A A
i.e. 0= A(ANCA) = f/l}f(CA)da(w).
A
Therefore ¥ ,w, ya(w). 25 (CA) = 0. Similarly,
Vaw, x e a(W). A5 (A) = 0.

This proves that/,w, 15(CA) = 0if w € AandA%(A) = 0, if
w e CA. Hence¥,w, 1% is carried byAif w e Aand is carried byC A
if we CA.

Sufficiency. We have to prove thatB € ¢. A%(B) is a conditional
expectation of g with respect t¢¢'. i.e., we have to prove thatA € %,

f yBdA = f A% (B)dx;

A A

i.e. we have to prove that

A(ANB) = f A% (B)da.
A
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f A8 (B)dA(W) = f A5 (B N AYda(w) + f A5 (B n CAYdA(W).
A A CA

SinceV,w, w € A, 17 is carried byA,

Vaw, we A 15BN CA) =0.

Hence,
f A5 (B n CAYdA(w) = 0.
A
Therefore,
f A5 (B)da(w) = f A5 (AN B)dA(W).
A A
Since

A= f A8 da(w),
A(ANB) = f A% (A N B)dA(w)
= f A8 (AN B)dA(w) + f A8 (AN B)dA(w).
A CA
SinceV,w, A% is carried byCA if we CA,
f A5 (AN B)dA(w) = 0.

CA
Hence

AANB) = f A8 (AN B)dA(W)
A

- [@aw

A
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Definition 50. Let (X, Z") be a measurable space. LetexX. The-
atom ofx is defined to be the intersection of all sets belonging &nd
containing X.

Definition 51. Let(X, X) be a measurable space. We $aig countably
separatingf there exists a sequen€@n)nen, An € X ¥n € N, such that
V¥x € X, theX-atom of x is the intersection of all the,’a that contain x.

It can be easily proved that ¥ is countably generated, then it is
countably separating.

Proposition 52. Let (i) the measure valued functiarf on Q taking w
to 1% belong to%.

(i) 2= [aZda(w)and
(i) V,w, A7 is carried by the#-atom of w.
Then(1%)weq is a disintegration oft.

Proof. Let (1%)weq have (i), (i) and (iii). From condition (iii), we see
by the definition of theg’-atom ofw, givenA € €, VY, w, /135 is carried
by Aif w e Aanday is carried byCA if w e CA. Thus, the condition
(iii) of this proposition implies the condition (iii) of thproposition [B,
§[4,[49). Hence, the conditions (i), (ii) and (iii) of this prgition imply
the conditions (i), (ii) and (iii) of the propositioi($,[4, [49). Hence
(A%)weq is a disintegration oft with respect to¢’ m|

Proposition 53. Let ¥ be countably separating. Then, the conditions
(1), (ii) and (iii) of the previous propositior {3 [4,[52) are necessary for
(A%)weq to be a disintegration of with respect tog’.

Proof. Let ¢ be countably separating and lef;(..q be a disintegra-
tion of A with respect tds. Then (i) and (ii) are obvious. We have to
only verify thatV,w, A% is carried by theg-atom ofw.

Since ¥ is countably separating, by definition, there exists a se-
quence An)nen Of sets belonging t& such that'w € Q, the%-atom of
w is the intersection of all thA,'s that containw.
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By condition (iii) of the proposition[{3§ [4,[49),Y n € N, 3 a set
Nn € ¢ with A(Np) = 0 such that ifw ¢ Ny, A% is carried byA, if
w e A, and is carried byC A, if w¢ An.

LetN = U Nn. ThenN € & andA(N) = 0. Letw ¢ N and let
neN
Ay be the%-atom ofw. Since% is countably separating, there exists a

sequencery) of natural numbers such that

A= | An.
Ankaw

An, belonging to the sequencA)nenVNk.
For everyn, sincew € A, , A7 is carried byA, and hence is carried
by Ay sinceAy = (N Ay,

k3W
Sincew ¢ N is arbitrary, it follows thatv ,w, A(ﬁ is carried by the
% -atom ofw. O

The following counter examplevill show that the condition (iii) of
the proposition[(3§ [4,[52), namely? ,w, 1% is carried by theg” -atom
of wis not necessarily true for a disintegratioif juco of A with respect
to &, without further assumptions o#i.

Let Q be the circleS! in R?. Let & be the Borelr-algebra ofQ. 65
Let A be the Lebesgue measureS¥on &. Let € be theo-algebra of
all symmetric Borel sets. Sind® is a compact metric space ands
a Radon probability measure, by theordi {#,[44), a disintegration
(A% )weq Of A with respect teg exists and is unique. Consider the family
(08 )weq Of measures given by, = 3(6w + d_w). Itis easy to check that
(6% weq is a disintegration oft with respect tog’. Since the disintegra-
tion is unique, we have,w, 1% = 64, i.e. Vaw, V% = 2(6w + 5_w).

Let% be theo-algebra generated I3 and all thed-null sets ofc.
i.e. let% = €Vn,. By theorem[[B§ B,[43), a disintegrationi{; )weq of
A with respect to#’ exists and is unique. It is clear that{)weq is also
a disintegration oft with respect t&%. Hence, by unigueness,

5 1
Vaw, A% = A% = S@w+6-w).
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If we Q, the%-atom ofw is the single pointv itself. Since we see
thatV,w, A% = 2(w + 6_w), Yaw, A% is carried by the pair of points
w and -w and hence not by th&-atom of w for thesew for which
A§ = 3(6w + 6_w). Hence, the condition (iii) of propositiofll(§/2,52)
is violated.

Let us now state and prove some simple, but useful consegsi@fic
the previous propositions.

Let (Z, 3) be a measurable space such thistcountably separating
and letY z € Z, the3-atom ofz bezitself. This means that there exists
a sequenceZy)new Of sets belonging t@ such that every poirt € Z is
the intersection of a suitable subsequence of tig'se

Proposition 54. Let h be a mapping frorf2 to Z such that ke ¥’ Let
(A%)weq be a disintegration oft with respect ta#”. Then,

Vaw, VW, h(w') = h(w).
i.e.¥V,w, his1% almost everywhere is a constant equal wh

Proof. Letw € Q. There exists a subsequen@g, Jn.en Of (Zn)new SUCh
that .
hw) = () Zn.
=1

Hence,

ht(hw) = () h(Zs)-
=1
VneN,h*(z,) e % sincehe?.

Now, by condition (iii) of the propositiofd3[4,[49),Y n € N, V,w,
A% is carried byh™(z,) if w € h™'(Z,). Hence,Y,w, ¥ n € N, 1% is
carried byh™1(z,) if w e h™1(z,).

ThereforeY,w, A% is carried by the intersection of all thoke!(Z,,)
for whichw € h=%(Z,). But the intersection of all the=%(Z,) for which
wh(Z,) is h=1(h(w)).

Hence,Y,w, A% is carried byn~1(h(w)). This precisely means that

VoW, Ve, h(w) = h(w).
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O

Corollary 55. Let(hn)neny be a sequence of functions @nwith values
in Z such thatv n, h, € €. Then,

VaW, Ve W, YN € N, hg(W) = h(w).

Proof. This is an immediate consequence of the above proposifidh (3
[4,52). O

Corollary 56. Let & be countably generated. Theaw, ¥ .« W, 28, =
5.

Proof. Let (Bn)new be an-system generating’. Define a sequence
(hn)nex Of functions on@ ash,(w) = A% (Bn)Yw € Q.

Then,¥ n, h, is a function onQ with values in the extended reab7
numbers andh, € ¥ ¥ n € N. Hence, by the above Corollard (814,
B3),

Vaw, ¥ W, Yne N, A% (Bn) = Ay (By).

A standard application of the Monotone class theorem tbegef
gives,
Vaw, ¥ W, VB € 0, A4, (B) = Ay (B).

Hence,
Vaw, YW, Ay = Ay
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Chapter 4

Supermartingales

1 Extended real valued Supermartingales

Throughout this chapter, le©( &, 1) be a measure space. L&f'jr 69
be a family of subr-algebras of¢,, which isincreasingin the sense
thatV s,t e R, s<t, 5 c €. Let us further assume thatrestricted

to ¢' is o-finite Vt € R. It ¥ is ac-algebra contained i, and f is a
function onQ with values inR*, belonging to@, £ will stand for a
conditional expectation of with respect tcs.

If fis a function fromQ x R to R*, f! will denote¥ t € R, the
function onQ with values in@*, takingw € Q to f(w,t). Yw € Q, fy
will denote the function of® to R*, takingt to f(w, t).

Let f be a function fronT2 x R to R*. We have the following series
of definitions.

Definition 57. f is said to beadaptedo (¢")r if ¥ t, ft € €.

Definition 58. f is said to beright continuousif ¥,w, f, is a right
continuous function.

Definition 59. f is said to beregulatedif V,w, f, has finite right and
finite left limits at all points & R.

Definition 60. A function g fron2xR toR* is said to be anodification
oraversionof fif VteR,V,w, gw,t) = f(w,1).

71
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Definition 61. f is said to be asupermartingaldresp. martingal@
adapted to%")ier if

(i) fis adapted tq%")r and

(i) Vs, teR, s<t, Vow, (FH%°(w) < FSw).
(resp.

(i) fis adapted tq%")r and

(i) Vs teR, s<t Vw, (F)€°w) = F5(w))

Note that every martingale is a supermartingale. A simpbngple
of a supermartingale adapted {(@").r is given by any function f from
Q x R to R*, adapted to(¢')er for which VvV, w, f, is a decreasing
function of t.

Let g be any function o with values inR* and belonging ta7,.
LetV t,w — f(w,t) be a given conditional expectation@fvith respect
to ¢*. Then, it is clear that the functiohon Q x R to R, taking (, t)
to f(w,t) is a martingale, adapted t&@ ().

If fis a supermartingale adapted @iz, note thatt — J* =
fftd/l is a decreasing function af If f is a right continuous super-
martingale, we easily see by applying Fatou’s lemmatthatJ! is right
continuous.

Definition 62. A supermartingale adapted {&").r, is said to bereg-
ularif it is right continuous and regulated.

Note that if f is a regular supermartingale adapted#8)(cr, then
Y,w, fy is a real valued function oR.

Definition 63. A supermartingale g adapted (&) is said to be a
regular modificatiorof a supermartingale f adapted (&) if g is
regular and is a modification of f.

Remark 64.1f f is a supermartingale adapted ¥');cr and ifg; andgy
are two regular modifications df, we easily see that,w, Vt, g1(w, t) =
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g2(w, t). In this sense, we say that a regular modification of a super-
martingale adapted t&().cr is unique if exists. In particular, if is a
regular supermartingale adapted ¥z and ifg is a regular modifi-
cation off, thenV,w, Vt, g(w,t) = f(w,1).

The following theorem is very fundamental in the theory gbes
martingales. It guarantees the existence of a regular roatidn for
a supermartingale, under some conditions. Whenever, wee tefthe
following theorem, we refer to it as ‘the fundamental theore

The Fundamental theorem. Let f be a supermartingale adapted to
(€Yier Such thatv t € R, J' < +00 andt — Jt right continuous. Let
further the family ¢*)r of o-algebras beight continuousn the sense
thatVt € R, €' = N €Y. Then, there exists a functianon Q x R with

u>t
values inR* such thag is a regular modification of.

This theorem is proved in P.A. Meyerl [1] in theored andT3
of Chap. VI, in pages 95 and 94. In that book, the supermaatirsg
are assumed to take only real values. Hence to deduce tharfemdal
theorem from the theorenTst andT 3 mentioned above, we observe the
following.

SinceV t, J' < +o0, we haveV t, V,w, f(w,t) < +co. Define a
functionh onQ x R with values inR* as follows:

hw,1) = f(w,t) if f(w, t.) < +00,
0 otherwise.
Then,his a modification off with values inR*. Hence by applying
the theorem3 4 andT 3 of Chap. VI of P.A. Meyerill], we get a regular
modification forh and it is also a regular modification éfas well.

Remark 65. Let (¢')r be an increasing right continuous family @f
algebras contained iff,. Let f be a right continuous supermartingale
adapted to¢")er, such that/ t € R, J' = [ f(w,t)dA(w) < +co. Then

f is regular.

For, by the fundamental theorem, there exists a regularfination
gof f sincedt < +00 V t € R andt — J'is right continuous by Fatou’s
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lemma.

vt, Yaw, g(w,t) = f(w,t)
Yaw, Vit e Q,g(w,t) = f(w,t).

BecauseY,w, gy and f,, are right continuous, it follows that,w,
Yt € R, g(w,t) = f(w,t). SinceY,w, gy is regular, it follows that ,w,
fy is also regular.
The following procedure is standard and gives a method oirfind
out the regular modification of a supermartingale, when#exists.
Let (E)
2" keZ,neN

k k+1 ) .
R = kgz(?’ %]. ¥n € N, define the functions, from R to R as

be the set of all dyadic rationals. Them € N,

follows:
k+1. k k+1
ifte(=, —

IfteR, () = —; -
Thenvt € R, ty(t) | tasn — oo and ift is a dyadic rationak,(t) = t
for all nlarge enough.

Let f be a function or2 x R with values inR*. Define another
function f on Q x R with values inR* as follows:

Nn—oo

_ lim f™O(w), if the limit exists and is finite
f(w,t) = _
0, otherwise.

_Itis obvious that ift is a dyadic rational and if (w,t) < +co, then
f(w,t) = f(w,1).

Proposition 66. Let f be a function o2 x R with values inR*. Then

(i) If the family (¢")wer is right continuous, and if f is adapted to
(€ Vter, SO isf.

(i) If f is right continuous, and i/ ,w, Vt, f(w,t) < +co, thenV¥,w,
vt, f(w,t) = f(w,t).
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Proof. (i) Sincef is adapted to%")r and (¢')er is right contin-
uous, we can easily see that, the sefw : lim f®(w) exists

and is finite} belongs tort. From this, it follows thatvt, ftew
and this means thdtis adapted toq")cx.

(i) Since f isright continuous, there exists a $gte & with A(N1) =

0 such that ifw ¢ N1, f,, is a right continuous function dR. Let

N2 € 0, A(N2) = 0 be such that ifiv ¢ Ny, f(w,t) < +oo for

allt € R. Thenifw ¢ N; U Ny, for all t, r!m fmO(w) exists

and is equal tdf (w, t) and hence is finite. Thus, Vi ¢ N1 U N,
f(w,t) = f(w, )Vt € R.

HenceY,w, Vt € R, f(w,t) = f(w,t). O

We have the following obvious corollary.

Corollary 67. Let(%¢")er be aright continuous increasing family of sub
o-algebras off,. Let f be a supermartingale adapted 6")icr and
let g be a regular modification of f. Thew,w, Vt, g(w,t) = f(w, mt).
In particular, if f is a supermartingale adapted (&) with J <
+oco and t — J' right continuous, therv,w, Vt, r!mo f(w, Tn(t)) exists

and is finite andv t, V,w, f(w,t) = f(w,t). Moreover,f is a regular
modification of f.

In the course of proofs of several theorems in this book, dHevi-
ing important theorem will be needed. We call it tHépper envelope
theorenti and whenever we refer to it, we will refer to it as the “Upper
envelope theorem”. We state this without proof.

Let (X, X, 1) be a measure space. Lat)z be an increasing right
continuous family ofr--algebras contained ifé,l. Let (fn)new be an in-
creasing sequence of regular supermartingales in the Heatsen € N,
fn is a regular super martingale adapted ¥)(z such thatv,x, Vt,
fa(x,t) < foa(xt) for alln € N. Let f(x t) = supf(x,t). Thenf is

n
a right continuous supermartingale ang, limits from the left exist at
all points.
For a proof see P.A. Meyelrl[1]. T16, p.99.
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2 Measure valued Supermartingales

Let (Y, %) be a measurable space. Lebhe a measure valued function
on Q x R with values inm*(Y, %), taking a point ¥, t) of Q x R to the
measure/l, on%. LetV t € R, v' be the measure valued function on
Q with values inm*(Y, Z) takingw € Q to v}, and¥ w € Q, let v, be
the measure valued function @takingt € R to the measurel,. If f

is a function ony, f > 0, f € %, letv(f) be the function o2 x R with
values inR* taking (v, t) to vi(f), Yw € Q, let v, (f) be the function on
R takingt to v} (f) andV t € R, let v{(f) be the function o taking

w e Q to vi(f).

Definition 68. v is said to be aneasure valued supermartingétesp.
measure valued martingdladapted tq(%")icr if

(i) Vi test

(i) ¥s,teR,s<tand¥ Ae ¥Sand
f Vvi,da(w) < f v dA(w)
A A

(resp.

(i) Vi, est

(i) Vs, teR,s<tand¥Y Ae %3,
f vida(w) = f v da(w) )
A A

in the sense that function fonY, fe %, f >0,

V(H)daw) | vS(f)daw)
[ o |

A
(resp. | Vi(f)da(w) = [ vS(f)da(w).)
[avaea- [

A
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Itis clear thatv is a measure valued supermartingale (resp. measure
valued martingale) adapted t@().cr if and only if ¥ function f on'Y,
few,f>0,v(f)is and extended real valued supermartingale (resp.
martingale) adapted t&{)cr.

Definition 69. v is said to be aregularmeasure valued supermartins
gale adapted t¢%")r if ¥V B € %, v(yg) is a regular supermartingale
adapted to(%")ier -

Definition 70. If v and u are two measure valued supermartingales,
adapted to¢ " )er, With values inm* (Y, %), u is said to be anodifica-
tion of v if Vt, ¥, w, u' =t

Definition 71. If v andu are two measure valued supermartingales with
values inm*(Y, %) and adapted tq¢ ), u is said to be aregular
modificationof v if u is regular and is a modification of

Let v be a measure valued supermartingale adapted'de-¢, with
values inm*(Y,%). LetVte R, J' = [vidi(w). ThenVt, J'is a
positive measure o. Sincev is a measure valued supermartingale,
Vs teR,s<t wehavel < J%inthe sense that B € %, J'(B) <
J5(B). In this sense we say that— J' is decreasing. Let su.]5 be

the set function defined of# as,V B € %/, (suth)(B) = suth(B)

teR

With a similar definition for the set functlons sub supJt, we have

teZ te%
t<
supJ! = supJ' = supsincet — J'is decreasing. sup is a measure on
teR teZ %E% Ee%
< <

%, since it is the supremum of an increasing sequence of mesasar
% . Let us denote this measure by J. Thus,

J = supJ' = supJt = supJt.
teR teZ teZ
t<0
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3 Properties of regular measure valued
supermartingales

In this section, let be a regular measure valued supermartingale with
values inm* (Y, %), adapted to an increasing right continuous family
(¢")er Of o-algebras contained i,. Let Jt = [vidaw) andJ =
supJt.

teR

Proposition 72. Let f be a functionon Y, £ 0, f € % such that f

is J-integrable. Theny(f) is a regular supermartingale with values in
R*, adapted tq¢")er and V¥, w, Vt, f is v -integrable.

Proof. We know thatv B € %/, v(y) is a regular supermartingale, with
values inR* adapted to ¢ )\r. Hence ifsis a step function ory,
s> 0,se %, v(s) is again a regular supermartingale with values in
R* and adapted toq{')er. Sincef is J-integrable,f € # andf > 0,
there exists an increasing sequenggnty of step functions such that
NeN,0< s, <f,syeZ ands,(y) T f(y) forallye Y.

HenceY t € R,V W € Q, viy(sn) T vi,(f). Hence ¢(sh))ne is an
increasing sequence of supermartingales with valuésjradapted to
(€)ier, With limit as v(f). Hence, by the ‘Upper envelope theorem’.
v(f) is a right continuous supermartingatét, [vi,(f)da(w) = J'(f) <
J(f) < +o0. Hence by remark14[,[68),v(f) is a regular supermartin-
gale. Hencey,w, Vt, v}, (f) < +co and this proves that,w, Vt, f is
W, -integrable. O

Corollary 73. Let f be a function on Y, with valuesﬁ] fe% and
J-integrable. ThenY,w, Vt, f is!-integrable andv,w, the function
v(f) onR taking t toV! (f) is regulated and right continuous.

Proof. This follows immediately from the above propositidh §8,[72)
by writing f asf* — f~ with the usual notation. m|

Proposition 74. Let E be a Banach space ovRr Let g be a step func-
tion on Y with values in E, & % and J-integrable. Theny,w, Vt,
g is!,-integrable and¥,w, vy(g), the function orR taking t tov!(g),
is a right continuous and regulated function Brwith values in E. (A
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Banach space valued function f &nis said to beregulatedf VYt € R,
er]t f(s) and Islmt f(s) exist in the Banach space).
s>t s<t

Proof. Letg = ZXAX,WhereVI i=1...n,x € E,A € # and 77

ANA =0if | ;t j. Sincegis J-integrable,Y i = 1,...n, J(A) <
+00. Hence, by propositiod4 B,[72),Vi = 1,...n, v(A.) is a regular
supermartingale and hengew, ¥t,i=1,...,n, vf,\,(Ai) < 4oo and¥, w,
Yi=1,...n,vww(A) is a right continuous regulated function Bn

HenceV,w, Vt, g is ! -integrable and?(g) = Z Vi (A)x; for these
w and for allt for which g is v}, -integrable.

Thus,VY,w, vw(g) = X vw(A))X onR. HenceVY,w, v,(Q) is a right
continuous regulated function @ O

Proposition 75. Let E be a Banach space ovkiand let f be a function
on Y with values in E, € ¢ and J-integrable. Theny,w, Vt, f is vf,v-
integrable andv ,w, w,(f) is a right continuous regulated function &n
with values in E.

Proof. Sincef is J-integrable, an& ¢/, ¥n, 7 a step functiorg, on'Y,

0n € % such thatf g, — fldJ < >

Leth= Z 2"lgn — fI.
n=1
Thenhis > 0 and isJ-integrable ory.
h
YneN|fl <lgn— fl+1gnl < on + |Onl

By proposition [#,§ B,[72),V,w, Vt, his v} -integrable and by proposi-
tion @, §B,[73)V,w, ¥ n € R, g, is W} -integrable. Hencey,w, Vt, f is
W -integrable.

lon - fI < ?h
HenceY,w, Vt, W4, (gn) — 4, (F)l < ?va(h)- Sinceh is > 0 and J-
integrable, by propositioril4,B,[72), VY ,w, vw(h) is a right continuous
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regulated function oR. HenceVY,w, w,(h) is locally bounded orR. 78
HenceV w, v{,(gn) converges ta!,(f) in E, asn — oo, locally uniformly
in the variabld.

By the previous propositioli(4,3,[72),Y,w, Yn € N, v,(gn) is right
continuous and regulated. Hence, sificés complete, and sincé,w,
the convergence of,(gn) to ! (f) is locally uniform int, it follows that
vw(T) is also right continuous and regulated. m|



Chapter 5

Existence and Unigueness of
regular modifications of
measure valued
supermartingales

1 Uniqueness theorem

Throughout this section, let), &, 1) be a measure space. L&) 79
be a measurable space. hebe a measure valued supermartingale on
QxR with values inm* (Y, #') adapted to an increasing right continuous
family (¢")icr of subo-algebras ol,. Lety take a point\, t) of QxR
to the measure}, on#. LetV t, J' = [v{,dA(w) and letd = supJT.

teR
Theorem 76 (Uniqueness) Let J be a finite measure o#f and let%
have the J-countability property. {f and¥ are two regular modifica-
tions ofv, then¥,w, Vt, x%, = ¥,

Proof. Sincey and¥ are regulary(1) and¥(1) are regular supermartin-
gales. Hence/,w, Vt, x!,(1) and¥!,(1) are finite. Hence/,w, V t, x¢,
and¥}, are finite measures off. Thus, there exists a sl € & with
A(Nz) = 0 such that ifw ¢ Ny, x§, and'¥, are finite measures o#f for

81
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allteR.

Since?  has theJ-countability property, there exists a $&te %
such that ther-algebraz”’ = # n CN onY’ = Y n CN is countably
generated. Let”Z be a countable class generatifaf. Without loss of
generality, we can assume thatis ar-system, containingy’.

Let B € #. The supermartingaleg(B) and¥(B) are both regular
modifications of the supermartingal¢B). Hence, by remark14§ [,
B4),

Vaw, Vi, xy(B) = Wy (B).

Thus,Y B e %,V w, V t, x1,(B) = ¥!,(B).
Since% is countable,

VoW, VB e A,V t,x! (B) = WL (B).

Hence there exists a sip € &, with A(N2) = 0 such that ifw ¢ Ny,

Vt e R, VB € £, ¥},(B) = ¥{(B). Letw € Q. Consider the clas®,, of

all setsC € '’ such thatvt, y!,(C) = ¥!,(C). If w ¢ N3 U Np, the class

%w is ad-system containing the-system%. Hence, by the Monotone

class theorem, faw ¢ N1 U N, %,y contains ther-algebra generated by

2 whichis#’. Thus, ifw ¢ Ny U Ny, YA € 27, Vt, x4 (A) = WL (A).
Now, sinceJ(N) = 0, Vt, J'(N) = 0.

I(N) = f ALN)AAW).

Hencevt, ¥V,w, xL,(N) = 0. Thereforey¥,w, Vt € Q, x{,(N) = 0. Since
V,w, t — x4 (N) is right continuous, it follows that,

Vaw, Vi, yL(N) = 0.

Similarly, V,w, vt, ¥} (N) = 0.
Hence, there exists a g6t € & with A(N3) = 0 such that ifw ¢ N3,

Vit (N) = 2L (N) = 0.
Letwg N; UN> U Ns. LetAe %,

A=ANnY UANN.
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If teR, xL(A) = (ANY)
=L (ANY)
=L (A).

Hence, ifw ¢ N; U N, U N3, Yt € R, VA € Z, xL(A) = ¥(A).
Therefore,
Vaw, Vi xl, = Pl onw.

2 Existence theorem

Throughout this section, let us assume tldat®, 1) is a measure spacesi
(¢")er is an increasing right continuous family efalgebras contained
in o, Yisa topological space? is its Borelo-algebray is a measure
valued supermartingale d x R with values inm* (Y, %), adapted to
(€Mter, I = [vi,dA(w) andJ = supJ'.

teR
Definition 77. We say t— Jtis right continuousf V function f on'Y,
f>0, few, t— JY(f)is right continuous.

Theorem 78(Existence) Let J be a finite measure @ and let t— Jt
be right continuous. Let Y have the J-compacity metrizghilioperty.
Then, there exists a regular modificatiomof

Proof. Sinceld is a finite measure{t, J is also a finite measure. Hence
Vt, Vaw, i, is a finite measure. Define the measure valued function
onQxRas

t _ |vw i vy is afinite measure
"wZ10,  otherwise

Then,» is a modification ofs and for allw € Q, for allt € R, v'{, is
a finite measure of¥. v/, being a modification of, has the sama' Vvt
and the samd. Hence, if we can prove the theorem fdrunder the
assumptions mentioned in the statement of the theorenhdioeem for
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v is obvious. Hence, without loss of generality, we shall assthatvt,
vw, W, is a finite measure of¥ .

Let us divide the proof in two cases Case | and Case Il. In Gase |
shall prove the theorem assumilfgto be a compact metrizable space
and in case Il, we shall deal with the general case and detiaaesult
from Case I

In Case | the proof is carried out in four steps, Step |, SteBtép
Il and Step IV.

In Step |, we define a measure valued functranQ xR with values
in *(Y, %) such that/t € R and¥Yw € Q, 17$N is a Radon measure on

In Step I, we prove thatt, 7' € €.

In Step Ill, we prove that if§(Y) is the space of all real valued
continuous functions ol, Y¢ € %(Y), Y,w, the functionvy(¢) on R
takingt € R to 7, (¢), is regular and’ is a modification of.

In Step IV, we prove that is a regular measure valued supermartin-
gale.

Case .Y, a compact metrizable space.

SinceJ, J' are finite measures a#, they are Radon measures¥n
sinceY is a compact metrizable space. 18{Y) be the vector space of
all real valued continuous functions dhand#’, (Y), the cone of all the
positive real valued continuous functions ¥n

Step I.Lety € €.(Y). Consider the real valued supermarting4lg).vt,
[vile)da(w) = J'(y) is finite and by hypothesis, — J'(¢) is right
continuous. Hence, by the fundamental theorem, a reguldifivetion
for v(p) exists. Hence, by Corollaryl(4,0, 61), Y ,w, Vt, r!mo Vw(t)(go)

exists and is finite, and #(g)(w,t) = lim yin® () if this limit exists

and is finite, and= O otherwise, theny(y) is a regular modification of

v(e).
Hence, ifp € €(Y), Y, w, Vi, nIim v\f\;‘(t)(go) exists and is finite.

Thus, fory € €(Y), if

Ay = (we Q] lim vit® () exists and is finitg.

and ifQg = N Q7 thend is carried byQ and hence a priori b§2?
teR
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VteR. Also, Yy € €(Y), Vt e R, 7, € €".

Let D be a countable dense subset&(lY), containing 1. Lef2° = 83
N Qg andQy = N Q7,. Note thatQ® = N Qf.
¢eD weD teR

SinceD is countable is carried byQ°, Qf € €' YteRandAais
carried byQy for everyt € R.

Letw e Q7. Since 1€ D, lim v\};‘(t)(l) exists and is finite. Henc4,
n—oo

supvin®(1) is finite. (1)
n
Also if we Qf, Yo € D, lim vii® () exists and is finite. 2)
n—oo

From (1) and (2), we can easily deduce thavit Qf, thenVy €
(Y), lim yin® () exists and is finite. Thus,

= ﬂ Q7.

pe?(Y)

o= () Q.

€6 (Y')

In the same way,

Thus, ifw € Q¢, the vague limit of5® exists. Conversely if for a
w € Q and for at € R, the vague limit ofv\};‘(t) exists, then it is easy to
see thatv e Q7. Thus,

¢ = (we Q| vague limit ofv® exists}.

Define the measure valued functionoh Q x R with values in
m*(Y, %) as follows.

Yw =

. _ [vague limit ofvy®, if we Qf
0, otherwise.

7, is thus a Radon measure ¥rfor all w € Q and for allt € R.

Step Il. Let show that/t, 3 € €.
For this, we have to show theB € %, the functiom*(B) € ™.
Let us first show that i € €, (Y), them?(p) € €. 84
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) lim v1O(e), if we QP
VW(SD) = = .
0, otherwise

Thus, Vi(¢) = xqo lim suprr (o). SinceQ; € ¢* and since

Nn—oo

w — lim supr® () belongs tag?, it follows thatv(p) € €.

Nn—oo

Let U be an open subset &f U # 0. Then, sinceY is metrizable,
there exists an increasing; sequeng@{ of continuous functions on
Y such that O< ¢, < xn¥ n€ N anden(y) T xu(y) forally e Y.

Hence,V t € R, Yw € Q, %,(xu) = r!i_rEOT/fN(gon). SinceV n € N,

VteR, W(pn) € €, it follows thatVt € R, #(yy) also belongs t&™.
Now, the standard application of the Monotone class theajiers
that¥Y Be %, VYt e R, #(yB) € ¢*. HenceV t e R, ' € ¥

Step lll. Let us shown tha¥ ¢ € F(Y), YW, vw(p) is regular and that
v is a modification of.
Letw € Q°. ThenV ¢ € Z(Y), ¥t, lim vip®(y) exists and is finite
n—oo

and this limit is equal tot;(¢). Therefore, ify € €, (Y) andw € Q°,
7L(e) = Vip)(w. 1)
for all t. SinceaA is carried byQ°, we therefore have
Vaw, Vi, Yo € G, (Y), % (@) = v(p)W, t). (1)

Now, v(¢) is a regular modification of(¢) by Corollary [@,§ [, [67).
Hence,Y, w, v(¢)w is regular. Therefore, since froid (1).

Vaw, v t, Yo € €, (Y), (@) = v(e)(W, 1),

it follows that, Vo € %.(Y), Yaw, vw(y) is regular. Henc&y € Z(Y),
Vaw, Y (y) is also regular.
If ¢ € €.(Y), sincev(p) is a modification of(p), we have

Vo e €.(Y), Yaw,v(g) (W,1) = vi(e).
Hence from this and froni{1), we deduce that

Vo € C.(Y). Yt YW, T (e) = vy(e)-
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HenceVy € €(Y), Vt, Vaw, ¥ (¢) = vi(¢). Therefore, sincd is
countable,
Yt YW, (@) = vile)

forall ¢ € D.
SinceD is dense and the measusésandt, are finite measures for
all w e Q and for allt € R, it follows that

Yt Vaw, Ve € FY), Tile) = vily)

and henceyt, V,w, 7, = i, as¥t, andvi, are Radon measures for all
w e Q and for allt € R.
Hencev'is a modification ofv.

Step IV.

We shall show that s regular. For this we have to show théB
%, YW, Wwys) is regular.

From Step llI, ifp € F.(Y), Yaw, (p) is regular. In particular,
¥ ,w, vw(1) is regular. Hencey,w, »,(1) is a locally bounded function
onRi.e. 3asetN € ¢ with A(N) = 0 such that ifw ¢ N, (1) is a
locally bounded function oi®. Hence ifB € # andw ¢ N, #,(yg) is
also a locally bounded function dh

Let U be an open set of, U # 0. Then sinceY is metrizable, there
exists an increasing sequengg)qen of continuous functions oW such 86
thatVne N, 0 < ¢, < yu and

en(y) Txu(y) forallyey.

HenceV we Q, VY t e R, v,(en) T vw(xu). Sincevn, ¥(¢p) is a regular
supermartingale and sine€yn) is an increasing sequence of functions
onQxR, it follows from the ‘Upper envelope theorem’ théatw, vy (yu)
is right continuous and has limits form the left at all poihts R. The
finiteness of these limits from the left at alk R, follows from the fact
thatV,w, w(yu) is locally bounded. Henc&,,w, v (yu) is regular.

Let¥ = {C € & | Y W, V(xc)isregular). Then, the clasg
is ad-system again by the ‘Upper envelope theorem’ and by thd loca
boundedness of,{yg) VB € %, for almost allw € Q. This class¢’
contains the clas#/ of all open sets which is &system generatingy'.
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Hence,% contains ther-algebra?” and hence is equal t&. Thus,
VB e &, Y ,w, ¥w(ys) is regular.

Sincev'is a maodification ofy, ¥(yg) is a supermartingalé B € %'.
Moreover, since¥ B € %/, Y, w, ¥w(ys) is regularp{yg) is a regular
supermartingal&B € . Hence,/'is a regular supermartingale and is
a regular modification of.

Thus, the proof in case | is complete. Note that in this caseabse
of the uniqueness theorem, the regular modificationisfunique.

Case Il. Y, a general topological space having theompactiy metriz-
ability property.

SinceY has theJ-compacity metrizability property, there exists a
sequenceXn)nen Of compact metrizable sets and a Be¢ % such that
J(N) =0andY = |J X,UN.

neN

n
LetVn e N, Y, = | X;. ThenVn, Y, is again a compact metrizable
i=1
set. This is becausén, Y, is both compact and Suslin eaghis so.

Moreover, the sequenc¥{)n is increasing and = |J Y, U N.
neN

Let Vn € N, %, be the Borelor-algebra ofY,,. LetV¥ n € N, »"

be the measure valued function éhx R with values inm*(Yy, %p)

associating to eaclw(t) € Q x R, the measurel' on %, which is the

restriction of the measuné,v to Yn. Then, it is easily seen thatn, " is

a measure valued supermartingaleor R with values inm* (Y, %7).

Let J, = [viy'dA(w) and J, = supJf. Then,¥ n e N, J and J, are
teR

respectively the restriction aff andJ to Y,,. HenceY n, Vt, J}] is finite,

Jy is finite andt — J!, is right continuous. Hence the hypothesis of
the theorem is verified for"vn € N. Hence by Case l¥yn € N, 3

a uniquemeasure valued supermartingalewith values inm* (Y, %7)
taking (v, t) to 7', which is a regular modification of".

LetV n e N, Vt, 7, | Y, denote the restriction of the measuf§™
to Ys and lety"* denote the measure valued function @nx R with
values inm*(Yy, %4) associating W, t) to x7{,‘v+1 | Yn. Then it is easily
seen thavn, 9Q:1 is also a regular modification of'. Hence, because
of uniqueness,

Vaw, Vi, 7t = gLy (1)
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V ne N, let us consider the measunél as measures o by defining
it to be zero for any seB € % for whichBN Y, = 0.

Then from ), it follows that/,w, 7' is an increasing sequence
of measures o/ for all t € R. i.e. there exists a s#l; € & with
A(N1) = 0 such that ifw ¢ Ny, for all t € R, (i')ney is an increasing
sequence of measures @0

Now, ¥V n € N, define the measure valued functi@ghon Q x R, with
values inm* (Y, ) taking @, t) to x{;' as follows.

ne | ifwe N
Fr=lo,  ifwen

Thenvw € Q, Vt € R, (,u{,‘v’t)neN is an increasing sequence of measures
of . Vn € N, " is a regular measure valued supermartingal©onk
with values inm*(y, %).
DefinevYw € Q, andVt € R, the measures!, as sup;’. Then
n

VBe?, uy(B) = Slnlpuv”v’t(B)-

Let u be the measure valued function @nx R taking (w, t) to ut,.

SinceVB € #, Vn € N, u"(yg) is a regular supermartingale, it
follows form the ‘Upper enveloppe theorem’ thétw, uw(ys) is right
continuous and limits from the left exist at ale R. Henceu(yg) is a
right continuous supermartingale avid € R,

[ Hterdaon) = im_ [ ire)aon
lim [ 7% (ceaagn
lim [ 4 (ceaagn

lim f VE(B N Yy)da(w)
= lim (BN Yy

= JY(B) < +c0.
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Hence by remark{4,[63),u(yg) is a regular supermartingale. There-
fore u is a regular measure valued supermartingale.

We have to show that is a modification ofv. i.e. we have to show
thatvt, V,w, ut, = Vi,

Lett € R be fixed. Since)(N) = 0, J'(N) = 0. Hencev,w, v§(N) =
Oi.e. 3 N! € ¢ such thati(N}) = 0 and ifw ¢ N1, thenyi(N) = 0.
vn € N, " is a modification of". Hence,

~nt _ nt
VYNeN, YW vy =vy.

Therefore¥,w, ¥n € N, 7' = vii'. Hence there exists a siif € &

with A(N?) = 0 such that ifw ¢ NZ,

;\r)\;t — V\r)\;t

forallne N,
Let M = N} UNZ U N;. ThenM € ¢ andA(M) = 0. If w¢ M, and
ifBe%,

W (B) = lim W, (Ya N B)

lim v{(B)
n—oo

= lim ™(B)

Nn—oo

lim w0(B)
Nn—oo

= uw(B).
Hence, ifw ¢ M, i, = u,. Therefore
t

Vi, Vaw, wl =,

This proves that: is a modification ofy. m|

3 The measures’, and the left limits

Throughout this section, let), &, 1) be a measure space. LﬁtQtAeR
be an increasing right continuous family@falgebras contained if1;.
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LetY be a compact metrizable space &ide its Borelo-algebra. Let
v be a regular measure valued supermartingal€2onR with values
in m*(Y, %), adapted to¢")ir. LetV t € R, ' = [,dA(w) and

J = supJt. Let us assume thaktis afinite measure o
teR
Sincev is a regular measure valued supermartingéley, vy(1) is a

right continuous, regulated function & HenceY,w, v (1) is locally
bounded orR. i.e. 3 a setN; € ¢ such thati(N;) = 0 and ifw ¢ Ny,
vw(1) is locally bounded oiR.

Yo € €(Y), the space of all real valued continuous functions on
Y, Yaw, va(p) is a right continuous regulated function & Hence,
Vo € E(Y), YV W, t — v (¢) is right continuous and has finite left limits
at all points ofR.

Let D be a countable dense subsefti). We have,

YW, Yo € D, t — ! () is right continuous and has finite left limits
at all points ofR. i.e. there exists a s&, € & such that ifw ¢ Ny,
Vo € D, t — Vi (p) is right continuous and has finite left limits at all
points ofR.

Letw ¢ Ny U No. Then it is easy to see thep € €(Y), t — W, (p)
is right continuous and has finite limits at all pointskof

Hence, define/ w € Q, V t € R, the linear mappings!, on ¢(Y),
with values orR as follows,Y¢ € €(Y),

lim vS(¢), if we Ny U Ny

t— s—t

Vi (9) = { s<t
0, if we Ny UN,.

Then,Y we Q, V t € R,V is a positive linear functional o#(Y)
and thus defines a Radon measureéroAnd, by definition,

Vaw, Yt vy (9) = limvife) V¢ € €(Y).

s<t

Proposition 79. Let (fn)nen be an increasing sequence of functions on
Yn, fn = 0, f, € 2 and J-integrable¥ n € N, such that f increases
everywhere to a J-integrable function f. Further, l¢tw, ¥V n, Vt, 92
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Vo (o) = L”}va(fn)- Then,v,w, ¥ t, f isv integrable andv,w, Vt,
s<t
vy (f) = Q@t valf)
s<t

Proof. By passing to a subsequence if necessary, we shall assume tha

YneN,
1

Leth= 5 2f,— f|. Thenh > 0, h € % andJ-integrable.
n=1

1
Yw, Vi, v (Fo) = v (F)l < ?vgv(h).

By proposition [#,§ B,[72), Y ,w, v (h) is a right continuous, regu-
lated function oriR and hence is locally bounded. Henégw, vi(fn)
converges to!,(f) asn — oo locally uniformly in the variablé. Hence,

Vaw, Y te R, lim lim va(f) = lim v(f).
s<t s<t

(Proposition [4,§ B3, [72) guarantees the existence ngt pif,) and

s<t
i S
Ilsm<tt vo(f), V¥ n, Vt). Hence,

Yaw, Yt € R, r!l_r& Ve () = IS|_>rnt ve ().
s<t
Now, sincef is J-integrable, by propositioil(4,3,[72),V ;w, v (f)
is a right continuous regulated function Brand hence

Vaw, Vi, Islmt v (f) < +o0.
s<t

Therefore,¥,w, Yt € R lim. ButVw € Q, Vt € R, lim v (f,) =
n—oo N—oo
v (f) sincef, T f everywhere ory. Hence,

Vaw, Vt € R, vi (f) < +o0
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and
Vaw, Vte R, vi (f) = ertltv\fv(f).
S<

Theorem 80.V B e %, ¥V, w, YVt
iy (v) = lim valxs)-
s<t

Proof. Note thaty B € ¢, V,w, Vt, Isqu vy (xB) exists and is finite, since

s<t
v(yg) is a regular supermartingale.

LetU be an open set) # 0. Thenyy is lower semi continuous and
J-integrable sincd is a finite measure. Sincéis a metrizable spacd,
an increasing sequencgnjnen Of real valued non-negative continuous
functions onY such thatp,(y) T xu(y) forally € Y.

Vaw, Vi, Y, v (en) = ISI‘_>mt v (¢n)-
s<t
Hence, by the previous propositidd &3, [79),V,w, Vt, v}, (yu) =
E_)mt V\?\/(XU)- Let
s<t
€ ={Ce ¥ | vy (xc) = limviulxc)l.
s<t
This class is al-system, again by the previous propositibh {8,
[79). Thisd-system contains the-system{ of all open subsets of.
Hence % contains ther-algebra?’, which is generated by/. Hence,

VBeZ, v (xe) = im vi(xs).
s<t
(]

Proposition 81. Let f be any J-integrable extended real valued function
onY fe%.ThenV,w,Vt, fis vf,;-integrable and

Vaw, Vi, v (F) = lim Vi (F).
t’?t
93
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Proof. Note that the existence 9f Itimﬁi,(f) VY t € R is guaranteed by
t'<t
Corollary [3,§ B,[73).
Suficient to prove wherf is > 0, f € # andJ-integrable.
If sis any step function oY, 0 < s < f ands € %, thensis
J-integrable and it follows from the previous theordth {&,[B0), that

Vaw, VteR, Vi (s) = lim vi(9).
t'<t

Now, we can find as increasing sequensg@ntw of step functions
onY,sse % and 0< s, < f Y ne N such thaty e Y, si(y) T f(y).
Now, from proposition[[56§ B,[79) it follows thatv ,w, Vt, f is vl -
integrable and
Vaw, Y t, vy (F) = lim viy(f).
(24
i

Proposition 82. Let E be a Banach space ovRr Let g be a step func-
tion on Y, with values in E, g % and J-integrable. Then,w, ¥t, g is
v, -integrable and

Vaw, Yt vy (@) = lim vy (9).
t’?t
Proof. Note that the existence of lin§,(g)Vt, is guaranteed by proposi-
t'—
t'<t
tion @, § B,[73).
n
Let g be of the form} ya X whereVi=1,....nA e #,x € E
i=1
andA NA; =0if i # |.
SinceVYw € Q, Vt € R, vf,; is a finite measure o, Vi, Yw € Q,
Vt € R, vi;(A) < +o0. HenceV w € Q, V € R, gis vl -integrable,
andvw € Q, YVt € R, v}, (A) < +co0. HenceV we Q,V t € R, gis
Vi, -integrable, andw € Q, Vt € R,

n

@ = ) (A

i=1
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By theorem[(b§ 3,[80),
Vaw, Vit Vi, v (A) = lim vl (A).
tt’jtt
HenceY, w, V t,
n
(@ = ) lim v (A)x
=1 y<t
lim lim +£,
t'l—>t iIDJ]. VW(A|)X|
t'<t
= lim v}
¥ ot vw(9)
t'<t
m|
Theorem 83. Let f be a J-integrable function on Y, with values in a
Banach space E ové®, f € %. ThenV¥,w, Vt, f is v},;-integrable and
Vaw, Vi v (f) = lim Vi ().
t’?t
Proof. Note that the existence (31‘ Itim',(f), ¥,w, for everyt is guaran-
t'<t
teed by propositior{4 B,[73).
There exists a sequenog, e Of step functions orY with values
in E, gh, € # ¥n € N such that

1
YneN, flgn—f|dJsﬁ.

Leth = § 2"lgn — f|. Thenh > 0,h € # and isJ-integrable. 95
n=1

h
vn, [fl <lgn— fl + g0l < on +|Onl.

By proposition [5.,§ B,[81), V,w, ¥t, his v}, -integrable, and by the
previous propositior % 3,[82),Yw, Vt, Vn, g, is v{; -integrable. Hence,
Vaw, Vt, f is vt -integrable. Moreovely,w, Vt,

| vy (@n) = v (F) 1 = v (gn = ) |
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1 .
< ok ().
SinceV¥,w, Vt, v (h) < +oo, it follows that nIim v (gn) exists and is
equal tovt, (f). (1)
t t t 1 t
Yaw, Yt IVi(9n) = v ()l < vyllgn = fI) < %Vw(h)-

By proposition [#,§ B,[72), Y ,w, vy(h) is right continuous and reg-
ulated. HenceY ,w, vy (h) is a locally bounded function dR.

Hence,Y,w, v{,(gn) converges to},(f) in E asn — oo locally uni-
formly in the variablet. Hence

lim lim vi(gn) = fim vi(f).

t'<t t'<t

Therefore,
lim vy (@) = lim () 2)
t’?t
From [1) and[(R), we see that
Vaw, Vi, v (f) = lim vi(f).
t'—t
t'<t



Chapter 6

Regular Disintegrations

1 Basic Definitions

Throughout this chapter, let us assume tbgtA, 1) is a measure spacege
(¢")ier is an increasing right continuous family of sutbalgebras ot
A restricted tdg" is o-finite V t € R and thatvt, 1 has a disintegration
(A )weq With respect tag™.

Then (v,t) — Al, is a measure valued martingale Onx R with
values inm*(Q, 0, adapted to€" )er.

Definition 84. (A}, )weq is said to be aegular disintegrationf A with re-
spect to the familyé ) if (w,t) — Al is aregularmartingale adapted
to (Cgt)teR-

From the theorem[q3§ B, [44), we see that i€ is a topological
space,s is its Borelo-algebra andQ has thei-compacity metrizabil-
ity property, thenv t € R, A has a disintegration(s},)weq With respect
to €' - (w,t) — o, is a measure valued martingale adapted®)icx.

If further, A is finite, then by theorenil(3,2, [78), this measure valued
martingale has a regular modification, széytw)weﬂ% Then, (A )Weﬂ% is

a regular disintegration oft with respect to(¢")r. Hence, if we as-
sume thatQ is a topological space is its Borelo-algebra,Q has the
A-compacity metrizability propertf%*)r is an increasing right con-
tinuous family ofr-algebras contained i, and A is a finite measure

97
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on ¢, thena has a regular disintegration with respect (& )cr.

Definition 85. A set Fc QxR is said to bet-evanescerif its projection
onQ is of --measure zero.

Note that ifF is a1-evanescent set, then there exists aBset é’ﬂ
such thati(B) = 0 andF c B x R. Hence, if a propertyP(w, t) holds
except for al-evanescent set, then there exists &Bset; with A(B) =
O suchthatifv ¢ B, P(w,t) holds for allt € R. Conversely, if there exists
a setB € ¢, with A(B) = 0, such that a properti(w, t) holds for allt,
whenevew ¢ B, then the property holds except for thaevanescent set
B xR.

2 Properties of regular disintegrations

Let us assume hereafter thamweR is a regular disintegration afwith
teR
respect to € )ier.

Proposition 86. Let Be ¢ with A(B) = 0. ThenY,w, Vt, A%(B) = 0.
Proof. We havevt, ¥,w, 4},(B) = 0. Hence,
Vaw, Vte Q, AL,(B) = 0.
SinceY,w, t — Al(B) is right continuous, it follows that
Vaw, vt € R, AL (B) = 0.
i

Proposition 87. A}, is a probability measure except forlaevancescent
set.

Proof. Vt, V¥, w, A}N is a probability measure. Thereforé,w, Vt € Q,
AL, is a probability measure.

SinceY,w, t — /1$N(Q) is right continuous, it follows that¥ ;w, Vt €
R, A, is a probability measure. O
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Proposition 88. Let Ae €'Vt € R. ThenV,w, Vt, A}, is carried by A or
by CA, according as ve A orwe CA.

Proof. By proposition [B§ [4,[29), we know thavt, VB € €1, V,wA!, is
carried byB or by CB according asve Borwe CB.i.e.Vt,V Be ¢,
Vaw, xa(W) - 24,(CB) andyg(w) - A4,(B) are both zero.

SinceA € ¢ for all t, we have therefore/,w, Vt € Qya(w)-A,(CA)
andy¢a(W) - 44,(A) are both zero.

Since¥,w, t — A,(CA) andt — A!,(A) are right continuous, it
follows that,w, vt € R, yg(W) - 4,(CA) and y(A(W)1},(A) are both
zero. O

Proposition 89. Let f be a bounded regular supermartingale, adapted
to the family(%')r. Then,V,w, Vs, t— A8(f!) is right continuous.

Proof. Sincef is aregular supermartingalé,w, f,, is right continuous,
i.e. B € ¢ with A(B) = 0 such that ifw ¢ B, t — fi(w) is right
continuous.

Lett be fixed. Let, | t. Then, ifw ¢ B, fi"(w) — ft(w).

By proposition [6.§ 2,[88),

Yaw, Vs A5 (B) = 0.

Hence,Y,w, Vs, ¥, sw, fi"(w) — f{(w). Since by propositior165 2,
B1), V,w, ¥V s, 43, is a probability measure, and sinéds bounded, it
follows by the dominated convergence theorem, that

Vaw, Vs AS(Fin) — AS(fY).
O

Proposition 90. Let f be a bounded regular supermartingale adapted
to (¢ )er. Then,Vaw, ¥V s, t — A5(f!) is a decreasing function in
[s, +00).

Proof. Let {t,t’} be a fixed pair of real numbers,< t’. Sincef is a
supermartingale adapted t6'{);.r, we have

Vs s<t Vw, AS(fY) < aS(fY).
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Therefore¥,w, ¥se Q s < t, A5(f!) < AS(fY). 99

Now, (W, s) — A5(f") and (v, ) — AS(fY) are regular supermartin-
gales. HenceY,w, s — A5(f') ands — A5(f!) are right continuous.
ThereforeV,w, Vs < t, A5(f') < AS(Y).

Now, V¥, w, A,(ft) = f'(w). Sincef is a supermartingale,

vaw, AL (FY) < fiw).
Hence,Y w, AL (f') < AL(fY). Therefore,
Vaw, Vs<t, AS(FY) < AS(fY).

Thus, for every paift,t'}t < t/, V,w, Vs < t, A5(fY) < AS(fY).
HenceY,w, VY pair{t,t'},teQt' e Qt < t/,

Vs<t, AS(fY) < AS(fY).

By the previous propositiofi&2,[89),V,w, Vs, t — A5,(f!) is right
continuous. Therefore/,w, Y pair{t,t’}, t,t’, Vs <,

A7) < 25(FY.
Thus,¥,w, Vs, t — A5(f!) is a decreasing function irs[+c). O

Theorem 91. Let f be a regular supermartingale adapted (66")cr.
ThenY,w, Vs, t— A5(f!) is decreasing and right continuous|ig +oo)
and

Yaw, Vs, A5 (f%) = f3(w).

Proof. If fis abounded regular supermartingale, then from the prsviou
propositions, propositiof§,2,[89) and propositior16,2,[20), we see
that

Vaw, Vst — A5(fYH

100 is a decreasing right continuous function mfc). Hence,¥,w, Vs,
t — A5(f!) is decreasing and lower semi-continuous sn#eo). (At s,
we mean only right lower semi-continuity).
If fis an arbitrary regular supermartingale, not necessaniyted,
¥m e N, inf(f,m) is a bounded regular supermartingale. Hence,
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vYm e N, Y w, Vs, t — AS[{inf(f,m)}!] is decreasing and lower semi-
continuous in § +co).
SinceVt, {inf(f,m)}! 1 !, we have

Vs, Vi, Yw, A5(fY) = lim AS[{inf(f, m)}Y].

ThereforeY,w, Vs, t — A5(f!)is decreasing and lower semi-continuous
in[s, +o0).

If a function, in an interval is decreasing and lower senmttaious,
if is right continuous there.

Hence,¥,w, Vs, t — A5(f!) is decreasing and right continuous in
[s +00).

Let us now prove that

Vaw, Vs, A5(F%) = f3(w).
We haveYs, Y, w, A3(f%) = f3(w). Hence,
Yaw, Vs e Q, 45 (%) = f3(w).

SinceV,w, s — fS(w) is right continuous, to prove the theorem, it
is suficient to prove tha¥,w, s — A5(f") is right continuous. Now,

k k+1

R = [__)

gzn 2"
neN

DefineY ne N,we Q

FSW) = AS(f if se [ K k+1)

%, 2n .

We claim thatvn, f, is a regular supermartingale adapted#®)(cr. 101
vn, the regularity off, is clear, sinceA3)weq is a regular disintegration

R
of 1. We have to only prove that n eSEN, fn IS a supermartingale
adapted to€")er.
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Clearly, f,, is adapted to€")cr, Vn € N. We have to only prove that
VnVvtteRt<t,¥VAeC

f f1' (w)da(w) < f fiw)da(w).
A A

k+1
n’> on :
for somet € Z. Actually, in this case, we have even equality as) —
k+1
AS(f 2" ) is amartingale.
It is sufficient to prove the above inequality wheandt’ belong to
+1 k+1 k+ 2)

This is clear, if botht andt’ belong to the same intery|

L k k ,
two consecutive intervals, anye o o andt’ e o o

because for other valueshndt’, t < t’, the above inequality will then
follow from the transitivity of the conditional expectatis.
Again to prove the inequality, it is §licient to prove it whert =

k+1 I
k/2" for somek € Z andt’ = % because of the transitivity of the

conditional expectations and because of the fact that)(— Ay (f o )
is a martingale; i.e. we have to only prove thah € N, V k € Z,
vV Ae ¢k

K+1 k42 k+1
f A2 (F 27 )daw) < f 92527 Ydaw).
A A

But this follows immediately from the fact thdtis a supermartin-
gale. Itis easy to check that

YsVn, Yw, fo(w) < 3. (w).

n+1

Therefore, sinc&n € N, f, is regular, we have

Yaw, Vn, Vs, faw) < £° (w).

n+l

HenceV,w, Vs, nIim f3(w) exists. But
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Vaw, Vst — A5(fY)
is right continuous ing, +o). Hence
Yaw, Vs, lim f3(w) = A5,(f9).
N—oo

Since (f)new is an increasing sequence of regular supermartingales,
it follows from the ‘Upper enveloppe theorem’ that

Yaw, s— A5(f%)
is right continuous. O

We now state and prove another important theorem, which We ca
the “theorem of trajectories”. In the course of the proof ki ttheo-
rem, we need the concepts relating Well-measurable processesnd
“%-analytic sets where ¥ is ao-algebra onQQ. We state about well
measurable processes what we need. For the definition apérfies
of ¥-analytic sets, we refer the reader to P.A. MeJér [1], Chaf@tand
sectiorl “Compact pavings and Analytic sets”.

By astochastic process #n Q, with values in a topological spaces
E, we mean a collection{®)r of mappings o2 with values inE such
thatvt, X! € &,. A stochastic process can be considered as a mapping
X from Q x R to E such that't e R, X' € @. A stochastic procesX is
said to beadaptedto (€')er if Vt € R, X! € €.

Definition 92. A stochastic process X dn with values inR is said to

be well-measurabléf it belongs to ther-algebra onQ x R, generated

by all sets Ac Q x R such that{w,t) — ya(w,t) is regulated and right 103
continuous and is adapted @")cx.

See definition D14 in page 156 and remark (b) in page 157 in P.A.
Meyer [1].

We need the following important fact.

If X is a right continuous adapted process@nvith values inR,
thenX is well-measurable.

For a proof see remark (c) in page 157, in P.A. Melér [1].
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Theorem 93(The theorem of trajectories).et X be a right continuous
stochastic process of?, adapted to(¢")er, With values in a topolog-
ical space E which has a countable family of real valued cardus
functions separating its points (for example, a complatedylar Suslin
space). Then,

Vaw, Yt e R VW, Vs <t, XS(W) = XS(w).

i.e. Vaw, Vt, AL is carried by the set of all twvhose trajectories coincide
with those of w upto the time t.

Proof. If % is the Borelo-algebra ofE, it is easy to see tha¥g is
countably separating. Lete any fixed real number. Lbtbe a function
on Q with values inE such thah € €' for all t > s. Then proceeding as
in the proof of proposition[{3§ [,[54) and propositior 16 2, [88), we
can prove that

Vaw, V> s Ve w, hw') = hw),
Now XS € €' Vt > s. Hence,
Vs, Vaw, Yt > s Ve w, XS(W) = X3(w).

Therefore,¥,w, ¥s € Q, Vt > s, ¥V W', XS(W') = XS(w). Hence,V,w,
Vt, Ve W, Vse Qs <t, XS(W) = X3(w),

Now, Y ,w, s — XS(w) is right continuous and hensgw, Vt, VW,
s — XS(w') is right continuous. Hence

Vaw, Vt, Ve W, Vs <t XSW) = XS(w). 1)

To prove the theorem, we have to only prove thgl, Vt, ¥ W',
X{(w') = XH(w).

First let us consider the case whén= R.

Let us assume that is a regular supermartingale adapted4®){.
Let M be any real number 0. Let Xy = inf(X, M). Then,Xy is also a
regular supermartingale. Therefore, by theorgng (8,[91),

Vaw, Vi, AL, (%) = X, (w).
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Letw be such that), is a probability measure amg},(X},) = X{,(w).
If X'(w) > M, thenX},(w) = M andX{,(w’) < M for all w € Q. Since
(X)) = X}, (W), it follows therefore that ; w', X}, (W) = M = X, (w)
and hence,
VW, X(w) > M.

Since Y, w, Vi, A}N is a probability measure and sintgw, Vt,
A(XL,) = X, (W), we see that

YMeR, M>0, Vw, vt, if X{(w) > M, then
VW, X{(W) > M.

Hence,,w, ¥t, YM € Q, M > 0, if X'(w) > M, thenV¥ ; W', X'(W') >
M. Thereforev,w, ¥t, ¥ w', X'(w’) > X'(w). But by theorem[{6§ 2,
B1),

Vaw, Vi, AL (XY = Xi(w).

Hence Y, w, Vt, ¥ W', X'(W') = X'(w).

This proves the theorem, whetis a regular supermartingale. 105

Since an adapted right continuous decreasing process walities/
in R, is a regular supermartingale, the theorem holds whénsuch a
process. Therefore also, wh&ns a bounded adapted right continuous
increasing process. By passing to the limit, the theoremetbee also
holds whenX is an adapted increasing right continuous process.

Now, let X be any regulated right continuous process with values in
R.

LetYw e Q andt € R,

o(w, t) = X(w,t) — X(w, t-).

o is again an adapted process with valueR.ireta > 0.
SinceVY,w, X is a regulated function oR, Y ,w, the number of's
in any relatively compact interval & for which o(w, t) > « is finite.

(0%
Letn € N andw € Q andt € R. DefineM(w, t) as the number of
7's, T € (—n, t] for which o-(w, 7) > «, if t > —n and zero otherwise.
(3

ThenV,w, ¥n, Mn(w,t) is an integer for alt and it is easy to see
thatVw, for which X,y is regulated, given antye R, 3 ¢ > 0 such that
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Mn(w,.) is constant inf, t + §). HenceY,w, t — Mp(w,t) is trivially a
right continuous function. MoreoveY, w, ¥Yn, My(W, -) is an increasing
function oft. .

Hence,Y n € N, M, is an increasing right continuous process on
QxR.

Let us show that it is adapted to the famiﬁﬁ}(}teR; i.e. let us show
that Y

VteR, YneN, w— MyWw,t) € €.

To understand the ideas involved in this prove, the readefésred
to the proof of T52 in page 71 if P.A. Meyeri[1], where simildeas are
used.

Any right continuous or a left continuous proce&sadapted to
(¢)ier is progressively measurablaith respect to €')r and hence
Vt, the restriction ofZ to Q x (-n,t] belongs to%* ® %(-n,t] where
AB(—n,t] is the Borelo-algebra of £n,t]. (seeD45 in page 68 an@47
in page 70 of P.A. Meyei [1]). Note thatv(t) — X(w,t-) is a left con-
tinuous process and henegds progressively measurable with respect to
((gt)teR- o N

Since My}, is an integer valued function, to prove thak N, M, €
(5}, it is suficient to show thaty m € N, {w: Mi(w) > m} is a ¢*-
analytic set.

Let A be the subset a2 x R™! consisting of pointsw, —n, s, S,

..,Sn)wWherewe Q,-n< s <$...<sy<tand

oW, ) >a, oW, ) >a,...,0W, Sy > a.

This setA € €' ® 2™1(-n,t] where Z2™(-n, 1] is the Borelo-
algebra of £n,t] x (—-n,t] ... x (-n,t].

o m+1 times . . .
This is because of the fact thatis progressively measurable with

respect to€")ier .

The projection ofA on Q is precisely the sefw : I@IE](W) > mj.
Hence{w : M{(w) > m} is a%¢"-analytic set. Hence

it St
v vVt M, e %t
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Let Vt, &' be theo-algebraN %a“ Then §Y)er is an increasing right
u>t

A a
continuous family obr-algebras o2, contained i, andvn € N, M,

(0%
is adapted toF' )er. SinceM,, is an increasing right continuous process
adapted tog )er, the theorem is valid for this process.

a
HencevV n € N, Va > 0, V;w, Vt, Y W, Vs < t, Mn(w',s) =

lil/ln(w, 9).

This shows tha¥n € N, Ya > 0, V,w, Vt, ¥ W, for all s < t, the
number of jumps in4{n, §] of magnitude greater than or equaldaare
the same foX,, and Xy .

Since this is true for all rational > 0 and the same thing analo107
gously for all rationatr < 0, it follows that¥ n € N, ¥,w, Vt, V x w’, for
all s < t, the number of jumps inHn, §] of any given magnitude are the
same forX,, and X,y .

Hencev ne N, V,w, ¥t, ¥V W, for all s < t, X, andX,, have jumps
precisely at the same points iar, s] and the magnitudes of the jumps
at each point of a jump are the same Xgf andX,.

Since this is true for eveny € N, we therefore have that

VAW, VE, Ve W, X

has a jump at a poirg < t if and only if X, has one as and the magni-
tudes of the jumps foX,, and X, at sare the same.

LetC = {we Q[ Vt, VywW,w has ajump at a poirg < t if and
only if Xy, has one as and the magnitudes of the jumps 9y, and Xy,
at sare the samé Then, by what we have seehis carried byC.

LetB = {we Q| Vt, VyuW,Vs <t X3wW) = X3w)}. Then, from
@), A is carried byB.

Letw e BN C. Lett be any point ofR. Let X, be continuous at
We have, sincev € B,

VW, Vs<t, XS(w) = X3(w).
Hence,V W, mxs(w’) exists and is equal tX'(w), sinceX, is

. s<t
continuous at.
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Let us prove that

VW, lim XEw) = Xw).
=t
If not, the setB}, = (W € Q| 3 XS(w') # X'(w)} is of positive
s—t

s<t
Al ,-measure. But, sinos € C and sinceX,, is continuous at and hence

has no jump at, on no set of positival,-measure, all the/ can have a
jump att. HenceB!, must be oft},-measure zero. Hence,

VW, lim XS(w') = Xw') = Xt(w).
s<t

Therefore ¥ W', X'(w) = X'(w).

Now, letw € Bn C andt be a point at whichX,, is discontinuous.
ThenXy, has a jump at and sinceX,, is right continuous at, the jump
is equal toX(w, t) — X(w, t-). Hence, sincev € C, VW, W has also a
jump att and

X(W, 1) — X(W,t-) = X(w, t) — X(w,t-).
But sincew € B,
vﬁbvv\/,\v's< t, X5(wW') = X3(w)

Hence
VW, X(W,t=) = X(w, t-).
Therefore,
V%VV\/,X(V\/,'[) = X(w, t).

SinceA is carried byB N C and sincé € R is arbitrary, we have
Vaw, Ve, Ve w/, Xiw') = X (w).

This combined with[{l1) gives thatyw, Vt, ¥V w', Vs < t, XS(W') =
X5(w).

Hence the theorem is proved whiris an adapted, regulated, right
continuous real valued process.
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Let®
={AcC QxR | ya is adapted and the theorem is true for the progass

Then¥ is ac-algebra o2 x R.

% contains by the preceding, all the satfr which y A is an adapted
regulated right continuous process. Her€econtains all the well-
measurable processes.

Since a right continuous, adapted process is well-meads,rdie
theorem is true for any right continuous adapted proceds waies in
R.

Now, if (fo)new is @ countable family of continuous functions Bn
separating the points &, and if X is a right continuous adapted process
with values inE, then¥ n € N, f, o X is a real valued, adapted right
continuous process and hence the theorem is trud,forX, ¥n € N.
Since thef,,’'s separate the points & and are countable, the theorem is
true for X. O

Theorem 94. Let &' be countably generated. Then,
VW, Vs, Vt, f AL, A5 (dw) = Ay,
Proof. VB e 0, Vs, t,s<t,
VW, f AL (B)AS(dw) = A5(B)
since (, W) — /lfN,(B) is a martingale. Hence,
YBe O, Vt, Y w, YseQ, s<t,
[H @i = 5o,

Since @3 )weo is a regular disintegrationy,w, s —» A3(B) ands —
s€R
f/lfM(B)/i\fv(dV\/) are right continuous. Hence,

VBe O, Vt, Y w, Vs<t,
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[ Ao@sew = o,

Therefore, 110
VBe O, Yw, Yte Q,Vs<t,
[ 4 @azaw) = )

Since @)weq is a regular disintegrationyB € &, V,w, t — A (B) is
teR

right continuous. HenceB € &, V,w, Vs, Vs, t — AL (B) is right
continuous. Hence,

VBe O, Y,w, Vt, Vs< t,
[ @azaw) - @) &)

Since @3(B))weq is an adapted right continuous process with values
R
in R, by the previséus theorerhl(§2,[93),

VBe O, VW, Vs VW, Vt<s A, (B) = AL(B).
Therefore,
Yaw, Vs Yt <s f Ay (B)A5(dW) = A(B),

sinceY,w, Vs, A3, is a probability measure. Il
From (1) and (Il), we see therefore that

VB e O, VW, Vs, Vt, f AL, (B)AS(dw) = AMn(s(B).
Sinced is countably generated, by the Monotone class theorem,
VW, Vs Vi, VB € 0, f AL, (B)AS(dw) = AMn(SY(B).

Hence,
VW, Vs, Vi, f AL, 25 (dw) = alin(sy),



Chapter 7

Strong o-Algebras

1 A few propositions

We shall prove in this section two propositions which willdeed later 111
on.

Proposition 95. Let (€, &, 1) be a measure space afd, a o-algebra
contained ind,. Let A restricted to% be o-finite. Then, the following
are equivalent:

(i) Ais disintegrated with respect tg' by the constant measure val-
ued function w— A% = A.

(i) Ais ergodic on%w’ i.e.YA e %, A(A) =0or 1.

Proof. Let us assume (i) and prove (ii).

By the definition of a measure spackez 0. (i) implies thata is a
probability measure. By propositiofl (8[4,[49), for any disintegration
(A%)wea OF 2 with respect te#, givenA € €, V,w, A7 is carried byA or
by CA, according asv e Aorw e CA. Therefore, giverA € ¥, either
A(A) = 0 orif A(A) > 0, there exists av € A such that1? is carried
by A. Applying this to our special case whetg = 1 Yw € Q, we
see that if1(A) > 0, 4 is carried byA and hencel(A) = 1, sinced is a
probability measure. Thug,is ergodic or& .

111
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Let us now assume (ii) and prove (i). (ii) implies thais a proba-
bility measure.

To verify that A is disintegrated with respect 6 by the constant
measure valued functiom — A% = A, according to propositioril3, 2,
F9), it is suficient to verify that

(1) foranyAe &, w — A(A) belongs tos'.
(2) A= [ada(w)
(3) GivenA e %, Ais carried byA or by CA.
(1) and (2) are clear and (3) follows from the fact thas ergodic. O

Proposition 96. Let (X, X, u) be a measure space. Letx vy be a
measure valued function on X with values in a measurablees(pafﬁ),
v € X. Letp = fvx,u(dx). Let ¢ be ac-algebra contained g, N

N Oy,. LetV, X, vx have (1% )weq as disintegration with respect t@'.
xeX

Thenp also has(A% )weq as disintegration with respect 6.

Proof. We have to only prove that

VAEE, yan-p = fa;{dp(w).
A

LetBe 0.
xa+p(B) = (AN B) = [ (A B)ck(x)
V% v(AN B) = f A5 (AN B)dvy(W).
[ AL (AN B)dvy(W) = vx(A?.(AN B)) = vx(xa - 1% .(B)). Therefore,
[ an B9 = [ vatra- 2. @)ued
= [Lxatw- 2 (Erptcny
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= (| 2%p(dw)(B).
/

SinceB € & is arbitrary,

XA P = f A p(dw).

A

2 Strong o-Algebras

Hereafter throughout this chapter, we shall make the foligvassump- 113
tions regarding, ¢ andA.

(1) Qis atopological space ard is its Borelo-algebra
(2) 0 is countably generated

(3) Ais a probability measure off and

(4) Q has thet-compacity metrizability property.

For example if2 is a Suslin space and is its Borelo-algebra, (2)

is verified and (4) is also true for any probability measure

_ Let & be theo-algebra of alluniversally measurablsets ofQ. i.e.

o= N0 wherem*(Q) where is the set of all probability measures
emt(Q

on Q.ﬂ “

We remark that our assumptions regardfdge’ and A implies the
existence and uniqueness of disintegrations with respect to anyr-
algebra contained irv. B

If /¢ is anyo-algebra contained i, let (17 )weq denote a disin-
tegration ofd with respect to7.

Definition 97. Let. and% be twoo-algebras contained i@. We say
¥ is A-stronger than? if V,w, 1% admits as disintegration with respect
to ¢, the family of measurg@?, )wco-

The following proposition shows that the property ‘is A-stronger
than.”” does not depend on the chosen disintegrations.
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Proposition 98. Let. and % be twoo-algebras contained iw. Let
(A wea (resp. (A5)wea) and (v wea (resp. (v wea) be two disinte-

114 grations ofd with respect to (resp. €). If V,w, A, has (1% )wea
for disintegration with respect t&’, thenV,w, x;, has (x% )weq for
disintegration with respect t@’.

Proof. SinceV,w, A7 has @f})mg for disintegration with respect to
%, we have

(1) Vaw, 45 = [ A7, d47 (dw)

(2) V,w, givenA € 7, Yoz W, Af, is carried byA or CA according
asw € Aorw e CA.

To prove the proposition, we have only to prove that
() Vaw, xiy =[x ey W)

(i) Vaw, givenAe €, Y, W, x& is carried byA or CAaccording as
w e Aorw € CA.

Because of the unigueness of disintegrations, we have
(@) Yaw, A7 =y
(b) Vaw, A% = x& and therefore,
(€) Yaw, VoW, 2% = x2.

It is now easy to see that (i) and (ii) follow from (1) and (2chase
of (a) and (c).
i

Proposition 99. Let% be ac-algebra contained iw. If ¢is countably
separating (in particular, if¢" is countably generated), it i&-stronger
than all its subo--algebras.

Proof. Let . c ¥ be ac-algebra. Sinc& is countably generated, we
have

Vaw, A7 :f/lf,/lﬁ(dv\/)
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because of the transitivity of the conditional expectatioherefore,
sincew’ — /l\f; belongs to#, to prove the proposition, it is fiicient
to prove by proposition(3§ [4,[52) that¥,w, Y A /1;‘; is carried by
the @-atom ofw’. Since Q% )weq is a disintegration oft with respect to
¢ and sinceg’ is countably separating, according to propositldn$(3,
B3),v,w, Af, is carried by theg’-atom ofw’. Therefore,Y w, vﬁwyw’,
A%, is carried by thes-atom ofw’. O

Proposition 100. Let% and.¥ be twoo-algebras contained iw. If ¢
is A-stronger than?, it is A-stronger than every suls-algebra of .

Proof. Let .’ be ac-algebra contained it¥. Since? is countably
generated, we havgyw, ;" = [ 47 dA; (W) by the transitivity of the
conditional expectations.

Since® is A-stronger than?, YV,w’, A, has @5, )weq for disinte-
gration with respect t&'. Therefore,Y,w, V"W, 17, has Q% )w <o
for disintegration with respect t&¢. Hence by propositior 1% [, [©8),
Vaw, 4y has Q%,)w<q for disintegration with respect tg'.

This proves tha¥ is A-stronger thans”. O

Definition 101. A o-algebra%’ contained in¢ is said to bel-strongif
it is A-stronger than itself.

We see by the above proposition, propositidn§(@, [100), that al-
strongo-algebra ist-stronger than all its sub-algebras. From propo-
sition (@, § &,[@9) we see that if a-contained in¢ is countably sepa-
rating, it isu-strong for any probability measugeon 2, if Q has the
p-compacity metrizability property.

Proposition 102. Let % be ac-algebra contained . ¢ is A-strong 116

if and only if one of the two following equivalent conditidgagrue.

(i) Vaw, A% is disintegrated with respect t¢ by the constant mea-
sure valued function - A%.

(i) Vaw,AZ is ergodic onfg.
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Proof. The equivalence of (i) and (ii) follows from propositidd 1,
©5).
Since? is countably generated, by Corollafy §4,[58), we have
Vaw, VoW, Ay = Ay

Let ¢ be A-strong. Let us prove (i).¥,w, A% is disintegrated by
(A% )weq With respect to#, and sincev, w, VW, 28, A%, = A%,
we see that/,w, 1% is disintegrated by the constant measure valued
functionw’ — A%, with respect t&#. This is (i)

Let us assume (i) and prove thétis A-strong.

Vaw, A% is disintegrated with respect & by the constant measure
valued functionw’ — A% andV,w, ¥ .« W, 1%, = .

Hence,¥,w, A% is disintegrated with respect t& by the family
(A2 )weq. This proves that’ is A-strong. O

In the following proposition, we will be using the fact thétfi is
a A-integrable function and if{")nei is a decreasing sequence of
algebras contained i with @ = N €7, then¥,w, f%"(w) — % (w).

n=1
This follows immediately from the convergence theorem fartingales
with respect to a decreasing sequence-algebras. See P.A. Meyél [1],
Chap. V. T21.
Proposition 103. Let (¢")nen be a decreasing sequencemfalgebras
contained ing and let% = N &". If ¥ neN, ¢"is A-strong therts” is

n=|
also A-strong.

Proof. We have to prove that,w, 1% is disintegrated with respect %
by (Af})WEQ. We have only to check that

Yw,¥Be O,W — f xeW”)AZ (dw”)

is a conditional expectation @& with respect tag’ for the measureay .
i.e. we have to only prove thatw, VB € 0, forall A€ ¥,

f xB(W)Ay (dw) = f ( f xBW)AT, ([dw))Ay (dw).
A A
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To prove this, it is sfficient to prove that
VBe O, Vw, f xB(W)Ay, (dw) = f ( f xB(W) Ay (dW)) A7, (dw)
A A

for all A € €. For if we prove this, an application of Monotone class
theorem will give the result, sinc€ is countably generated.
Let B € ¢. SinceA is a probability measureyg is A-integrable.
Hence,
Vaw - (xe)” (W) = (re)’ (W),

ie.Vaw', [yeW)a%s (dw’) — [yeW”)A% (dw’). Hence,
VAW, v oW, f (W% (dw’) — f xB(W)AE, (dw”).
Therefore, by Lebesgue’s dominated convergence theordmthw
is applicable here sincéw, YieW, A% is a probability measure for all

nand hencefXB(V\/’)/if,”(dV\/’) < 1 and 1 is integrable with respect to
A{ﬁ for 2-almost allw), we havey ,w, for all A€ &,

f ( f e (W)L @AW )AL (W) - f ( f e (W) (AW ))AE (dw).
A A

SinceY n e N, ¥ is A-strong, and hence isstronger thary’, ¥ ,w, 118
A% is disintegrated with respect " by (1%, )weq for all n € N. Hence,
Yaw,VBe O, forall Ae €, forallne N,

f ( f YW (AW (W) = f YW (dw).
A A

HencevYB e &, Y, w, forall Ae &,

f xa(W)A% (dw) = f ( f e (WS (W) (dw).
A

This is what we wanted to prove. O
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3 Choquet-type integral representations

In this section, we shall obtain a Choquet-type integratesgntation
for probability measures which have a given family of prabigbmea-
sures as disintegration with respect to a givealgebra ofo'.

Definition 104. Let% be a subr-algebra of¢. ¢ is said to beuniver-
sally strongif it is A-strong for every probability measureon &.

Let us fix a subo-algebra%¢ of ¢ which is universally strong,
throughout this section. Letif)weq be a family of probability mea-
sures on. Let us assume that the measure valued funatiom A,
belongs toz’, i.e.Y Be 0, w — A,(B) € %.

¥ w e Q, consider the sev € Q | Ay = Ay}. This sete € and
hence is a union g&-atoms. Hence, we shall call it the moleculevof
and write it as Molw.

LetQ = {w e Q| A is disintegrated with respect % by (Aw)weo
and is carried by Mol }.

Let.# = {A| A a probability measure off such thatl has (w)wea
as disintegration with respect ¥ }.

Then.# is a convex set.

Proposition 105. If 1 € ¢, A is carried byQ and A = f/lwd/l(w). If
Q
« is any probability measure carried &y and if p = f Awdu(w), then
Q
pEX.

Proof. Let 1 € J#. Since% is universally strong, it is in particular
A-strong A has @w)weq for disintegration with respect t&”. Hence,
¥,w, Ay is disintegrated with respect @ by (Aw)weq. Moreover, by
Corollary 3,8 [2,[58),

Yaw, v/]WVV,, Aw = Aw.
This shows thatl is carried byQ. Sinced = fxlw/l(dw) and sincel
Q
is carried byQ, A = f AwA(dw). The rest of the proposition follows

Q
immediately from propositio 1% [,[98). m|
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Theorem 106. The extreme points of” are precisely the measureg,
where we Q.

Proof. Let us first show tha¥w e fz, Ay IS extreme.
Letw e Q. Thenay, € 7. Letu andv be two measures % andt
be a real number with @ t < 1 such that

Aw =tu+ (1 -t

Mol w € ¥ andAy(Molw) = 1 sincedy, is carried by Molw. Hence
1 andy are also carried by Malv. By the previous propositiod %,3,
M08),1 = [Awp(dw) andy = [ Awv(dw). Sincex andy are carried
by Mol w, the integration is actually over only Mal. Thus,

U= f/lw,u(dV\/)andV: f/lwv(dV\/).

Mol w Mol w

But forw’ € Mol w, Ay, = Ay and hencer = Ay, = v.
Thusay, is extremey w € Q. 120
Now, letA be an extreme point of#". Let us show that there exists
aw € Q such thatl,, = A.
First of all, we claim that? must be ergodic or¥’. For, if not,
JA € ¥ such that 0< A(A) < 1,

XCA® A
ACA

xa-4

1= am- T

+A(CA) -

. . ‘A XcaA
Thus, 1 is a convex combination of the measnff%— and——.
A(A) A(CA)

YA~ A . xca- 4
alsoe 7. Similarly,
AA) ACA

A,
belongs to.#". These two measures are not the same % is

SinceA € ¥, andl € ¢, also

is carried byCA. Thus, we get a contradiction

- A
carried byA and);CL

(CA)
to the fact thatt is extreme. Hence must be ergodic o’. Hence
by proposition [V § [, [@9) A is disintegrated with respect @ by the
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constant measure valued functiesn— A{ﬁ = A. It follows therefore,
by uniqueness of disintegrations théiw, 4w = A. By the previous
propositionA is carried byQ. Hence there existsa € Q such that

In view of theorem[{[7§ B,[I06) and propositiod] 3,3,[I0%) we see
that the integral representation b€ %" as f AwA(dw) is indeed of the

same type as the one considered by Cho%uet. But, we have chatete
our result from Choquet’s theory.

Let us now prove a kind of uniqueness theorem.

LetQ’ be the quotient set @& by the molecules. Lep be the canon-
ical mapping fron2 to Q". Let ¢ be theo--algebra o2 consisting of
sets whose inverse image ungebelongs toz. If w € Q, let us denote
by W the elementp(w) of Q. VW € Q' define the measura;, on €°
as the image measure af under the mapping wherew is such that
p(w) = W.

This is independent of the choice wfin p~t(w), for if p(wy) =
p(wy), thendy, = Aw,. If 1 is any measure of”, let us denote by
its image measure und@ron ¢°. We note that ifA € ¢°, Ay(A) = 1
or 0 according asv e A or not. For, ifw € A, thenw € p~1(A) where
w is such thatp(w) = w. Hence Molw c p~1(A). Therefore 1(A) =
Aw(p~(A)) = 1 sinced,, is carried by Molw. If w ¢ A, w e CA and by
the same argument,(CA) = 1. Hencel(A) = 0.

Theorem 107.LetA € . If uis any probability measure carried by
Q such thatl = [ Auu(dw) , thenj = 1 on%”.

Proof. Let 2 = [ Awu(dw). We first see thal = [ Aui(dw). For let
Ace %

A(A) = A(p L) = f AP (A (W)
_ f L A(dw)
= [ Asn(utcn
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_ f i A)ia(ch).

Hence,

A= f Aife(dW).
&
For anyA € %°, A(A) = f/iw(A)p(dv'v). SinceAy(A) = 1or 0
("2.

according asve Aor CA, the integration is actually only ové; i.e.

AA) = f A A)ie( )

A

But, [ Aw(A)i(dw) = i(A) sincedq(A) = 1 forw € A. Hence,
A

AA) = (A), YA€ €°

and thereforeg = /u. o

4 The Usualo-Algebras

In this section, we shall define thealgebras that occur in the theory of22
Brownian motion on the real line and prove some propertighearh.

Let Qo +) be the set of all real valued continuous functions on
[0, +o0). Let D be a countable dense subset qf{&). Fort € [0, +c0)
define the mapping: from Qo ;) to R asm(w) = w(t), wherew is an
element ofQp ... 7t is called thet’th projection. LeSp be the topol-
0gy 0N 1) Which is the coarsest making all the)p continuous.
Let &p be the Boreb-algebra ofQp .. for the topology3p. It can be
easily checked thatp is the smallestr-algebra making the projections
(m)iep Measurable. Sincét € [0, +0), 7y = tlrmﬂtn, it follows imme-

theD
diately thatp is also the smallegt-algebra making all the projections

(t)tefo,+00) Measurable.
Let 3p be the topology of pointwise convergence@ ;. i.e. Ip
is the coarsest topology making all the)(c[o0,+) continuous. Letp be
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the Borelo-algebra of[o ... in this topology3p. LetJ be the topology
of uniform convergence on compact sets Qf{&). Let & be the Borel
o-algebra 0KYg .. in this topology3. We easily see thalp is coarser
than3p which in turn is coarser thaw¥. Hencedp c 0p C 0.

Now, Qo ) is & separable Fréchet space under the topdtoayd
hence is a Polish space i.e. is homeomorphic to a completeatdp
metric space. It is a theorem that the Barehlgebra of a Polish space
is the same as the Boretalgebra of any coarser Hauséfaiopology.
Hencelp = Op = 0.

Thus the smallest-algebra making all ther()co,+~) Measurable
coincides with the Boretr-algebra of the topology of pointwise con-
vergence on [O+co) and it is countably generated singeis countably
generated.

Let U’ be theo-algebra orpo ...y generated byns)s<t Wheret €
[0, +0). LetQoy be the space of all real valued continuous functions on
[0,t]. For 0< s < t, letng be the map defined Ao asmg(w) = w(s)
wherew € Qo). As above, we can see that the Barehlgebra of[g
for the topology of pointwise convergence ontfis the same as the
o-algebra generated by’6)o<s<t. Let us denote thig-algebra byo!.
As above we can see that is countably generated.

Let p: Qpo.+e0) = Qo be the restriction map. It is easily checked
that/! is equal top~1 (") wherep(0") is theo-algebra consisting of
setsp~1(A) asA varies overd!. Sinced' is countably generated/! is
also countably generated.

Letw € Qo +). TheU'-atom ofw is p~L(p(w)) i.e. the set of all
trajectories which coincide wittv upto timet.

Proposition 108. A € U' < A e ¢ and is a union ofi{'-atoms.

Proof. Let A € U'. Then clearlyA € ¢ and is a union of4'-atoms. We
have to prove only the other way.

Let (f.)new be a countable number of functions generating dhe
algebral/!. Consider the mapping : Qo +«) — R given byp(w) =
(faW))new. SinceV n € N, f, € Ut, ¢ alsoe U' and hence is Borel
measurable i.e. measurable with respect’toHencep(Qp +«)) is a
Suslin subset oRY sinceQo ;) is a Polish space for the topology
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and/? is its Borelo-algebra. Sincé\ € £, Ais Suslin and hence(A)

ia Suslin. Similarlyp(CA) is also Suslin. Sincé is union of/'-atoms,

it is easily checked thap(Qo +c0))¢(A) is preciselyp(CA). Thus the
Suslin subsetg(A) and ¢(CA) are complementary I®(Q[0,+)) and
hence are Borel. Sino&is a union oft/'-atoms,A = ¢~ 1(¢(A)). Since 124
¢ € U’ andyp(A) is Borel, it follows thaiy=(¢(A)) i.e. A e Ut O

Let Vt € [0, +0), € be thes-algebra U<,

e>0
Corollary 109. A€ ' = A< ¢ and is a union of¢'-atoms.
Proof. If A< €', thenA € ¢ and is a union of*-atoms. Conversely if

A € ¢ and is a union of'-atoms, it is¥e > 0, a union oft/"*¢-atoms
and hence by the above propositidng % *€Ve > 0. HenceAe%'. O

Proposition 110. The%*-atom of w consists of precisely the trajectories
which coincide with w a little beyond t. i.e.

%' — atom of w= {W | 3 t, > t such that W= win [0, ty]}.
Proof. LetB = {w' | 3 t, > tsuch thaww = win [0, ty/]}
B= U{V\/ W =win[0,t + €]}

e>0

= U{(Ll”e — atom ofws}.

e>0

Let Abe any set%" containingw. Then,Ve > 0, AeU'*€ and hence
A contains thef/t*<-atom ofw, Ye > 0. HenceA > B.
Therefore, to prove the proposition,fBaient to prove thaB e &

B= U{‘L{t+E — atom ofw}

e>0

1
t —_—
= U{ﬂ "n - atom ofw}
neN
- U U {U™H — atom ofw)
MeN <

neN
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YmeN, [ {U™*h — atom ofw} € U and hence,
121
hetl
ﬂ U (U — atom ofw)e?t.
meN 1<%]

n
neN

O

One can prove thatt, € is not countably separating. For a proof
see L. SchwartZ[1], page 161.

However,Vt, €' is universally strong. For, sincée > 0, U™ is
countably generated, it is universally strong by proposiid, § 2,[©9).
Since% = N U™+, by proposition [ § 21, [I03), it follows thats? is

. neN
universally strong/t € [0, +o0).

5 Further results on regular disintegrations

In this section, let us assume thatis a compact metrizable space and
O is its Borelo-algebra. Let %) be a right continuous increasing
family of o-algebras contained i¥ which is thec-algebra of all uni-
versally measurable setsQf Let A be a probability measure afi.

Note that a unique regular disintegrationiofith respect to € )er
exits.

Let us assume thatt € R, ¢ is A-strong.

Theorem 111. Let(1,)wen be a regular disintegration of with respect
teR
to (¢')er. ThenV,w, Vs, A5 has a regular disintegration with respect
to (¢")er given by
tw)— A, fort>s
(t,w) - A5 fort<s.
Proof. Lett be fixed. Sinces" is A-strong,V,w, A%, has @ )weq for

disintegration with respect tg". Since a set ofi-measure zero is also
Yaw, Vs, of A;-measure zero, it follows therefore that
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Yaw, Vs, Vs W, A}M has @, )w o for disintegration with respect to
<.
By theorem[(6§ ,[94), we have 126

Yaw, Ys<t, A = fAtWAVSV(dV\/).

Hence, by propositior A [, [98),V,w, Vs < t, A}, has @, )weca
for disintegration with respect t&*. Thus,Vt, Y,w, ¥s < t, A5 has
(4, )weq for disintegration with respect t&".

Therefore,,w, Vt, a dyadic rationa¥ s < t, Ay, has @3, )weq for
disintegration with respect t6™.

Now, letu be a probability measure aofi and let §!,)weq be a dis-
integration ofu with respect tas" v dyadict.

For anyt € R, define

s _ |vague limo2r® | if it exists
Yo, ifnot
Then, sinceQ is compact metrizable, we can easily check that

(6% )weq is a regular disintegration gf with respect to€¢")cx.
teR
Now we have,

Vw, VteR, A, = vaguenlimm“).

Hence, sinc# ,w, Vs, 435 has a disintegratiomg,,)wfeg with respect
to ¢ for all t dyadic> s, by the preceding paragraphs;-Aw, Vs, 1S, has
(4, )weq for a regular disintegration with respect#d for all t > s.

By the theorem of trajectories, i.e. by theord§&,[Q@3),

Vaw, VS Vs W, V< s A, = A,

In particular,
Yaw, Vs, V,lal\/\/, /l\i,, = /l\?v

Since @® is A-strong. Y,w Ay, is disintegrated by A, )weq with 127
respect to6’S. SinceV,w, Vs, Y sW, A5, = Ay, Vaw, Y w, Vs, 43, is
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disintegrated with respect #6° by the constant measure valued function
w — A5. Hence, by propositior A% [,[03),V,w, Vs, 45, is ergodic on
¢s. HenceVY,w, Vs, Vt < s, A3, is ergodic oré’. Hence, again by the
proposition [V § @,[93),V,w, Vs, Vt < s, A5, is disintegrated with respect
to 4" by the constant measure valued functign— A3,

Thus, we have proved thatw, Vs, A5, has with respect tod")cr
a disintegration given byt,wW) — A}M fort > sand ¢, w) — 43, for
t<s

We have to check only that this is a regular disintegratiomcé&
(t,w) — Al is a regular disintegration of, we have to check only the
right continuity at the poins. i.e., we have to only prove that

VBe O, Vaw, Vs, YswW, IHn AL, (B) = 5(B).
S

But this follows immediately from the fact that,w’, It|[n /lfN,(B) =
S

A5, (B) and
Yaw, Vs, VaswW, A5, = Ay,

O

Corollary 112. Let f be a regular supermartingale adapted(#!).cr.
ThenV,w, Vs, f remains a supermartingale on the §ex [s, +0), for
the measurey,.

Proof. From the above theorem, we haVgw, Vs, ¥V pair {t,t’} with
St Vs W.

EG(f ] €YW) = 44, ()

where EW(f! | ¢')(w) stands for the value at’ of the conditional
expectation off" with respect tos” for the measuras,.
Becausef is a supermartingale/,w, AL (') < f{(w). Hence

Vaw, Vs, Vasw - AL (F1) < fi(w).

HenceV,w, Vs, V pair {t,t'} with s < t < t, Vsw/, EW(f' |
W) < FLw).
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This shows tha¥,w, Vs, f is a supermartingale a2 x [s, +oo) for
the measurey,.

The regularity off with respect tal;, follows from that of f with
respect tol. m]

Remark 113.Under the assumptions that! is A-strongV t € R and
Q, compact metrizable, note that the above corollary is gegoithan
theorem[(b§ 2,[01).
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