
STRAIN GAUGE  MEASUREMENTS

INTRODUCTION
Strain gauge measurement is a point strain measurement method developed in the USA c.a. 1938 
independently by E. Simmons and A. Ruge. It enables determination of strain value in certain point 
and also other quantities related to relative strain such as stresses and internal forces. Each kind of  
devices used in those measurements (strain gauges) has its own mechanism of measurement, its 
gauge basis and precision in Hooke's Law validity range. Strain gauges are widely used in machine 
construction, civil engineering, medicine etc.

The clue part of the strain gauge is a sensor fastened to the surface of examined body in such way 
so that  deformation of  the  sensor  and deformation of  the  body are identical.  This  deformation 
(strain) can be determined in a mechanical or electrical way.

One of the most important property of a strain gauge is its basis (gauge length). It is an initial length
L0 to which its increment  L0 is related. Strain calculated using simple relation = L0/ L0

is only an estimation of true strain – it is an average strain along the gauge length. This is why in 
case of stress concentration small basis is used (0,5-3 mm). In case of linear distribution of stresses 
larger gauge lengths are used (5-30 mm). Relatively large basis (over 30 mm) is used in case of 
determining mechanical properties of a body which takes place usually when stress distribution in 
the body is uniform.

There  are  several  general  types  of  strain  gauges  depending  on  their  construction  and  physical 
phenomenon used in strain determination:

• mechanical strain gauges
• mechanical-optical strain gauges
• induction strain gauges
• capacitance strain gauges

STRESS – RESISTANCE  STRAIN  GAUGES
In stress state analysis of elements of machines glued stress-resistance strain gauges are commonly 
used. Those gauges are cheap, universal, very sensitive and precise, they exhibit no mechanical 
inertia  and  can  be  glued  practically  in  every  place  on  the  machine.  Mechanism  of  strain 
determination is very simple – strain gauge is in fact a (relatively) long electrical conductor. Its  
resistance depends mainly on its length – any change of length (caused by deformation of a surface 
to which strain gauge is attached) causes change of resistance which can be easily measured. The 
conductor  is  made  of  very  thin  (0,02  –  0,04  mm  diameter)  wire  made  of  certain  alloy  (i.e.  
constantan 60% Cu, 40% Ni). Both sides of the wire are covered with a foil. Conductor has always 
a form of loops or grid as shown below:

Grid shaped strain gauges are insensitive on transverse deformation which is its advantage over 
loop shaped gauges. Each sensor ends with a copper ending of much larger cross-section and very 
low resistance – they allow connecting (i.e. soldering) the sensors with proper gauges. Few types of 
endings proposed by HBM company are visible above.



Let's analyze deformation and resistance change of a round wire:

L – initial conductor's length
ΔL – conductor's length increment
d – initial conductor's diameter
d' – diameter after deformation d '=d 1− , ν – Poisson's coefficient
S – initial conductor's cross-section area
ρ – specific electrical resistance (resistivity)

Resistance is given by a formula shown below. After calculating logarithm of both sides of equation 
and after differentiating it and making some substitutions:
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we can substitute infinitesimal increments dx with finite increments Δx:
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Transverse strain can be expressed by longitudinal strain using Hooke's Law:
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So  relative  deformation  (which  is  an  estimation  of  average  strain)  is  proportional  to  relative 
resistance change and can be calculated in an easy way.  Parameter k is constant and depends only 
on material  the conductor  is  made of.  It  is  called  strain gauge sensitivity coefficient  (usually 
k = 1,6 – 3,6).  The most important condition that must be fulfilled so the strain gauge worked 
properly is identical deformation of the sample, glue, paper or foil layers and the conductor itself.  
This is why a proper glue must be used. It has to be:

• waterproof
• high temperature insensitive
• it should not exhibit creeping under long-term loading
• it should exhibit no hysteresis (stable behavior under cyclic loading)



Basic properties of two exemplar glues (offered by Hottinger Baldwin Messtechnik Darmstads) are 
listed below:

Glue name Application Basic component

Temperature 
range for 

practical usage 
[°C]

Setting time
in 20°C

[s]

Young 
Mudulus
[kN/mm2]

 X60 Experimental stress 
state analysis

metacryl -55÷65 30 4,5÷6

 Z70 Experimental stress 
state analysis

cyanoacryl -55÷100 15 3

Place on the examined sample where strain gauge is to be fastened should be prepared properly. 
First of all it  should be cleaned (especially fat  should be removed). Then a short  layer of glue 
should be placed and the sensor (which should be already glued to a foil) should be put on it. After 
that it should be covered by an waterproof material – i.e. beeswax or special kind of resin.

WHEATSTONE  BRIDGE  CIRCUIT
AND  ITS  APLICATION  IN STRAIN  GAUGE  MEASUREMENTS

General scheme of stress-resistance strain gauge is show below:

In spite of fact that there is a large variety of available types of strain gauges (different construction, 
different applications) they all base on common mechanism of work and use common construction 
elements. Fundamental element of each device is so called Wheatstone bridge circuit powered by 
alternating or  direct  electric  current  allowing resistance increment  measurement  under  static  or 
dynamical loading. Some examples of such bridge circuits are shown below:

In case c) two branches of the bridge circuit  are made of two strain gauges (Rc –  active, Rk – 
compensating, see below) and two other internal branches have resistances R1 and R2. Galvanometer 
is installed in BD branch. Values of resistances can be chosen in such way that no current appears in 
BD – since there is no current in BD, potential difference (voltage) in B and D equals 0. Initial 
current J caused by external voltage U source is divided into J1 flowing from A through D to C, and 



J2 flowing from A through B to C. Since potential in B and in D are equal and also potential in A 
and C are equal thus potential fall along AB is the same as along AD and also falls along BC is  
equal as along DC. We can write:

{ U AB = J 2 R c = J 1 R1 =  U AD

 U BC = J 2 Rk = J 1 R2 = U DC

⇒
Rc

R k
=

R1

R2

We can see that circuit is in an equilibrium state (no current in BD, galvanometer indicates zero) 
when ratio of resistances of active and compensating strain gauges are equal ratio of resistances of 
the other two branches of the circuit.

Any deformation ε of a body on which strain gauge is glued cause change of resistance ΔRc :
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Rc

1
k

Rc '=Rc Rc −strain gauge resistance after deformation

When it is possible to determine the value of Rc and  Rc directly from screen of galvanometer 
(scaled  in  a  special  way),  strain  can  be  calculated  easily  from  the  following  formula:
= Rc /k⋅Rc  (it is so called inclination method). 

In other case we have to use so called zero method. When deformation occurs and active gauge's 
resistance changes,  current  starts  flowing through BD branch and galvanometer  indicates  value 
different than 0 which is proportional to strain (this relation is derived later). Then by changing 
resistance R1 (which can be regulated) one should set such value R1 ' for which bridge circuit is in 
equilibrium state  again.  One  can  now find  value  of  strain  gauge's  resistance  before  and  after 
deformation and the difference between them (resistance increment):
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⇒  Rc=Rc ' −Rc=
Rk

R2
R1 ' −R1

Finally we obtain:
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Usually device  regulating the  resistance  R1 is  scaled in  such way that  strain  can be calculated 
directly from the results obtained and read from the indicator:

=2,0
k s

M '−M ⋅103

M ' , M– results read from the indicator corresponding with two bridge circuit equilibrium states 
before    and after deformation
ks – constant parameter characteristic for scale used in measurement. The most convenient way 

   is to set the value of ks equal 2,0.

Relation between voltage (potential  difference) change in BD branch and strain value is linear. 
Generally in a bridge circuit in arbitrary (not necessary equilibrium) state, potential difference is 
equal:

U BD=J 2 R c− J 1 R1

In case of equilibrium state we can consider each pair of resistors as one (series circuit) and values 
of current flowing in both branches are equal:

J 1=
U

R1R2
J 2=

U
RcRk



Substituting those relations to the equation written before we obtain:
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We can differentiate it with respect to Rc and calculate finite increments:
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One can easily notice that when Rc=Rk then voltage change before and after deformation does 
not depend on the value of resistances and it is proportional to the strain – this is why voltage 
measurement is can give us direct information about deformation.

STRAIN  GAUGE  COMPENSATION  AND  SELF-COMPENSATION
In some cases an additional deformation of the gauge occurs which is not related with external  
loading of the specimen and  stresses appearing inside it but only with natural property of every 
body – namely – thermal deformation. Such deformation changes resistance of strain gauge. This 
change is registered by galvanometer thus it is a source of  errors in measurement since thermal 
expansion properties  of examined bodies  and the material  of  which gauge is  made are usually 
completely  different.  The  simplest  way  of  reducing  this  error  practically  to  zero  is  thermal 
compensation.  Any change  in  active (used  for  measurement)  strain  gauge resistance  can  be 
reduced by an identical resistance change in compensating (“dummy”) strain gauge – ratio of both 
resistances does not change in such case and the bridge circuit is still in an equilibrium state. It is 
possible only when:

• both, active and compensating, strain gauges are identical (the same gauge length, resistance 
and sensitivity coefficient)

• both strain gauges should be fastened using the same glue and compensating gauge should 
be glued to the plate made of the same material as the examined one, however that plate 
should not be loaded.

• both strain gauges should be close one to another.

Another  way  of  reducing  the  error  caused  by  thermal  expansion  is  using  self-compensating 
gauges. They should be used when using whole circuit with “dummy” gauges is not possible or 
when temperature gradient / variation is very large (compensating gauge deforms then in a different 
way than the active one). Self-compensating gauges are usually made of materials exhibiting very 
low thermal strain (i.e. constantan).



QURTER-,   HALF-   AND   FULL-BRIDGE 
CIRCUITS

General schemes of quarter- , half- and full-bridge 
circuits are shown on the left. The main difference is 
number  of  active  strain  gauges  used  in 
measurements.  Typical  bridge  circuit  (described 
above) is the one with only one active strain gauge – 
it  is  called  quarter-bridge (a).  When  two  active 
gauges are used (b) it is called  half-bridge, and in 
case of four gauges (c) – full-bridge. Sensitivity of 
half-  and  full-bridge  circuits  are  respectively  two 
and  four  times  greater  than  sensitivity  of  quarter-
bridge  circuit  (voltage  change  observed  after 
deformation is two / four times greater). 

UNIFORM  STRESS  STATE  ANALYSIS
In case of uniform stress state (uniform tension or compression) direction of principal stresses in the 
body are parallel to the direction of loading. In any other direction absolute value of normal stress is 
always smaller than the principal one and it is a function of value of principal stress and angle 
between direction of loading and direction of the normal stress:

R φ=[cos φ −sin φ 0
sin φ cosφ 0

0 0 1] =[ 0 0
0 0 0
0 0 0]

σ – stress tensor
R – rotation matrix

Stress tensor coordinates in arbitrary rotated coordinate system:

=Rφ⋅⋅ [Rφ ]T = [  cos2 φ  cos φsin φ 0
 cosφ sin φ  sin2 φ 0

0 0 0] ⇒  11φ= cos2 φ=1
2
 1cos 2φ

To determine value of normal stress in arbitrary chosen direction two strain gauges should be placed 
on the bar (active and compensating one – along the direction of loading). After measuring principal 
strain along the bar and calculating stress, normal stress in any other direction can be calculated 
from the formula above. It can be described by so called polar diagram shown below:



PLANE  STRESS-STRAIN  STATE  ANALYSIS
Plane stress-strain state is a bit more difficult to analyze – this is due to fact that each longitudinal 
stress causes both longitudinal and transverse strains. If directions of principal strains and stresses 
are known (principal directions of stress and strain tensors are the same and principal directions of 
any  symmetric  tensor  are  always  perpendicular  one  to  another),  as  in  case  of  i.e.  cylindrical 
container loaded by internal pressure – see figure below) it is easy to determine value of stresses 
using generalized Hooke's Law:

1=
E

1− 2 1 2

2=
E

1−2 2 1

Where:
E, ν – Young modulus and Poisson's ratio
1 , 2 - strains measured

In fact in most of cases of measurements directions of principal stresses are unknown. Plane stress 
or strain state has only three independent components (two normal stresses and one shearing or two 
elongations and one distortion) – this is why we have to make not less and not more than three  
measurements but in three independent (non-parallel) directions. To do such measurement strain 
gauge rosettes are used – typical rosettes are shown below

a)

         a) two-gauge rosette b) perpendicular rosette (0°/45°/90°) c) delta type rosette (0°/60°/120°)

Neglecting strains perpendicular to the analyzed plane (which, under in-plane rotation, do not affect 
values of strain in the plane) we can write:

R φ=[cosφ −sin φ
sin φ cos φ ] =[ xx  xy

 xy  yy]
In case of perpendicular rosette we obtain:

0○ = R 0○

⋅⋅[ R0○

]T = [ xx  xy

 xy  yy] = [0 ?
? ?]

45○ = R45○

⋅⋅[ R45○]T = [ 1
2
 xx yy− xy  xx− yy

 xx− yy
1
2
 xx yy xy] = [45 ?

? ?]
90○ = R 90○

⋅⋅[R 90○

]T = [  yy − xy

− xy  xx ] = [90 ?
? ?]

Where 0 ,45 ,90 are values of strain indicated by gauges. 



We obtain following system of equations:

{ xx=0

 yy=90

1
2

 xx yy− xy=45

⇒ { xx=0

 yy=90

 xy=
1
2

090−45

knowing all components of strain tensor we can calculate its principal values and then principal 
stresses:

1,2=
 xx yy

2
± xx− yy 

2

2
 xy

2

and using generalized Hooke's Law we can find values of principal stresses.

Finally we obtain:

1,2=
E

1− 2

090

2
± E

2 1
0−45

290−45 
2

and the angle between direction of greater principal stress 1 and he direction of rosette 0○ is 
given by following formula:

φ=arctg[ 245−090
0−90 ]

In case of delta-shaped rosette above relations has following form:

1,2=
E

1−2

060120

3
± E

1  2 0−60−120

3 
2

1
3
60−120

2

φ=arctg[ 3 60−120
2 0−60−120 ]

VERIFICATION  OF  ASSUMED CONSTRUCTION  MODEL
It is obvious that any performed engineering calculation is only an estimation or prediction of true 
behavior of real construction. Whole linear theory of elasticity bases on very specific assumptions 
which  are  sometimes  not  fulfilled  in  case  of  real  structures  and many further  assumptions  are 
necessary  to  make  the  theory  applicable  in  practical  calculation  (i.e.  small  strains  and 
displacements,  ideal  isotropy  and  homogeneity,  linear  stress-strain  relation,  ideal  geometry, 
supporting and loading of a body and many others). Even without those additional assumptions, 
solving  strongly  complicated  problems  using  Finite  Element  Method  (or  any  other  numerical 
methods)  gives  us  solution  which  can  still  be  different  then  it  is  in  the  reality.  Strain  gauge 
measurements help us in verifying whether assumed model (or theory used) is correct or not. 

There is a simple way of determining normal stress distribution and finding values of internal forces 
in chosen cross-section of a bar. Stress vectors form a plane which is rotated and translated referring 
to  the plane of  chosen cross-section.  To determine such plane we need three points  (values of 
stresses in three different  points of cross-section which do not lay on one straight line).  Those 
stresses  A , B , C can be measured easily using three strain gauges glued in proper places. We 
can calculate internal forces using commonly known relation between those internal forces and 
normal stresses and solving relatively simple system of linear equations



{ A=
N
A


M x

I x
y A

M y

I y
x A

 B=
N
A


M x

I x
y B

M y

I y
x B

 C=
N
A


M x

I x
yC

M y

I y
x C

⇒ {N = A⋅
 A xC yB− xB yC  B x A yC−xC y AC x B y A− x A y B

x A  yC− yB x B  y A−yC x C yB− y A

M x = I x⋅
 A x B−xC B xC−xA C x A−xB 
x A yC− yB xB  y A−yC xC  y B− y A

M y = I y⋅
 A  yC− y B B  y A− yCC  y B− y A
xA  yC− y BxB  y A− yCxC  y B− y A

Where:
N ,M x , M y - values of internal forces – axial force and bending moment respectively
 P - value of normal stress at point P = A, B, C
x P , y P - coordinates of point P = A, B, C in coordinate system of principal central axes of inertia
A , I x , I y - area of cross-section, moments of inertia of cross-section

Above relations are called Aistow equations.

Trusses are good examples of construction that behaves in reality quite different than it is assumed 
in model. Truss should be loaded only in nodes and all bars' connections are joints – thus in bars of 
theoretical truss only axial forces should occur. In fact bar connections are much more stiff, they are 
always welded or bolted. Rotational deformation in nodes is thus blocked to some extent and that is  
the reason of bending moment appearing in the bar. Another thing is that dead weight load (weight 
of construction itself) cannot be applied to the structure in nodes – it also causes occurrence of 
bending moments.


