

Frode Tyholdt SINTEF

Chemical solution deposition (CSD)

The application of a solution of metalorganic compound(s) in a suitable solvent on to a substrate, in such a way that a film is formed, followed by pyrolysis and crystallization into oxide as a result of heat treatment.

CSD process

University of Oslo

Pros of CSD

- Very good stoichiometry control
- Can cover large surfaces
- Large thickness range (<10nm-10µm)</p>
- Requires relatively little equipment

Cons of CSD

- "High" temperatures may be required for crystallization (6-700°C)
- Reactions with substrate (buffer layer must often be used)
- Precursor development can be elaborate

Requirements for CSD

- 1. Sufficient solubility of precursor in solvent
- 2. Precursors must not contaminate the final product
- Precursor must retain homogeneity at atomic scale during pyrolysis/crystallization
- The solvent must wet the substrate
- 5. Suitable viscosity for deposition method
- 6. No crack formation during pyrolysis
- 7. Limited reaction with the substrate
- 8. Sufficient sol stability

University of Oslo

Precursors

- Metal source compounds
 - Alkoxides
 - Carboxylates
 - Acetates
 - Nitrates
- Solvents
 - Alcohols
 - Organic acids (acetic acid)
- Stabilizers
 - Acetylacetonate (acac)
 - Diethanolamine

Alkoxides

- General formula: [M(OR)_x]_n
 - OR can be the deprotonated form of:
 - Simple alcohols as MeOH, EtOH, PrnOH, BunOH
 - Steric alcohols: PriOH, ButOH
 - Multidentate alcohols HOEt-X (X=OMe, OEt, OBuⁿ, NR₂, PR₂)
- Why use alkoxides?
 - Versatility
 - Solubility, vapor pressure and reactivity can be adjusted by choosing different **OR-groups**
 - Low carbon to metal ratio
 - Heterometallic compounds often possible

Hetrometallic alkoxides

All metals in correct stoichiometric ratio present in one molecule

Elemental homogeneity on a molecular level

Very low crystallization temperatures if framework is maintained

Fig. 14. Molecular structure of [Ba{Nb(OPr')₆}₂(Pr'OH)₂] [22]

Hydrolysis

- Alkoxides are very reactive towards hydroxyl (e.g. water)
 - A little tricky to handle

Degree of hydrolysis:

$$h = \frac{[H_2O]}{[M(OR)_x]}$$

Hydrolysis: $M(OR)_x + H_2O \rightarrow M(OR)_{x-1}(OH) + ROH$

Condensation: $2M(OR)_{x-1}(OH) \rightarrow (RO)_{x-1}M-O-M(OR)_{x-1} + H_2O$

Controlled hydrolysis

- At low water concentrations condensation reactions may begin before hydrolysis is complete. This reaction may be catalyzed by acids.
- High water concentrations favor hydrolysis and retards condensation. Thus the hydrolysis is complete before condensation starts. This reaction may be catalyzed by bases.

$$[H_2O] \prec [M(OR)_x]$$

$$[H_2O] \succ [M(OR)_x]$$

Alkoxides in organic acid

Example using acetic acid as solvent for Ti(OR)₄:

Alkoxides must generally be stabilized (i.e. modified) when using organic acids as solvent:

$$Ti(OR)_4 + 2acacH \rightarrow Ti(OR)_2(acac)_2 + 2ROH$$

Alcohols as solvent

Alkoxides:

Depending on alcohol acidity group exchange may take place:

$$M(OR)_x + R'OH \rightarrow M(OR')_x + ROH$$

Acetates:

Full or partial group exchange can take place e.g.:

 $Pb(OAc)_2 + MeOEtOH \rightarrow Pb(OAc)(MeOEtO) + AcOH$

2-methoxyethanol

2-MeOEtOH widely used solvent:

- Stabilizes alkoxides
- Suitable viscosity for spinning
- Suitable drying characteristics

PZT (Pb(Zr,Ti)O₃) 2-methoxyethanol route

University of Oslo

What you need:

- Basics
 - Vacuum manifold for precursor/sol synthesis (2-3000€)
 - Spinner + hotplate in flowbox (5000€)
 - Furnace (2-3000€)
- In addition for state of the art setup
 - RTA furnace (60000€)
 - Cleanroom with flowboxes (⊗€)

1

Viscous forces dominate

Evaporation dominates

University of Oslo

Spinning defects

- Dust free environment required for spinning
- Very stringent procedures necessary
 - Cleanroom + flowbox
 - Spinner with suction
 - Filtration of solution
 - Cleaning of substrate

Example of spinning defect due to particle (comet)

Shrinkage

- Shrinkage during drying/pyrolysis (50-70%) is the main problem when thicker films are targeted
 - Precursors with a low amount of organics should be used
 - Suitable sol concentration
 - Pyrolysis temperature should be high enough
 - Multiple coatings

CSD thickness range <10nm-8µm (!)

Intermediate crystallizations must be used

CSD films normally have significant amounts of residual stress

Sol-gel PZT

- ~2µm PZT 53/47 by sol-gel
 - Si(100)/SiO₂/TiO₂/Pt"(111)" substrate
- Columnar grains (100-200nm in diam.)
 - {100}-textured
 - Dense microstructure
 - Seed layer used

~2µm {100} textured PZT 53/47 film (SINTEF)

Growth control

Nucleation barriers:

$$\Delta G_{\text{homo}}^* = \frac{16\pi\gamma^3}{3(\Delta G_v)^2}$$

$$\Delta G_{\text{hetero}}^* = \frac{16\pi\gamma^3}{3(\Delta G_v)^2} f(\theta)$$

 ΔG_v is the driving force, γ is the interfacial energy and $f(\theta)$ is a function related to the contact angle, θ .

For a hemispherical nucleus $f(\theta)$ can be expressed as:

$$f(\theta) = \frac{\left(2 - 3\cos\theta + \cos^3\theta\right)}{4}$$

Heterogeneous nucleation generally preferred in CSD films. Especially when using high heating rates

Seeding for {100} texture

Sputtered seed layer of PbTiO₃ results in {100} textured PZT

Diffractogram of ~2µm {100} textured PZT 53/47 film (SINTEF)

Seeding for (111) texture

- Two methods for obtaining (111)-textured PZT on Pt(111):
 - Formation of transient Pt₃Pb-phase
 - Use thin layer of TiO₂

Diffractogram of oriented PZT 30/70 on Si/SiO2/Ti/Pt(111) substrate TiO₂-method

Diffractogram of oriented PZT 30/70 on Si/SiO2/Ti/Pt(111) substrate Pt_3Pb -method

Pt₃Pb seed

- Temporary reducing conditions:
 - Formation of intermetallic phase (Pt₃Pb a=4.05Å) at electrode
 - Better lattice than Pt (a=3.923Å) for PZT 30/70 (a=4.035Å)

Huang, Z.; Zhang, Q.; Whatmore, R. W. *Journal of Materials Science Letters* **1998**, *17*, 1157. Chen, S. Y.; Chen, I. W. *Journal of the American Ceramic Society* **1994**, *77*, 2332-2336. Chen, S. Y.; Chen, I. W. *Journal of the American Ceramic Society* **1994**, *77*, 2337-2344.

FIG. 1. XRD spectra for PZT films which were dried at 200 °C and annealed at 460 °C after (a) 10; (b) 150; (c) 780; and (d) 5400 s.

Ti/TiO₂ seed

- Epitaxial growth of sputtered TiO₂(110) on Pt(111) grains
- Epitaxial relationship between TiO₂(110) and PZT(111)

 $R_{111} = \frac{I(111)}{I(100) + I(101) + I(111)} \cdot 100$ Ti-thickness (nm)

A (110) surface has the lowest surface energy

A (110) surface has the lowest surface energy

O.01

Thickness (nm)

Assink, R. A.; Schwartz, R. W. Chemistry of Materials 1993, 5, 511-517. Muralt, P et al. Journal of Applied Physics 1998, 83, 3835-3841.

PZT

- 500nm (111) textured PZT (30/70)
 - FWHM of Pt (111) rocking curve 1.8°
 - FWHM of PZT (111) rocking curve 2.7°

Reciprocal space map of the Pt(111) and PZT(111) reflection

University of Oslo

Inhomogeneities

- Typical crystallization temperatures used in CSD too low for significant diffusion (500-700°C).
 - The interfaces between spin-on layers can be retained in the final film due to:
 - -Chemical composition variations (40/60 > 60/40 in a 53/47 film)
 - -No grain growth through interface

Etched ~2µm {100} textured PZT 53/47 film (SINTEF)

Sol-gel Ba(Sr)TiO₃

Homogenous nucleation preferred

Reduction of thickness > reduction of bulk nucleation events

Transformation from homogeneous to heterogeneous nucleation

No heterogeneous crystallization even on lattice matched substrate

BaTiO₃

0.15M

17 nm coating

0.2M

25 nm coating

0.3M

45 nm

coating

Schwartz, R. W. Journal of the American Ceramic Society 1999, 82, 2359-2367. Hoffmann, S.; Waser, R. Journal of the European Ceramic Society 1999, 19, 1339-1343.

To hydrolyze or not to hydrolyze H₂O

- Situation 1:
 - Hydrolyzation can break up multimetallic species
- Situation 2:
 - Can retain elemental homogeneity in a mixture of different alkoxides

Fig. 3. Effect of particle size in sol-gel precursors on crystallisation and orientation of PZT thin films.

BiFeO₃ films by CSD

Precursor

- Mixture of Bi and Fe(t-OBu)₃
 in 2-MeOEtOH
- Hydrolyzed (M:H₂O=1)
- Bi-excess used

Figure 4: XRD patterns of gels heated inside the DSC instrument in O₂ atmosphere to selected temperatures. Included for comparison patterns of a) Bi₂O₃ (ICSD #62979), b) Bi (ICSD #64703).

Figure 3: Decomposition of gel as monitored by DSC. a): N2 purge, b): O2 purge

Figure 5: XRD patterns of gels heated inside the DSC instrument in O₂ atmosphere to 455°C and 550°C. Included for comparison patterns of a) Bi₂O₂CO₃ (ICSD #94740), b) BiFeO₃ (ICSD #82614), c) Bi₂O_{2,3} (ICSD #37366).

Microstructure

X-ray diffraction

- Films fully crystallized at 500°C
- All films display texturing
 - Increases with crystallization temperature and by Bi-excess

Texture

- Substrate has low degree of texture
 - Rocking curve FWHM 23.2°
- FWHM of rocking curve for BiFeO₃ 012-peak: 6.4° (T_{cryst}= 600°C)
- Phi-scan of BiFeO₃ (214) shows no in-plane orientation

Texture on glass

- BiFeO₃ displays high degree of texture even on amorphous substrate
 - Nucleation of randomly oriented grains at glass-film interface
 - The slower growing planes will develop and lead to columnar growth
 - High heating rate is used to minimize crystallization driving force

120nm BiFeO₃ film on glass substrate crystallized at 600°C

Epitaxial BiFeO₃ by CSD

Epitaxial BiFeO₃ film on MgO(100)/Pt(200) substrate (120nm)

University of Oslo

Summary

- High quality multicomponent oxide films can be fabricated by CSD
- Large thickness range possible by adjusting sol concentration/multiple coating
- Control (and knowledge) of precursor chemistry is essential
- Textured and epitaxial films can be obtained by use of seeding layer/matching substrate

Have a nice Sunday!