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Channel Resistance (Q)

Oxide Electronics: new materials and nanodevices

Field Effect Nanotransistors
on Functional Oxides
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)n Metal oxides

zinc (1I) oxide Hexagonal
Lattice parameters
a=3.24 A, c=5.19 A

- Transparent semiconductor

* High mobility

* Wide-band gap

* Doped with magnetic ions (Co, M
magnetic semiconductors

Pt i

(Pseudo)cubic
Many physical properties dependi
cations

A: Alkaline Earth
B: Transition Metal
Lattice Parameter

» (3.9 + 0.DA

* High Tc superconductivity
* Ferroelectricity

* Ferromagnetism, Colossal
Magnetoresistance

- Semiconductors, Insulators




Dielectrics and semiconductors:

SrTiO,, LaVO, , ZnO

M-I transition in titanates
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Colossal magnetoresistance:
La; ,Sr,MnO;, La; ,Ba,MnO;,
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Superconductivity: P
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http://www.nature.com/nature/journal/v414/n6862/fig_tab/414434a0_F4.html

Properties are controlled by:

n - proportional to the charge
w -  proportional fo dand p orbital overlapping
How to change nand W?
R OWIDTH FILLING CONTROL
CONTROL
Cell deformation Fermi level variation

, |

Orbital overlapping
Eterovalent atomic substitution

Isovalent atomic substitution Field effoim

(different radius)
Pressure

Problem: the phase diagram depends not only on the carrier concentration but also on the
lattice structure; chemical doping affects both carrier concentration and lattice
structure and it is very difficult to discriminate between these two contributions.

Sleld effect tunes the carrier concentration only, thereby it is a powerful tool to study
this correlated system
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of the zero-temperature behaviour of various corr

s a function of charge density. Silicon is shown as a refer
igh-T. superconductors and for colossal magnetoresistive (CMR)
30, and (La,Sr)MnO;, respectively.

agnetic; FM, ferromagnetic; I, insulator; M, metal; SC, supercond
tum Hall effect; Wigner, Wigner crystal.

Electric field effect in correlated oxide systems
C. H. Ahn, J.-M. Triscone and J. Mannhart
e 424, 1015-1018 (28 August 2003) doi: 10.1038/nature01



http://www.nature.com/nature/journal/v424/n6952/full/nature01878.html

ting physical properties in these material occur at 10
=> 1014 - 1016 e/cm?2 => 10 — 1000 uC/cm?2)
lue!

Contacts

Gate insulator

Oxide channel

Substrate

Figure 2 Cross-section of a typical sample geometry used for field-effect studies.
S, source; G, gate; D, drain.



haracteristic width of accumulation or depletion
is given by the electrostatic screening length

2
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emiconductors A, = /% ~10 nm
e next

Lower carrier density = larger A

Debye length at room temperature

N(e/cm?d) &, =300 g, =100 g, =10

10?0 (e/cm3) 2.0 nm 1.2nm 0.38 nm
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Side gate devices
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study the surface by Scanning Probe



p: patterning by optical
ny and wet etching in
wide crossing channels

STO substrate

e field effect devices fabrication by AFM

substrate

Second step: sub-micro
patterning by Atomic F
Microscope anodization:
AFM biased tip trigger
chemical and morpholog

transformation.
Nanoxidation of silicon
J.A.Dagata.et al., Appl. Phys.
Lett. 56, 2001 (1990)
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sub-micron wide insulating barriers can sustain
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ic field profile and capacitance calculatio
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Easy case :ZnO

Back-gate devices
Double side polished SrTiO; 110 substrate
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Thermal activated behaviour
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Ferroelectric field effect on SrTiO; channel
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Channel Resistance (Q)
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Strontium titanate resistance modulation by ferroelectric field effect
D. Marré, A. Tumino, E. Bellingeri, I. Pallecchi, L. Pellegrino, A.S. Siri,
J. Phys. D: Appl. Phys. 36 No 7 896-900 (2003)



First example of side gate devices (SrTiO; on LaAlO;)
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R(V) / R(0)

Temperature characterization of the side FET
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Nonlinearities in the | vs V channel behavior
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Observation of E-Field Induced Drift
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...Exploiting the Dielectric Constant of the Substrate

Maximum resistance modulation observed on
homoepitaxial STO devices
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APPLIED PHYSICS LETTERS

Field-effect transistor on SrTiO; with sputtered Al,0O; gate insulator
K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki® Y. Tokura,” and H. Takagi®

Correlaied Electron Research Center (CERC), National Institute of Advanced Indusirial Science
and Technology (AIST), Tukuba 305-8562, Japan

VOLUME 83, NUMBER 2

(Received 14 March 2003; accepted 1 July 2003)

A field-effect transistor has been constructed that emplovs a perovskite-type SrT10; single crystal as
the semiconducting channel This device functions as an n-type accumulation-mode device. The
device was fabricated at room temperature by sputter-deposition of amorphous Al, Q5 films as a gate
msulator on the 5rT10; substrate. The field-effect (FE) mobility 1s 0.1 em’/Vs and on-off ratio
exceeds 100 at room temperature. The temperature dependence of the FE mobility down to 2 K
shows a thermal-activation-tvpe behavior with an activation energy of 0.6 eV. © 2003 American

Institute of Physics. [DOI: 10.1063/1.1605806]
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Field-effect transistor based on KTaO; perovskite
K. Ueno,® |. H. Inoue, T. Yamada, H. Akoh, Y. Tokura,” and H. Takagi®

Correlated Electron Research Center (CERC), National Institute of Advanced Industrial Science

and Technology (AIST), Tiuwkuba 303-8562, Japan

(Recetved 16 December 2003; accepted 23 February 2004; published online 29 April 2004)

An p-channel accumulation-type field-effect transistor (FET) has been fabricated utilizing a KTa(O;
single crystal as an active element and a sputtered amorphous Al,O; film as a gate insulator. The
device demonstrated an ON/OFF ratio of 10* and a field-effect mobility of 0.4 cm’/V's at room
temperature, both of which are much better than those of the 5rTi10; FETs reported previously. The
field-effect mobility was almost temperature mdependent down to 200 K. Our results indicate that
the Al,O;/KTa0; interface 1s worthy of further investigations as an alternative system of future
oxide electronics. © 2004 American Institute of Physics. [DOI: 10.1063/1.1703841]
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Fig. 1. (a) Drain-source current
|5 plotted against the drain-
source bias V¢ of the
Al,O,/KTaO,4 FET for various
gate voltages V¢ at 300 K. The
KTaOj, single crystal was
annealed at 700 °C prior to the
device fabrication.
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Manganites



FHYSICAL REVIEW B 68, 134415 (2003)

Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide

La;_ . Sr. MnO,

X Hong, A Posadas, A. Lin and C. H. Ahn
Department of Applied Physics, Yale University, New Haven, Connecticut 06320-8284, US4
iReceived 28 July 2003; published 8 October 2003)

A ferroelectric field effect approach is presented for modulating magnetism n the colessal magnetoresistive
oxide La; _, Sr,MnQ; (LSMO). The femomagmetic Cune temperature of ultrathin LSMO films was shifted by
35 K reversibly using the polanization field of the ferroelectnic oxide Pb(Z1 Ti; _, )0, n a field effect structure.
This shift was also observed m magnetoresistance measurements, with the maximum magnetoresistance ratio
at & T imcreasing from 64% to 77%. This medel system approach does not mtroduce substitutional disorder or
structural distortion, demonstrating that regulating the carmer concentration alone changes the magnetic phase
transition temperamure and leads to colossal effects.

DOL 10,1103/ PhysRevB 681344153 PACS mumber(s): 73.30.—h, 75.47.Gk
03
= 165 K
3 +*
Epge
PZT s
= 200 K
= ¥
LSMO -E 0.1
STO §
- DED 100 180 200 250 300
FIG. 2. Schematic view of a PZT/LSMO heterostructure depos- Temperature (K)
ited on a SrTi0; (S3TO) subsmate. Gold electrodes are deposited for
electrical fransport measurements. FIG. 6. Resistivity as a function of temperature for the two

polanization states of the PZT layer. The upper curve corresponds to
depletion of holes and 15 termed the depletion state; the lower curve
corresponds to accumulation of holes and 15 termed the accummula-
tion state. The resistivity peak temperatures are 165 K and 200 K
for the depletion and acoumulation states, respectively.



Side-gate devices in a La, (/Ba, ;3MnO; exhibiting metallic behavior

Reversible shift of the transition temperature of manganites in planar field-effect devices

patterned by atomic force microscope I. Pallecchi et al., Appl. Phys. Lett. 83, 4435 (2003)

Field effect on planar devices made of epitaxial manganite Reversible shift of the metal-semiconductor
perovskites I.Pallecchi et al., J. Appl. Phys. 95, 8079 (2004) transition temperature by 3.2K
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The relative change in channel
resistance behavior as a
function of the applied electric
field is odd and linear at
T>100K; at lower temperature
the observed non-linearities
may be due to non-linear
dielectric permittivity of the
SrTiO; substrate.

Sheet charge or volume
charge?

How much in depth does
the electric field penetrate
ina film with more than
1020 carriers/cm3? Shall we
invoke a phase separation
scenario?



Side-gate devices in a La, ;Sry ;sMnO; below the percolation threshold

10

Semiconducting behavior
with incipient metallic
transition

100 150 200 250
T (K)

7 I.Pallecchi et al.

Ina phase-separation scenario,

metallic ferromagnetic regions are embedded in a semiconducting
paramagnetic matrix and their volume fraction is below the

percolation threshold
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The electric field enlarges or shrinks the metallic
ferromagnetic domains, while the magnetic field
enlarges and also polarizes them.
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Field effects in superconducting films. Change
of the DS resistance of an ,8-nm-thick
YBa,Cu;0,_4 channel with a ,300-nm-thick

| Bag 15Sry g5 1105 gate insulator.

The blue curve corresponds to depletion of the
carrier density, and the red curve corresponds
to

enhancement of the carrier density in the DS
(drain-source) channel.
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Field-effect experiments in NdBa,Cu;0;_ ; ultrathin films
using a SrTiO; single-crystal gate insulator

D. Matthey® S. Gariglio, and J.-M. Triscone

DPMC, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland

We report on the electrostatic modulation of superconductivity in very thin films of cuprate
superconductors using a field-effect device based on a SrTi0; single-crystal gate mnsulator. A T,
modulation of 3.5 K and a 37% change of the normal state resistance have been observed in an
epitaxial bilayer composed of an insulating PrBa,Cu;O;_; layer deposited on top of a

B0V ' 1 zrf:‘.l superconducting NdBa;Cu;O;_; film, two umt cells thick. To achieve large electric fields, the
1 | ;_ thickness of the commercial dielectric single-crystal SrTi10; substrate (also used as the gate
5t 10% insulator) was reduced to 110 pm. The dielectric properties of the gate msulator were characterized
4l o as a function of temperature and electric field and the magnitude of the field effect was quantified.
oy ) 8 E A T_ enhancement of 2.8 K was obtained for an applied field of — 1.8 10° Vim. corresponding to
= 3 18 =] a polarization of —4 uClem®. © 2003 American Institute of Physics. [DOL 10.1063/1.1624635]
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Electrostatic Modulation of
Superconductivity in Ultrathin
GdBa,Cu,0O.,_  Films

C. H. Ahn, 5. Gariglio, P. Paruch, T. Tybell, L. Antognazza,
J.-M. Triscone

The polarization field of the ferroelectric oxide lead zirconate titanate
[Pb(Zr,Ti,_)O,] was used to tune the critical temperature of the high-
temperature superconducting cuprate gadolinium barium copper oxide
(GdBa,Cu,0,_ ) in a reversible, nonvolatile fashion. For slightly underdoped
samples, a uniform shift of several Kelvin in the critical temperature was
observed, whereas for more underdoped samples, an insulating state was
induced. This transition from superconducting to insulating behavior does not
involve chemical or crystalline modification of the material
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Field-effect tuning of carrier density in Nd, ;Ba, 3Cu;0, thin films
A Cassinese, G. M. De Luca, A. Prigiobbo, M. Salluzzo,® and R. Vaglio

INFM-COHERENTIA, Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Napoli, Iialy
(Recerved 3 Jamuary 2004: accepted 14 March 2004; published online 29 Apnil 2004)

Using a field effect device we modified the number of holes in the surface layers of 4 to 10 unit cell
Nd; ;Ba; 3Cus O, (NBCO) epitaxial films grown on (100) SrTi0; substrates. The results obtamed on
a set of 12 devices demonstrate that 1t 1s possible to induce reversible changes of the hole density
of WBCO films by field effect. It is found that the field effect becomes less pronounced increasing
the film thickness. Insulating—superconducting transition was observed in one 8 unit cell NBCO
field effect device. © 2004 American Institute of Physics. [DOI: 10.1063/1.1745103]

Temperature dependence of the resistivity of

Nd, ,Ba, {Cu,0, films having different thicknesses: 4
u.c. (closed squares), 8 u.c. (opensquares), 10 u.c.
(closed circles), and 110 cells (open triangles). In the
inset a sketch of the field effect device is shown.
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Sheet resistance measured as a function of temperature on an 8 u.c.
FET for V, = 0 (closed circles), V, = -30 V (open diamonds), and V,
=-34 V (open circles). The dashed line indicates the value of the
quantum resistance R, = 6.45 k . In the inset the insulating—

superconducting transition is shown 0 10 20 30 40 50 60
T[K]



Conclusions
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