\begin{picture}(30,20)
\put(0,0){\circle*{2}}
\put(30,0){\circle*{2}}
\put(0,20...
...}}
\put(20,10){\line(-2,1){20}}
\bezier{150}(14,12)(15,15)(16,13)
\end{picture}


$\textstyle \parbox{7cm}{
{\Huge\bf SEMINARIUM}}$
Matematyka Dyskretna
(prowadzone przez M.Woźniaka)



UWAGA!!!  UWAGA!!!  UWAGA!!!



Spotkanie nadzwyczajne!  termin wyjątkowy! miejsce niezwykłe!



W czwartek, 7 października 2004 roku, o godzinie 16:00

w Instytucie Matematycznym PAN, ul. 14w. Tomasza 30



Dalibor FRONCEK
(Czechy i USA)


wygłosi referat pod tytułem:


Biclique coverings of $ K_{n,n} - M$


and Sperner Theorem

Joint work with Janja Jerebic, Sandi Klavzar, University of Maribor and Petr Kovar, Technical University of Ostrava

The strong product $ H=\boxtimes _{\,i=1}^{\,k}H_i$ of graphs $ H_1, H_2,\dots ,H_k$ is the graph defined on the Cartesian product of the vertex sets of the factors, two distinct vertices $ (u_1,u_2,\dots ,u_k)$ and $ (v_1,v_2,\dots ,v_k)$ being adjacent if and only if $ u_i$ is equal or adjacent to $ v_i$ in $ H_i$ for $ i=1,2,\dots ,k$. The strong isometric dimension, $ \idim (G)$, of a graph $ G$ is the least number $ k$ such that there is a set of paths $ \{ P^{(1)},P^{(2)},\dots ,P^{(k)}\} $ with the property that $ G$ isometrically embeds into $ \boxtimes _{\, i=1}^{\, k}P^{(i)}$.

Jerebic and Klavzar conjectured that if $ k\geq 1$ and $ {
{
\dbinom{k}{\lfloor{\frac{k}{2}\rfloor}}
}
<n\leq
{
\dbinom{k+1}{\lfloor{\frac{k+1}{2}\rfloor}}
}
}
$ then $ \idim (K_2\,\square\medspace K_n)=k+1$. They also proved that the conjecture is equivalent to the following

Conjecture (Jerebic, Klavzar 2003)
Let $ k\geq 1$ and let $ %%\displaystyle
{
n=
{
\dbinom{k+1}{\lfloor{\frac{k+1}{2}\rfloor}}
}
+1
}
$. Then the edges of $ K_{n,n} - M$, where $ M$ is the perfect matching, cannot be covered by $ k$ complete bipartite graphs.

We use Sperner Theorem to prove the conjecture. If time permits, we also present some related results.

 
Serdecznie zapraszamy wszystkich chętnych !