\begin{picture}(30,20)
\put(0,0){\circle*{2}}
\put(30,0){\circle*{2}}
\pu...
...
\put(20,10){\line(-2,1){20}}
\bezier{150}(14,12)(15,15)(16,13)
\end{picture}
$\textstyle \parbox{7cm}{
{\Huge\bf SEMINARIUM}}$
Zakładu Matematyki Dyskretnej
Wydziału Matematyki Stosowanej
AGH



We wtorek, 14 maja 2002 roku, o godzinie 12:45
w sali 304, łącznik A-3-A-4, A G H



Gyula Y. KATONA
(Dept. of Comp. Sci. and Inf. Th., Budapest Univ. of Technology)



wygłosi referat pod tytułem:


Hamiltonian chains in hypergraphs


Let ${\cal H}$ be a $r$-uniform hypergraph on the vertex set $V({\cal
H})=\{v_1, v_2,\ldots,v_n\}$ where $n>r$. A cyclic ordering $(v_1,
v_2,\ldots , v_n)$ of the vertex set is called a hamiltonian chain iff for every $1\leq i\leq
n$ there exists an edge $E_j$ of ${\cal H}$ such that $\{v_i,
v_{i+1},\ldots, v_{i+r-1}\}=E_j$. An $r$-uniform hypergraph is $k$-edge-hamiltonian iff it still contains a hamiltonian chain after deleting any $k$ edges of the hypergraph. What is the minimum number of edges of such a hypergraph? We give lower and upper bounds for this question for several values of $r$ and $k$. We also give a Dirac-type theorem for the existence of a Hamiltonian chain.
 
Serdecznie zapraszamy wszystkich chętnych !