Zakładu Matematyki Dyskretnej
Wydziału Matematyki Stosowanej
AGH
We wtorek, 11 marca 2003 roku, o godzinie 12:45
w sali 304, łącznik A-3-A-4, A G H
Gabiel SEMANIŠIN
(Uniwersytet Szafarika, Koszyce)
wygłosi referat pod tytułem:
Non-traceable detour graphs
The detour order of a vertex in a graph is the length of the
longest path beginning at . The detour sequence of is the
sequence of the detour orders of its vertices. The set of detour orders of
the vertices of is called detour spectrum of .
A graph is called detour if its detour spectrum is one-element set.
We deal with the problem of existence of a graph with a
prescribed detour sequence . Particularly, we concentrate on the existence of detour graphs.
The detour deficiency of a graph is the difference between the order of and its detour order.
We show that for every positive integers and there is a
non-traceable detour graphs with chromatic number and the
detour deficiency at least . This answers the question on the existence of non-traceable bipartite detour graphs formulated by F. Bullock.
|
|
|
Serdecznie zapraszamy wszystkich chętnych !