\begin{picture}(30,20)
\put(0,0){\circle*{2}}
\put(30,0){\circle*{2}}
\pu...
...
\put(20,10){\line(-2,1){20}}
\bezier{150}(14,12)(15,15)(16,13)
\end{picture}
$\textstyle \parbox{7cm}{
{\Huge\bf SEMINARIUM}}$
Zakładu Matematyki Dyskretnej
Wydziału Matematyki Stosowanej
AGH


We wtorek, 11 marca 2003 roku, o godzinie 12:45
w sali 304, łącznik A-3-A-4, A G H


Gabiel SEMANIŠIN
(Uniwersytet Szafarika, Koszyce)


wygłosi referat pod tytułem:


Non-traceable detour graphs


The detour order of a vertex $v$ in a graph $G$ is the length of the longest path beginning at $v$. The detour sequence of $G$ is the sequence of the detour orders of its vertices. The set of detour orders of the vertices of $G$ is called detour spectrum of $G$. A graph is called detour if its detour spectrum is one-element set. We deal with the problem of existence of a graph with a prescribed detour sequence $\Pi$. Particularly, we concentrate on the existence of detour graphs. The detour deficiency of a graph $G$ is the difference between the order of $G$ and its detour order. We show that for every positive integers $m\ge 1$ and $k\ge 2$ there is a non-traceable detour graphs with chromatic number $k$ and the detour deficiency at least $m$. This answers the question on the existence of non-traceable bipartite detour graphs formulated by F. Bullock.
 
Serdecznie zapraszamy wszystkich chętnych !