

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Modelowanie maszyn wirnikowych w środowisku ANSYS

mgr inż. Tomasz Siwek Katedra Maszyn Cieplnych i Przepływowych AGH w Krakowie

Materiały pomocnicze dla studentów wydziału Energetyki i Paliw AGH

Etapy symulacji numerycznej

Środowisko pracy "Workbench"

Dyskretyzacja obszaru ciągłego

Domyślny , uniwersalny generator siatki dla ANSYSA, rekomendowany dla solverów CFX i Fluent. Wbudowane funkcje generowania siatki np.: przyścienne warstwy "inflacji", siatka na powierzchniach periodycznych, zagęszczanie w określonym obszarze.

Tworzenie siatek strukturalnych dedykowanych do obliczeń maszyn przepływowych. Wymaga odpowiednio przygotowanej geometrii ("BladeGen" lub "Blade Modeler")

Metody generowania siatek w "ANSYS Meshing"

Tetrahedrons

Siatka oparta o elementy czterościenne, łatwa w generowaniu, zwykle mało wydajna.

<u>Sweep</u>

Elementy sześcienne lub pryzmatyczne (klinowe), stosowana tylko do określonej grupy geometrii (walce, sześciany)

Multi Zone

Elementy sześcienne, wymaga zdefiniowania kierunku generowania siatki, automatycznie dekomponuje złożone geometrie.

Hex Dominant

Dominują elementy sześcienne + wszystkie inne w celu uzupełnienia obszaru dyskretyzacji

CutCell mesh

Generator siatki wyłącznie dla ANSYS Fluent, elementy sześcienne w układzie kartezjańskim we wnętrzu objętości, na zewnątrz pozostałe.

Automatic

Łączy różne metody generowania siatki, w praktyce efekt zbliżony do Tetrahedrons (przydatna po zdekomponowaniu geometrii)

Przykładowe użycie siatek

Kontrola jakości siatki

Zarówno CFX jak i Flunt Solver wymagają określonej jakości siatki ! Przy inicjacji obliczeń kontrolowane są najważniejsze parametry siatki tj.:

- Mesh Orthogonality
- Aspect Ratio
- Expansion Factor (tylko CFX)

+		+	
Mesh Statistics	1	i	
+		+	Dobra (OK)
Domain Name: Air Duct			
Minimum Orthogonality Angle [degrees]	=	20.4 ok	
Maximum Aspect Ratio	=	13.5 OK	
Maximum Mesh Expansion Factor	=	700.4 !	
Domain Name: Water Pipe			Akceptowalna (ok)
Minimum Orthogonality Angle [degrees]	=	32.8 ok	
Maximum Aspect Ratio	=	6.4 OK	
Maximum Mesh Expansion Factor	=	73.5 !	
Global Mesh Quality Statistics :			
Minimum Orthogonality Angle [degrees]	=	20.4 ok	vvątpiiwa (:)
Maximum Aspect Ratio	=	13.5 OK	
Maximum Mesh Expansion Factor	=	700.4 !	

Parametry oceny siatki

 $\frac{A_i \cdot e_i}{\left| \overrightarrow{A_i} \right| \left| \overrightarrow{e_i} \right|}$

- A_i wektor normalny do krawędzi "i",
- e_i wektor łączący środek ciężkości elementu i środek krawędzi.

Aspect Ratio:

- 2-D stosunek: najdłuższy bok/najkrótszy bok
- **3-D** stosunek: promień kuli opisanej/wpisanej w element

Expansion Factor:

Stosunek maksymalnej do minimalnej objętości elementów otaczających węzeł

1

e₃

A₂

10

Identyfikacja elementów siatki

Narzędzie Mesh Metrics

Statistics				
Nodes	2770179			
Elements	9803931			
Mesh Metric	Orthogonal Quality			
Min	0,159996525066079			
Max	0,999999618736902			
Average	0,898037883172696			
Standard Deviation	0,09386299213296			

Opisanie siatki - CFX-pre ("Setup")

Dodatkowe opcje:

- definicja pola sił masowych (grawitacja),
- ciśnienia odniesienia,
- udział frakcji, np. gaz-ciecz

Domena – "Fluid Models"

"Fluid Models" – grupy modeli turbulencji

• Different approaches to make turbulence computationally tractable

DNS (Direct Numerical Simulation)	LES (Large Eddy Simulation)	RANS (Reynolds Averaged Navier- Stokes Simulation)
 Numerically solving the full unsteady Navier-Stokes equations 	 Solves the spatially averaged N-S equations 	 Solve time-averaged Navier-Stokes equations
 Resolves the whole spectrum of scales No modeling is require 	 Large eddies are directly resolved, but eddies smaller than the mesh are modeled 	 All turbulent length scales are modeled in RANS Various different models are available
 But the cost is too prohibitive! Not practical for industrial flows! 	• Less expensive than DNS, but the amount of computational resources and efforts are still too large for most practical applications	• This is the most widely used approach for calculating industrial flows

Warunki brzegowe

- Inlet
- Velocity Components
- Normal Speed
- Mass Flow Rate
- Total Pressure (stable)
- Static Pressure

-Static Temperature (Heat Transfer)

- -Total Temperature (Heat Transfer)
- -Total Enthalpy (Heat Transfer)

-Relative Static Pressure (Supersonic) -Inlet Turbulent conditions

- Outlet
- Average Static Pressure
- Velocity Components
- Static Pressure
- -Normal Speed
- -Mass Flow Rate

• Warunki specjalne

- symmetry
- interface
- periodic

- Opening
- Opening Pressure and Dirn
- Entrainment
- Static Pressure and Direction
- Velocity Components
- -Opening Temperature (Heat Transfer)
- -Opening Static Temperature (Heat Transfer)
- -Inflow Turbulent conditions

- Wall
- No Slip / Free Slip
- Roughness Parameters
- Heat Flux (Heat Transfer)
- Wall Velocity (for tangential motion only)
- -Adiabatic (Heat Transfer)
- -Fixed Temperature (Heat Transfer)
- -Heat Transfer Coefficient (Heat Transfer)

Warunki brzegowe - wybrane uwagi

Ustawienia Solvera

Obliczenia w architekturze równoległej

Monitoring obliczeń

Tradycyjny - wentylator promieniowy w zabudowie spiralnej S

Wentylator kanałowy z wirnikiem promieniowym K

Generowanie wirnika –parametryzacja modelu

Przygotowanie geometrii – przydatne funkcje

Funkcja "Slice" (DM)

Tworzenie warstwy płynu "Enclosure" (DM)

Szkic 2D – ".DAT"

Dyskretyzacja modelu – obudowa spiralna AGH

Domeny i warunki brzegowe

Wentylator promieniowy Workbench + Design Exploration

Weryfikacja ilościowa modelu numerycznego

Przyrost ciśnienia statycznego w funkcji wydajności

Sprawność wewnętrzna (w parametrach statycznych) w funkcji wydajności

Weryfikacja jakościowa – CFX z Termoanemometrem

Prędkość bezwzględna c za wirnikiem na kącie rozwinięcia 360st.

Weryfikacja jakościowa – CFX z Termoanemometrem

Składowa promieniowa c, za wirnikiem na kącie rozwinięcia 360 CFX Termoanemometr Velocity Radial 8 50 [m s^-1] wirnik przód odległość od ściany tylnej obudowy Składowa obwodowa cu za wirnikiem na kącie rozwinięcia 360 SkladObwodowa 33 28 25 ika 20 odległość od 15 13 [m s^-1]

wirnik

przód

odległość od ściany tylnej obudowy

Rozkład ciśnienia statycznego w wirniku dla różnych punktów pracy (50% b₂)

Rozkład prędkości względnej na łopatkach dla różnych punktów pracy (50% b₂)

Struktury wirowe w wirniku

Optymalizacja – dalsze kroki

Plan eksperymentu i obliczenia GDO - Central Composite Design

В	С	D	E	F
Update Order	P13 - Liczb	P15 - DS1 💌	P7 - SprawnoscCa	P8 - DeltaPstat (Pa)
1	10	156,5	0,77051	1019,2
2	5	156,5	0,66614	616,33
3	15	156,5	0,80862	1237,3
4	10	135	0,63202	896,29
5	10	178	0,56175	504,12
6	5	135	0,50094	448,58
7	15	135	0,66748	1095,7
8	5	178	0,79101	697,61
9	15	178	-1,8524	-1046,7

Coal Driven Optimization
 Design of Experiments
 Cost Surface
 Optimization

Goal Driven Optimizatio

Płaszczyzna odpowiedzi (generowana metodą Kriging-a)

Dziękuję za uwagę !

