Turbiny Parowe i Gazowe

Projekt 1

Numeryczna analiza modalna łopatki wirnika turbiny

Cel projektu:

Celem projektu jest przeprowadzenie badań własności dynamicznych przykładowej łopatki wirnika turbiny parowej lub gazowej, tj. określenie częstotliwości drgań własnych oraz postaci tych drgań oraz ocena możliwości wystąpienia wzbudzenia rezonansowego dla zadanej prędkości obrotowej wirnika.

Zakres projektu:

1. Przygotowanie geometrii łopatki turbiny

Geometrię łopatki przygotować w oprogramowaniu Ansys Blade Modeler (dodatek do DM) zgodnie z danymi dla swojego zespołu zawartymi w tabeli 1. Uogólniony kontur merydionalny przedstawiono na rysunku 1.

Rys. 1. Uogólniony kontur merydionalny

	Parametr	Nr zespołu												
wielkość projektowa		1	2	3	4	5	6	7	8	9	10	11	12	13
Promień wewnętrzny	V16	105	120	75	90	130	145	135	110	125	95	115	155	85
Wysokość łopatki	V13	80	67	45	53	73	80	75	90	94	73	87	115	66
Szerokość wirnika dla Dw	H11	38	44	26	32	48	54	50	58	70	52	64	88	46
Szerokość wirnika dla Dz	H12	30	35	20	25	38	43	40	30	36	27	33	46	24
Kąt pochylenia LE	A4	86	82	87	86	88	84	85	86	82	88	87	86	86
Liczba łopatek w wieńcu	Z	22	28	26	21	23	30	20	23	24	18	27	25	21
Obroty na minutę *(10 ⁻³)	n	5	2	11	15	8	2,5	2,5	7	25	27	6	3	12
Rodzaj materiału	-	ST	TI	ST	ΤI	ST	ΤI	ST	TI	ST	ΤI	ST	ΤI	ST

Tabela 1. Dane projektowe

ST – wybrany rodzaj stali, TI – wybrany stop tytanu

Wygenerować łopatkę przez wyciągnięcie profilu (przyjąć dowolny według własnego uznania) pomiędzy dwoma warstwami od HUB do SHROUD, zgodnie z przykładem pokazanym na rysunku 2.

Rys.2. Przykład wygenerowanej łopatki

2. Przypisać własności materiałowe do geometrii

2.1. Dodać materiał z wbudowanej bazy ANSYS zgodnie z rysunkiem 3

Materiał dodajemy z pozycji Workbench-a wchodząc do zakładki Engineering Data Sources przez kliknięcie w "+" przy danym materiale.

	А				в	с		P	
1	Data Source				1	Location	Description		
2					-		Ouick access list and default items		
3	🗰 General Materials	General Materials 1					General use material samples for use in various analyses.		
4	General Non-linear Materials						General use material samples for use in non-linear analyses.		
5	Explicit Materials						Material samples for use in an explicit anaylsis.		
utline	of General Materials							* 4	
	A	в	с			D		E	
1	Contents of General Materials	A	dd			Sour	ce	Description	
2	Material								
3	📎 Air	-		8	Gene	ral_Materials	.xml	General properties for air.	
4	📎 Aluminum Alloy	÷		8	Gene	ral_Materials	xml	General aluminum alloy. Fatigue properties come from MIL-HDBK-5H, page 3-277.	
5	Soncrete	-		9	Gene	ral_Materials	xml		
6	Copper Alloy	-		8	Gene	ral_Materials	xml		
7	Sray Cast Iron	-		8	Gene	ral_Materials	xml		
8	Magnesium Alloy	4		8	Gene	ral_Materials	xml		
9	Solyethylene	-		9	Gene	ral_Materials	xml		
10	Silicon Anisotropic	+		9	Gene	ral_Materials	.xml		
11	Stainless Steel	-	۲	8	Gene	ral_Materials	xml		
12	📎 Structural Steel	4	۲	8	Gene	ral_Materials	xml	Fatigue Data at zero mean stress comes from 1998 ASME BPV Code, Section 8, Div 2, Table 5-110.1	
100	Ch. Titagium Allau	00		GD	Cana	ral Matoriale	, suml		

Rys.3. Dodanie materiału do projektu z biblioteki ANSYS

D	etails of "Solid"		4		
Ŧ	Graphics Properties				
Ξ	Definition				
	Suppressed	No			
	Stiffness Behavior	Flexible			
	Coordinate System	Default Coordinate System			
	Reference Temperature	By Environment			
Ξ	Material		_Geor	netry ∧ Print Preview ∧ Re	
	Assignment	Structural Steel	Mecca	nes	
	Nonlinear Effects	Yes	🛛 😵 New	Material	
	Thermal Strain Effects	Yes	🏂 Impo	ort	
÷	Bounding Box	1	Of Falls	Characterization of Characterization	
ŧ	Properties			structural steel	
÷	Statistics		🗞 Stain	less Steel	
	1				

Rys.4. Przypisanie własności materiału do bryły w modelu

3. Dyskretyzacja obszaru ciągłego (generacja siatki obliczeniowej)

Wygenerować siatkę w module mechanicznym lub w ANSYS Meshingu z ustawieniami dla Mechanical-a. Przykładową siatkę pokazano na rysunku 5.

Rys.5. Przykładowa siatka obliczeniowa dla łopatki turbiny

4. Założyć warunki brzegowe

Do analizy modalnej jedynym warunkiem brzegowym jest utwierdzenie łopatki w miejscu jej montażu w piaście wirnika (zamku).

Project Model (A4) Model (A4) Coordinate Systems Model (A5)	Frequency: N/A 2019-01-10 11:02 Fixed Suppor
Tree Insert	🕨 🔍 Rotational Velocity
Ana Fixe Sol Group All Similar Children	 Thermal Condition Fixed Support Displacement Remote Displacement Frictionless Support Compression Only Support Cylindrical Support Elastic Support

Rys.6. Nadanie warunku brzegowego utwierdzenie (Fixed Support)

5. Ustawić i przeprowadzić analizę modalną

Wyznaczyć 6 pierwszych częstotliwości drgań własnych (modów).

	Modal (A5) Modal (A5) Analysis Settings Fixed Support Solution (A6)								
) e	tails of "Analysis Settir	ngs"				д			
Э	Options								
	Max Modes to Find	6	•		•				
	Limit Search to Range	No							
Э	Solver Controls	-							
	Damped	No							
	Solver Type Program Controlled								
E	Rotordynamics Controls								
E	Output Controls								
E	Analysis Data Management								

Rys.7. Ustawienie liczby modów

6. Dodać analizę postaci drgań własnych dla każdego z modów

Przygotować i nagrać animację dla każdej postaci drgań własnych (zależnych od modu). Analizę drgań własnych dodajemy zgodnie z rysunkiem 8.

Analysis S Fixed Sup	ettings port			
	Insert 🕨	Deformation	•	🗣 Total
- To	Clear Generated Data	Strain	•	💁 Directional
	lo Rename (F2)	Stress		
		Linearized Stress	•	
	Group All Similar Children	Probe	•	
(Open Solver Files Directory Worksheet: Result Summary	Coordinate Systems	•	
Details of "Solution (A6)"		🕵 User Defined Result		
Adaptive Mesh Refinement		- Commands		
Max Refinement Loops	1,	Commands		1
Refinement Depth	2,			

Rys. 8. Dodanie wyników do analizy postaci drgań własnych

- 7. Określić prędkości krytyczne i porównać z prędkością obrotową wirnika
- 8. Przygotować sprawozdanie z projektu zgodnie z wytycznymi prowadzącego