Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie

TURBINY PAROWE I GAZOWE

PROJEKT 1

Wyznaczenie charakterystyki profilu aerodynamicznego (łopatkowego) z wykorzystaniem parametryzacji geometrii i technik planowania eksperymentu numerycznego

> Prowadzący: Dr inż. Tomasz Siwek siwek@agh.edu.pl

1. Pobieranie oraz konwersja danych (punktów tworzących profil łopatki)

Wszystkie pliki niezbędne do wykonania ćwiczenia, wraz z pomocami dydaktycznymi znajdują się na serwerze <u>http://home.agh.edu.pl/~siwek/</u>.

W pliku "Dane do projektu" odnajdujemy symbol profilu przypisany do nazwiska.

Dane geometrii profilu dostępne są na stronie: http://airfoiltools.com

W wyszukiwarce serwisu należy wpisać nazwę profilu. Następnie należy pobrać zbiór punktów tworzących profil łopatki z linku w rubryce Details -> Source Dat file:

Airfoil Tool	S 🚱 🎔 Tweet 🖬 Lubię to! 👫		You have 0 airfoils loaded Your Reynold number ran Google™ Custom Search	l. ge is 50,000 to 1,000,000. (₃e!) Search
Applications Airfoil database search My airfoils Airfoil plotter Airfoil plotter Airfoil comparison Reynolds number cale NACA 4 digit generator Information Airfoil data Lift/drag polars Generated airfoil shapes <u>Searches</u> Symmetrical airfoils NACA 4 digit airfoils NACA 5 digit airfoils NACA 6 series airfoils NACA 6 series airfoils Airfoils A to Z A 12 ha winter (29)	NACA 16-006 (naca NACA 16-006 - NACA 16- Details (naca16006-i) NACA 16-006 NACA 16-006 airfoil Max (hichness 6% at 50% chord. Max (camber V:n 10% chord Source (UC Arrifor Coordinates Database Source dat file The dat file is in Sext format	16006-iI) 006 airfoil Dat file NACA 16-006 1.0000 0.00060 0.9500 0.00777 0.9000 0.01259 0.8000 0.02299 0.7000 0.02635	Parser No parser warnings	Send to airfoil plotter Add to comparison Lednicer format dat file Selig format dat file
B b29root to bw3 (22) C c141a to curtisc72 (40) D dae11 to du861372 (28) E e1098 to esa40 (209) F falcon to fxs21158 (121)	Similar airfoils GOE 445 AIRFOIL NACA 64-008A AIRFOIL NACA 0008-34	<u>Preview</u> <u>Details</u> <u>Preview</u> <u>Details</u> Preview Details		

Otwarty plik w nowej karcie przeglądarki internetowej należy zapisać, jako plik tekstowy klikając prawym przyciskiem myszy i wybierając funkcję Zapisz stronę jako.

Dokument należy otworzyć w np. Excelu, w celu sformatowania danych na potrzeb programu ANSYS.

Wyświetlone dane składają się z dwóch kolumn liczb, będących odpowiednio (w wierszu) współrzędnymi na płaszczyźnie XY.

Plik koordynacyjny tworzyć będzie 5 kolumn:

 W pierwszej należy umieścić cyfry 1 lub 2, które określać będą odpowiednio górną oraz dolną linię profilu; cyfrą 1 oznaczamy punkty w których wartość współrzędnej X zmienia się rosnąco w przedziale <0; 1>, pozostałe punktu zaliczamy do grupy 2,

- W kolumnie drugiej znajdować się będą liczby porządkowe tj. 1,2,3 itd. numerujące punkty dolnej oraz górnej linii profilu łopatki,
- Trzecia kolumna powinna zawierać współrzędne X, natomiast 4 współrzędne Y,
- W kolumnie nr 5 umieścić należy współrzędne Z, w tym wypadku analizowana jest geometra 2D, więc kolumnę tę tworzą same 0.

Tak zmodyfikowany plik należy zapisać przy użyciu kodowania ANSI w Notatniku. Następnie przy użyciu funkcji Znajdź/Zamień należy przerwy (tabulatory) pomiędzy kolumnami zastąpić spacjami. Gotowy plik koordynacyjny (rys. poniżej) należy ponownie zapisać.

1	1 0.000000 0.000000 0
1	2 0.005000 0.008160 0
1	3 0.007500 0.009830 0
1	4 0.012500 0.012500 0
1	5 0.025000 0.017370 0
1	6 0.050000 0.024120 0
1	7 0.075000 0.029170 0
1	8 0.100000 0.033240 0
1	9 0.150000 0.039500 0
1	10 0.200000 0.044000 0
1	11 0.250000 0.047140 0
1	12 0.300000 0.049130 0
1	13 0.350000 0.049950 0
1	14 0.400000 0.049680 0
1	15 0.450000 0.048370 0
1	16 0.500000 0.046130 0
1	17 0.550000 0.043110 0
1	18 0.600000 0.039430 0
1	19 0.650000 0.035170 0
1	20 0.700000 0.030440 0
1	21 0.750000 0.025450 0
1	22 0.800000 0.020400 0
1	23 0.850000 0.015350 0
1	24 0.900000 0.010300 0
1	25 0.950000 0.005250 0
1	26 1.000000 0.000210 0
2	1 0.000000 0.000000 0
2	2 0.005000 -0.008160 0
2	3 0.007500 -0.009830 0
2	4 0.012500 -0.012500 0
2	5 0.025000 -0.017370 0

2. Tworzenie geometrii łopatki

W platformie ANSYS Workbench z zakładki Toolbox->Component Systems należy przeciągnąć komórkę Geometry do okna Project Schematic.

Uwaga: warto już na samym początku zapisać utworzony projekt oraz sukcesywnie zapisywać dokonywane zmiany. Pamiętać należy o wyeliminowaniu polskich znaków i symboli specjalnych ze ścieżki zapisu oraz z nazw plików.

Następnie w celu rozpoczęcia pracy nad geometrią należy dwukrotnie kliknąć na **Geometry** w komponencie A, domyślnie otworzy się **Design Modeler**, którym możesz konstruować oraz modyfikować geometrię.

Project Schematic					
	•		А		
	1	Θ	Geometry		
	2	\bigcirc	Geometry	?	
Geometry					

2.1. Tworzenie geometrii na podstawie pobranych danych profilu łopatki

1) Należy wybrać funkcję Create → Point

W zakładce ustawień jako **Coordination file** należy wybrać stworzony wcześniej plik tekstowy.

D	etails View		џ
Ξ	Details of Point1		
	Point	Point1	
	Туре	Construction Point	
	Definition	From Coordinates File	
	Coordinates File	C:\Users\student\Desktop\Niemczyk\Iopatka.txt	
	Coordinates Unit	Meter	
	Base Plane	XYPlane	
	Tolerance	Normal	
	Refresh	No	
	# Points generated	61	
	# Groups generated	2	

Po wykonaniu każdej czynności należy kliknąć na ikonkę Generate

誟 Generate

Następnie należy utworzyć krzywą, której zadaniem jest połączenie utworzonych punktów. W tym celu należy wybrać funkcję: Concept → 3D Curve.

Następnie w zakładce ustawień, jako Coordination file należy wybrać stworzony wcześniej plik tekstowy.

	Szybki dostęp	naca.txt		15.05.2016 20:12	Dokumen
		naca1.txt		15.05.2016 20:06	Dokumen
	naca2.txt		15.05.2016 20:12	Dokumen	
	Pulpit	naca3.txt		15.05.2016 20:17	Dokumen
	-	naca4.txt		15.05.2016 20:18	Dokumen
	1	naca5.txt		15.05.2016 20:19	Dokumen
	Biblioteki	naca6.txt		15.05.2016 20:19	Dokumen
		Nowy Micros	oft Excel Worksheet.xlsx	15.05.2016 19:50	Microsoft
		📄 s1010.dat		15.05.2016 19:49	Plik DAT
	Ten komputer				
	1				
	S				
	Sieć				
		<			>
		-			
	1	Nazwa pliku:	Not selected	-	Otwórz
11					
		Pliki typu:	All files (* *)		Anului
	I	Pliki typu:	All files (*.*)	•	Anuluj
		Pliki typu:	All files (*.*)	_	Anuluj
		Pliki typu:	All files (*.*)	_	Anuluj
		Pliki typu:	All files (*.*)	•	Anuluj
2	i Sketching Modelin	Pliki typu:	All files (*.*)		Anuluj
	Sketching Modelin	Pliki typu:	All files (*.*)		Anuluj
	Sketching Modelin etails View Details of Curve2	Pliki typu:	All files (*.*)		Anuluj
	iketching Modelin etails View Details of Curve2 Curve	Pliki typu:	All files (*.*)		Anuluj
	iketching Modelin etails View Details of Curve2 Curve Definition	ng Curve2 From Coordinate	All files (*.*)		Anuluj
	sketching Modelin etails View Details of Curve2 Curve Definition Coordinates File	Pliki typu: ng Curve2 From Coordinate Not selected	All files (*.*)		Anuluj ,
	Sketching Modelin etails View Details of Curve2 Curve Definition Coordinates File Coordinates Unit	Pliki typu: ng Curve2 From Coordinate Not selected Meter	All files (*.*)		Anuluj
	Sketching Modelin etails View Details of Curve2 Curve Definition <u>Coordinates File</u> Coordinates Unit Base Plane	Pliki typu: ng Curve2 From Coordinate Not selected Meter ZXPlane	All files (*.*)		Anuluj
	Sketching Modelin etails View Details of Curve2 Curve Definition Coordinates File Coordinates Unit Base Plane Operation	Pliki typu: ng Curve2 From Coordinate Not selected Meter ZXPlane Add Material	All files (*.*)		Anuluj ,
	Sketching Modelin etails View Details of Curve2 Curve Definition Coordinates File Coordinates Unit Base Plane Operation Refresh	Pliki typu: ng Curve2 From Coordinate Not selected Meter ZXPIane Add Material No	All files (*.*)		Anuluj ,

 Jeśli punkty znajdujące się przy wierzchołkach łopatki nie są połączone należy połączyć je ręcznie, np. dorysowując linię między odpowiednimi punktami lub dodanie brakującego punktu w pliku tekstowym.

Po wykonaniu powyższych czynności geometria powinna wyglądać następująco:

- 4) W kolejnym kroku przekształcamy krzywe w zamkniętą powierzchnię. W zakładce Concept wybieramy narzędzie Surfaces From Edges. Wskazujemy krzywe i generujemy powierzchnię odpowiadającą powierzchni przekroju profilu.
- 5) Aby móc manipulować kątem natarcia płata, konieczne jest stworzenie nowego układu współrzędnych poprzez wybranie opcji New plane. Połorzenie nowego układu będzie modyfikowane względem bazowego układu odniesienia (tzw. Układu bezwzględnego).

Nowy układ współrzędnych tworzymy w oparciu o układ bazowy tj. w oknie **Details View** w polu **Type** należy wpisać **From Plane**, w polu **Base Plane** zaznaczyć płaszczyznę **XYPlane**, a w polu **Tranform** należy wpisać **Rotate about Z**.

Następnym krokiem jest parametryzacja układu współrzędnych (nadanie możliwości rotacji układu względem osi z). Rotacja będzie odpowiadać kątowi natarcia na profil.

W tym celu należy zaznaczyć dostępne okno (□) i wpisać nazwę parametru np. katnatarcia (koniecznie bez polskich znaków). Po wykonaniu tej czynności obok pola odpowiadającego kątowi natarcia powinna pojawić się duża litera D.

Details View		ф.
Ξ	Details of Plane4	
	Plane	Plane4
	Sketches	0
	Туре	From Plane
	Base Plane	XYPlane
	Transform 1 (RMB)	Rotate about Z
	D FD1, Value 1	10 °
	Transform 2 (RMB)	None
	Reverse Normal/Z-Axis?	No
	Flip XY-Axes?	No
	Export Coordinate System?	No

Dzięki powyższym czynnościom możliwa jest dowolna zmiana wartości kąta natarcia, po otworzeniu okna **Parameters**. Wartość kąta należy zmienić na 10°.

 Kolejnym etapem jest przesunięcie profilu płata z układu XY do nowoutworzonego układu. Dzięki temu możliwe będzie modyfikowanie kąta natarcia płata poprzez rotację układu docelowego.

W tym celu należy kliknąć Create \rightarrow Body Transfotmation \rightarrow Move

W oknie **Details View** jako **Source Plane** należy wybrać płaszczyznę podstawową **XYPlane** natomiast jako docelową płaszczyznę nowoutworzoną np. **Plane4** (poprzez jej wybranie z listy operacji).

De	Details View		
-	Details of Move1		
	Move	Move1	
	Move Type	By Plane	
	Preserve Bodies?	No	
	Source Plane	XYPlane	
	Destination Plane	Plane4	
	Bodies	1	

W oknie **Bodies** należy zaznaczyć powierzchnię profilu łopatki. Podczas wybierania powierzchni należy pamiętać aby w pasku narzędzi zaznaczone było pole **(b)**, dzięki któremu domyślnie oznacza się powierzchnie.

Dzięki znajdującym się obok ikonkom można zaznaczać kolejno punkt, krawędź, powierzchnię lub bryłę.

7) Kolejnym etapem będzie wyciągnięcie profilu łopatki, przy użyciu funkcji Extrude. Dla pól Geometry oraz Direction Vector należy zaznaczyć powierzchnię łopatki. Łopatkę należy wyciągnąć symetrycznie w obu kierunkach, a jej szerokość ma wynosić 0,5 m.

De	Details View 📍		
-	Details of Extrude1		
	Extrude	Extrude1	
	Geometry	1 Face	
	Operation	Add Material	
	Direction Vector	Face Normal	
	Direction	Both - Symmetric	
	Extent Type	Fixed	
	FD1, Depth (>0)	0,5 m	
	As Thin/Surface?	No	
	Merge Topology?	Yes	
-	Geometry Selection:	1	
	Face	1	

Po wykonaniu powyższych operacji geometria powinna wyglądać następująco:

8) Następnym etapem będzie stworzenie płynu (powietrza) omywającego łopatkę. Należy wybrać płaszczyznę XY w drzewie projektu (**XYPlane**), a następnie utworzyć nowy szkic klikając na ikonę **New Sketch**.

 Płyn ten będzie prostopadłościenną bryłą otaczającą łopatkę. W tym celu należy na utworzonym szkicu narysować prostopadłościan Rectangle dostępny w menu szkicowania Sketching,.

Draw	
1 Line	
💰 Tangent Line	
🖌 Line by 2 Tangents	
∧ Polyline	
-Polygon	
Rectangle Auto-Fillet:	Γ
Rectangle by 3 Points	
🕜 Oval	
🕓 Circle	
Circle by 3 Tangents	

Kolejnym etapem będzie zwymiarowanie narysowanego prostokąta. W tym celu należy przejść do zakładki **Dimensions** oraz przy użyciu wymiarów wertykalnych oraz horyzontalnych zwymiarować prostokąt, tak aby jego lewa krawędź znajdowała się 5 m przed łopatką, prawa krawędź 10 m za noskiem łopatki, natomiast górna oraz dolna 5 m od osi Z. Podczas wymiarowania należy najpierw zaznaczamy odpowiednią oś a następnie krawędź prostokąta i w okienku **Details View** wpisać odpowiednią wartość.

Sketching Toolboxes		д
	Draw	
	Modify	
	Dimensions	▲
General General		
🛏 Horizontal		
1 Vertical		

10) Następnym krokiem jest wyciągnięcie stworzonego prostokąta przy użyciu już wcześniej wykorzystanej funkcji Extrude → Sketch. W oknie Details View opcję Add Material należy zamienić na Add Frozen, a głębokość wyciągnięcia należy ustalić na 0,1 m. Głębokość wyciągnięcia należy również oznaczyć, jako parametr (zaznaczając pole □) i nadać mu nazwę np. gruboscpowietrza. Parametr ten będzie istotny w momencie generowania siatek o określonej grubości.

De	etails View	д	
-	Details of Extrude2		
	Extrude	Extrude2	
	Geometry	Sketch1	
	Operation	Add Frozen	
	Direction Vector	None (Normal)	
	Direction	Normal	
	Extent Type	Fixed	
	D FD1, Depth (>0)	0,1 m	
	As Thin/Surface?	No	
	Merge Topology?	Yes	
-	Geometry Selection:	1	
	Sketch	Sketch1	

11) Kolejnym etapem tworzenia geometrii jest odjęcie od prostopadłościennej objętości zajmowanej przez powietrze objętości łopatki, tak aby w jej miejscu pozostała pustka. Dzięki temu w dalszej części projektu możliwe będzie określenie parametrów charakteryzujących płyn również na granicach powietrze – łopatka. W tym celu należy w pasku narzędzi wybrać opcję Tools → Enclousure.

Następnie w oknie **Details View** w polu **Shape** należy wybrać opcję **User Defined** oraz zaznaczyć myszką prostopadłościan.

D	Details View 7				
E	Details of Enclosure1				
	Enclosure	nclosure1			
	Shape	User Defined			
	User Defined Body	Apply	Cancel		
	Target Bodies	All Bodies			
	Merge Parts?	No			

Przy skomplikowanych geometriach wybór odpowiednich powierzchni ułatwić może ukrycie części elementów znajdujących się na rysunku poprzez ich zaznaczenie i wybranie opcji **Suppress Body** po kliknięcie prawym przyciskiem myszy.

Po wykonaniu powyższych czynności geometria powinna wyglądać następująco:

12) Należy również zdefiniować poszczególne powierzchnie prostopadłościanu. W tym celu należy zaznaczyć powierzchnię, a następnie klikając prawym przyciskiem myszy wybrać polecenie **Named Selection**. Przedniej ściance (od strony natarcia na łopatkę) należy nadać nazwę "włot" (lub inlet), tylnej "wylot" (lub outlet), a pozostałym odpowiednio "symetriaA", "symetriaB" (największe powierzchnie po obu stronach powietrza, "gorna" oraz "dolna" (małe, długie, ścianki powietrza na górze i dole bryły). Nazwę "plat" należy nadać ścianką stykającym się z płatem (ścianki wewnątrz wycięcia po płacie).

Zdefiniować należy również powierzchnie bezpośrednio stykające się z łopatką. W tym celu należy uaktywnić niewidoczne ścianki (poprzez polecenie **Unsuppress**) i nadać im nazwę np. plat.

Geometria jest już gotowa!

Należy jeszcze tylko zmienić wartość parametru gruboscpowietrza na 5 mm. Pamiętaj o zapisaniu dokonanych zmian w projekcie oraz odświeżeniu projektu w Workbench poprzez polecenie **Refresh Project**!

3. Tworzenie siatki

 Dodajemy komponent Mesh do projektu (analogicznie do geometrii), który łączymy z komponentem Geometry oraz aktualizujemy projekt Update Project

- 2) Klikając dwukrotnie na Mesh przenosimy się do programu tworzącego siatkę
- Klikając w drzewie operacji na Mesh w oknie Defaults jako Physics Preference wybieramy CFD natomiast jako Solver Preference opcję CFX oraz aktualizujemy siatke. Mesh Update

 Defaults 		
Physics Preference	CFD	-
Solver Preference	CFX	
Relevance	0	

4) Następnie dobieramy parametry siatki: Mesh control->Sizing.

5) W detalach ustalamy:

Scoping method: Named selection

Named selection: plat

Type -> Element size

Element size -> 0,005 m

Local Min Size: Default

De	Details of "Face Sizing" - Sizing 4					
-	Scope					
	Scoping Method	Named Selection				
	Named Selection	plat				
-	Definition					
	Suppressed	No				
	Туре	Element Size				
	Element Size	5,e-003 m				
	Behavior	Soft				
	Curvature Normal Angle	Default				
	Growth Rate	Default				
	Local Min Size	Default (5,e-003 m)				

Następnie należy ponownie zaktualizować siatkę: Mesh 💈 Update

Przykładowy widok uzyskanej siatki przedstawiono poniżej:

4. Dodanie Solvera

 Dodajemy komponent CFX (z Component Systems po lewej stronie), a następnie łączymy go z komponentem Mesh wg poniższego rysunku:

Po połączeniu klikamy Update Project.

- Dwukrotnym kliknięciem otwieramy Setup i tworzymy nową domenę, klikając na ikonę: Ponieważ nasz płat będzie otaczało powietrze, nazywamy domenę "powietrze".
- 3) W zakładce **Basic Settings** wybieramy **Material** jako **Air at 25 C** oraz ustawiamy ciśnienie na 1atm.

4) Przechodzimy do zakładki Fluid Models. Nie uwzględniamy przepływu ciepła, dlatego w opcjach Heat Transfer wybieramy Isothermal, a temperaturę płynu 25 C. Jako model turbulencji wybieramy model SST (Shear Stress Transport) oraz ustawiamy Automatic w opcji Wall Function. Na koniec klikamy Apply.

Przy tworzeniu domeny utworzona wcześniej siatka powinna podświetlić się na zielono, jak na rysunku poniżej:

4.1. Dodawanie warunków brzegowych

 W kolejnym kroku należy określić warunki brzegowe dla obliczeń. W tym celu klikamy na ikonę i tworzymy kolejno warunki brzegowe "wlot" i "wylot". Dla warunku brzegowego nazwanego "wlot" ustawiamy prędkość początkową na 10 m/s. Klikamy Apply

outline Boun	dary: wlot	-				
ails of wlot in F	owietrze in Flow A	nalysis 1				
Basic Settings	Boundary Details	Sources	Plot Options			
Flow Regime					Ξ	
Option	Subsonic			-		
Mass And Mom	entum					
Option	Normal Spee	ed		-		
Normal Speed	10 [m s^-1]					
Turbulence					Ξ	
Option	Medium (Int	tensity = 5%))	-		

Dla warunku "wylot" w zakładce **Basic Settings** jako typ warunku brzegowego ustawiamy **Opening**, natomiast w zakładce **Boundary Details** ciśnienie relatywne przyjmujemy równe 0 Pa.

Basic Settings Boundary Details Sources <					
Boundary Type	Opening		•		
Location	Wylot		▼		
Coordinate	Frame		Đ		
Outline Boundar	ry: Wylot				×
)etails of Wylot in P	owietrze in Flow A	Analysis 1			
Basic Settings	Boundary Details	Sources	Plot Options		
Flow Regime					Ξ
Option	Subsonic	Subsonic 👻			
Mass And Moment	tum				Ξ
Option	Opening Pres	Opening Pres. and Dirn 👻			
Relative Pressure	0 [Pa]				
Flow Direction					Ξ
Option	Normal to Bo	Normal to Boundary Condition 👻			
Loss Coefficie	nt				Ŧ
Turbulence					Ξ
Option	Medium (Inte	ensity = 5%)		-	

Klikamy **Apply**. Po dodaniu powyższych warunków brzegowych, po prawej i lewej strony płaszczyzny powietrza powinny pojawić się strzałki:

 Na górnej i dolnej powierzchni tworzymy kolejny warunek brzegowy, klikając na ikonę Boundary (jak w punkcie 5). Ten warunek nazwiemy "poslizg", jako typ warunku brzegowego wybieramy Wall w Basic Settings, a jako lokalizację wskazujemy płaszczyzny górną oraz dolną (należy wybrać z listy nazwy płaszczyzn, które zostały im nadane podczas tworzenia geometrii łopatki – patrz punkt 4.1.).

dary: Poslizg			×
in Powietrze in Flow	v Analysis 1	L	
Boundary Details	Sources		
Wall		•	
		~	
e Frame			+
	dary: Poslizg in Powietrze in Flov Boundary Details Wall Frame	dary: Poslizg in Powietrze in Flow Analysis 1 Boundary Details Wall Frame	dary: Poslizg in Powietrze in Flow Analysis 1 Boundary Details Sources Wall Vall Frame

Następnie należy w zakładce **Boundary Details** wybrać opcję **Free Slip Wall**, która odzwierciedla poślizg (przepływ bez tarcia). Następnie, aby zapisać warunek brzegowy, klikamy **Apply**.

Basic Settings	Boundary Details	Sources	
Mass And Mom	entum		
Option	Free Slip Wa	II	

 Kolejnym warunkiem brzegowym są warunki symetrii. Klikamy Boundary i nazywamy nowy warunek "symetria". Jako typ warunku wybieramy Symmetry i wskazujemy wcześniej nazwane płaszczyzny "SymetriaA" oraz "SymetriaB".

Outline Boundary: S Details of Symetria in P	ymetria pwietrze in Flow Analysis 1	×
Basic Settings		
Boundary Type	Symmetry 👻	
Location	SymetriaA,SymetriaB	

Klikamy **Apply**. Po dodaniu powyższych warunków brzegowych, projekt wygląda jak na poniższym rysunku:

 W celu utworzenia ostatniego warunku brzegowego, klikamy Boundary i nazywamy warunek brzegowy "ScianyPlata". Jako typ wybieramy Wall, natomiast jako lokalizację wskazujemy wcześniej nazwaną płaszczyznę "Plat".

Details of ScianyPlata in Powietrze in Flow Analysis 1 Basic Settings Boundary Details Sources	
Basic Settings Boundary Details Sources	
	_
Boundary Type Wall 👻	
Location Plat v	
Coordinate Frame	

W zakładce Boundary Details wybieramy No Slip Wall i klikamy Apply.

4.2. Dodawanie równań opisujących siły działające na płat

 W drzewie operacji po lewej stronie dwukrotnie klikamy Expressions, a następnie prawym przyciskiem myszy na Expressions i wskazujemy kolejno: Insert >> Expression.

Nazywamy równanie "PrędkoscNatarcia", pamiętając, aby nie używać polskich znaków. Poniżej w polu **Definition** wpisujemy wartość prędkości natarcia powietrza na łopatkę. Początkowo wpiszmy wartość 10 [m/s] i kliknijmy **Apply**. Wartość ta będzie można edytować później z platformy Workbench. Aby było to możliwe na utworzone równanie należy kliknąć prawym przyciskiem myszy i zaznaczyć opcję **Use as Workbench Imput Parameter**.

	Edit
>_	Edit in Command Editor
	Use as Workbench Input Parameter
5 2 2	Copy Duplicate
× a]b	Delete Rename

2) W kroku następnym ustalimy równania działających na płat sił. W tym celu, tak jak poprzednio, dodajemy nowe równanie, które nazywamy "Fy". Równanie to będzie odzwierciedlało siłę nośną działającą wzdłuż osi y na nasz płat.

Ogólny schemat równania przedstawiono poniżej:

Funkcja_opcje(argument)@lokalizacja

Aby dodać funkcję opisującą daną siłę, można wpisać ją ręcznie lub wybrać odpowiednie jej komponenty, klikając prawym przyciskiem myszy w polu **Definition**. Aby opisać funkcję Fy, wybieramy następujące opcje: **Functions** >> **Locator-based** >> **force**. Za członem "force" dopisujemy "_y", aby móc później rozróżnić siły działające wzdłuż osi y i wzdłuż osi x.

Aby określić lokalizację funkcji wybieramy: **Mesh Locators** >> **2D** >> **Plat**. Klikamy **Apply**. Definicja funkcji wygląda następująco: *force_y()@REGION:Plat*

Dodajemy kolejną siłę, tym razem siłę oporu aerodynamicznego działającą wzdłuż osi x (nazywamy ją Fx). W tym celu powtarzamy kroki, które wykonaliśmy podczas dodawania siły Fy. Za członem *force* dopisujemy "_x", co sygnalizuje, że siła działa wzdłuż osi x. Tak samo, jak w przypadku Fy, jako lokalizację wybieramy Plat.

Dodajemy ostatnie już równanie, którym będzie Współczynnik Doskonałości. Nazywamy równanie "CDosk", a w polu **Definition** wpisujemy zależność: Fy/Fx.

3) Przechodzimy do drzewa operacji po lewej stronie i wybieramy wcześniej utworzony warunek brzegowy "włot". W zakładce Boundary Details w oknie Normal Speed usuwamy poprzednio wpisaną wartość i po kliknięciu prawym przyciskiem myszy wybieramy Expressions >> PredkoscNatarcia. Aby było to możliwe musimy przełączyć okienko na możliwość wpisywania równań klikając po lewej stronie w symbol pierwiastka i W ten sposób prędkość będzie opisywana dodanym przez nas równaniem, a dzięki temu możliwe będzie edytowanie tej wartości bez otwierania CFX.

4.3. Dodawanie monitora

 W drzewie operacji wybieramy opcję Output Control. Wchodzimy w zakładkę Monitor, a następnie zaznaczamy Monitor Objects, dodajemy nowy monitor, klikając na ikonę: i nadajemy nazwę "WspolczynnikDoskonalosci". W polu Expression Value wybieramy "CDosk". W ten sposób możliwe będzie kontrolowanie wartości współczynnika doskonałości. Details of Output Control in Flow Analysis 1

Results	Backup	Monitor				
- Moni	tor Objects					
Monitor	Balances -					Đ
Monitor	Forces -					+
Monitor	Residuals -					÷
Monitor	Totals -					÷
Monitor	Particles -					÷
Monitor	Points and E	Expressions				Ξ
Wsp	olczynnikDos	konalosci		 		*
						×
Wspo	lczynnikDosk	onalosci				
Option	1	Expre	ession		•	
Expres	ssion Value	CDos	k)			v
Coord	inate Frame	Coord	90		•	

Akceptujemy zmiany, zamykamy CFX i zapisujemy projekt. Po powrocie do Workbench, schemat blokowy projektu wygląda następująco:

5. Rozwiązanie

 W celu rozpoczęcia obliczeń, należy prawym przyciskiem myszy kliknąć Solution i wejść w opcję Edit.

▼			0	:
1	3	CF	x	
2	١	Se	tup	 ✓
3	1	S	•	Edit
4	1	R	6	Display Mo
5	φį	Pa		Duplicate

 Pojawi się okno, w którym musimy zdefiniować parametry obliczeniowe, biorąc pod uwagę możliwości naszego komputera (zastosowane ustawienia w instrukcji dotyczą komputerów w Centrum Energetyki, C6, sala 103). W opcji **Run Mode** wybieramy **Platform MPI Local Parallel** (związane z wielowątkowym wykonywaniem obliczeń). Ilość rdzeni ustawiamy na 3. Następnie klikamy **Start Run**.

6	Define Run ? ×
Solver Input File	V15\EW15_files\dp0\CFX\CFX.def
Global Run Settir	ngs
Run Definition	Initial Values
Type of Run	Full 👻
Double Prec Parallel Enviro	ision nment
Run Mode	Platform MPI Local Parallel 👻
Host Name	Partitions
c10320	3 +
	-

 Obliczenia mogą potrwać do kilku minut. Po zakończeniu otrzymujemy następujący rezultat:

Zauważyć można, że rezydua zbiegły się, lecz zagadnienie nie zostało rozwiązane. W zakładce **User Points** widać, że wykres funkcji odpowiadający współczynnikowi doskonałości aerodynamicznej nie ustabilizował się.

Aby uzyskać rozwiązanie zagadnienia, należy wymusić większą liczbę iteracji. Zamykamy obliczenia i wchodzimy w **Setup**, dwukrotnie klikając. Wybieramy z drzewa operacji **Solver Control**. W zakładce **Basic Settings** w polach minimalna i maksymalna ilość iteracji wpisujemy wartości 100 i 300.

Basic Settings	Equation Cla	ss Settings	Advanced Options								
Advection Scheme											
Option High Resolution											
Turbulence Numerics											
Option First Order											
Convergence Control											
Min. Iterations	100										
Max. Iterations 300											
- Fluid Timescal	Fluid Timescale Control										

Klikamy **Apply**, zamykamy **Setup** i włączamy jeszcze raz obliczenia, klikając prawym przyciskiem myszy na **Solution** i **Edit**, a następnie ustawiając te same opcje dotyczące komputera.

Po wykonaniu obliczeń, na wykresie funkcji ustalił się stały obszar.

* W zależności od danych wejściowych wykres ten może mieć dowolny przebieg. Jednak warunkiem rozwiązania jest jego asymptotyczny przebieg (asymptota pozioma). Powyższy rysunek jest rysunkiem przykładowym.

Zamykamy okno z obliczeniami.

4) Wchodzimy w Post-CFX, klikając dwukrotnie Results. Klikamy warunek brzegowy Symetria i zaznaczamy okienko obok. W ten sposób możemy zobaczyć wyniki obliczeń: poprzez dodanie konturów możemy obserwować rozkład wybranych parametrów fizycznych.

5) Klikamy w zakładkę Expressions. Dla równań Fx, Fy oraz CDosk prawym przyciskiem myszy klikamy na Use as Workbench Output Parameter. W ten sposób będzie możliwe podglądanie i użycie równań z pozycji Workbench.

6. Definiowanie y_p^+

Parametr y_p + jest liczbą kryterialną, bezwymiarową odległością od ściany, ma zastosowanie w definiowaniu sposobu rozwiązania przepływu w warstwie przyściennej. Parametr ten jest ściśle związany z definicją modelu turbulencji przepływu w obszarach przyściennych. Dla modelu turbulencji SST zakres y_p + przyjmuje się pomiędzy 30 a 300 (warstwa przyścienna przybliżana za pomocą funkcji logarytmicznych) lub blisko 1 (modelowanie oderwań i przepływów powrotnych). Wartość y_p + zależy od prędkości względnej na danej płaszczyźnie oraz wielkości siatki (wysokości pierwszego elementu). Aby zmniejszyć wartość y_p + należy zwiększyć zagęszczenie siatki na płaszczyźnie. Więcej o modelach turbulencji i związanych z nimi zagadnieniach w pliku "Turbulencja" na serwerze.

W **Post-CFX** wybieramy nowe równanie i nazywamy go "YPlusNasze". W polu **Definition** wybieramy poprzez kliknięcie prawym przyciskiem myszy: **Functions** >> **CFD-Post** >> **areaAve**.

						area	
						areaAve	
						areaInt	
						ave	
						count	
etails of Y	olusNa	asze				countTrue	
Definition	Plo	t Evaluate	1			forceNorm_x	
						forceNorm_y	Ŀ
						forceNorm_z	
				 1		force_x	
	f ≈	Functions	•	CFD-Post	•	force_y	
	να	Expressions		CEL	•	force_z	
	X	Variables	•			length	
	Ø	Locations	•			lengthAve	
	С	Constants	•			lengthInt	
		Edit	•			massFlow	

Jako argument wpisujemy Yplus, a jako lokalizację wybieramy ScianyPlata.

Definition	Plot	Evaluat	e				
reaAve()	ମ/ଧର ଉ						
		fx	Functions	•			
			Expressions	•			
		x	Variables	•			
		Ø	Locations	•	-	Posliza	
		c	Constants	•		Powietrze	
						ScianyPlata	
			Edit	•		Symetria	
						Wlot	
						Wylot	
						Composito	
						Deinitius 2d	
						Primitive3d	
						Primitive2d	•

Następnie klikamy **Apply** oraz ustawiamy nową funkcję jako parametr wyjściowy dla Workbench (kliknięcie prawym przyciskiem myszy **Use as Workbench Output Parameter**).

7. Przeprowadzenie końcowych obliczeń.

 Wracamy do platformy Workbench. W celu utworzenia macierzy parametrów, klikamy dwukrotnie na szynę parametrów.

	-	A				•		в					•			C						
	1 🧭 Geo	metry				1		Mesh					1	8	CFX	<			1			
	2 00 Geo	metry	× .		_	2	m	Geometr	v 🗸				2		Set	up		<u>~</u> .	١.			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-		March	· ·	-	/		-					· •				
	≥ 3 upa Par	ameters				3		Mesn		-41			3		SOIL	ution		 4 				
	Ge	ometry				> 4	φJ	Paramete	ers				4	1	Res	sults		< 🔺				
								Mesh					5	φ	Para	amete	ers		+			
										7						CFX						
										/												
Ę.	Parameter S	et								/										-		
2	Parameter S	et																				
e of.	Parameter S	et	c	D					× ų × Table	of Design Pr	oints	в		c		D		E		-	G	
2 e of	Parameter S	et B Parameter Name	C Value	D					v y X Toble	of Design Pr A Name	oints	B Natarcia 💌	P2-0	C	etrza 💌	D P3 - Predicosc	Natarda	E ▼ P4-Fx	- F	F P5-Fy V	G P6 - CDosk ▼	P
e of E	Altraneters	et Parameter Name	C Value	D			_		• 9 X Table	of Design Pr A Name Units	oints	B Natarcia 💌	P2-0	C	etrza 💌	D P3 - Predkosc i m s^-1	Natarda	E P4-Fx N	• F	F P5-Fy V N	G P6 - CDosk 💌	P
e of.	Parameter S AlPronetos n p p p p p p p p p	et B Parameter Name	C Value	D Unit			_	_	• 0 X Toble	of Deson Pl A Name Units Current	P1-Kat degree 0	B Natarcia - 2	P2-0	C	etrza 💌	D P3 - Predkose m s^-1 10	Natarda	E ▼ P4-Fx ▼ N 0,002407	• F	F P5-Fy ▼ N 0,00084926	G P6 - CDosk ▼ 0,35275	P7
e of	Alteraneter S	B Parameter Name KatNatarda	C Value	D Unit degree					• 0 X Toble	of Design Pi A Name Units Current	P1-Kat degree 0	B Hatarcia ×	P2-0	C	etrza 💌	D P3 - Predkosc m s^-1 10	Natarda	E P4-Fx N 0,002407	• F	F P5-Fy V N 0,00084926	G P6 - CDosk • 0,35275	P7
e of	AlParameter S	B Parameter Name KatiNatarcia GruboscPowietrza	C Value 0 0,005	D Unt degree I m V					• 9 X Table	of Design Pr A Name Units Current	P1-Kat degree 0	B Natarcia 2	P2-0	C	etrza 💌	D P3 - Predkosc [m s^-1 10	Natarda	E P4-Fx N 0,002407	• F	F P5-Fy V N 0,00084926	G P6 - CDosk ▼ 0,35275	P)
e of E	Al Parameter S	et Parameter Name Katilatarcia GruboscPowietza	C Value 0 0,005	D Unit degree ¥ m ¥					• 9 X Toble	of Design P4 A Name Units Current	P1-Kat degree 0	B ElViatarcia 2	P2-C m 0,009	C SruboscPowle	etrza 🔻	D P3 - Preckosc i m s^1 10	Natarda	► ▼ P4-Fx ▼ N 0,002407	• F	F P5-Fy ▼ N 0,00084926	G P6 - CDook V 0,35275	P7
e of	Al Parameters Al Parameters ID ID ID Go construct (AL) IP	et Parameter Name KatNatarda GruboscPowietrza Predioscitatercia	C Value 0 0,005 10	D Unit degree I m I m s^-1 I					× 9 X 1288	of Design Pri A Name Units Current	P1-Kat degree : 0	B Natarcia 2	P2-C m 0,005	C	etrza 🔻	D P3 - Predkosc 10	Natarda	E P4-Fx N 0,002407	• F	F P5-Fy V N 0,00084926	G P6 - CDook ▼ 0,35275	15
e of l	Parameter S n p potParameter potParamet	B Parameter Name Kathatarcia GruboscPoniet za Predioschiatarcia New name	C Value 0 0,005 10 New expression	D Unit degree ¥ m ¥ m s^-1 ¥					• 0 X 7566	of Design PA A Name Units Current	P1-Kat degree 0	B Natarcia 2	P2-C m 0,005	C GruboscPowia	etrza 💌	D P3 - Predkosc m s^-1 10	Natarcia	E ▼ P4-Fx ▼ N 0,002407	▼ F 75 0,	F P5-Fy N 0,00084926	6 P6-CDosk ▼ 0,35275	15 15
E e e e e e e e e e e e e e e e e e e e	A Parameter S λ D0 D0 Pont Parameters ©	et Parameter Name Katiliataroa GruboscPowietza New name	C Value 0 0,085 10 New expression	D Unit degree ¥ m ¥ m s^-1 ¥					• 9 X Table	of Design Pl A Name Units Current	V P1-Kat degree 0	B Natarcia 2	P2-0 m 0,009	C SruboscPowie	etrza 🔻	D P3-Prekosc m s^1 10	Natarda		• F	F P5-Fy V N 0,00084926	G P6-CDosk ▼ 0,35275	P7
	AlParameter S AlParameters Poot Parameters Poot Parameters Poot Parameters Poot Parameters Octobel Parameters Octobel Parameters Octobel Parameters Poot C(c)	et Parameter Name Kativataroa Gruboschowietza Predioschataroia New name	C Value 0 0,005 10 New expression	D Unit m ¥ ms^-1 ¥					• 9 X 1000 1 3 •	of Design Pr A Name Units Current	onts P1-Kat degree : 0	B Historia 2	P2-C m 0,005	C BruboscPowia	etrza 🔻	D P3 - Prediose m s^-1 10	Natarda	▼ P4-Fx ▼ N 0,002407	▼ F 25 0	F P5-Fy ▼ N 0,00084926	G P6 - CDoak ▼ 0,35275	15
e of	Al Parameter S Al Parameters B B Const Parameters Const Para	et Parameter Name Katilatordi GruboscPonietrza New name Pix	C Value 0 0,005 10 New expression 0,0024075	D Unt degree ⊻ m ⊻ m s^-1 ¥ N					× 0 X 1000	of Design Pr A Name Current	V P1-Kat degree 0	B Natarcia ¥	P2-C m 0,005	C SruboscPowii	etrza 💌	D P3-Prediosc m s^1 10	Natarda	▼ P4-Fx ▼ N 0,002407	▼ F 25 0	F P5-Fy V N 0,00084926	6 P6 - CDoek ▼ 0,35275	15
ne of	Parameter S AlParantes A D D D D D D D D D D D D D D D D D D	et Parameter Name Katilatar dia Ordosod?wietza Prediosoftatarda New name	C Yake 0 0.0055 10 New expresson 0.0024075 0.0024075	D Unit degree ¥ m s^-1 ¥ N N					• 0 X 7555	of Design PA A Name Units Current	v P1-Kat degree ≥ 0	B Natarcia × 2	P2-c m 0,005	C iruboscPowi	etrza 💌	D P3 - Prediosc [m s^1 10	Natarda	 ▼ P4 - Fx N 0,002407 	• F	F P5-Fy V 0,00084926	G P6-CDosk ▼ 0,35275	15
	Al Parameter S → D Tout Parameters → → → → → → → → → → → → →	B Pranneter Name Katiletaroa GrubosePowietra PredioseItataroa Rev name Fx Fy CDok	C Value 0 0,005 10 New expression 0,0024075 0,0009492 0,0009492 0,0009492 0,0009492 0,0009492 0,0009492 0,0009492 0,0009492 0,0009492 0,000940 0,000950 0,000940 0,0000000000	D Unt degree I m I N N N					▼ 9 X Table 1 2 3 3 *	of Design PA	P1-Kat degree 0	B Natarcia ¥ 2	P2-0 m 0,005	C i	etrza 🔻	D P3 - Predkosc m s^-1 10	Natarda	E ▼ P4-Fx 0,002407	• F	F P5-Fy V 0,00084926	G P5-CDook = 0,35275	15
	Al Parameter S Al Parameters D D D D D D D D D	et Parameter Nome Katikabrob GrubosoPovietza Prediosofatarob Prx Fy Fy CiDok Tyburkiaze	C Value 0 0,005 10 10 10024075 0,00024075 0,00024075 156,98	D Unt m ¥ m s^-1 ¥ N N					¥ 9 X 7386	of Design Ro A Name Units Current	PI-Kat degree 0	B Natarda 2	P2-C m 0,005	C i	etrza 💌	D P3-Frediosc m s^1 10) Natarda		▼ F 75 0,	F P5-Fy ▼ N 0,00084926	G P6 - CDœk ▼ 0,35275	P7 15

Symulacja zostanie wykonana co 5 stopni kąta natarcia na łopatkę w zakresie od -25 do 25 (lub innym obejmującym kąty krytyczne dla obu kierunków kąta natarcia). W celu dodania punktów do obliczeń wpisujemy punkty w arkuszu w kolumnie P1 – KatNatarcia.

Table of	Design Point	s					
	A	В	с	D	E	F	G
1	Name 💌	P1 - KatNatarcia 💌	P2 - GruboscPowietrza 💌	P3 - PredkoscNatarcia 💌	P4-Fx 💌	P5 - Fy 💌	P6 - CDosk 💌
2	Units	degree 💌	m 💌	m s^-1	N	N	
3	Current	0	0,005	10	0,0024075	0,00084926	0,35275
4	DP 1	5	0,005	10	7	7	7
*		10					
		5					

 Aby obliczenia zostały wyeksportowane na dysk twardy komputera, należy w kolumnie I zaznaczyć opcję Exported. W przeciwnym razie zostanie uzupełniona i zachowana tylko tabela eksperymentu, bez możliwości podglądu wyników w CFD-Post.

- Aby wykonać obliczenia dla zadanych parametrów, należy kliknąć Update All Design Points ⁷⁷ Update All Design Points</sup>.
- 5) Po wykonaniu obliczeń (może to zająć kilkanaście minut) w zakładce Outline of All Parameters poprzez kliknięcie na Parameter Chart można zobaczyć wykres utworzony z wygenerowanych obliczeń.

DODATKOWO:

- 6) Należy pamiętać o kontroli Y+. Aby dostać wiarygodne rozwiązanie student powinien przeprowadzić modyfikację siatki i/lub geometrii powietrza otaczającego płat (grubość warstwy po "z"). Dla uzyskania wiarygodnego rozwiązania należy zbliżyć się do jedności (Y+ < 3).</p>
- 7) Prezentowane wykresy w punkcie 7.5. są w formie wymiarowej tzn. siły działające na płat są wyrażone w Niutonach. Zgodnie z teorią opływu płata należy, przeliczyć wielkości na odpowiednie współczynniki tj. współczynnik siły nośnej i siły oporu aerodynamicznego oraz doskonałości aerodynamicznej (liczony bezpośrednio w

solverze). Obliczone wielkości porównać z danymi z atlasu profili na stronie <u>http://airfoiltools.com/</u>. Uwaga! Porównując należy pamiętać o zachowaniu podobieństwa przepływu wynikającego z liczby Reynoldsa.

ZALICZENIE:

 Student wykonuje projekt samodzielnie lub w zespole dwu osobowym. Zakres rozwiązania projektu ma wpływ na ocenę końcową. Student może ograniczyć zakres decydując się na następujące kryterium:

Ocena 3,0 – opracowanie sparametryzowanej geometrii profilu (instrukcja punkty od 1 do 2.12),

Ocena 4,0 – obliczenie charakterystyki aerodynamicznej profilu na podstawowych ustawieniach (cała instrukcja za wyjątkiem punktów opisanych jako dodatkowe, tj: 7.6 i 7.7).

Ocena 5,0 – pełne obliczenia, z poprawą jakości siatki i porównaniem wyników (instrukcja z punktami dodatkowymi).

 Z wykonanego projektu należy przygotować sprawozdanie w formie drukowanej. Do sprawozdania dołączyć płytę CD z plikami projektu, rozwiązania i sprawozdania w formacie pdf..

Sprawozdanie ma zawierać:

- a. Tabelę informacyjną (dostępna na serwerze).
- b. Wskazać nr danych, symbol profilu i jago współrzędne po sformatowaniu do pliku koordynującego.
- c. Geometrię profilu i geometrie odwrotną wraz ze wskazaniem parametrów i nazw powierzchni.

Ocena 3,0

- d. Sitkę numeryczną statystyka siatki, rodzaj, sposób zagęszczania
- e. Model numeryczny CFX Pre
 - Warunki brzegowe
 - Domeny
 - Model turbulencji
 - Równania dodatkowe
- f. Plan eksperymentu

g. Wyniki obliczeń

- Charakterystyki aerodynamiczne (F_y , F_x , $C_{dosk} = f(\alpha)$) wygenerowana z obliczeń numerycznych (załączyć zrzut ekranu z Workbencha),
- Rozkłady ciśnień i prędkości w przekroju poprzecznym profilu dla różnych kątów natarcia,

Ocena 4,0

- h. Dodatkowe informacje na temat zagęszczenia siatki, wymiary elementów na ściankach profilu i odpowiadająca im wielkość parametru Y+.
- i. Charakterystyki aerodynamiczne w formie współczynników ($C_y, C_x, C_{dosk} = f(\alpha)$) porównane z danymi ze strony <u>http://airfoiltools.com/</u>.
- j. Uwagi końcowe.

Ocena 5,0

- Ocena zostanie wystawiona po osobistym oddaniu sprawozdania i odpowiedzi ustnej (poza oceną 3,0 - wystawianą na podstawie sprawozdania).
- 4. Termin zaliczenia ustalić poprzez starostę.