

Introduction to ANSYS CFX

ANSYS Introduction

Workshop Description:

The flow simulated is an external aerodynamics application for the flow around a NACA0012 airfoil

Learning Aims:

This workshop introduces several new skills (relevant for many CFD applications, not just external aerodynamics):

- Assessing Y+ for correct turbulence model behavior
- Modifying solver settings to improve accuracy
- Reading in and plotting experimental data alongside CFD results
- Producing a side-by-side comparison of different CFD results.

Learning Objectives:

To understand how to model an external aerodynamics problem, and skills to improve and assess solver accuracy with respect to both experimental and other CFD data.

ANSYS Import the supplied mesh file

• Start Workbench 14.0

3

- Copy a CFX 'Analysis System' into the project schematic
- Import the supplied FLUENT mesh file (naca0012.msh) by:
 - Right click on Mesh (cell A3) and select 'Import Mesh File'
 - Browse to the mesh file

ANSYS Double-click Setup to set up the case

- CFX-Pre will launch in a new window
- Check the mesh by right-clicking NACA0012.cfx → Mesh Statistics

ANSYS Case Setup: Choose the Material and reference pressure

Solution

Adjust the domain so that Air Ideal Gas is used along with the SST turbulence model and Total Energy model :

Setup

Default Domain \rightarrow Basic Settings \rightarrow Material \rightarrow Air Ideal Gas

Default Domain → Basic Settings → Reference Pressure = 0 [atm]

January 16, 2012

Introduction

© 2011 ANSYS, Inc.

5

	Outline Doma	in: Defa	ult Doma	in				
[Details of Default	Domain	in Flow	Analysis 1				
	Basic Settings	Fluid N	1odels	Initialization	1			
1	Location and Type							
	Location		fluid					
	Domain Type Fluid Domain Coordinate Frame Coord 0							
	-Fluid and Partic	le Defini	tions					
	Fluid 1							
	- Fluid 1							
	Option		Material Library					
	Material	C	Air at 25 C					
	Morphology Air Ideal Gas							
	Option	Water	25 C					
	Minimum Volume Fraction							
	- Domain Models	;						
	Pressure	-			_			
	Reference Pres	sure	0 [atm]				
l		~						
					`			
Results	>	Su	mma	ry	$\boldsymbol{\boldsymbol{\Sigma}}$			
				Release 14.	J			

ANSYS Case Setup: Reference Pressure

Absolute pressure = operating pressure + gauge pressure

For incompressible flows it is normal to specify a large (typically atmospheric pressure) operating pressure and let the solver work with smaller 'gauge' pressures for the boundary conditions, to reduce round-off errors.

For compressible flows, the solver needs to use the absolute values in the calculation, therefore, with compressible flows, it is sometimes convenient to set to operating pressure to zero, and input/output 'absolute' pressures.

ANSYS Case Setup: Choose the models

Adjust the domain so that the SST turbulence model and Total Energy model are used :

Default Domain \rightarrow Fluid Models

- → Heat Transfer
- \rightarrow Option = Total Energy

Default Domain \rightarrow Fluid Models

- \rightarrow Turbulence
- \rightarrow Option = Shear Stress Transport

Outline Domain: Default Domain						
etails of Default Domain in Flow Analysis 1						
Basic Settings Fluid M		1odels	Initialization		Solv	
Heat Transfer						
Option			Total Er	ergy		
Insl. Viscous Work Term						
Turbule	ence					
Option		Shear Stress Transport				
Wall Function		Automatic				
High Speed (compressible) Wall Heat Transfer Mo						
Turbulent Flux Closure for Heat Transfer						
Advanced Turbulence Control						
	ransitior	al Turbu	lence			
- Combu	stion					
Option		None				
Therm	al Radia	tion				
Option		None				
Ele	ctromag	jnetic Mo	del			

ANSYS Case Setup: Coordinate Frame

The angle of attack is 1.55 degrees. One way of accounting for this angle is to create a new coordinate system whose z-axis is in line with the flow direction and then to use this coordinate system when applying boundary conditions.

Create a new coordinate frame:

8

Create a boundary condition for the airfoil:

Insert \rightarrow Boundary \rightarrow Name = airfoil

Basic Settings \rightarrow Boundary Type = Wall

Basic Settings \rightarrow Location = airfoil_lower, airfoil_upper \rightarrow OK

This will add a boundary called airfoil with the default wall settings (adiabatic, no-slip wall). To change these settings double-click on the airfoil object and change the settings under Boundary Details.

Create a boundary condition for the inlet:

Insert \rightarrow Boundary \rightarrow Name = inlet \rightarrow OK Basic Settings \rightarrow Boundary Type = Inlet Basic Settings \rightarrow Location = inlet Basic Settings \rightarrow Coordinate Frame = Coord 1 Boundary details \rightarrow Mass and Momentum \rightarrow Option = Cart. Vel. Components Boundary details \rightarrow Flow Direction \rightarrow U = 0 [m/s] Boundary details \rightarrow Flow Direction \rightarrow V = 0 [m/s] Boundary details \rightarrow Flow Direction \rightarrow W = 0.7 * 340.29 [m/s] Boundary details \rightarrow Turbulence \rightarrow Option = Intensity and Eddy Viscosity Ratio Boundary details \rightarrow Turbulence \rightarrow Fractional Intensity = 0.01 Boundary details \rightarrow Turbulence \rightarrow Eddy Viscosity Ratio = 1 Boundary details \rightarrow Heat Transfer \rightarrow Option = Static Temperature Boundary details \rightarrow Heat Transfer \rightarrow Static Temperature = 283.34 [K]

This will create an inlet boundary condition with air flowing at a speed flow with Ma = 0.7 at an angle of attack (α) of 1.55 deg.

Create a boundary condition for the outlet:

Insert \rightarrow Boundary \rightarrow Name = outlet \rightarrow OK Basic Settings \rightarrow Boundary Type = Outlet Basic Settings \rightarrow Location = outlet Boundary details \rightarrow Mass and Momentum \rightarrow Option = Average Static Pressure Boundary details \rightarrow Mass and Momentum \rightarrow Relative Pressure = 73048 [Pa]

It is important to place the farfield (inlet and outlet) boundaries far enough from the object of interest.

For example, in lifting airfoil calculations, it is not uncommon for the far-field boundary to be a circle with a radius of 20 chord lengths.

This workshop will compare CFD with wind-tunnel test data therefore we need to calculate the static conditions at the far-field boundary.

We can calculate this from the total pressure, which was atmospheric at 101325 Pa with a Mach number of 0.7 in the test.

The wind tunnel operating conditions for validation test data give the total temperature as $T_0 = 311 \text{ K}$

Setup

$$\left|\frac{p_o}{p} = \left[1 + \left(\frac{\gamma - 1}{2}\right)M^2\right]^{\frac{\gamma}{\gamma - 1}}\right|$$

where $p_o = \text{total pressure} = 101325 \ Pa$ p = static pressure $\gamma = 1.4 \text{ for air}$ M = Mach No. = 0.7 $\therefore \frac{p_o}{p} = 1.3871$ $p = 73048 \ Pa$ $\frac{T_0}{T} = 1 + \left(\frac{\gamma - 1}{2}\right)M^2$

Results

Solution

Introduction

Release 14.0

Summary

Create a boundary condition for the symmetries:

Insert \rightarrow Boundary \rightarrow Name = symmetry \rightarrow OK Basic Settings \rightarrow Boundary Type = Symmetry Basic Settings \rightarrow Location = sym1,sym2

ANSYS Case Setup: Solution Monitors

Set up residual monitors so that convergence can be monitored

Insert \rightarrow Solver \rightarrow Output Control \rightarrow Monitor \rightarrow Monitor Objects

Monitor Points and Expressions \rightarrow Add New Item \rightarrow Name = Lift Coef \rightarrow OK

 \rightarrow Option = Expressions \rightarrow Expression Value =

force_x_Coord 1()@airfoil * 2 / (massFlowAve(Density)@inlet *
(massFlowAve(Velocity)@inlet)^2*0.6 [m]* 1[m])

Monitor Points and Expressions \rightarrow Add New Item \rightarrow Name = Drag Coef \rightarrow OK

 \rightarrow Option = Expressions \rightarrow Expression Value =

force_z_Coord 1()@airfoil * 2 / (massFlowAve(Density)@inlet *
(massFlowAve(Velocity)@inlet)^2*0.6 [m]* 1[m])

Lift and drag coefficients are defined (perpendicular and parallel respectively) relative to the free-stream flow direction, not the airfoil.

The expressions must match the names for the airfoil and inlet boundary conditions. To ensure that the correct boundary names and functions are being used, try using the right mouse button in the Expression Value field instead of typing the expression manually.

ANSYS Solution Control and Solve

Insert \rightarrow Solver \rightarrow Solution Control

Basic Settings \rightarrow Min. Iterations = 100

Basic Settings \rightarrow Max. Iterations = 200 \rightarrow OK

Return to Workbench and double-click Solution. In the Define Run window, click Start Run.

Define Run	2 X
Solver Input File	FX\Fluid Flow CFX_001.res
Global Run Settings	
Run Definition	
Initialization Option	Current Solution Data (if p ▼) wided by Current Solution cell dat⊞
Type of Run	Full
Double Precision Parallel Environment	
Run Mode	Serial 🔻
	Host Name
WATRPOCONNO	
Show Advanced Co	ontrols
Start Run	gs Cancel

ANSYS Run Calculation

Review the convergence plots. The solution will complete when either the default residual targets (1e-4) have been satisfied or when the default maximum number of iterations (200) has been reached.

Click User Points to review the lift and drag coefficient convergence.

ANSYS Check the mesh (Y+)

January 16, 2012

Variables \rightarrow Yplus

17

© 2011 ANSYS, Inc.

Variables

Expressions

Calculators

Turbo

Release 14.0

Outline

ANSYS Check the mesh (some notes on Y+)

y⁺ is the non-dimensional normal distance from the first grid point to the wall and is covered tomorrow in Lecture 6

When using SST, the intention is to integrate governing equations directly to the wall without using the Universal Law of The Wall for turbulence. For such cases, the first grid point should be placed within the viscous sublayer (near-wall region, $y^+ \le 2$).

The aspect ratio could be reduced, while keeping the same y⁺ value:

By keeping the same first cell distance and increasing the number of nodes along the wall surface. This reduces the length of cells for a given height so will reduce the aspect ratio whilst significantly increasing the overall cell count

The aspect ratio could be reduced, while increasing y⁺ value:

Increasing the normal distance of the first grid point from the wall to give y⁺ larger values wall functions will begin to be.

Plot the y⁺ values along the airfoil surfaces

Insert → Location → Polyline → Name = Airfoil curve
Geometry → Method = Boundary Intersection
→ Boundary List = airfoil → Intersect with = sym1 → Apply
Insert → Chart → Name = Yplus on airfoil
Data Series → Location = Airfoil Curve → X Axis → Variable = X → Y Axis
→ Variable = Yplus → Apply

Solution

We can see that $y^+ \approx 2.5$ for much of the surface In order to obtain a good drag prediction, and for the turbulence model to work effectively, the mesh is well resolved near to the wall, such that the first grid point is located in the viscous sub-layer, with y^+ of 5 or less.

Setup

Introduction

Plot the pressure coefficient (Cp) along the upper and lower airfoil surfaces

Insert \rightarrow Variable \rightarrow Name = Pressure Coef \rightarrow OK

 \rightarrow Method = Expression \rightarrow Expression =

(p-73048 Pa])/(0.5*massFlowAve(density)@inlet* (massFlowAve(Velocity)@inlet)^2)

Follow same charting instructions used for the y+ chart but set the Y Axis variable to Pressure Coef.

Compare the CFX result with test data by editing the details of the graph created in the previous section to include another data series.

Data Series \rightarrow New \rightarrow Name = Experimental \rightarrow Data Source \rightarrow File \rightarrow Browse \rightarrow select ExperimentalData.csv \rightarrow Apply

Examine the contours of static pressure

Insert \rightarrow Contour \rightarrow Name = Contour Plot Geometry \rightarrow Locations = symmetry \rightarrow Variable = Pressure \rightarrow Apply

Note the high static pressure at the nose, and low pressure on the upper (suction) surface. The latter is expected as the airfoil wing is generating lift.

23

Examine the contour of Mach Number

Notice that the flow is <u>locally</u> supersonic (Mach Number > 1) as the flow accelerates over the upper surface of the wing

This workshop has shown the basic steps that are applied during CFD simulations:

Defining material properties. Setting boundary conditions and solver settings Running a simulation whilst monitoring quantities of interest Postprocessing the results

One of the important things to remember in your own work is, before even starting the ANSYS software, is to think WHY you are performing the simulation:

What information are you looking for? What do you know about the flow conditions?

In this case we were interested in the lift (and drag) generated by a standard airfoil and how well the solver predicted these when compared to high quality experimental data

Knowing your aims from the start will help you make sensible decisions of how much of the part to simulate, the level of mesh refinement needed, and which numerical schemes should be selected

T.J. Coakley, "Numerical Simulation of Viscous Transonic Airfoil Flows," NASA Ames Research Center, AIAA-87-0416, 1987

C.D. Harris, "Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8-foot Transonic Pressure Tunnel," NASA Ames Research Center, NASA TM 81927, 1981

