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Contribution
The Western Gneiss Region (WGR) in W Norway
is known for three major domains of high grade
gneisses that host isolated eclogites with UHP meta-
morphic conditions [1]. Each domain has coastal oc-
currences that contain evidence for metamorphism
to have occurred within the diamond stability field,
either by the index mineral itself or by thermo-
barometry or both.
A newly studied coastal eclogite from Synes (Vigra
island) situated in between the two northern UHP
domains adds to these occurrences.

UHP rocks in the WGR
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The distribution of UHP metamorphic rocks in the
WGR can be subdivided by rock type. Mafic rocks
(eclogite) define three large and one small domains
that spread along the coast (shaded [1]). Whereas
ultramafic rocks (garnet pyroxenite enclosed in oro-
genic garnet peridotite [2]) define UHP exposure
that partially overlaps that of eclogite and partially
fills the space in between [3]. When taken together,
evidence for UHP metamorphism is concentrated in
two domains (outlined) that are separated by a gap.
This study focuses on the gap.

Petrography
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Grt + Omp + Opx are the primary minerals of
the Synes eclogite, minor Rt + Ilm occur as inclu-
sions. Secondary Amp and Bt partially replaced
the primary minerals. The primary minerals are
coarse grained (up to 1 cm crystal size) and show
minor strain accumulation. Characteristic are poik-
iloblastic intergrowths of Pyx and Grt with irreg-
ular grain shapes, consistent with a magmatic co-
crystallisation of these minerals (a–d, nearly cross-
polarised light). Coarse and fine exsolution lamellae
of Opx in coarse Omp suggest that magmatic crys-
tallisation was followed by eclogite cooling (c–d).
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Thermobarometry
Iterative application of the compositions of low-
Al Opx and Grt to the Ca-in-Opx thermome-
ter and Al-in Opx/Grt barometer calibrations of
[4] suggests that the Synes Opx-eclogite was
exposed to 863 ◦C and 4.75 GPa. Thus the
magmatic mineral texture equilibrated chemi-
cally deep in the diamond stability field. Sim-
ilar metamorphic conditions have been reported
from nearby UHP metamorphic areas [3, 5, 6].

600 800 1000
0

1

2

3

4

5

50

100

150

T (◦C)

P
(G
Pa

)

De
pt
h
(k
m
)

bc
bc bc

bc bcbc
bc

bc

rs

rs

rs

rs

bc

qp

ut

ut

rs

Dia
Gr

Coe
Qz

St
ad

la
nd

et
–

N
or
df
jo
rd

ar
ea

Gu
rs
kø
y–

St
or
fjo

rd
ar
ea

Synes Opx-eclogite
(this study)

Literature data (from [3]):

Pre-tectonic PT data:
bc Grt-pyroxenite in orogenic peridotite [3]

Syn-tectonic PT data: Stadlandet–Nordfjord area
rs Average (n=16) UHP Opx-eclogite [10]
rs Gneiss NF42, Krokkenakken [11]

Syn-tectonic PT data: Gurskøy–Storfjord area
bc Average (n=2) Grt-websterite QC29A, N Remøy [5],
recalculated using Ca- and Al-in-Opx calibrations of [4]

qp Opx-eclogite 9814i4, N of Stranda [12]
ut Average (n=4) metapelite [13]

ut Metapelite R9828C30, Sandsøya [13]

The arrows connect metamorphic conditions preserved in ultramafic, mafic and felsic lithologies that are
exposed in two areas. The similarity in path shape argues for a shared evolution of these different lithologies.

Conclusion
The new sample shows that coastal rock exposure in between Storfjord and Moldefjord records metamorphic
conditions within the diamond stability field.

Because the metamorphic conditions are similar to those in adjacent UHP domains, we argue that all UHP
domains in the WGR are connected at the current erosion level.

Mineral chemistry
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Opx grains in contact with Grt have Al2O3 con-
centration gradients with ‘U-shape’ patterns that
are consistent with diffusion to have partially over-
printed an initial mineral-chemical equilibration (a).
Cores of large Opx grains have compositional flat
plateaus of ∼0.25 wt.% Al2O3. Omp is classified as
Group B eclogite [7] (b). The Jd component in crys-
tal cores is ∼26 % and lowers to ∼20 % toward crys-
tal rims [8] (d). The Ae component was estimated
assuming Fe3+=Na–Cr–Al. Grt grains are chemi-
cally uniform and are classified as Group B [9] (c).
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