eevidtron episode 002

Controlling Measurement Equipment with
Python and SCPI via VXI-11 and USBTMC

GPIB and SCPI

- GPIB

— General Purpose Interface Bus
— Introduced by HP in 1972

- Standardized as IEEE-488 in 1975
- Bit-parallel interface

« SCPI

- Standard Commands for Programmable Instruments
- Common syntax and structure for commands
— Also introduced generic commands

VXI-11 and LXI

e VXI-11
— Provides a virtual GPIB interface over RPC and TCP/IP

— Can be accessed from Python using PyVXI11
https://pypi.python.org/pypi/PyVXI11

e LXI

- LAN eXtensions for Instrumentation

- Introduced in 2005 by Agilent and VTI Instruments

- LXI uses VXI-11 for device discovery

- Most LXI Devices support full VXI-11, but it is optional

USBTMC

USB Device Class for Test and Measurement devices
Can be accessed with usbtmc Linux kernel driver
| wrote simple class with PyVXI11-like API

— see Video description for GitHub link

Windows users: Simply use VISA using PyVISA:
https://pyvisa.readthedocs.org/

Udev rules for USBTMC

/etc/udev/rules.d/90-usbtmc.rules

make all USBTMC devices world read- and writable
KERNEL=="usbtmc*", MODE="0666"

special names for known devices

DEVPATH=="/devices/pci0000:00/0000:00:12.2/usb1/1-2/1-2.3/1-2.3:1.0/usb/usbtmc*", SYMLINK+="usbtmc fgen"
DEVPATH=="/devices/pci0000:00/0000:00:12.2/usb1/1-2/1-2.4/1-2.4:1.0/usb/usbtmc*", SYMLINK+="usbtmc_scope"

Hint for creating udev rules files:

Run “sudo udevadm monitor --property’ and plug in the
device. All relevant information about the device will be printed to the
terminal. Alternatively type “cat /var/log/udev’ to view details
on devices that have been present during boot up.

VISA and VISA Addresses

« VISA

- Virtual Instrument Software Architecture
- Widely used API for communicating with instruments

- NI-VISAis a VISA implementation by National Instruments, providing bindings to
GPIB, VXI-11, and many other interfaces

- Unfortunately there is no 64-bit Linux version of NI-VISA

 VISA Addresses for VXI-11

- E.g. “TCPIP::192.168.1.20::INSTR”

— VxillDevice('192.168.1.20', 'inst0"')
- E.g. “TCPIP::192.168.1.20::foobar::INSTR”

— VxillDevice('192.168.1.20', 'foobar')

Demo: Query Device Identification

VXI-11 (demo idn vxill.py) USBTMC (demo idn usbtmc.py)

boilerplate code # boilerplate code

from future import division from future import division

from future import print function from future import print function

import PyVXIll # import UsbtmcDevice

from vxillDevice import VxillDevice from usbtmcDevice import UsbtmcDevice

connect to instrument # connect to instrument

dev = VxillDevice('192.168.1.20', 'inst0') dev = UsbtmcDevice('/dev/usbtmc0')

query and output identification string # query and output identification string
answer = dev.ask('*IDN?').strip() answer = dev.ask('*IDN?').strip()

print (answer) print (answer)

SCP|I Command Syntax

Common Command Examples:

~ *RST

-~ *RCL 3

Common Query Examples:

~ *IDN?

— *TST?

Instrument Control Command Examples:
~ :OUTPUT:TIMER 10,5,1,60

— :OUTPUT:TIMER:STATE ON
Instrument Control Query Examples:
~ :OUTPUT:TIMER? 10

~ :OUTPUT:TIMER:STATE?

Programming Manuals

* Instruments with SCPI support usually come with a “Programming Manual” with descriptions of all SCPI commands the
device supports

» Example descriptions of SCPlI commands and queries:

SYSTem:LANGuage:TYPE {EN|CH}
SYSTem:LANGuage:TYPE?

[SOURce: |CURRent [:LEVel][:IMMediate][:AMPLitude] {<current>|MINimum|MAXimum}
[SOURce: |CURRent [:LEVel][:IMMediate][:AMPLitude]? [MINimum|MAXimum]

- All commands are case insensitive, leading colons are optional.
- Each mnemonic has a short (e.g. LANG) and a long (e.g. LANGUAGE) form. Choose either.

- Partsin [...] are optional
- Partsin {...]...} are alternatives
- Partsin [...]|...] are optional alternatives

- Partsin <. ..> are values to fill in

PyVXI-11, PyVISA, UsbtmcDevice AP

Creation of device handle is different for each library:
- dev = VxillDevice('192.168.1.20', 'inst0')
- dev = visa.instrument('TCPIP::192.168.1.20::INSTR"')

- dev = UsbtmcDevice('/dev/usbtmc0"')

Use dev.write(command) to send a command

Use answer = dev.read() to read responses

- Only use this when there actually is something to read

Use answer = dev.ask(command) for queries

- This is a convenience function that simply combines write() and read()

Each library has many additional methods, but they are rarely needed.

Python Code Review

Example #1: A simple SCPI shell
- shell.py

Example #2: Sampling RIGOL DG1000 built-in functions
- dgl000 builtins.py

Example #3: Decoding a PAL video signal
- paldecode.py

Libraries
- usbtmcDevice.py, rigol ds2000.py

