
I.W
ojnick

i, CSOControl Systems Optimization

Igor Wojnicki

AGH � Univeristy of Science and Technology

2010

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 1 / 22



I.W
ojnick

i, CSO

Outline

1 Intro

2 Program, Process, Thread

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 2 / 22



I.W
ojnick

i, CSO

Intro

Syllabus
Control Systems Optimization by Introducing Concurrency

Program, Process, Thread

IPC: shared memory, semaphores, messages

Multiple pocessess - why?

Computer/controller architecture

Ada language constructs

Ada IPC

Functional programming in Erlang

Erlang: multiprocessing capabilities

Erlang: IPC

Control applications examples

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 3 / 22



I.W
ojnick

i, CSO

Intro

Books

C:

Stevens, W. Richard: Advanced Programming in the UNIX
Environment, Addison Wesley 2003.
Robbins, K.A., Robbins, S.: Practical UNIX Programming, Prentice
Hall

Ada:

Barnes, J.: Programming in Ada 2005, Addison Wesley 2006
Burns, A.: Concurrent and Real-Time Programming in Ada 2005,
Cambridge University Press 2007

Erlang

Armstrong, J.: Programming Erlang: Software for a Concurrent World
Cesarini F., Thompson S.: Erlang Programming, O'Reilly 2009

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 4 / 22



I.W
ojnick

i, CSO

Intro

Grading Policy

Lab Grade

Assignments (3)
Attendance
Do we have an exam?

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 5 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Programming control systems

Bare Metal

OS

RT OS

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 6 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Process

Also called a task

Execution of an individual program

Can be traced

list the sequence of instructions that execute

Usually assigned a PID: Process IDenti�er

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 7 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Program, Process, Thread

Program → Process (Thread)

Process isolation (not always)

Multiple threads within a process

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 8 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Execution

Interleaved

OS/Scheduler decides which process to run next

Preemptive vs. Cooperative Multitasking

Process Priorities

User Process Creation

Inter-process Communication (IPC)

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 9 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Process Creation

Principal events that cause process creation

1 System initialization

2 Execution of a process creation system

3 User request to create a new process

4 Initiation of a batch job

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 10 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Process Termination

Conditions which terminate processes

1 Normal exit (voluntary)

2 Error exit (voluntary)

3 Fatal error (involuntary): seg fault

4 Killed by another process (involuntary): kill

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 11 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Motivation to use C language

why use C:

simple, low level
embedded controlers
RT OS
di�erent API similar concepts

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 12 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Processes, C Language

Process handling by system/library calls.

fork � forking a process

status � process completion

wait � waiting for a process to complete

shared memory � communication means

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 13 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

fork

pid_t fork(void);

Creates a new process by duplicating the calling process.

The new process, referred to as the child, is an exact duplicate of the
calling process, referred to as the parent.

Return value:

PID of the child process is returned in the parent,
0 is returned in the child.
On failure, -1 is returned in the parent, no child process is created.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 14 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

wait

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

wait for state changes in a child of the calling process,

A state change is considered to be:

child terminated; the child was stopped by a signal;
or the child was resumed by a signal.

In the case of a terminated child, performing a wait allows the system
to release the resources associated with the child; beware of a zombie

child.

If a child has already changed state, then these calls return
immediately.

Otherwise they block.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 15 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Shared Memory

Can be accessed by multiple processes

Permissions can be de�ned

system calls: shmget(), shmat(), shmdt(), shmctl()

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 16 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

shmget()

int shmget(key_t key, size_t size, int shmflg);

Returns the identi�er of the shared memory segment associated with
the value of the argument key.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 17 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

shmat(), shmdt()

void *shmat(int shmid, const void *shmaddr, int shmflg);

Attaches the shared memory segment identi�ed by shmid to the
address space of the calling process.

int shmdt(const void *shmaddr);

Detaches the shared memory segment located at the address speci�ed
by shmaddr from the address space of the calling process.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 18 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

shmctl()

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Performs the control operation speci�ed by cmd on the shared
memory segment whose identi�er is given in shmid.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 19 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Shared Memory and Process Handling Example I

int main(void)

{

int shmid, *shmptr;

pid_t pid;

int status;

int i;

/* request shared mem */

shmid=shmget(IPC_PRIVATE,sizeof(int),SHM_R | SHM_W);

printf("Shared memory id: %d\n",shmid);

/* attach a ptr to shm */

shmptr=(int *)shmat(shmid,0,0);

*shmptr=0;

printf("start: %d\n",*shmptr);

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 20 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Shared Memory and Process Handling Example II

/* detach a ptr from shm */

shmdt(shmptr);

for (i=0; i<5; i++) {

pid=fork();

if (pid==0){

/* child code */

shmptr=(int *)shmat(shmid,0,0);

printf("child: %d\n",*shmptr);

(*shmptr)++;

shmdt(shmptr);

return(0);

}

}

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 21 / 22



I.W
ojnick

i, CSO

Program, Process, Thread

Shared Memory and Process Handling Example III

while (wait(&status)!=-1);

shmptr=(int *)shmat(shmid,0,0);

printf("stop: %d\n",*shmptr);

shmdt(shmptr);

/* remove shared mem */

shmctl(shmid,IPC_RMID,0);

return 0;

}

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 22 / 22


	Intro
	Program, Process, Thread

