Igor '@’{kl
AGH - Urﬁvxe@f Science and Technology
&0 2010

\-

40> 4Fr «=)» «E)»

?

o Intro

© Program, Process

S

A

Hao

Intro

Syllabus

Control Systems Optimization by Introducing Concurrency

Program, Process, Thread

IPC: shared memory, semaphores, messages
Multiple pocessess - why?
Computer/controller architecture

Ada language constructs

Ada IPC

Functional programming in Erlang

Erlang: multiprocessing capabilities

Erlang: IPC

Control applications examples

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 3/ 22

Intro

Books

o C:
e Stevens, W. Richard: Advanced Programming in the UNIX
Environment, Addison Wesley 2003.
e Robbins, K.A., Robbins, S.: Practical UNIX Programming, Prentice
Hall
e Ada:
e Barnes, J.: Programming in Ada 2005, Addison Wesley 2006
e Burns, A.: Concurrent and Real-Time Programming in Ada 2005,
Cambridge University Press 2007
o Erlang

e Armstrong, J.. Programming Erlang: Software for a Concurrent World
e Cesarini F., Thompson S.: Erlang Programming, O'Reilly 2009

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 4 /22

@ Lab Grade

o Assignments (3)
e Attendance

W %}q
m C)
o Do we have an exa

@0

<O> B> <E» <>

Do

&

e OS .C&’xq
o RT OS ,Q\
N

o

@ Also called a task

@ Execution of an individual pro
o Can be traced

g{a@ﬂ
e list the sequence of ixs?p\ions that execute
@ Usually assigned IQD

cess |Dentifier
\-

«0O> «4F» «=Z)r «=)»

e Program — Process (Thread)

Kl

@ Process isolation (not always)

q
C)E
o Multiple threads within.a,@ SS

M
~N

«0O> «4F» «=Z)r «=)»

DA

Program, Process, Thread

Execution

Interleaved

OS/Scheduler decides which process to run next
Preemptive vs. Cooperative Multitasking
Process Priorities

User Process Creation

Inter-process Communication (IPC)

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 9/ 22

Principal events that cause process creatioﬂ 5

© System initialization

xq
@ Execution of a process creati em

© User request to create a n@rocess

@ Initiation of a bw@x

«0O> «4F» «=Z)r «=)»

[
S
o
2

Program, Process, Thread

Process Termination

Conditions which terminate processes
© Normal exit (voluntary)
@ Error exit (voluntary)
© Fatal error (involuntary): seg fault
O Killed by another process (involuntary): kill

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 11 / 22

e why use C: . C/
e simple, low level \z x"
o embedded controlers *
] RT OS ° XO
o different APg@@pts

«0O> «4F» «=Z)r «=)»

DA

Program, Process, Thread

Processes, C Language

Process handling by system/library calls.

e fork — forking a process
@ status — process completion
@ wait — waiting for a process to complete

@ shared memory — communication means

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 13 / 22

Program, Process, Thread

fork

pid_t fork(void);

o Creates a new process by duplicating the calling process.

@ The new process, referred to as the child, is an exact duplicate of the
calling process, referred to as the parent.

@ Return value:

o PID of the child process is returned in the parent,
e 0 is returned‘in the child.
e On failure, -1 is returned in the parent, no child process is created.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 14 / 22

Program, Process, Thread

wailt

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);
@ wait for state changes in a child of the calling process,
@ A state change is considered to be:

e child terminated; the child was stopped by a signal;
e or the child was resumed by a signal.

@ In the case of a terminated child, performing a wait allows the system

to release the resources associated with the child; beware of a zombie
child.

e If a child has already changed state, then these calls return
immediately.

@ Otherwise they block.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 15 / 22

@ Can be accessed by multiple proc
@ Permissions can be defined
@ system calls: shmget (

&>

s

), %&t(), shmdt (), shmctl()
@0\

«0O> «4F» «=Z)r «=)»

int shmget(key_t key, size_t srze,Q
@ Returns the identifier of the s

the value of the argument Q;

&

int shmflg);

40> 4Fr «=)» «E)»

@)&Pmemory segment associated with

Program, Process, Thread

shmat (), shmdt ()

void *shmat(int shmid, const void #*shmaddr, int shmflg);

@ Attaches the shared memory segment identified by shmid to the
address space of the calling process.

int shmdt(const void *shmaddr);

@ Detaches the shared memory segment located at the address specified
by shmaddr from the address space of the calling process.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 18 / 22

int shmctl(int shmid, int cmd, os{rtgjshmid_ds *buf) ;
q
@ Performs the control operatio %cn‘ied by cmd on the shared
memory segment whose id{&dr is given in shmid.
’\(o

«0O> «4F» «=Z)r «=)»

DA

Program, Process, Thread

Shared Memory and Process Handling Example |

int main(void)

{

int shmid, *shmptr;
pid_t pid;

int status;

int 1i;

/* request shared mem */

shmid=shmget (IPC_PRIVATE,sizeof (int) ,SHM_R | SHM_W);
printf ("Shared memory id: %d\n",shmid);

/* attach a ptr to shm */

shmptr=(int *)shmat (shmid,0,0);

*shmptr=0;

printf ("start: %d\n",*shmptr);

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010

20/ 22

Program, Process, Thread

Shared Memory and Process Handling Example |l

/* detach a ptr from shm */
shmdt (shmptr) ;

for (i=0; i<5; i++) {

pid=fork();

if (pid==0){
/* child code */
shmptr=(int *)shmat{shmid,0,0);
printf ("child: %d\n",*shmptr);
(*shmptr)++;
shmdt (shmptr);
return(0) ;

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010

21/ 22

Program, Process, Thread

Shared Memory and Process Handling Example Il

while (wait(&status)!=-1);

shmptr=(int *)shmat (shmid,0,0);
printf ("stop: %d\n",*shmptr);
shmdt (shmptr) ;

/* remove shared mem */

shmctl (shmid,IPC_RMID,0);
return O;

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 22 /22

	Intro
	Program, Process, Thread

