Igor '@’{kl
AGH - Urﬁvxe@f Science and Technology
&0 2010

\-

40> 4Fr «=)» «E)»

?

y
,\'

@*\

run next.

@ Scheduler — a part of the OS which deCd/es which process should be
o Not always part of the O

O

e Scheduling a/gor/th§ dg%gorlthm used by the scheduler.

40> 4Fr «=)» «E)»

Multiple pocessess - why?

Scheduling Matters

e Timesharing: multiple users/processes waiting for service, the
algorithm has a tremendous impact on the perceived performance of
the system.

e Scheduling matters even on simple PCs !!!
e It matters even more for Control Systems.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 4 /25

@ Response time

e Throughput

@ Processor efficiency

\-

DA

Multiple pocessess - why?

Types of Scheduling

Long term — a decision to add to a pool of processes to be executed.

Medium term — a decision to add to a pool of processes in main
memory.

Short term — which process to execute.

I/O — which process's 1/O request should be satisfied.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 6 /25

@ Known as the dispatcher C/C‘)

@ Executes most frequently

@ Invoked when an event occurs«é
Process creation/terminé@

Clock interrupts ~ ©

[/0 interrupts x
Operating sy‘i$gs
Blocking/%blo king

«0O> «4F» «=Z)r «=)»

DA

Multiple pocessess - why?

Short-Term Scheduling Criteria

User-oriented

o Response Time — Elapsed time between the submission of a request
until there is output.

@ System-oriented
o Effective and efficient utilization of the processor

Performance-related

e Quantitative
e Measurable such as response time and throughput

Not performance related

o Qualitative

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 8/ 25

Multiple pocessess - why?

Process Behavior: CPU-bound vs. 1/O-bound

@ C— +— — —]

/

Long CPU burst

Waiting for I/O
Short CPU burst

/

b CH—13 0 0 0 1

L
|:|:|

|

Time
_

@ The key value is the length of CPU burst, not I/O burst.
@ Bursts of CPU usage alternate with periods of 1/0O wait

e a CPU-bound process
e an |/0 bound process

@ The faster CPU the more 1/O bound a process is.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 9/ 25

Multiple pocessess - why?

Decision Mode

@ Nonpreemptive

e Once a process is in the running state, it will continue until it
terminates or blocks itself for 1/0

@ Preemptive

e Currently running process may be interrupted and moved to the Ready
state by the operating system

o Allows for better service since any one process cannot monopolize the
processor for very long

e Sometimes not needed in RT systems?

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 10 / 25

Multiple pocessess - why?

Scheduling Algorithm Goals

o All systems

e Fairness — giving each process a fair/share of CPU.
e Policy enforcement — seeing that stated policy is carried out.
e Balance — keeping all parts of the system busy.

@ Interactive systems

e Response time — respond to requests quickly.
e proportionality — meet users’ expectations.

@ Real-time systems

e Meeting deadlines — avoid losing data.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010

11 /25

Multiple pocessess - why?

Round Robin Scheduling // aka. Time Slicing

Current Next Current
process process process

(B F o el P e A E]

@) (b)

Figure: :\Round Robin Scheduling.

@ List of runnable processes

@ List of runnable processes after B uses up its quantum

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010

12 / 25

Multiple pocessess - why?

Priorities

@ Scheduler will always choose a process of higher priority over one of
lower priority

@ Have multiple ready queues to represent each level of priority
@ Lower-priority may suffer starvation

o allow a process to change its priority based on its age or execution
history

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 13 / 25

Multiple pocessess - why?

Priority-based Scheduling

Queue Runable processes
headers . A

N

Priority 4

Priority 3

Priority 2

Priority 1

Igor Wojnicki (AGH — UST) Control Systems Optimization

(Highest priority)

(Lowest priority)

2010

14 / 25

@ Preemptive vs Nonpreemptive X'w

@ Preemptive Processes and F’@ tive kernel

&
N

«0O> «4F» «=Z)r «=)»

(a) Deadlock possible (b) Deadlock

Figure 6.1 Mlustration of Deadlock S

Multiple pocessess - why?

Deadlock IT

Progress
of Q
A

JL] -“2

Release

| |

B L _3_ 4’ deadiock 2
Required inevitable wanl B \
Get B t‘ x \\ 5 >
1]
: 6,

Get A Get B Release A Release B

_T_Y—\J
Required ____—-—Y--—._J

B Required

1. T N1 ID A nnot
Control Systems Optimization

Igor Wojnicki (AGH UST)

. Progress

of P

2010

17 / 25

Multiple pocessess - why?

Introduction to Deadlocks

@ Formal definition : A set of processes is-deadlocked if each process in
the set is waiting for an event that only another process in the set can
cause

@ Usually the event is release of a currently held resource
@ None of the processes can:

@ run
o release resources
e be awakened

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 18 / 25

@ A process is perpetually denie éspmry resources.
o It starves to death not bein

: ‘gx to finish its task.
o«
\-

«0O> «4F» «=Z)r «=)»

Multiple pocessess - why?

Starvation and Priorities

A high priority process A will run before a low priority process B.

o If the high priority process (process A) never blocks, the low priority
process (B) will (depending on the scheduling algorithm) never be
scheduled.

o It will experience starvation.

@ If there is an even higher priority process X, which is dependent on a
result from process B, then process X might never finish, even though
it is the most important process in the system.

@ This condition is'called a priority inversion.

@ Modern scheduling algorithms normally contain code to guarantee
that all processes will receive a minimum amount of each important
resource (most often CPU time) in order to prevent any process from
being subjected to starvation.

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 20 / 25

Semaphores C Example |

#include
#include
#include
#include
#include
#include
#include

Multiple pocessess - why?

<stdio.h>
<stdlib.h>
<unistd.h>
<wait.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

union semun {

};

int
struct semid_ds *buf;
unsigned short

Igor Wojnicki (AGH — UST)

Control Systems Optimization

21/ 25

Multiple pocessess - why?

Semaphores C Example Il

int main(void)
{

int pid,semid;
struct sembuf oper;

if ((semid=semget(IPC_PRIVATE,1,0777))<0){
perror ("semaphore allocation");
exit(1);

}

semctl (semid,0,SETVAL, (union semun)1);

/* semaphore down */
printf ("parent sem down\n");

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010

22 /25

Multiple pocessess - why?

Semaphores C Example Il

oper.sem_num=0; oper.sem_op=-1; oper.sem_£flg=0;
semop(semid, &oper,1);
printf ("parent sem down ok\n");
pid=fork();
if (pid==0){
/* child */

/* semaphore down */

printf("child sem down\n");

oper.sem_num=0; oper.sem_op=-1; oper.sem_flg=0;
semop (semid, &oper,1);

printf("child sem down ok\n");

printf("child doing its job\n"); sleep(2); /* do the job *,

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 23 /25

Multiple pocessess - why?

Semaphores C Example IV

/* semaphore up */

printf("child sem up\n");

oper.sem_num=0; oper.sem_op=1; oper.sem_£flg=0;
semop(semid,&oper,1);

printf("child exit\n");
exit (0);
}
printf ("parent doing its job\n"); sleep(2); /* do the job */

/* semaphore up */

printf ("parent sem up\n");

oper.sem_num=0; oper.sem_op=1; oper.sem_flg=0;
semop (semid,&oper,1);

Igor Wojnicki (AGH — UST) Control Systems Optimization 2010 24 / 25

wait (0);

/* remove the semaphore */
semctl(semid,0,IPC_RMID, (u

printf ("parent exit\n");

return O; Q

N
~N

&
q@wmun) 0);

«0O> «4F» «=Z)r «=)»

DA

	Multiple pocessess - why?

