
I.W
ojnick

i, CSOControl Systems Optimization

Igor Wojnicki

AGH � Univeristy of Science and Technology

2010

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 1 / 25



I.W
ojnick

i, CSO

Outline

1 Multiple pocessess - why?

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 2 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Scheduler

Scheduler � a part of the OS which decides which process should be
run next.

Not always part of the OS.

Scheduling algorithm � an algorithm used by the scheduler.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 3 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Scheduling Matters

Timesharing: multiple users/processes waiting for service, the
algorithm has a tremendous impact on the perceived performance of
the system.

Scheduling matters even on simple PCs !!!
It matters even more for Control Systems.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 4 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Aim of Scheduling

Response time

Throughput

Processor e�ciency

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 5 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Types of Scheduling

Long term � a decision to add to a pool of processes to be executed.

Medium term � a decision to add to a pool of processes in main
memory.

Short term � which process to execute.

I/O � which process's I/O request should be satis�ed.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 6 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Short Term Scheduling

Known as the dispatcher

Executes most frequently

Invoked when an event occurs

Process creation/termination
Clock interrupts
I/O interrupts
Operating system calls
Blocking/Unblocking

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 7 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Short-Term Scheduling Criteria

User-oriented

Response Time � Elapsed time between the submission of a request
until there is output.

System-oriented

E�ective and e�cient utilization of the processor

Performance-related

Quantitative
Measurable such as response time and throughput

Not performance related

Qualitative

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 8 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Process Behavior: CPU-bound vs. I/O-bound

The key value is the length of CPU burst, not I/O burst.

Bursts of CPU usage alternate with periods of I/O wait

a CPU-bound process
an I/O bound process

The faster CPU the more I/O bound a process is.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 9 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Decision Mode

Nonpreemptive

Once a process is in the running state, it will continue until it
terminates or blocks itself for I/O

Preemptive

Currently running process may be interrupted and moved to the Ready
state by the operating system
Allows for better service since any one process cannot monopolize the
processor for very long
Sometimes not needed in RT systems?

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 10 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Scheduling Algorithm Goals

All systems

Fairness � giving each process a fair share of CPU.
Policy enforcement � seeing that stated policy is carried out.
Balance � keeping all parts of the system busy.

Interactive systems

Response time � respond to requests quickly.
proportionality � meet users' expectations.

Real-time systems

Meeting deadlines � avoid losing data.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 11 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Round Robin Scheduling // aka. Time Slicing

Figure: Round Robin Scheduling.

List of runnable processes

List of runnable processes after B uses up its quantum

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 12 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Priorities

Scheduler will always choose a process of higher priority over one of
lower priority

Have multiple ready queues to represent each level of priority

Lower-priority may su�er starvation

allow a process to change its priority based on its age or execution
history

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 13 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Priority-based Scheduling

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 14 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

RT OS Scheduling

Preemptive vs Nonpreemptive

Preemptive Processes and Preemptive kernel

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 15 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Deadlock Real Life

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 16 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Deadlock IT

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 17 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Introduction to Deadlocks

Formal de�nition : A set of processes is deadlocked if each process in
the set is waiting for an event that only another process in the set can
cause

Usually the event is release of a currently held resource

None of the processes can:

run
release resources
be awakened

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 18 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Starvation

A process is perpetually denied necessary resources.

It starves to death not being able to �nish its task.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 19 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Starvation and Priorities

A high priority process A will run before a low priority process B.

If the high priority process (process A) never blocks, the low priority
process (B) will (depending on the scheduling algorithm) never be
scheduled.

It will experience starvation.

If there is an even higher priority process X, which is dependent on a
result from process B, then process X might never �nish, even though
it is the most important process in the system.

This condition is called a priority inversion.

Modern scheduling algorithms normally contain code to guarantee
that all processes will receive a minimum amount of each important
resource (most often CPU time) in order to prevent any process from
being subjected to starvation.

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 20 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Semaphores C Example I

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <wait.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

union semun {

int val;

struct semid_ds *buf;

unsigned short *array;

};

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 21 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Semaphores C Example II

int main(void)

{

int pid,semid;

struct sembuf oper;

if ((semid=semget(IPC_PRIVATE,1,0777))<0){

perror("semaphore allocation");

exit(1);

}

semctl(semid,0,SETVAL,(union semun)1);

/* semaphore down */

printf("parent sem down\n");

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 22 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Semaphores C Example III

oper.sem_num=0; oper.sem_op=-1; oper.sem_flg=0;

semop(semid,&oper,1);

printf("parent sem down ok\n");

pid=fork();

if (pid==0){

/* child */

/* semaphore down */

printf("child sem down\n");

oper.sem_num=0; oper.sem_op=-1; oper.sem_flg=0;

semop(semid,&oper,1);

printf("child sem down ok\n");

printf("child doing its job\n"); sleep(2); /* do the job */

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 23 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Semaphores C Example IV

/* semaphore up */

printf("child sem up\n");

oper.sem_num=0; oper.sem_op=1; oper.sem_flg=0;

semop(semid,&oper,1);

printf("child exit\n");

exit(0);

}

printf("parent doing its job\n"); sleep(2); /* do the job */

/* semaphore up */

printf("parent sem up\n");

oper.sem_num=0; oper.sem_op=1; oper.sem_flg=0;

semop(semid,&oper,1);

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 24 / 25



I.W
ojnick

i, CSO

Multiple pocessess - why?

Semaphores C Example V

wait(0);

/* remove the semaphore */

semctl(semid,0,IPC_RMID,(union semun)0);

printf("parent exit\n");

return 0;

}

Igor Wojnicki (AGH � UST) Control Systems Optimization 2010 25 / 25


	Multiple pocessess - why?

