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Outline:

● Concept of random variable

● Quantitative description of random 

variables 

● Sample vs. population
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The concept of random variable
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Random variable is a function X, that attributes a real 
value x to a certain results of a random experiment.

Examples: 
1) Coin toss: event ‘head’ takes a value of 1; event ‘tails’ - 0.
2) Products: event  ‘failure’ - 0, well-performing – 1
3) Dice: ‘1’ – 1, ‘2’ – 2 etc.…
4) Interval [a, b]– a choice of a point of a coordinate ‘x’ is attributed 

a value, e.g. sin2(3x+17)  etc. .…
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Random variable

Discrete 
When the values of random 
variable X are isolated points on an 
number line 
• Toss of a coin
• Transmission errors
• Faulty elements on a production 

line
• A number of connections coming 

in 5 minutes

Continuous
When the values of 
random variable cover all 
points of an interval

• Electrical current, I
• Temperature, T
• Pressure, p
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The concept of random variable



Quantitative description of random 
variables

• Probability distributions and probability mass 
functions (for discrete random variables)

• Probability density functions (for continuous 
variables)

• Cumulative distribution function (distribution 
function for discrete and continuous variables)

• Characteristic quantities (expected value, 
variance, quantiles, etc.)
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Distribution of random variable

Distribution of random variable (probability distribution
for discrete variables) is a set of pairs (xi, pi) where xi is a
value of random variable X and pi is a probability, that a
random variable X will take a value xi
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Example 5.1

Probability mass function for a single toss of coin.  
Event corresponding to heads is attributed x1=1; tails means x2=0.
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Example 5.1 cont.

Probability mass function for a single toss of coin is given by a set 
of the following pairs:  

Random variable when discrete entails probability distribution also 
discrete. 

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 probability of an event

p
(X

)

X

Introduction to probability and statistics, Lecture 5 7

Distribution of random variable



Probability density function
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Probability function is introduced for continuous variables; it is 
related to probability in the following way:

Properties of probability density function:
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3. f(x) has a measure of 1/x
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Directly from a definition of probability density function f(x) we get 
a formula of calculating the probability that the random variable 
will assume a value within an interval of [a,b]:

Probability density function
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Question: what is a probability of x=a  is incorrect!!!
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Let the continuous random variable X denote the current measured in 
a thin copper wire in mA. Assume that the range of X is [0, 20 mA], 
and assume that the probability density function of X is f(x)=0,05 for 
0≤x≤20. What is the probability that a current measured is less than 
10 mA.
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Example 5.2
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Probability density function



Quantitative description of random 
variables

• Cumulative distribution function (CDF) F(x)  is a 
probability of an event that the random variable X 
will assume a value smaller than or equal to x (at 
most x)

)()( xXPxF 
Example 5.1 cont. 

CDF of coin toss:
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Properties of CDF
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non-decreasing function 

5.  F(x) has no unit
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Relationship between cumulative 
distribution function and probability 
density (for continuous variable)
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CDF of discrete variable
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f (xi) – probability mass function
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Example 5.3

Determine probability mass function of X from the following 
cumulative distribution function F(x)
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From the plot, the only points to receive f(x)≠0 are -2, 0, 2.
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CDF for continuous variable

Cumulative distribution function F(t) of continuous variable is a non-
decreasing continuous function  and can be calculated as an area 
under density probability function f(x) over an interval from - ∞ to t. 



Numerical descriptors

Parameters of

Position

● Quantile (e.g. median, 

quartile)

● Mode

● Expected value (average)

● Variance (standard deviation)

● Range

Dispersion
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Quantile xq represents a value of random variable for which the 
cumulative distribution function takes a value of q.

Median i.e. x0.5 is the most frequently used quantile.

In example 4.2 current I=10 mA is a median of distribution.

For a discrete distribution : 19, 21, 21, 21, 22, 22, 23, 25, 26, 27 
median is 22 (middle value or arithmetic average of two middle 
values)

Example 5.4

Numerical descriptors
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Mode represents the most frequently occurring value of random 
variable (x at which probability distribution attains a maximum)

Unimodal distribution has one mode (multimodal distributions –
more than one mode)

In example 5.4: xk= 19, 21, 21, 21, 22, 22, 23, 25, 26, 27 mode 
equals to 21 (which appears 3 times, i.e., the most frequently)

Numerical descriptors



Average value

Arithmetic average:
xi  - belongs to a set of n – elements 

n
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In example 5.4:  xi = 19, 21, 21, 21, 22, 22, 23, 25, 26, 27,
the arithmetic average is  22.7
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Arithmetic average

0.0425.20.1412.30.0410.2=
21
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15.77=x

xk nk fk

10.2 1 0.0357

12.3 4 0.1429

12.4 2 0.0714

13.4 8 0.2857

16.4 4 0.1429

17.5 3 0.1071

19.3 1 0.0357

21.4 2 0.0714

22.4 2 0.0714

25.2 1 0.0357

Sum 28
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Example 5.5

Many elements having the same value,  we divide the set into classes 
containing nk identical elements
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Normalization condition
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Moment of the order k with respect to x0

for discrete variables

The most important are the moments calculated with respect 
to x0=0 (mk) and X0=m1 the first moment (m1 is called the 
expected value) – these are central moments µk.
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for continuous variables 

Moments of distribution functions
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Symbols: m1, E(X), µ,   , 

for discrete variablesiii
pxXE )(

dxxfxXE  )()( for continuous variables
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Expected value
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Properties of E(X)

E(X) is a linear operator, i.e.: 

1.

In a consequence:

E(C)= C

E(CX)= CE(X)

E(X1+X2)=E(X1)+E(X2)

2. For independent variables X1, X2, … Xn

Variables are independent when:
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Properties of E(X)

3. For a function of X; Y= Y(X) the expected value E(Y) can be 
found on the basis of distribution of variable X without 
necessity of looking for distribution of f(y)
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Any moment mk(x0) can be treated as an expected value of a 
function Y(X)=(X-x0)k 
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VARIANCE (dispersion) symbols: σ2(X), var(X), V(X), D(X).
Standard deviation σ(x)

Variance (or the standard deviation) is a measure of scatter 
of random variables around the expected value. 
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Variance

for discrete variables

for continuous variables
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Properties of σ2(X)

Variance can be calculated using expected values only:

1.

In a consequence we get:

σ2(C)= 0

σ2(CX)= C2 σ2(X) 

σ2(C1X+C2)= C1
2 σ2(X)

2. For independent variables X1, X2, … Xn
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Czebyszew inequality

Interpretation of variance results from Czebyszew theorem:
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Theorem:

Probability of the random variable X to be shifted from the 
expected value E(X) by a-times standard deviation is smaller 

or equal to 1/a2

This theorem is valid for all distributions that have a variance 

and the expected value. Number a is any positive real value. 



Big scatter of 
data
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Smaller scatter 
of data

Variance as a measure of 
data scatter



RANGE = xmax- xmin
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Range as a measure of scatter



Skewness and kurtosis
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Sample vs. population
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A population consists of the totality of the 
observations with which we are concerned

In any particular problem, the population may be small, large but finite, or 
infinite. The number of observations in the population is called the size of the 
population. 
For example:
• the number of underfilled bottles produced on one day by a soft-drink company 

is a population of finite size,
• the observations obtained by measuring the carbon monoxide level every day 

is a population of infinite size. 
We often use a probability distribution as a model for a population.

For example, a structural engineer might consider the population of tensile 
strengths of a chassis structural element to be normally distributed with mean  
and variance. 
We could refer to this as a normal population or a normally distributed 
population.



Sample vs. population
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A sample is a subset of observations selected from a 
population.

In most situations, it is impossible or impractical to observe the entire 
population. For example, we could not test the tensile strength of all the 
chassis structural elements because it would be too time consuming and 
expensive. 
Furthermore, some (perhaps many) of these structural elements do not yet 
exist at the time a decision is to be made, so to a large extent, we must 
view the population as conceptual. 
Therefore, we depend on a subset of observations from the population to 
help make decisions about the population.



Sample vs. population
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A statistic is any function of the observations in a 
random sample.



Sample vs. population
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For statistical methods to be valid, the sample must be representative 
of the population. 
• It is often tempting to select the observations that are most convenient 

as the sample or to exercise judgment in sample selection. These 
procedures can frequently introduce bias into the sample, and as a 
result the parameter of interest will be consistently underestimated (or 
overestimated) by such a sample. 

• Furthermore, the behavior of a judgment sample cannot be statistically
described. 

To avoid these difficulties, it is desirable to select a random sample as 
the result of some chance mechanism. Consequently, the selection of a 
sample is a random experiment and each observation in the sample is the 
observed value of a random variable. The observations in the population 
determine the probability distribution of the random variable.



Practical ways of calculating 
variance
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Variance of  n-element sample:

Variance of N-element population :
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Standard deviation of sample (or: standard uncertainty):

Standard deviation (population):
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Practical ways of calculating 
standard deviation


