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Outline:

. Definitions of mean and variance for

discrete variables
. Discrete uniform distribution
. Binomial (Bernoulli) distribution
. Geometric distribution

. Poisson distribution
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“JJJ MEAN AND VARIANCE OF A
DISCRETE RANDOM VARIABLE
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Definition

The mean or expected value of the discrete random variable X, denoted as . or E(X), is

= B(X) = > xf(x) (3-3)

The variance of X, denoted as o or V(X), is

=VX)=EX - pf= X (x—px)= Zrﬂr

The standard deviation of Xis ¢ = Vo>

Mean and variance are two measures that do not uniquely identify a
probability distribution. Below you can find two different distributions
that have the same mean and variance.
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The variance of a random variable X can be considered to be the
expected value of a specific function of X:

h(X)=(X - p)’

In general, the expected value of any function h(X) of a discrete random
variable is defined in a similar manner.

Expected Value of a

Function of a If X 1s a discrete random variable with probability mass function f{x),
Discrete Random

Variable E[h(X)] = EI}I(ILF[I} (3-4)

X
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m ]JJ Discrete uniform distribution
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The simplest discrete random variable is one that assumes only a finite
number of possible values, each with equal probability.

A random variable X that assumes each of the values x;, X5, ..., X,, with
equal probability 1/n, is frequently of interest.

Definition
A random variable X has a discrete uniform distribution if each of the 7 values in
its range say, X;, Xa, ..., X,, has equal probability. Then,

fx) = 1/n (3-5)
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Suppose the range of the discrete random variable X is the consecutive
integers: a, a+1, a+2,....b for a<b.

The range of X contains b-a+1 values each with probability 1/(b-a+1).
According to definition mean value equals to:

% =

b h[h—l— 1) — (@ — 1)a _
The algebraic i1dentity 2 5 can be used to sumplify the result to
p = (b + a)/2 The den ation of the vanance 1s left as an exercise.

Suppose X 1s a discrete uniform random variable on the consecutive integers

aa+1,a+2 .., 6b fora=>b The mean of X is
bt+a
=

The variance of X 1s

, Bb—a+1P—-1
s = (3-6)
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MJJ Examples of probability
distributions — discrete variables

Two-point distribution (zero-one), e.g. coin toss, head =
failure x=0, tail = success x=1, p — probability of success, its
distribution:

Binomial (Bernoulli)

"o = pyt k=01
pk_ k p(_p) ’ = VU, 1,..., 1

where O<p<1; X={0, 1, 2, ... k} k = number of successes when
n-times sampled with replacement

For k=1 two-point distribution
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ﬁ” IJJ Examples of probability
distributions - discrete variables

Consider the following random expeniments and random variables:

1. Flip a comn 10 imes. Let X' = number of heads obtained.

2. A wom machine tool produces 1% defective parts. Let X = number of defective parts
in the next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let

X = the number of air samples that contain the rare molecule in the next 18 samples
analyzed.

4. Of all bats transmitted through a digital transmission channel, 10% are received 1n
error. Let X' = the number of bits in error in the next five bits transmitted.

:..h

A multiple choice test contains 10 questions, each with four choices. and you guess
at each question. Let X = the number of questions answered correctly.

In the next 20 barths at a hospaital. let X' = the number of female barths.

7. Of all patients suffering a particular illness. 35% expernience improvement from a
particular medication. In the next 100 patients administered the medication, let X' =
the number of patients who expenence improvement.
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AGH Binomial distribution

Definition
A random experiment consists of n Bernoulli tnials such that
(1) The tnals are independent
(2) Each trial results in only two possible outcomes. labeled as “success™ and
efoilure™
(3) The probability of a success in each trial. denoted as p, remains constant

The random variable X that equals the number of trials that result 1n a success
has a bhinomial random variable with parameters 0 < p << landn = 1_2,... The
probability mass function of X 1s

flx) = C)pxm — PP x=0,1...n (3-7)
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mJJ Binomial distribution -
AGH assumptions

Random experiment consists of n Bernoulli
trials :
. Each trial is independent of others.

2. Each trial can have only two results: ,,success” and
~failure” (binary!).

3. Probability of success p is constant.

b

Probability p, of an event that random variable X
will be equal to the number of k-successes at n
trials.

=" o= py*t k=01
pk_ k p(_p) ” = U, 1,..., N
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1 n=0
n=

1\+/1

1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=
1 6 15 20 15 6 1 |n=6
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“JIJJ Bernoulli distribution

Example 6.1

Probability that in a company the daily use of water will not
exceed a certain level is p=3/4. We monitor a use of water

for 6 days.

Calculate a probability the daily use of water will not exceed
the set-up limit in O, 1, 2, ..., 6 consecutive days,
respectively.

Data:

6 k=0,1,...,6

A
|
|
N
|
|
=
]
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AGH Bernoulli distribution
k=0 P(0)=1-1-4i;0.00024
k=1 P(l)=6-§%:%=18-P(0);O.OO4
k=2 P(2)=15-G)2-414 =IZ;9=135-P(0);0.O33
k=3 P(3)=20-G)3-413 :204?'3=540-P(O);O.132
k=4 P(4)=15 %j4'412 :15;12'9:1215?(0);0.297
k=5 P(35) = 6-(%)5 : il = 6'94'69'3 =1458- P(0) = 0.356
k=6 P(6)=1-GT-410 =9'j6'9=729-P(0);0.178
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M IJJ Bernoulli distribution
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Maximum for k=5
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“ﬂ I Bernoulli distribution
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M]JJ Bernoulli distribution
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@JIJJ Errors in transmission

Example 6.2

Digital channel of information transfer is prone to errors in
single bits. Assume that the probability of single bit error is

p=0.1

Consecutive errors in transmissions are independent. Let X
denote the random variable, of values equal to the number of
bits in error, in a sequence of 4 bits.

E - bit error, O - no error

OEOE corresponds to X=2; for EEOO - X=2 (order does not
matter)

Introduction to probability and statistics, Lecture 6



@JIJJ Errors in transmission

Example 6.2 cd

For X=2 we get the following results:
{EEOO, EOEO, EOOE, OEEO, OEOQOE, OOEE}

What is a probability of P(X=2), i.e., two bits will be sent with
error?

Events are independent, thus
P(EEOO)=P(E)P(E)P(O)P(0O)=(0.1)2 (0.9)2 = 0.0081

Events are mutually exhaustive and have the same
probability, hence

P(X=2)=6 P(EEOO)= 6 (0.1)2 (0.9)2 = 6 (0.0081)=0.0486
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@J.JJ Errors in transmission

Example 6.2 continued 4) 4! 6
2) )N

Therefore, P(X=2)=6 (0.1)2(0.9)2 is given by Bernoulli distribution

4
P(X =x)=( j-px(l—p)4x , x=0,1,2,3,4,p=0.1
X

08

P(X = 0) = 0,6561 N

P(X = 1) = 0,2916

P(X = 2) = 0,0486

P(X = 3) = 0,0036 N |
P(X = 4) = 0,0001 ] T

0 1 2 3 4
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M]JJ Errors in transmission -
AGH calculation of mean and variance

Mean:

p = E(X) = 0f(0) + Lf(1) + 2f(2) + 3/(3) + 4f(4)
= 0(0.6561) + 1(0.2916) + 2(0.0486) + 3(0.0036) + 4(0.0001)
= 0.4

Although X never assumes the value 0.4, the weighted average of the possible values 1s 0.4.
To calculate F{X), a table 1s convenient.

Variance:

P(X =0) = 0,6561
x x—04 (x — 04) fix) fix)(x — 04) P(X _ 1) _ 0,2916
0 —0.4 0.16 0.6561 0.104976
1 0.6 0.36 0.2916 0.104976 p(X — 2) — 0,0486
2 16 2.56 0.0486 0.124416
3 2.6 6.76 0.0036 0.024336 p(X —_ 3) — O 0036
4 36 12.96 0.0001 0.001296 4

P(X =4) = 0,0001

X)) =o? = E fx)x: — 04) = 036
i=1

The alternative formula for variance could also be used to obtamn the same result.
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@GJIJJ Geometric distribution

Definition

In a series of Bernoull: trials (independent trials with constant probability p of a suc-
cess), let the random vanable X denote the number of trials until the first success.
Then X 15 a geometric random variable with parameter 0 << p < 1 and

f)=01-pF'r x=12.. (3-9)

1.0

« 01
¢ 0.9

0.8

The height of the line at x is (1-p) times

the height at the line at x-1. That is, the o
probabilities decrease in a geometric
progression. The distribution acquires its 0.4
name from this result.

0.2
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MJ Geometric distribution

If X 15 a geometric random variable with parameter p,

p=EX)=1/p and o =VX)=(1-p)p (3-10)

Lack of memory property (the system will not wear out): A geometric
random variable has been defined as the number of trials until the first
success. However, because the trials are independent, the count of the
number of trials until the next success can be started at any trial without
changing the probability distribution of the random variable.

Example 6.3 In the transmission of bits, if 100 bits are transmitted,
the probability that the first error, after bit 100,
occurs on bit 106 is the probabability that the next six
outcomes are OOOOOE and can be calculated as

P(X=6)=p'(1-p), p=0.1

This result is identical to the probability that the initial error occurs on bit 6.
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MJJJ Poisson’s distribution
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Consider the transmission of n bits over a digital
communication channel. Let the random variable X equal the
number of bits in error. When the probability that a bit is in

error p is constant and the transmissions are independent, X
has binomial distribution.

We introduce a parameter A=pn (E(X) = A)

N i

Let us assume that n increases while p decreases, but A=pn

remains constant. Bernoulli distribution changes to Poisson’s
distribution.

i 0[] 7

n—> oo n—>oo n X'
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anJ Poisson’s distribution

It is one of the rare cases where expected value equals to
variance:

E(X)=np=41

Why?

V(X)=c’= lim (np—np’)=np=21

n—, p—0

Introduction to probability and statistics, Lecture 6




@GIJJl Poisson’s distribution

Definition

Given an mterval of real numbers, assume counts occur at random throughout the 1n-
terval. If the interval can be partitioned into subintervals of small enough length such
that

(1) the probability of more than one count in a subinterval is zero,

(2) the probability of one count 1n a subinterval 1s the same for all subintervals
and proportional to the length of the subinterval. and

(3) the count in each subinterval 1s independent of other subintervals. the ran-
dom experiment 1s called a Poisson process.

The random variable X that equals the number of counts in the interval 1s a Poisson
random variable with parameter 0 << A, and the probability mass function of X 1s

— A3 T
A
flx) == x=012.. (3-15)
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Example 6.3:

Flaws occur at random along a length of a thin copper wire. Let X denote the
random variable that counts the number of flaws in a length of L mm of wire.
The average number of flaws in L mm is A. Find probability distribution of X.

Solution:

« Partition the length of wire into n subintervals of small length (1 um each).
Probability that more than one flaw occurs in the subinterval is negligible

« Flaws occur at random, this implies that every subinterval has the same
probability of containing a flaw, p

« The probability that a subinterval contains a flaw is independent of other
subintervals

We can model the distribution of X as approximately a binomial random
variable. Probability that a subinterval contains a flaw is p=A/n. With small
enough subintervals, n is very large and p is very small. Therefore, the
distribution of X is that of Poisson. s

x!

S (x) =
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MJJJ Poisson’s distribution
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Example 6.4:

For the case of the thin copper wire, suppose that the number of flaws

follows a Poisson distribution g
e

x!

f(x)=

with a mean of A = 2.3 flaws per mm.

(a) Determine the probability of exactly 2 flaws in 1 mm wire.
(b) Determine the probability of 10 flaws in 5 mm of wire.

(c) Determine the probability of at least 1 flaw in 2 mm of wire

Solution:

(a) Let X denote the number of flaws in 1 mm of wire (X=2).
E(X)=2.3= A

-2.3 2
P(X =2)=%"23" _ (265
2!
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Example 6.4:

For the case of the thin copper wire, suppose that the number of flaws

follows a Poisson distribution g
e

x!

f(x)=

with a mean of A = 2.3 flaws per mm.

(a) Determine the probability of exactly 2 flaws in 1 mm wire.
(b) Determine the probability of 10 flaws in 5 mm of wire.

(c) Determine the probability of at least 1 flaw in 2 mm of wire

Solution:

(b) Let X denote the number of flaws in 5 mm of wire (X=10).
E(X)=5 mm x 2.3 flaws/mm = 11.5 flaws =A

-11.5 10
P(X =10)= < 11)1"5 = 0.113
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Example 6.4:

For the case of the thin copper wire, suppose that the number of flaws

follows a Poisson distribution 4
e

x!

f(x)=

with a mean of A = 2.3 flaws per mm.

(a) Determine the probability of exactly 2 flaws in 1 mm wire.
(b) Determine the probability of 10 flaws in 5 mm of wire.

(c) Determine the probability of at least 1 flaw in 2 mm of wire

Solution:

(c) Let X denote the number of flaws in 2 mm of wire (X=1).
E(X)=2 mm x 2.3 flaws/mm = 4.6 flaws =A

—-4.6 0
P(X>1)=1-P(X =0):1—%=0.9899
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anJ Poisson’s distribution

AG
p(X)
0,4 - X : : _
Bernoulli Poisson:
0,35 - ——lambda=1 n=50; p=0.02 A=1
03 e 0 | 0.364 0.368
0,25 - 1 0.372 0.368
- 2 | 0.186 0.184
e 3 0.061 0.061
4 0.014 0.015
0,1 -
5 0.003 0.003
0,05 - | 6 0.000 0.001
’ o 5 10 15 - ;ﬁz._;)ﬁ: e 2:5

(x- integer, infinite; x> 0) For big n Bernoulli distribution resembles Poisson’s
distribution
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