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Outline:

● Definitions of mean and variance for 

discrete variables

● Discrete uniform distribution

● Binomial (Bernoulli) distribution

● Geometric distribution

● Poisson distribution
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MEAN AND VARIANCE OF A 
DISCRETE RANDOM VARIABLE
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Mean and variance are two measures that do not uniquely identify a 
probability distribution. Below you can find two different distributions 
that have the same mean and variance.



MEAN AND VARIANCE OF A 
DISCRETE RANDOM VARIABLE
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The variance of a random variable X can be considered to be the 
expected value of a specific function of X:

 XXh ()(

In general, the expected value of any function h(X) of a discrete random 
variable is defined in a similar manner.



Discrete uniform distribution
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The simplest discrete random variable is one that assumes only a finite 
number of possible values, each with equal probability.

A random variable X that assumes each of the values x1, x2, …, xn with 
equal probability 1/n, is frequently of interest.



Discrete uniform distribution
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Suppose the range of the discrete random variable X is the consecutive 
integers: a, a+1, a+2,….b for a≤b.

The range of X contains b-a+1 values each with probability 1/(b-a+1).

According to definition mean value equals to: 



Two-point distribution (zero-one), e.g. coin toss, head = 
failure x=0, tail = success x=1,  p – probability of success, its 
distribution: 

xi 0 1
pi 1-p p

Binomial (Bernoulli) 

where 0<p<1; X={0, 1, 2, … k} k – number of successes when 
n-times sampled with replacement

For k=1  two-point distribution
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Examples of probability 
distributions – discrete variables
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Examples of probability 
distributions – discrete variables
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Binomial distribution



Binomial distribution -
assumptions

Random experiment consists of n Bernoulli 
trials :

1. Each trial is independent of others.
2. Each trial can have only two results: „success” and 

„failure” (binary!).
3. Probability of success p is constant.
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Probability pk of an event that random variable X 
will be equal to the number of k-successes at n 
trials.
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Pascal’s triangle
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Newton’s binomial
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Pascal’s triangle



Bernoulli distribution

Example 6.1
Probability that in a company the daily use of water will not 
exceed a certain level is p=3/4. We monitor a use of water 
for 6 days.
Calculate a probability the daily use of water will not exceed 
the set-up limit in 0, 1, 2, …, 6 consecutive days, 
respectively. 

Data: 
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Bernoulli distribution
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Expected value 

Variance
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Bernoulli distribution



Errors in transmission

Example 6.2
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Digital channel of information transfer is prone to errors in
single bits. Assume that the probability of single bit error is
p=0.1

Consecutive errors in transmissions are independent. Let X
denote the random variable, of values equal to the number of
bits in error, in a sequence of 4 bits.

E - bit error, O - no error
OEOE corresponds to X=2; for EEOO - X=2 (order does not
matter)



Example 6.2 cd
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For X=2 we get the following results:
{EEOO, EOEO, EOOE, OEEO, OEOE, OOEE}

What is a probability of P(X=2), i.e., two bits will be sent with
error?

Events are independent, thus
P(EEOO)=P(E)P(E)P(O)P(O)=(0.1)2 (0.9)2 = 0.0081

Events are mutually exhaustive and have the same
probability, hence
P(X=2)=6 P(EEOO)= 6 (0.1)2 (0.9)2 = 6 (0.0081)=0.0486

Errors in transmission



Example 6.2 continued
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Therefore, P(X=2)=6 (0.1)2 (0.9)2 is given by Bernoulli distribution
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P(X = 0) = 0,6561

P(X = 1) = 0,2916

P(X = 2) = 0,0486

P(X = 3) = 0,0036

P(X = 4) = 0,0001

Errors in transmission



Mean:
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P(X = 0) = 0,6561

P(X = 1) = 0,2916

P(X = 2) = 0,0486

P(X = 3) = 0,0036

P(X = 4) = 0,0001

Errors in transmission –
calculation of mean and variance

Variance:



Geometric distribution
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The height of the line at x is (1-p) times
the height at the line at x-1. That is, the
probabilities decrease in a geometric
progression. The distribution acquires its
name from this result.
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Geometric distribution

Lack of memory property (the system will not wear out): A geometric
random variable has been defined as the number of trials until the first
success. However, because the trials are independent, the count of the
number of trials until the next success can be started at any trial without
changing the probability distribution of the random variable.

Example 6.3 In the transmission of bits, if 100 bits are transmitted,
the probability that the first error, after bit 100,
occurs on bit 106 is the probabability that the next six
outcomes are OOOOOE and can be calculated as

1.0,)1()6( 51  pppXP

This result is identical to the probability that the initial error occurs on bit 6.



Poisson’s distribution
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We introduce a parameter λ=pn (E(X) = λ)
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Let us assume that n increases while p decreases, but λ=pn
remains constant. Bernoulli distribution changes to Poisson’s
distribution.
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Consider the transmission of n bits over a digital
communication channel. Let the random variable X equal the
number of bits in error. When the probability that a bit is in
error p is constant and the transmissions are independent, X
has binomial distribution.
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It is one of the rare cases where expected value equals to 
variance:
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Poisson’s distribution
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Poisson’s distribution
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Poisson’s distribution
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Poisson’s distribution
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