

Introduction to theory of probability and statistics

Lecture 7.

Examples of probability distributions-continuous variables

prof. dr hab.inż. Katarzyna Zakrzewska Katedra Elektroniki, AGH e-mail: <u>zak@agh.edu.pl</u>

http://home.agh.edu.pl/~zak

- Definitions of mean and variance for continuous random variables
- Uniform distribution
- . Central limit theorem
- Gaussian distribution

MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

Definition

Suppose X is a continuous random variable with probability density function f(x). The **mean** or **expected value** of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \, dx \tag{4-4}$$

The variance of X, denoted as V(X) or σ^2 , is

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) \, dx = \int_{-\infty}^{\infty} x^{2} f(x) \, dx - \mu^{2}$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

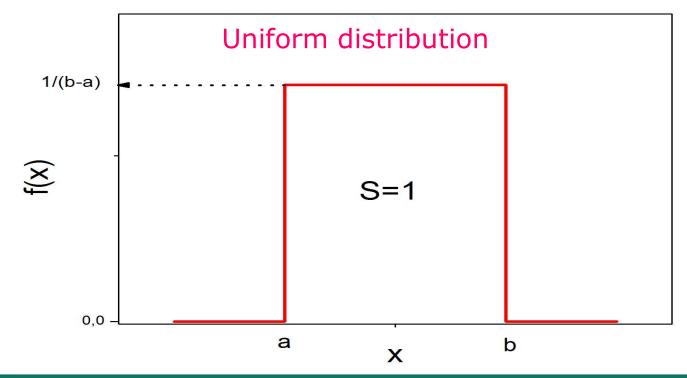
UNIFORM DISTRIBUTION

Definition

A continuous random variable X with probability density function

$$f(x) = 1/(b - a), \qquad a \le x \le b$$

is a continuous uniform random variable.



(4-6)

UNIFORM DISTRIBUTION

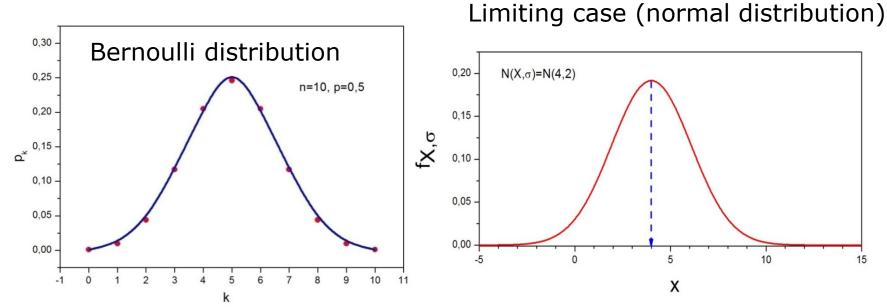
The mean of the continuous uniform random variable X is

$$E(X) = \int_{a}^{b} \frac{x}{b-a} \, dx = \frac{0.5x^2}{b-a} \Big|_{a}^{b} = \frac{(a+b)}{2}$$

The variance of X is

$$V(X) = \int_{a}^{b} \frac{\left(x - \left(\frac{a+b}{2}\right)\right)^{2}}{b-a} dx = \frac{\left(x - \frac{a+b}{2}\right)^{3}}{3(b-a)} \bigg|_{a}^{b} = \frac{(b-a)^{2}}{12}$$

$$f(x) = \frac{1}{b-a}$$
 $\mu = EX = \frac{a+b}{2}$ $\sigma^2 = \frac{(b-a)^2}{12}$



The most widely used model for the distribution of random variable is a **normal distribution**.

Central limit theorem formulated in 1733 by De Moivre

Whenever a random experiment is replicated, the random variable that equals the average (or total) result over the replicas tends to have a normal distribution as the number of replicas becomes large.

Example: toss of a die

Probability mass function for a single toss (population):

x	1	2	3	4	5	6
P(x)	1/6	1/6	1/6	1/6	1/6	1/6

Uniform distribution; the mean value 3.5

$$\mu = E(x) = \sum x \cdot p(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

Variance: $\sigma^{2} = \frac{1}{N} \sum (x - \mu)^{2} = \frac{1}{6} \cdot \left[(1 - 3.5)^{2} + (2 - 3.5)^{2} + \dots + (6 - 3.5)^{2} \right]$ ≈ 2.92

For a double toss (n=2) we are interested in the distribution of the arithmetic average.

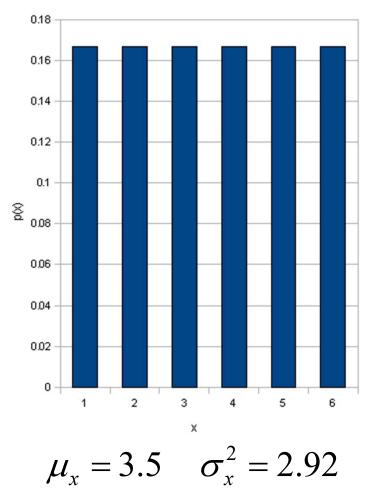
Result	Av.										
1 1	1	2 1	1.5	3 1	2	4 1	2.5	5 1	3	6 1	3.5
1 2	1.5	2 2	2	3 2	2.5	4 2	3	5 2	3.5	6 2	4
1 3	2	2 3	2.5	3 3	3	4 3	3.5	5 3	4	6 3	4.5
1 4	2.5	2 4	3	3 4	3.5	4 4	4	5 4	4.5	6 4	5
1 5	3	2 5	3.5	3 5	4	4 5	4.5	5 5	5	6 5	5.5
1 6	3.5	2 6	4	3 6	4.5	4 6	5	5 6	5.5	6 6	6

Probability mass function of the arithmetic average

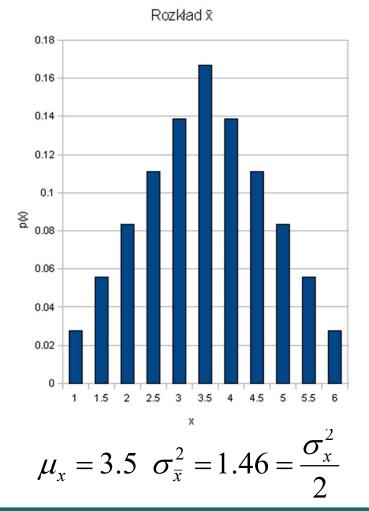
\overline{x}	$p(\overline{x})$	\overline{x}	$p(\overline{x})$
1	1/36	4	5/36
1.5	2/36	4.5	4/36
2	3/36	5	3/36
2.5	4/36	5.5	2/36
3	5/36	6	1/36
3.5	6/36		

Arithmetic average of two samples is a **statistics.** At the same time it represents an **estimator of the expected value.** What kind of estimator is it?

Distribution of random variable x

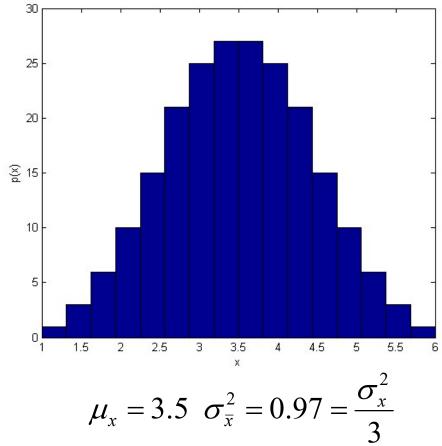


Distribution of the arithmetic average of two samples



For n=3 distribution of the arithmetic average tends to normal distribution (Gaussian).

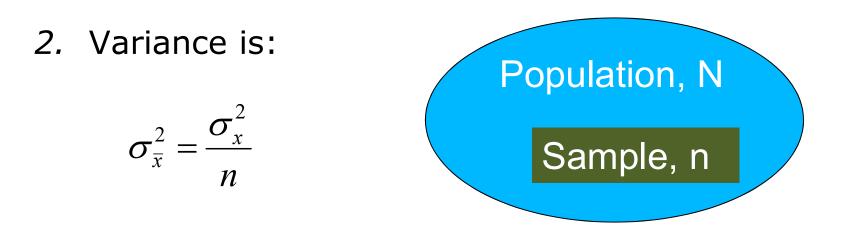
	Res	ult	Av.
1	1	1	1
1	1	2	1.33
1	1	3	1.66
1	1	4	2
1	1	5	2.33
1	1	6	2.66
2	1	1	1.33
2	1	2	1.66
2	1	3	2
2	1	4	2.33
2	1	5	2.66
2	1	6	3
3	1	1	1.66
3	1	2	2



Population and sample

Conclusions from the example:

1. Arithmetic average $\overline{\chi}$ of sample has approximately normal distribution



A random variable X with probability density function f(x):

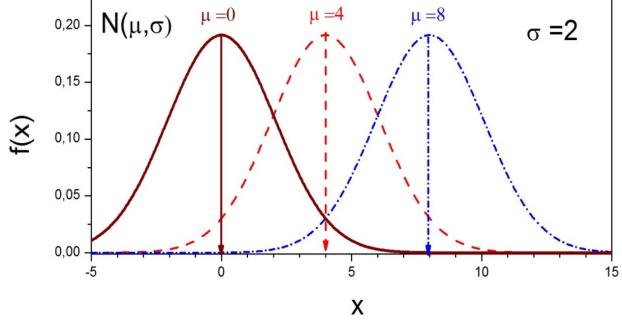
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu^2)}{2\sigma^2}\right], \text{ where } -\infty < x < +\infty$$

is a **normal random variable** with two parameters:

$$-\infty < \mu < +\infty, \sigma > 1$$

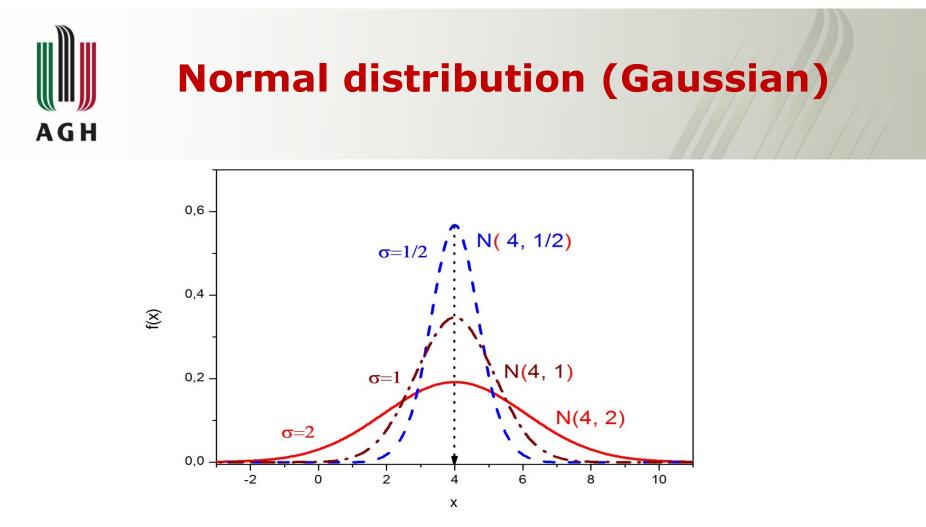
We can show that $E(X) = \mu$ and $V(X) = \sigma^2$

Notation $N(\mu,\sigma)$ is used to denote this distribution



Expected value, maximum of density probability (mode) and median overlap ($x=\mu$). Symmetric curve (Gaussian curve is bell shaped).

Variance is a measure of the width of distribution. At $x=+\sigma$ and $x=-\sigma$ there are the inflection points of N(0, σ).



Is used in experimental physics and describes distribution of random errors. Standard deviation σ is a measure of random uncertainty. Measurements with larger σ correspond to bigger scatter of data around the average value and thus have **less precision**.

Standard normal distribution

A normal random variable Z with probability density N(z):

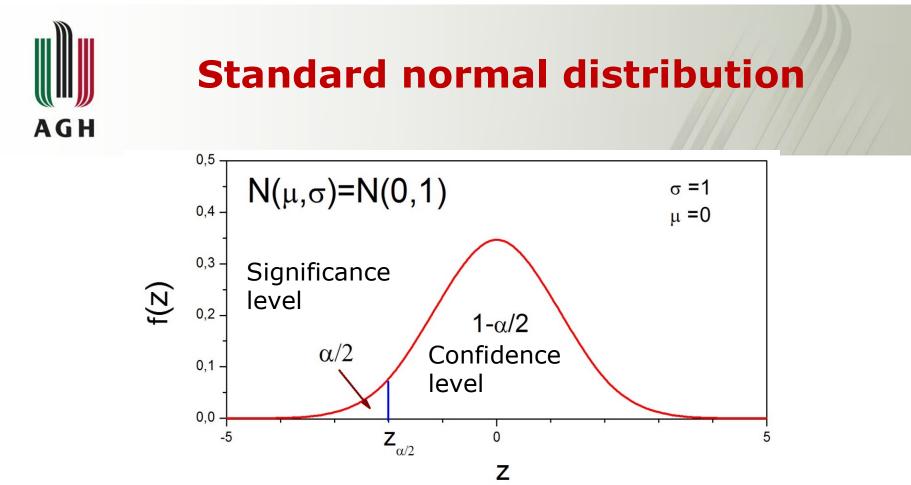
$$N(z) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z^2}{2}\right] , where - \infty < z < +\infty$$

is called a **standard normal random variable**

N(0,1)
$$E(Z) = 0, V(Z) = 1$$

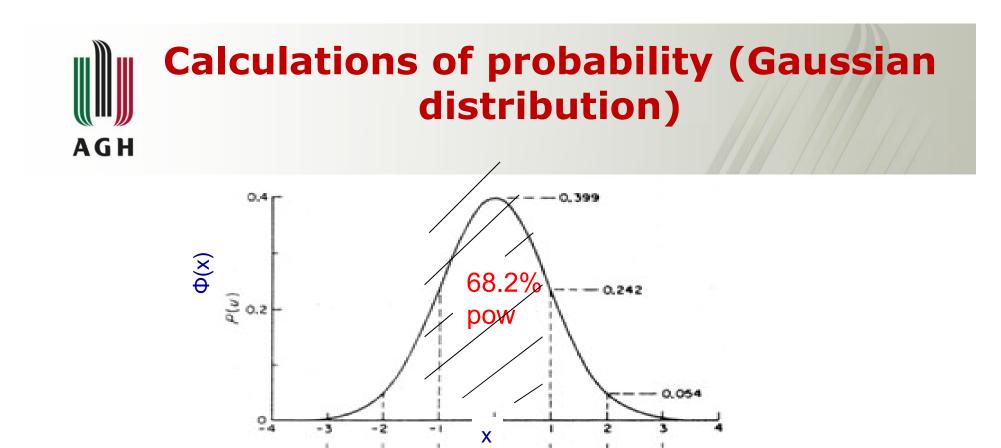
Definition of standard normal variable

$$Z = \frac{X - \mu}{\sigma}$$



Advantages of standardization:

- Tables of values of probability density and CDF can be constructed for N(0,1). A new variable of the N(μ , σ) distribution can be created by a simple transformation X= σ *Z+ μ
- By standardization we shift all original random variables to the region close to zero and we rescale the x-axis. The unit changes to standard deviation. Therefore, we can compare different distributions.



 $(-\sigma, +\sigma)$

 $(-2\sigma, + 2\sigma)$

 $(-3\sigma, + 3\sigma)$

 $P(\mu - \sigma < X < \mu + \sigma) = 0,6827$ (about 2/3 of results) $P(\mu - 2\sigma < X < \mu + 2\sigma) = 0,9545$ $P(\mu - 2\sigma < X < \mu + 2\sigma) = 0,9973$ (almost all)