

Numerical Methods

Lecture 1.

Introduction to numerical methods

dr hab.inż. Katarzyna Zakrzewska, prof. AGH, Department of Electronics, AGH e-mail: <u>zak@agh.edu.pl</u> http://home.agh.edu.pl/~zak

Numerical Methods - Lecture 1

Numerical methods belong to applied mathematics focused on the development of approximate methods for solving mathematical problems that cannot be solved by exact methods or because of their large computational complexity.

Numerical methods are involved in constructing algorithms in which the input data, intermediate results and final results are represented by **numbers.**

Characteristics of numerical methods:

- calculations are performed on approximate numbers
- solutions are expressed as approximate numbers
- error in the numerical calculation should be always controlled

References:

- Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, Podręczniki Akademickie EIT, WNT Warszawa,1982, 2005
- L.O. Chua, P-M. Lin, Komputerowa analiza układów elektronicznych-algorytmy i metody obliczeniowe, WNT, Warszawa, 1981
- G.Dahlquist, A.Björck, Metody matematyczne, PWN Warszawa, 1983
- Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Additional references:

- M.Wciślik, Wprowadzenie do systemu Matlab, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2000
- S. Osowski, A. Cichocki, K.Siwek, Matlab w zastosowaniu do obliczeń obwodowych i przetwarzania sygnałów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2006
- W.H. Press, et al., Numerical recipes, Cambridge University Press, 1986

Introduction to numerical methods

Outline

- Solving engineering problems
- Overview of typical mathematical procedures
- Fixed and floating-point representation of numbers

How to solve an engineering problem?

Example of Solving an Engineering Problem

<u>Autar Kaw</u> <u>http://numericalmethods.eng.usf.edu</u>

Bascule Bridge THG

the Bridge of Lions in St. Augustine, Florida

Bascule Bridge THG

- **Step 1.** Trunnion immersed in dry-ice/alcohol (--108 F, around -80 C)
- **Step 2.** Trunnion warm-up in hub
- **Step 3.** Trunnion-Hub immersed in dryice/alcohol
- **Step 4.** Trunnion-Hub warm-up into girder

A problem occurred!

After cooling, the trunnion got stuck in the hub

Why did it get stuck?

Magnitude of contraction of the trunnion was expected to be 0.015" or more. Did it contract enough?

1 in = 2.54 cm

 $D = 12.363'' \approx 31,4cm$

 $\boldsymbol{T}_F = \left(\frac{\boldsymbol{9}}{\boldsymbol{5}}T_C + \boldsymbol{32}\right)^0 F$

 $T = 80^{\circ} F \approx 26,7^{\circ} C$

 $\Delta D = 0.01504 in = 0.03820 cm$

Is the formula used correct?

 $\Delta D = D \times \alpha \times \Delta T$

T(°F)	α (μin/in/F)	
-340	2.45	
-300	3.07	
-220	4.08	
-160	4.72	
-80	5.43	
0	6.00	
40	6.24	
80	6.47	

Problem solving

The correct model should account for varying thermal expansion coefficient $\boldsymbol{\alpha}$

Estimating Contraction Accurately

So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321F as opposed to the dry-ice/alcohol temperature of -108F.

 $\Delta D = -0.0244$ "

Revisiting steps to solve a problem

1) Problem statement: trunnion stuck in the hub

2) Modeling: a new model

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

- 3) Solution: a) trapezoidal rule or b) regression and integration.
- 4) Implementation: cool the trunnion in liquid nitrogen.

Mathematical Procedures

- Nonlinear Equations
- Differentiation
- Simultaneous Linear Equations
- Curve Fitting
 - Interpolation
 - Regression
- Integration
- Ordinary Differential Equations
- Other Advanced Mathematical Procedures:
 - Partial Differential Equations
 - Optimization
 - Fast Fourier Transforms

Nonlinear Equations

How much of the floating ball is under water?

2R=0.11m $x^{3} - 0.165x^{2} + 3.993 \times 10^{-4} = 0$

Differentiation

Simultaneous Linear Equations

Find the velocity profile, given:

Time (s)	5	8	12
V (m/s)	106	177	600

$$v(t) = at^2 + bt + c, \qquad 5 \le t \le 12$$

Three simultaneous linear equations:

$$25a + 5b + c = 106$$

$$64a + 8b + c = 177$$

$$44a + 12b + c = 600$$

1

Interpolation

AGH What is the velocity of the rocket at t=7 s?

Regression

Thermal expansion coefficient data for cast steel

Regression

Integration

Ordinary Differential Equations

How long does it take a trunnion to cool down?

$$mc\frac{d\theta}{dt} = -hA(\theta - \theta_a), \ \theta(0) = \theta_{room}$$

What you need to know to create your own computing algorithms?

- the size of your computer's memory
- the execution speed of arithmetic and logic operations
- the acceptable range of numbers during the calculations
- the accuracy of basic arithmetic operations performed on real numbers

Numbers representation in a computer memory

The numbers are stored as

- fixed-point numbers
- floating-point numbers

The computer works in the binary system, and communicates with the outside world in the decimal system, therefore conversion procedures are needed.

This is a source of errors.

Computer arithmetic

How a Decimal Number is Represented $257.76 = 2 \times 10^2 + 5 \times 10^1 + 7 \times 10^0 + 7 \times 10^{-1} + 6 \times 10^{-2}$

Base 2

$$(1011.0011)_{2} = \begin{pmatrix} (1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}) \\ + (0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}) \end{pmatrix}_{10}$$
$$= 11.1875$$

In the binary system we use two digits: 0 and 1, called **bits**

Convert base 10 integer to binary representation

	Quotient	Remainder
11/2	5	$1 = a_0$
5/2	2	$1 = a_1$
2/2	1	$0 = a_2$
1/2	0	$1 = a_3$

Hence $(11)_{10} = (a_3 a_2 a_1 a_0)_2$ = $(1011)_2$

Numerical Methods - Lecture 1

Converting a base-10 fraction to binary representation

	Number	Number after	Number before
		decimal	decimal
0.1875×2	0.375	0.375	$0 = a_{-1}$
0.375×2	0.75	0.75	$0 = a_{-2}$
0.75×2	1.5	0.5	$1 = a_{-3}$
0.5×2	1.0	0.0	$1 = a_{-4}$

Hence
$$(0.1875)_{10} = (a_{-1}a_{-2}a_{-3}a_{-4})_2$$

= $(0.0011)_2$

Decimal Number to Binary

$$(11.1875)_{10} = (?.?)_{2}$$

Since

$$(11)_{10} = (1011)_2$$

and
$$(0.1875)_{10} = (0.0011)_2$$

we have

 $(11.1875)_{10} = (1011.0011)_2$

Different approach

$$(11.1875)_{10}$$
$$(11)_{10} = 2^{3} + 3$$
$$= 2^{3} + 2^{1} + 1$$
$$= 2^{3} + 2^{1} + 2^{0}$$
$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= (1011)_{2}$$

Different approach

$(0.1875)_{10} = 2^{-3} + 0.0625$ $=2^{-3}+2^{-4}$ $= 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$ $=(.0011)_{2}$ $(11.1875)_{10} = (1011.0011)_{2}$

The problem of accuracy

Example: Not all fractional decimal numbers can be represented exactly

	Number	Number after decimal	Number before decimal
0.3×2	0.6	0.6	$0 = a_{-1}$
0.6×2	1.2	0.2	$1 = a_{-2}$
0.2×2	0.4	0.4	$0 = a_{-3}$
0.4×2	0.8	0.8	$0 = a_{-4}$
0.8×2	1.6	0.6	$1 = a_{-5}$

 $(0.3)_{10} \approx (a_{-1}a_{-2}a_{-3}a_{-4}a_{-5})_2 = (0.01001)_2 = 0.28125$

The accuracy depends on the computer words length. Rounding off and chopping off lead to errors.

Floating Point Representation

$$x = M \times N^w$$

- M mantissa
- W exponent

N=2, 10

The floating point number is represented by two groups of bits:

I – mantissa M, fractional part

II - exponent W , an integer, W determines the range of the numbers represented in the computer

Floating Point Representation

Example:

If in binary representation M defines 5 bits and W defines 3 bits, the first bit represents the sign of a number ("-" is 1), then:

x = (1)1101 (0)10 M W

 $x = M \times N^w$

$$x = -0,1101 \times 2^{+10}$$
$$x = -\left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}\right) \times 2^{+(1\cdot 2 + 0\cdot 1)}$$

in the decimal representation -3,25

Floating Point Representation

 $x = M \times N^w$

In this notation, only certain positive number in the range from 0.0625 to 7.5, negative numbers from -0.0625 to -7.5 and the number 0 can be represented

There are some numbers that cannot be expressed

Number of x = 0.2 (in decimal) in binary notation has an infinite expansion:

x = 0,0011(0011)

The nearest number (for M = 5 and W = 3) is x = 0,001100

we have 0,1875

This is a source of input errors

Fixed-point representation

The fixed-point representation of the number allocated to n+2 bits (1 bit for the sign and n +1 bits for the absolute value of the number) has the following structure:

$$number = s \cdot \sum_{k=0}^{n} b_k 2^k$$

where:

s=1 or s=-1 (the sign of the number)

 b_k takes the value 0 or 1 (the absolute value of the number)

Fixed-point representation

On n+2 bits, integers can be stored in the following range:

$$[-2^{n+1}+1;2^{n+1}-1]$$

Fixed numbers are a subset of the integers.

Overflow?

Fixed-point representation

High-level programming languages offer several types of fixed-point numbers:

Integer - 16 bits

LongInt – 32 bits

ShortInt – 8 bits