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Modern physics

6. Hydrogen atom in quantum mechanics 
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6.1. Hydrogen atom in quantum mechanics

6.2. Angular momentum and magnetic dipole 

moment

6.3. Electron spin
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6.1. Hydrogen atom in quantum 
mechanics

rn=0.0529 n2 [nm]

En=-13.6/n2 [eV]

Three-dimensional potential well of hydrogen atom is more complex than 
those treated previously (e.g. rectangular box). The potential energy U(r) 
results from Coulomb interaction between a single electron and proton in 
nucleus.
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This potential well does not have sharply 
defined walls. The potential is the only 
function of radial distance r. It means this is 
central potential

U(r)

Amazingly, solving the Schrödinger equation 
for hydrogen atom, we will find the energy 
values are given by the same formula as that 
resulting from the (incorrect) Bohr model
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6.1. Hydrogen atom in quantum 
mechanics

E=10.2 eV

Initial state, nf

final state, ni

For example, transition between
ni=2 and nf=1 (as drawn in the
picture) will release the energy

Energy difference between the levels

ΔE=13.6(1/nf
2-1/ni

2)

E=13.6(1/nf
2-1/ni

2)=13.6(1/12-1/22)=10.2 eV

Therefore, the changes in the energy due to emission or absorption of 
light and the wavelengths for Balmer, Paschen, Lyman, etc. series will be 
correctly described by the same expressions as those derived from the 
Bohr model. 
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6.1. Hydrogen atom in quantum 
mechanics

In classical physics a central force has an important feature: 
There is no torque relative to the origin on the object under the influence 
of the force and, therefore, angular momentum does not vary with time
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We expect that in quantum mechanics, the angular momentum will be 
conserved as well.

Schrödinger equation can be written for such potential:
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To solve it we need to change the variables from the Cartesian 
coordinates (x,y,z) to spherical ones (r,θ,φ) where θ is the polar angle 
and φ is the azimuthal angle.
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6.1. Hydrogen atom in quantum 
mechanics

In spherical coordinates the time-independent Schrödinger equation takes 

a very complicated form (!):
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This complicated partial differential equation can be reduced to a set of one-
dimensional differential equations in θ and φ that can be solved directly, without the
need of introducing Coulomb potential because the potential does not depend on
orientation (angles: θ, φ)

Laplacian in spherical coordinates
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6.1. Hydrogen atom in quantum 
mechanics

We can use the same technique as before, separation of variables:
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Further on, we can separate θ and φ by assuming: 

trial solution
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We will refer to R(r) as the radial wave function and Y(θ,φ) is known 
as a spherical harmonic. 
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6.1. Hydrogen atom in quantum 
mechanics

Finally we get a set of three separated equations to solve:
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ml
2 and λ are the „separation” constants related to quantum numbers

ordinary differential eingenvalue equation for radial function R(r) with energy E as 
the eigenvalue
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Each of these equations is an 
ordinary differential equation, 
involving single variables, θ and φ. 
They are easily solved even without 
the knowledge of the potential 
because the potential does not 
appear here.
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Quantum numbers for the hydrogen atom

Quantum number n, called the principal quantum number appears in the 
expression for the energy of the state

Quantum number l, called the orbital quantum number, is a measure of

the magnitude of the angular momentum associated with the quantum
state

Quantum number ml, called the orbital magnetic quantum number is 
related to the orientation in space of the angular momentum vector

9

6.1. Hydrogen atom in quantum 
mechanics

Although the energies of the hydrogen atom states can be described by 
the single quantum number n, the wave functions describing these 
states require three quantum numbers, corresponding to the three 
dimensions of the space in which electron can move.

Each set of quantum numbers (n, l, ml ) identifies the wave function of 

a particular quantum state. 
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Symbol Name Allowed values

n Principal quantum number 1,2,3...

l Orbital quantum number 0,1,2,3,...,n-1

ml Orbital magnetic quantum 
number 

-l,-(l-1),..., +(l-1), +l
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6.1. Hydrogen atom in quantum 
mechanics

The restrictions on the values of the quantum numbers for hydrogen atom 
are not arbitrary but come out of the solution to Schrödinger equation.

Example: for the ground state (n=1), l=0, ml=0 (there is no other 

possibility).

The hydrogen atom in its ground state has zero angular momentum which 
is not predicted by Bohr model.

L=nħ, for n=1,2,3…. in Bohr model
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6.1. Hydrogen atom in quantum 
mechanics

Solutions of the time-independent Schrödinger equation - wave functions 

of the hydrogen atom
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a is the Bohr radius

ground state

Spherical harmonics Ylm

4

1
00Y

)exp(sin
8

3
11 iY

Radial eigenfunctions Rnl

are
a

R /

2/310

2

are
a

r

a
R 2/

2/320 )
2

1(
)2(

2

are
a

r

a
R 2/

2/321
)2(

1

3

1

2

24

em
a

e



cos
4

3
10Y

)2exp(sin
32

15 2
22 iY

However, these functions do not have any physical meaning. We are 
interested in the probability density of finding an electron, i.e. 2
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orbital 1s, volume probability 
density for the ground state of 
the hydrogen atom

6.1. Hydrogen atom in quantum 
mechanics

The Bohr idea that electrons in atoms follow well-defined orbits like planets 
moving around the Sun, is incorrect. 

„Dot plot” suggests the probabilistic nature of the wave function and 
provides a useful mental model of the hydrogen atom in different states.  

2
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about the radial distance r

ddY m sin),(
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= probability of finding an electron within an area

dθdφ about the angular location (θ,φ)
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6.1. Hydrogen atom in quantum 
mechanics

Hydrogen atom states with n=2

orbital 2s, volume probability 
density for the hydrogen atom in 
the quantum state with n=2, l=0, 

ml=0; the gap in the dot density 
pattern marks a spherical surface 
over which the radial wave 
function is zero

There are four states of the hydrogen atom with n=2. 

n l ml

2 0 0

2 1 +1

2 1 0

2 1 -1

All quantum states with l=0 have 

spherically symmetric wave functions. If 
l=0, the angular momentum is zero, 

which requires that there is no preferred 
axis of symmetry for the probability 
density 
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6.1. Hydrogen atom in quantum 
mechanics

orbitals 2p, volume probability 
density for the hydrogen atom in 
the quantum state with n=2, l=1 

and three different ml Probability 
density is symmetric about z axis

Three states of the hydrogen atom with n=2, l=1. 

n l ml

2 0 0

2 1 +1

2 1 0

2 1 -1

What is there about the hydrogen atom 
that establishes the axis of symmetry?

These plots are symmetric about z axis 

but they are not spherically symmetric. 
The probability densities for these three 
states are functions of r and the angular 
coordinate θ
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6.1. Hydrogen atom in quantum 
mechanics

Energy eigenvalues for hydrogen

The possible values of energy – the eigenvalues – that emerge from 

the radial Schrödinger equation
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Z-atomic number (Z=1 for hydrogen)

Principal quantum number n defined as

are given by
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where nr is the new radial quantum number, nr=0,1,2..

is always a positive integer

1rnn
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6.1. Hydrogen atom in quantum 
mechanics

Energy eigenvalues for hydrogen

In terms of the principal quantum number n,

137

1
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is fine-structure constant

This is exactly the form the bound-state energies take in the Bohr model
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where

As the energy depends on n only, n2 states have the same energy; we 
have n2 degeneracy for hydrogen atom (electrons have spin which 
means that in fact the degeneracy is 2n2)

Example: for n=3 corresponds to 
one state
R30(r)Y00(θ,φ)

corresponds to 
three states
R31(r)Y1m(θ,φ) 
with m=1,0,-1

corresponds to five 
states
R32(r)Y2m(θ,φ) 
with m=2,1,0,-1,-2

Thus, there are a total of 
5+3+1=9=32 degenerate 
states with energy 
corresponding to n=3
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6.1. Hydrogen atom in quantum 
mechanics

As the energy of a state depends only on the principal quantum number n
and is independent of l and ml  for an isolated hydrogen atom there is no 

way to differentiate experimentally between the three states shown below 

These three states (for l=1) are degenerate

Hydrogen atom states with n=2

We can view all four states, given  in table, as 
forming a spherically symmetric shell specified 
by the single quantum number n

Moreover the state with l=0 has also the 

same energy; this is 4-fold degeneracy

n l ml

2 0 0

2 1 +1

2 1 0

2 1 -1

Lectures in Physics, summer 2011 18

6.1. Hydrogen atom in quantum 
mechanics

If we add the volume probability densities for the three states for which 
n=2 and l =1, the combined probability density turns out to be spherically 

symmetrical with no unique axis.

Hydrogen atom states with n=2

The individual states will display their separate existence (the 
degeneracy will be lifted) only if we place the hydrogen atom in an 
external electric or magnetic field (Zeeman effect).

One can think of the electron spending one-
third of its time in each of three states

One can think of the weighted sum of the three 
independent wave functions as defining a 
spherically symmetric subshell specified by the 
quantum numbers n=2 and l =1
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6.2 Angular momentum 
and magnetic dipole moment

19

The solutions of the angular part of Schrödinger equation – the 
spherical harmonics Ynl (θ,φ)  have a special physical significance 

related to the angular momentum.

The classical definition of the angular-momentum vector of a particle 
relative to some point P is

prL


is momentum of the particle

is the radius vector of the particle from the fixed point P

p


r


yzx zpypL zxy xpzpL

The vector product can be written component by component as follows

xyz ypxpL
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6.2 Angular momentum 
and magnetic dipole moment
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In quantum mechanics we use the operators, for momentum:

Then, the angular momentum operator is
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We shall also be interested in the square of the angular momentum
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6.2 Angular momentum 
and magnetic dipole moment

21

In spherical coordinates:

This operator involves only the angles and not the radial coordinate

iLz

The z-component of the angular momentum takes a particularly simple 
form in spherical coordinates:
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We already know the eigenfunctions and possible eigenvalues of L2 and Lz

The eigenvalue equation for L2 is: ),()1(),( 22
mm YYL  

spherical harmonics are eigenfunctions of L2 operator

eigenvalues of L2 operator
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Therefore, an electron trapped in an atom has an orbital angular 

momentum:

orbital quantum number

The projection Lz of angular momentum vector L on an arbitrary ‘z’ 
axis is quantized and measurable and can give values:

orbital magnetic quantum number

)1(L

mLz

6.2 Angular momentum 
and magnetic dipole moment
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This figure shows the five quantized components Lz of the orbital 
angular momentum for an electron with l=2, as well as the associated 

orientations of the angular momentum vector (however, we should not 
take the figure literally as we cannot detect L this way)

6.2 Angular momentum 
and magnetic dipole moment
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A magnetic dipole has an orbital magnetic dipole moment related 
to the angular momentum:

6.2 Angular momentum 
and magnetic dipole moment

Lμ


e
orb

m

e

2

Neither L


orbμ


nor can be measured

However, we can measure the components of these two vectors along a 
given axis.

We can measure, for instance, the z-components of orbital magnetic 
dipole moment and angular momentum vector along the axis that is given 
by the direction of the magnetic field B.

The components μorb,z are quantized and given by: Bzorb m,

TJ
m

e

e
B /10274.9

2

24
Bohr magneton
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6.3 Electron spin 

In addition, the component of spin, measured along any axis is 

quantized and depends on a spin magnetic quantum number ms,

which can have only the value +½ or –½. 

Whether an electron is trapped in atom or is free,

it has an intrinsic spin angular momentum

The magnitude of spin is quantized and
depends on a spin quantum number s, which
is always ½ for electrons, protons and
neutrons.
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Summary 

Quantum number Symbol Allowed values Related to

Principal n 1, 2, 3, … distance from 
the nucleus

Orbital l 0, 1, 2, …, (n-1) orbital angular 
momentum

Orbital magnetic ml 0, 1, 2, …, l orbital angular 
momentum 

(z component)

Spin s ½ spin angular 
momentum

Spin magnetic ms ½ spin angular 
momentum 

(z component)
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NMR – nuclear magnetic 
resonance (application of 

science)

Upon absorption of a photon of energy hf the 
proton in the magnetic field can reverse its 
spin (change from spin-up state to the spin-
down state) – spin-flipping

Bhf z2

Because many substances have unique NMR 
signatures, this technique is used to identify 
unknown substances (i.e. forensic work of the 
criminal investigation)

Magnetic resonance imaging MRI has been 
applied in medical diagnosis with great success. 
Protons in the various tissues of human body, 
are found in different internal magnetic 
environments. Spin-flipping can be imaged in 
strong external magnetic field.  


