
2013-03-10

1

1

Numerical Methods

Lecture 2.
Analysis of errors in numerical methods
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• Example 1.  How a number 256.78 can be represented 
using 5-places?

Why represent numbers in floating point 
format?

.

What is the smallest number that can be represented in this 
format?

0 0 0 . 0 0

What is the largest number that can be represented in this 
format?

9 9 9 . 9 9

2 5 6 7 8
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• Example 2. How a number 256.78 can be represented 
using 5-places?

2 5 6 . 7 9

rounded off

Conclusion: The error is smaller than 0.01

2 5 6 . 7 8

chopped

Why represent numbers in floating point 
format?
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Calculation of errors

True Error oxx −

Relative True Error

o

o

x
xx −

accurate or true value of xo

Calculations:

%001558.0%100
786.256

786.25679.256
%100 =×

−
=×

−
=ε

o

o
t x

xx
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Relative errors of small numbers are large.

Compare:

%001558.0%100
786.256

786.25679.256
%100 =×

−
=×

−
=ε

o

o
t x

xx

%11280.0%100
546.3

546.355.3
%100 =×

−
=×

−
=ε

o

o
t x

xx

Absolute true errors are the same:

004.055.3546.379.256786.256 =−=−=− oxx
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How to keep relative true errors at a costant 
level?

The number can be represented as:

or

2

3

2

102.5678  as written is 256.78
103.678 as written is 0.003678

102.5678 as written is 256.78

×−−

×+

×+
−

sign x mantissa x 10exponent

sign x mantissa x 2exponent
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What do we gain by using the 
floating point representation?

mantissa exponent

The rage of the numbers that can be expressed has 
increased

If we use only 5 places to represent a positive number with a 
positive exponent, the smallest number that can be expressed is 1 
and the largest is 9.999 · 109

The range of numbers that can be represented has increased 
from 999.99 to 9.999·109.

9 99 9 9
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What do we lose by using a 
floating point representation?

mantissa exponent

Precision

Why?

There will be a round-off error.

The umber 256.78 will be represented as 2.5678·102 on five 
places:

2 5 6 8 2
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Example for an individual study

mantissa exponent

2. Calculate the true error and the relative true error of round off

1. Write down the number 576329.78 on five places in a 
similar manner that discussed in the previous example:

3. Compare the results with the previous example (256.78).
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Solution of the example

mantysa wykładnik

2. The true error is 29.78 and the relative true error is 
0.0051672%

1. The number 576329.78 written on five places is:

3. For the number 256.78 these errors are: 0.02 (smaller) and 
0.0077888% (comparable)

5 7 6 3 5

mantysa wykładnik
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Floating point arithmetic – decimal 
representation

Form of a number
em 10××σ

2105678.2 ×−

2
5678.2

1

=
=
−=

e
m
σ

Example

sign (-1 or +1)
mantissa (1)10≤m<(10)10

an integer exponent
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Floating point arithmetic – binary
representation

em 2××σ

( ) 2)101(
2 21011011.1 ×

101
1011011
0

=
=
=σ

e
m

Example:

sign (0 – positive 
or 1 – negative) exponent (1)2≤m<(2)2

1 is not represented

Form of a number
an integer exponent
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Example for an individual study

We have 9-bits

first bit represents the sign of the number, 
second bit represents the sign of the exponent,  
the next four bits represent the mantissa,
the last three bits represent the exponent 

sign

exponent sign

mantissa exponent

0 0

Find the number (in decimal), which is presented above
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Solution

( ) ( ) ( )
( ) ( )22

5
2210

1011011.1
21011011.111.11011075.54

×≅
×==

0 0 1 0 1 1 1 0 1

is not represented
( )1054

Numerical Methods - Lecture 2
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What is the accuracy ε?

For each digital machine epsilon ε is defined as a parameter 
determining the accuracy of the calculations:

tNε −=
where: N=2 (in binary), N=10 (in decimal), t is the number 
of bits representing the mantissa

ε is the lower, when more bits are allocated to represent the 
mantissa M

Epsilon ε can be regarded as a parameter characterizing the 
accuracy of the computing machine (the smaller the ε the 
more accurate are the calculations).

Double precession (Fortran)
2ε=εDP
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Epsilon ε is the smallest number that when added to 1.000 
produces a number that can be represented as different from 
1.000.

0 0 0 0 0 0 0 0 0 0 ( )101=
Example: 10-bit word

sign

exponent sign

wNMx ×=

mantissaexponent

0 0 0 0 0 0 0 0 0 1the next number ( ) ( )102 0625.10001.1 ==

4210625.1 −=−=∈mach

Numerical Methods - Lecture 2
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Single precision in IEEE-754 format (Institute of 
Electrical and Electronics Engineers)

32 bits for single precision 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign
(s) exponent (e’) mantissa (m)

( ) 127'
2 21)1( . −××−= es mNumber

Numerical Methods - Lecture 2
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Example

( ) ( ) 127'
2 2.11Value −××−= es m

( ) ( ) 127)10100010(
2

1 2210100000.11 −××−=

( ) ( ) 1271622625.11 −××−=

( ) ( ) 1035 105834.52625.11 ×−=××−=

1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign
(s)

Biased
Exponent (e’)

Mantissa (m)
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The exponent for the 32-bit IEEE -754 standard

2550 ≤′≤ e

128127 ≤≤− e

8-bit exponent means

The fixed exponent shift is 127 and therefore

In fact, 2541 ≤′≤ e

Numbers            and                  are reserved for 
special cases

0=′e 255=′e

127126 ≤≤− eExponent range

Numerical Methods - Lecture 2
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Representation of special numbers

0=′e all zeros

255=′e all ones

s m Represents

0 zeros zeros 0

1 zeros zeros -0

0 ones zeros

1 ones zeros

0 or 1 ones nonzero NaN

e′

∞
∞−
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Met.Numer. wykład 2 21

IEEE-754 Format

The largest number

Epsilon

( ) 38127
2 1040.321........1.1 ×=×

( ) 38126
2 1018.220......00.1 −− ×=×

723 1019.12 −− ×==machε

The smallest number

22

Analysis of errors

If we do not know the exact value of xo we calculate 
the approximate error as the difference in the 
values   obtained in the consecutive approximations:

1−− nn xx
Relative error εa :

n

nn
a x

xx 1−−
=ε
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For xexf 5.07)( = in 2=x find

a) )2(f ′ for 3.0=h

b) 15.0=h

c) approximate error

h
xfhxfxf )()()(' −+

≈

3.0=h

265,10
3,0

77
3,0

)2()3,02()2('
)2(5,0)3,2(5,0
=

−
=

−+
≈

eefff

Example

)2(f ′ for

Solution

a)

Numerical Methods - Lecture 2
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b)

Example (cont.)

15.0=h

880,9
15,0

77
15,0

)2()15,02()2('
)2(5,0)15,2(5,0
=

−
=

−+
≈

eefff

c)
n

nn
a x

xx 1−−
=ε

0389,0
8800,9

265,10880,9
−≈

−
=εa

Error 3,89%

Numerical Methods - Lecture 2
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sa ε≤ε   ||

m
a

−×≤ 2105.0|ε|

The relative error as a criterion for ending the 
iterative procedure

If the relative error is less than or equal to a predetermined 
number then further iterations are no longer required

If we require at least m significant digits in the result then

Numerical Methods - Lecture 2
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0.3 10.265 N/A 0

0.15 9.8800 0.03894 3

0.10 9.7559 0.01271 3

0.01 9.5378 0.02286 3

0.001 9.5164 0.00225 4

h )2(f ′ aε m

m
a

−×≤ 2105.0|ε|

0,05

0,005

Relative error and significant digits

The exact value is 9.514

Numerical Methods - Lecture 2
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Sources of errors in numerical calculations

1. Input errors (input data errors)
2. Truncation error
3. Round off error

Input errors occur when the input data entered into the 
computer memory are different from the exact values.

Truncation errors are errors due to numerical procedures 
caused by reducing the number of operations.

Round off errors are errors that usually can not be 
avoided. They arise in the course of the calculations, and 
can be reduced by setting skillfully the method and 
sequence of tasks.

Numerical Methods - Lecture 2
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Sources of input errors:
• the input data are the result of measurement of 

physical quantities
• a finite length of binary words and therefore pre-

rounding is needed
• preliminary rounding of irrational numbers

Input errors

Rounding of numbers that cannot be expressed 
exactly is accomplished by:

• chopping
• rounding off

Numerical Methods - Lecture 2
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Example:

91415926535,3≈π

1416,3≈π

rounding offchopping

1415,3≈π

Rounding off introduces smaller error than chopping.

Numerical Methods - Lecture 2
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Caused by the use of the approximate formula 
instead of a full mathematical operation:

• when calculating the sum of the infinite series 
• when calculating integral, derivative

Truncation error

∫∑ =Δ=
→Δ

2

1

2

1

x

x

x

x0x
FdxxFW lim

work
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If the function is continuous and all derivatives f ', 
f'', ... fn exist within the interval [x, x + h] the 
value of the function at the point x + h can be 
calculated as:

Taylor series

( ) ( ) ( ) ( ) ( )
L+

′′′
+

′′
+′+=+ 32

!3!2
hxfhxfhxfxfhxf

( ) ( ) ( ) ( ) ( ) ++′′′+′′+′+=+ L
!3

0
!2

0000
32 hfhfhffhf

The Maclaurin series is simply the Taylor series 
about the point x=0

Numerical Methods - Lecture 2
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Some examples of Taylor series which you must have 
seen

L+−+−=
!6!4!2

1)cos(
642 xxxx

L+−+−=
!7!5!3

)sin(
753 xxxxx

L++++=
!3!2

1
32 xxxex

Examples 
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Truncation error in the Taylor series

( ) ( ) ( ) ( ) ( )( ) ( )xR
n
hxfhxfhxfxfhxf n

n
n ++++′+=+

!!2
''

2
L

remainder

( ) ( )( )cf
n
hxR n

n

n
1

1

)!1(
+

+

+
=

hxcx +<<
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Example

The Taylor series for ex at point x=0 is given by

L++++++=
!5!4!3!2

1
5432 xxxxxex

It can be seen that as the number of terms used 
increases, the error decreases and hence a better 
estimate can be found. 

Question: How many terms would it require to get an 
approximation of e1 within a magnitude of true error of less 
than 10-6?

120
1

24
1

6
1

2
12 ++++≈

L++++++=
!5

1
!4

1
!3

1
!2

111
5432

1e
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xexfhx === )(,1,0

( ) ( )
( )( )cf

n
R n

n

n
1

1

!1
10 +

+

+
=

( )
( )

c
n

e
n !1
1 1

+
=

+

since
hxcx +<<

100 +<< c
10 << c

( )
)!1(

0
)!1(

1
+

<<
+ n

eR
n n

Solution

( ) ( )( )cf
n
hxR n

n

n
1

1

)!1(
+

+

+
=
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610
)!1(

−<
+n
e

en 610)!1( >+

310)!1( 6 ×>+n

9≥n

Solution

true error 

It means that 9 terms or more are needed to get a true 
error less than 10-6
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Arithmetic operations

1. Addition and subtraction
To add or subtract two standard floating-point
number, the exponents should be made equal with
an adequate shift of the mantissa.

Example: Add 0,4546∙105 to 0,5433∙107

0,0045∙107+0,5433 ∙107=0,5478 ∙107

shift

Solution: We loose some significant digits

Numerical Methods - Lecture 2
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Arithmetic operations

2. Multiplication

Multiply mantissas and add the exponents.

Example: Multiply 0,5543∙1012 by 0,4111∙10-15

0,5543∙1012∙0,4111 ∙10-15=0,2278273 ∙10-3=0,2278∙10-3

All the time we loose some significant digits which is the source 
of the error

3. Division

Example: Divide 0,1000∙105 by 0,9999∙103

0,1000∙105/0,9999 ∙103=0,1000 ∙102
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Sequence of operations

(a+b)-c≠(a-c)+b lack of associativity

a(b-c) ≠(ab-ac) lack of distributive property

Example: a= 0,5665∙101, b=0,5556∙10-1, 
c=0,5644∙101

(a+b)=0,5665∙101+0,5556∙10-1

=0,5665∙101+0,0055∙101=0,5720∙101

(a+b)-c=0,5720∙101-0,5644∙101=0,7600∙10-1

(a-c)=0,5665∙101-0,5644∙101=0,0021∙101=0,2100∙10-1

(a-c)+b=0,2100∙10-1+0,5556∙10-1=0,7656∙10-1

Numerical Methods - Lecture 2
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Rounding off errors occurring during floating point 
operations are equivalent to substitution of accurate
numbers by slightly perturbed numbers on which we 
act exactly.

Wilkinson Lemma

For individual arithmetical operations:
)1()1()( 221121 εε +±+=± xxxxfl

)1()1()( 32123121 ε+⋅=⋅ε+=⋅ xxxxxxfl

))1(/(/)1()/( 52124121 ε+=ε+= xxxxxxfl

ε≤iεsymbol of operation performed on 
floating-point data

Numerical Methods - Lecture 2
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Arithmetic operations

Instead of interpreting the error as a result of rounding
(chopping) that occurred during scaling (changing the exponent)
of the components, it can be assumed according to Wilkinson
Lemma that the action was taken exactly (without error), but on
slightly changed data.

In the addition example: 0,4546·105+0,5433·107

Exact result: 0,547846·107

Approximate result: 0,5478·107

Relative error of the sum: 0.00008 is less than ε=10-4

The same result is obtained when we add 0,4546∙105 and 
0,543254∙107
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0 2 4

0

20

40

60

80

100

120

140

y

x

u(y)

u(x)

function
y = f(x)

tangent
dy/dx )x(u

dx
dy)y(u =

Propagation of errors
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Total derivative method

For y=f(x1,x2,...xn) where maximum uncertainties Δx1 , Δx2
, ... Δxn are small compared with the values   of the
variables x1,x2, ... xn the maximum uncertainty of y can be
expressed as:

n
n

x
x
yx

x
yx

x
yy Δ

∂
∂

++Δ
∂
∂

+Δ
∂
∂

=Δ ...2
2

1
1
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Estimate the uncertainty of density ρ of a ball of mass m and
radius R

3π)34(
),(

R
mRm =ρ

R
R

m
m

Δ
∂
∂

+Δ
∂
∂

=Δ
ρρρ

( ) 3π34
1

Rm
=

∂
∂ρ

absolute error

relative error

Example

but
( ) 4π34

3
R

m
R

−
=

∂
∂ρ

Rm εεε ρ 3+=
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Addition
aaA Δ±=

absolute errors

Errors of arithmetic operations

Therefore, the addition (subtraction) absolute error is equal 
to the sum of absolute errors of components.

bbB Δ±=

)( babababaBA +Δ±+=Δ±Δ±+=+

the addition absolute error 

baba Δ+Δ=±Δ )(

Numerical Methods - Lecture 2
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ba
ba

ba +
Δ+Δ

=+ε
the subtraction relative error

the addition relative error 

Errors of arithmetic operations

Subtraction relative error can be large even if the relative errors 
of minuend and subtrahend are small. Subtracting of nearly 
equal numbers should be avoided !

ba
ba

ba −
Δ+Δ

=−ε

This phenomenon is called reduction of significant digits

It is important for the calculation of Newton’s difference quotients 
approximating derivatives of functions, roots of a quadratic equation 
with the dominant factor of the first power, etc.
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We lose the precise meaning of the number 0 if we
perform numerical calculations

The concept of zero

0222 =−+ xx
Exact roots are

31±−

Verify that upon substitution of the approximate solutions to 
x2+2x-2 you will not get 0!!!

0,7320·10o

-0.2732 ·101
Approximate solutions

You should therefore avoid subtraction and the loop condition 
should not be set to "zero",

if a-b<ε
Numerical Methods - Lecture 2
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Useful hints:

• To solve the same problem by another method, or 
by the same method, but with a different order of 
operations

• To solve the problem on slightly perturbed input 
data

In the numerical calculations it is advantageous:

Numerical Methods - Lecture 2
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Tragic example of the rounding off error

On February 25th, 1991 in Dhahran, Saudi Arabia, 28 American 
soldiers were killed in the attack of the Iraqi Scud missiles. The 
defense system Patriot did not detect any assault. Why?

The system calculates the area, which should be scanned based 
on the speed of the object and the last detection. The internal 
clock was set to measure every 1/10 second and 24-bit word 
length was assumed. Due to rounding off, the absolute error 
was 9.5 10-8 s which after 100 hours amounted to:

Based on this, the calculated displacement is 687 m. Object is 
considered outside the range when the displacement is 137 m

sec34.0100606010105.9 8 =××××⋅ −
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Tasks and numerical algorithms

• Numerical task requires a clear and unambiguous 
description of the functional relationship between the 
input or "independent variables" of the task and output 
data, i.e. searched results.

• Numerical task is a problem determining the results 
vector w on the basis of data vector a

a

D w

Projection W task well-defined

)(aw
rr W=

unambiguous 
assignment

Numerical Methods - Lecture 2
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Tasks and numerical algorithms

• Numerical algorithm is a full description of the 
operations correctly transforming the input data vector 
to the vector output data.

• The algorithm is formulated correctly when the number 
of necessary actions is be finite

a

DN w

Projection WN

),( ε= aw WN

Resulting vector 
depends on the 
computing
accuracy ε of the 
machine

∅≠∩DDN
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Examples of algorithms

Given a complex number a=x+iy. Calculate 1/a2

Algorithm I:

1.

2.

3.

xyt /=
222 yxa +=

(tangent phase of number a)

(module of number a)

2

2

22 1
1

//
11Re

t
t

aa +
−

=⎟
⎠
⎞

⎜
⎝
⎛

2

2

22 1
2

//
11Im

t
t

aa +
−

=⎟
⎠
⎞

⎜
⎝
⎛

The task is well-defined if: 022 ≠+ yx
{ })0,0(2 −= RDthat is:

This algorithm is formulated correctly (11 necessary steps)
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Examples of algorithms

Not for each data pair (x, y) ≠ 0 the solution to the problem can 
be found using the algorithm I.

1. There will be an overflow of floating point numbers (for x = 0, 
also because of rounding to zero)

2. The overflow may happen even in the first step when 

x = 10-25 and y = 1025 because of the division y / x

3. For x = 0, and y ≠ 0 the solution cannot be determined 
using this algorithm. The increase in the accuracy of the 
calculation does not change this fact.

Algorithm I is not numerically stable
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Examples of algorithms

Given a complex number a=x+iy. Calculate 1/a2

Algorithm II:

1.

2.

22

22

2
1Re

yx
yx

a
r

+
−

=⎟
⎠
⎞

⎜
⎝
⎛=

222
21Im

yx
xy

a
u

+
−

=⎟
⎠
⎞

⎜
⎝
⎛=

Algorithm II is formulated correctly (9 necessary steps)

Algorithm II is numerically stable due to the continuity of 
equations for

022 ≠+ yx
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Conditioning and stability

The calculation algorithm is numerically stable if for any 
selected data vector

Da0 ∈

there exists an accuracy of the calculations ε0, that for ε<ε0 we 
have )DN(a0 ε∈

and )(),(lim 00
0

aa WWN =ε
→ε

The algorithm is numerically stable when increasing the 
accuracy of the calculations any existing solution to the 
problem can be found.
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Conditioning and stability

Due to the rounding off error

By Lemma of Wilkinson disturbed data vector can be selected
Daa ∈δ+

ror which

)(),( aa WWN ≠ε

Size of the distortion

)(),( aaa δ+=ε WWN

depends on:aδ

-the data vector a

-the number of performed operations

-the accuracy of calculations
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Conditioning and stability

Based on Wilkinson’s Lemma:

when

a)W(a δ+

Conditioning tells us how much the result of the disturbed vector 
data differs from the exact result for vector data that is:

0→
δ
a
a

0→ε

W(a)

Indicator of conditions task B(a) is the number for which the 
following condition is satisfied:

a
aδ

≤
δ

)(aB
w
w

)(),( aWaWNw −ε=δ
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• Let us assume the relative error size of x

Indicator of conditions task

x
xx

~
~−

• The relative error size f(x)

)~(
)~)(~('

)~(
)~()(

xf
xxxf

xf
xfxf −

≈
−

• Indicator of conditions task :

)~(
)~('~

xf
xfx
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• Example

Indicator of conditions task

xxf =)(

• Indicator of conditions:

2
12

1

)~(
)~('~

==
x

x
x

xf
xfx

task well conditioned
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• Example

Indicator of conditions task

21
10)(

x
xf

−
=

• Indicator of conditions :

2

2

1
2

)~(
)~('~

x
x

xf
xfx

−
=

ill-conditioned task near x=1 i x=-1
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