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NUMERICAL METHODS

prof. dr hab. inż. Katarzyna Zakrzewska

Lecture 5.

Set of linear equations
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OUTLINE

• Exact methods
• Naïve Gaussian Elimination
• Gauss-Siedel Method
• LU Decomposition
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Consider the system of linear equations m
with n unknowns in the form of















mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa









2211

22222121

11212111

with coefficients aik and bi that belong to K ( K 
= R or K = C)
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The system of linear equations:

bAx 
where:
• A – matrix with m rows and n columns
• x – vector with n unknowns
• b – vector of m known numbers

possible solutions:
• Infinitely many solutions
• Exactly one solution
• No solution (inconsistent system)
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Matrix system of equations is called a coefficient 
matrix A

Expanded matrix is called the matrix C, also 
referred to as A / B, formed from the matrix A by 
adding to it a column of free terms
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Kronecker-Capelli theorem

System of m linear equations with n unknowns has 
a solution if the rank r of the main matrix equals to 
the rank of the expanded matrix :

rank A = rank C = r

For any matrix, the rank is equal to r if and only if there 
exists a nonzero minor of rank k of this matrix, and 
every minor of rank larger than k is zero.
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Kronecker-Capelli theorem

If the rank r of both matrices is equal to the number 
of unknowns, there is one solution of the system of 
equations , i.e., one set of numbers satisfying the 
equation can be found; a system is consistent

rank A = rank C = n
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Kronecker-Capelli theorem
If a common order r the both matrices is smaller 
than the number of unknowns n, 

rank A =rank C < n

then the system has no unique solution, it depends 
on (n - r) parameters 

Thus, (n - r) unknowns can be chosen arbitrarily, 
and the remaining r unknowns can be uniquely
determined from the matrix equation.
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Kronecker-Capelli theorem

If the rank r of the main matrix is smaller than the 
rank of an extended matrix,

rank A < rank C

the system of linear equations has no solution; the
system is inconsistent
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Methods of solving sets of linear 
algebraic equations

Exact methods - definition

If the solution of equations Ax=b is obtained by the 
transformation of A and B, assuming exactly 
performed arithmetic operations, after a finite 
number of actions we get a solution. 
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Exact methods

Exact methods - features

• A small number of calculations needed to determine the 
solution

• If the task is ill-conditioned numerically, the solution can 
be subject to a significant error.

• They can be unstable due to rounding off errors
• The transformation matrix A uses to a large extent the 

machine's memory, especially if the original data A and b
should be kept to a final verification
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Exact methods - example

2222121
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baba
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2 aaaa

baba
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Example – Cramer's formulas

38.050.070.0

54.070.099.0

21

21




xx

xx

We assume accurate to two decimal digits each result before 
further calculation is rounded

49.04900.070.070.0

50.04950.050.099.0

1221

2211




aa

aa

01.049.050.012212211  aaaa

Method 1:
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Exact methods - example

38.070.054.050.0212122  baba

0
01.0

0
1 x

54.070.038.099.0121211  baba

0
01.0

0
2 x

027.027.02660.02700.0 

038.038.03780.03762.0 

The exact solution to this system of equations gives the result:

80.01 x 36.02 x
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Exact methods - example

38.050.070.0

54.070.099.0

21

21




xx

xx

71.07070.0
99.0

70.0

11

21 
a

a

Method 2: Gaussian elimination method

We eliminate the unknown x1 from the second equation of the 
system of equations. For this purpose multiplying the first 
equation by:

By subtracting the equations, after having rounded to two digits:

00.000.0 2 x

We receive:

38.050.070.0

3818.04949.070.0

21

21




xx

xx

The system has infinitely many solutions.
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Sets of equations with triangular matrix

Triangular matrix – definition
Triangular matrix is called lower (upper) triangular matrix, 

where all the elements of above (under) diagonal are equal 
to zero.

lower triangular matrix upper triangular matrix
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Sets of equations with triangular matrix
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Calculating the determinant of a triangular matrix comes 
down to the multiplication of elements lying on the main 
diagonal:
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Sets of equations with triangular matrix
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If the matrix A system of n equations with n unknowns Ax=b
is a triangular matrix (upper or lower), then the solution x of 
this system of equations can be obtained by performing a 
small number of arithmetic operations with small rounding 
errors

1...,,2,1  nni

Generally
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Sets of equations with triangular matrix

nnM
2

1

2

1 2 

Calculation cost:

To determine the vector x, there should be 
performed M multiplications and divisions and D 
additions:

nnD
2

1

2

1 2 
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Gaussian Elimination

11313212111 ... bxaxaxaxa nn 

22323222121 ... bxaxaxaxa nn 

nnnnnnn bxaxaxaxa  ...332211

.....................

The first phase (the phase of the elimination of the 
"forward„ coefficients)

n-1 steps of elimination are required
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Gaussian Elimination

11313212111 ... bxaxaxaxa nn 

1
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a
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a
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Step 1. From the second row subtract the first one, divided by a11
and multiplied by a21

1
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Result:

11

21

a

a

22323222121 ... bxaxaxaxa nn 
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Gaussian Elimination

''
3

'
32

'
2 ... nnnnnn bxaxaxa 

11313212111 ... bxaxaxaxa nn 
'
2
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.....................

Similarly, acting with subsequent rows:
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Gaussian Elimination
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Step 2. We repeat the procedure step 1 for the third 
row
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Gaussian Elimination

'
2

'
23

'
232

'
22 ... bxaxaxa nn 

"
3

"
33

"
33 ... bxaxa nn 

""
3

"
3 ... nnnnn bxaxa 

.....................

After second step we get:
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Gaussian Elimination

'
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'
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22 ... bxaxaxa nn 

"
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"
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   11   n
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n
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11313212111 ... bxaxaxaxa nn 

.....................

At the end of step n-1 the set of equations takes the 
form:
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Gaussian Elimination
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After the n-1 elimination step of variables the 
resulting equations can be written in a matrix form:

The resulting matrix is a triangular matrix!
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Gaussian Elimination

The second phase – so called back-substitution

Start with the last equation because it has only one unknown
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Gaussian Elimination

nnnM
3

1

3

1 23 

Gaussian Elimination– computational cost

The total number of multiplications and divisions:

The total number of additions:

nnnD
6

5

2

1

3

1 23 
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Gaussian Elimination - example

Time t 
(s)

Velocity 
(m/s)

5 106.8

8 177.2

12 279.2

The velocity data is approximated by a polynomial as:

  12.t5           , 32
2

1  atatatv

Example:

Find the velocity at t=6 seconds.
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Gaussian Elimination - example

  12.t5    ,atatatv  32
2
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2.279

2.177

8.106

112144

1864

1525

3

2

1

a

a

a

 

smvst /8,106)5(,51 
smvst /2,177)5(,82 

smvst /2,279)5(,123 
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Gaussian Elimination - example

Divide equation 1 by 
25 and multiply by 64

   56.28.1061525 

 
 
 208.96    56.18.4 0   

408.273     56.2   8.1264

177.2         1        8     64   



























2.279112144

2.1771864

8.1061525
























2.279112144

208.9656.18.40

8.1061525







56.2
25

64


Subtract the result of 
equation 2

 408.27356.28.1264 

We receive :
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Gaussian Elimination - example

.

   76.58.1061525 


















2.279112144

208.9656.18.40

8.1061525







 
 
 968.335  76.48.16   0   

168.615     76.5  8.28   144

279.2        1        12      144   






























968.33576.48.160

208.9656.18.40

8.1061525







76.5
25

144


Divide equation 1 by 
25 and multiply by 144

Subtract the result of 
equation 3

After the first step of 
elimination

 168.61576.58.28144 
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Gaussian Elimination - example

   5.3208.9656.18.40 




















968.33576.48.160

208.9656.18.40

8.1061525







 
 
 .760         7.0    0        0   

728.33646.516.80

335.968   76.416.80   



























76.07.000

208.9656.18.40

8.1061525







5.3
8.4

8.16





Subtract the result of 
equation 3

Divide equation 2 
by -4.8 and multiply 

by -16.8

 728.33646.58.160  

After the second step of 
elimination
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Gaussian Elimination - example




































































76.0

208.96

8.106

 

7.000

56.18.40

1525

7.07.000

2.9656.18.40

8.1061525

3

2

1

a

a

a







08571.1
7.0

76.0

76.07.0

3

3

3







a

a

aSolving for a3

Back Substitution
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Gaussian Elimination - example

690519. 
4.8

1.085711.5696.208
 

8.4

56.1208.96

208.9656.18.4

2

2

3
2
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56.18.40
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3

2

1

a

a

a

Solving for a2

08571.13 a
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Gaussian Elimination - example

290472.0
25

08571.16905.1958.106
25
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8.106525
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a

a

a

Solving for 
a1

08571.13 a 6905192 .a 
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Gaussian Elimination - example
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08571.1

6905.19

290472.0

3

2

1

a

a

a
Solution:

  125   ,08571.16905.19290472.0 2
32

2
1  tttatatatv

      .m/s 686.12908571.166905.196290472.06 2 v
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Gaussian Elimination

Disadvantages of the method:

• May stop the process of calculation due to a division by 
zero.

• It is particularly susceptible to accumulation of rounding 
errors.

Advantages of the method:
• The number of operations in the method of Gaussian 

elimination is much smaller than in the method of Cramer

In case of 15 equations
M=1345 multiplications in the method of Gaussian Elimination and 

M=5∙1012 for Cramer formulas

Digital machine performs 106 multiplications per second: 0,01 s in 
method of Gaussian Elimination and more than a year to formulas 

Cramer
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Gaussian Elimination

Division by zero can occur any time during elimination 
of variables
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19210

5.600

71012
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2
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In the next step, division by zero 
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Gaussian Elimination
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999995.0

05.1

9625.0

 

3

2

1

x

x

x

The system of equations:

Exact solution
The solution with an 

accuracy 6 
decimal digits at 
each step

The solution with an
accuracy 5 decimal 
digits at each step
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5.1

625.0
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Gaussian Elimination

The basic element is called the element of matrix A, with which 
eliminates the variable of further equations. So far as the basic 
elements chose the element lying on the diagonal

Using partial choice the base element to select of the elements 
of the k-th column in the k-th matrix, which has the largest 
module. By changing sequence of rows in the matrix, you can 
get the basic element lying on the diagonal

Partial pivoting method

- with a partial choice of the base element

• Prevents division by zero
• Reduces the numerical error

kka
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Gaussian Elimination

144,64,25

















2.279112144

2.1771864

8.1061525







The values   in the first column are:

Exchange the third row and the first row

Example :
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8.1061525

2.1771864

2.279112144
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After Gauss elimination

 

















112144

1864

1525

A

Calculate the determinant of a matrix [A]

 

















7.000

56.18.40

1525

B

det(A)=det(B)=25 (-4,8) (0.7)=-84,00

Useful Theorem: If the matrix B is formed from the matrix 
A by adding or subtracting from one row another row 
multiplied by the number, the determinant remains the 
same
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2.000

8264.0917.20

112144

C
Following application of the 

method with partial selection of 
basic element , we have
received matrix[C]

det(C)=(-)(-)det(B)=144 (2.917) (-0.2)=-84,00

Useful Theorem: If the matrix B is formed from the matrix 
A by exchanging one row with another, then a change 
of sign of the determinant occurs
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Gaussian Elimination

   1.1244444.0333.599.634444.02.279112144  

















8.1061525

2.1771864

2.279112144







 
 
 10.53.55560667.2      0    

124.1 0.44445.33363.99

177.21        8            64     

























8.1061525

10.535556.0667.20

2.279112144







4444.0
144

64


Divide row 1 by 144
and multiply by 64

Subtract the result 
of equation 2

Numerical Methods - Lecture 5



45

Gaussian Elimination

   47.481736.0083.200.251736.0279.2112144  

 
 
 33.588264.0 917.20    

48.470.17362.08325

106.81        5       25     

























8.1061525

10.535556.0667.20

2.279112144























33.588264.0917.20

10.535556.0667.20

2.279112144







1736.0
144

25


Subtract the result 
of equation 3

Divide equation 1 by 
144 and multiply by 
25
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Gaussian Elimination

2.917,667.2


































10.535556.0667.20

33.588264.0917.20

2.279112144

33.588264.0917.20

10.535556.0667.20

2.279112144













The values   in the second column of the second and 
third row is: 

Maximum is 2.917 in the third row

Replace the third row of the second

Numerical Methods - Lecture 5



47

Gaussian Elimination

   33.537556.0667.209143.058.330.82642.9170  

















10.535556.0667.20

33.588264.0917.20

2.279112144







 
 
 23.02.0   0       0   

53.33 0.75562.6670

53.10 0.55562.6670   



























 23.02.000

33.588264.0917.20

2.279112144







.9143.0
917.2

667.2


Subtract the result 
of equation 3

Divide equation 2 by
2.917 and multiply by
2.667
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Gaussian Elimination

6719.
917.2

15.18264.033.58
917.2

8264.033.58

33.588264.0917.2

3
2

32










a

a

aa




















































 230

3358

2279

2000

8264091720

112144

3

2

1

.

.

.

a

a

a

 

.

..

Solving for a2
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Gaussian Elimination

2917.0
144

15.167.19122.279
144

122.279

2.27912144

32
1

321










aa

a

aaa




















































 230

3358

2279

2000

8264091720

112144

3

2

1

.

.

.

a

a

a

 

.

..

Solving for a1
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Gaussian Elimination


















































2279
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8106

112144

1864

1525

3

2

1

.

.

.

a

a

a

 


































15.1

67.19

2917.0

3

2

1

a

a

a

Solution:
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11313212111 ... bxaxaxaxa nn 

2323222121 ... bxaxaxaxa n2n 

nnnnnnn bxaxaxaxa  ...332211

. .

. .

. .

System of n equations with n unknowns:

.

.

.
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Gauss-Seidel Method

11

13132121
1 a

xaxaxab
x nn




nn

nn,nnnn
n

,nn

n,nnn,nn,n,nn
n

nn

a

xaxaxab
x

a

xaxaxaxab
x

a

xaxaxab
x

112211

11

12212211111
1

22

23231212
2

























The transformation equations to the form:

from equation 1

from equation 2

with n-1

from equation n
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.,,2,1,
1

ni
a

xab

x
ii

n

ij
j

jiji

i 



 


General form of the i - th equation

This is an iterative method
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100



new
i

old
i

new
i

ia x

xx






















n

-n

2

x

x

x

x

1

1



We assume the initial values   of x1 to xn and substitute 
them into previously transformed equations

Calculate the absolute value of the relative approximate
error 

The iterations are stopped when the absolute value of the 
relative approximate error is less than a prespecified
tolerance for all unknowns.
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Time t 
(s)

Velocity 
(m/s)

5 106.8

8 177.2

12 279.2

The velocity data is approximated by a polynomial as:

  12.t5           , 32
2

1  atatatv

Example:

Find coefficients a1, a2, a3 by Gauss-Seidel method

and velocity in time t = 6 s
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2.279

2.177

8.106

112144

1864

1525
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5

2

1

3

2

1

a

a

a

Using a Matrix 
template of the 
form:

The system of 
equations 
becomes:

Initial Guess: Assume an 
initial guess of
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25

58.106 32
1

aa
a




8

642.177 31
2

aa
a




1

121442.279 21
3

aa
a




Rewriting each equation:
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5

2

1

3

2

1

a

a

a
6720.3

25

)5()2(58.106
a1 




   
8510.7

8

56720.3642.177
a 2 




   
36.155

1

8510.7126720.31442.279
a3 




The first iteration:
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%76.72100
6720.3

0000.16720.3
1a 




%47.125100
8510.7

0000.28510.7
2a 






%22.103100
36.155

0000.536.155
3a 






100



new
i

old
i

new
i

ia x

xx




































36.155

8510.7

6720.3

3

2

1

a

a

a

Finding the absolute relative approximate error:

At the end of the first 
iteration:

The maximum relative
approximate error 
is 125.47%
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36.155

8510.7

6720.3

3

2

1

a

a

a  
056.12

25

36.1558510.758.106
1 


a

 
882.54

8

36.155056.12642.177
2 


a

   
34.798

1

882.5412056.121442.279
3 


a

Second iteration:

The results of the 
first iteration:
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%543.69100
056.12

6720.3056.12
1a 


 x

 
%695.85100x

882.54

8510.7882.54
2





a

 
%540.80100

34.798

36.15534.798
3a 




 x




































54.798

882.54

056.12

3

2

1

a

a

a

Finding the absolute relative approximate error:

The maximum 
relative
approximate
error is
85.695%
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Iteration a1 a2 a3

1
2
3
4
5
6

3.6720
12.056
47.182
193.33
800.53
3322.6

72.767
69.543
74.447
75.595
75.850
75.906

−7.8510
−54.882
−255.51
−1093.4
−4577.2
−19049

125.47
85.695
78.521
76.632
76.112
75.972

−155.36
−798.34
−3448.9
−14440
−60072
−24958

0

103.22
80.540
76.852
76.116
75.963
75.931


































0857.1

690.19

29048.0

a

a

a

3

2

1

%
1a %

2a %
3a

Repeating more iterations, the 
following values are obtained:

When this method is consistent?
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If the matrix is   strongly diagonally dominant the 
Gauss-Seidel method is convergent




n

ijj
ijii aa

,1
for all i




n

ijj
ijii aa

,1
for at least one i
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Example of a matrix diagonally dominant

8131211  aaa

 















 

1373

351

5312

4232122  aaa

10323133  aaa
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LU Decomposition 

bAx 

LU Decomposition is another method to solve a set of 
simultaneous linear equations

The matrix A can be represented as:

LUA 
where:
L – lower triangular matrix
U – upper triangular matrix

Numerical Methods - Lecture 5
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LU Decomposition

     CXUL   

    CXA   

    ULA 

For a nonsingular matrix [A] on which one can successfully conduct
the Naïve Gauss elimination forward elimination steps, one can
always write it as:

where: =Lower triangular matrix

If one is solving a set of equations

then:

Numerical Methods - Lecture 5

 L

 U =Upper triangular matrix
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LU Decomposition

  1L

         CLXULL    11  

     ILL 1

       CLXUI 1

    UUI 

      CLXU 1

Multiplying both sides by

but: unit matrix

but:

therefore:

Numerical Methods - Lecture 5
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LU Decomposition

     ZCL 1

    CL Z 

    ZU X You can replace

      CLXU 1

Numerical Methods - Lecture 5

The idea is to solve (2) for [Z] by forward substitution and 
then to use (2) to calculate the solution vector [X] by back
substitution

(2)

(1)
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LU Decomposition

Given:

    CXA   

Decompose [A] into [L] and [U]

Solve [L][Z] = [C] for [Z]

Solve [U][X] = [Z] for [X]
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LU Decomposition

    

































33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ULA





[A] Decompose to [L] and [U]

[U] is the same as the coefficient matrix at the end of 
the forward elimination step.

[L] is obtained using the multipliers that were used in 
the forward elimination process
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Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination

 

112144

1864

1525

















   

112144

56.18.40

1525

56.212;56.2
25

64
















 RowRow

   

76.48.160

56.18.40

1525

76.513;76.5
25

144


















 RowRow

Step 1:
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Finding the [U] Matrix

Step 2:

 




















76.48.160

56.18.40

1525

   

7.000

56.18.40

1525

5.323;5.3
8.4

8.16





















RowRow

 

















7.000

56.18.40

1525

U

Matrix after Step 
1:
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Finding the [L] matrix

Using the multipliers used during the Forward Elimination Procedure

















1

01

001

3231

21





56.2
25

64

11

21
21 

a

a


76.5
25

144

11

31
31 

a

a


From the first 
step of forward 
elimination  

112144

1864

1525
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Finding the [L] Matrix

 

















15.376.5

0156.2

001

L

From the second 
step of forward 
elimination




















76.48.160

56.18.40

1525
5.3

8.4

8.16

'a

'a

22

32
32 
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Does [L][U] = [A]?

   


































7.000

56.18.40

1525

15.376.5

0156.2

001

UL ?
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Using LU Decomposition to 
solve SLEs

Solve the following set of 
linear equations using 
LU Decomposition 

















































2279

2177

8106

112144

1864

1525

3

2

1

.

.

.

x

x

x

 

Using the procedure for finding the [L] and [U] 
matrices

    


































7.000

56.18.40

1525

15.376.5

0156.2

001

ULA
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Example

Set  [L][Z] = [C]

Solve for [Z]


















































2.279

2.177

8.106

15.376.5

0156.2

001

3

2

1

z

z

z

2.2795.376.5

2.17756.2

10

321

21

1






zzz

zz

z
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Example

Complete the forward substitution to solve for [Z]

 

   
735.0

21.965.38.10676.52.279

5.376.52.279

2.96

8.10656.22.177

56.22.177

8.106

213

12

1












zzz

zz

z

 


































735.0

21.96

8.106

3

2

1

z

z

z

Z
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Example

Set [U][X] = [Z]

Solve for [X] The 3 equations become



















































7350

2196

8106

 

7.000

56.18.40

1525

3

2

1

.

.

.

x

x

x

735.07.0

21.9656.18.4

8.106525

3

32

321






a

aa

aaa
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Example

From the 3rd equation

0501
70

7350

735070

3

3

3

.a
.

.
a

.a.







Substituting in a3 and using the 
second equation

219656184 32 .a.a. 

 

7019
84

05015612196
84

5612196

2

2

3
2

.a
.

...
a

.

a..
a
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Example

Substituting in a3 and a2

using the first equation

8106525 321 .aaa 

Hence the Solution Vector 
is:


































050.1

70.19

2900.0

3

2

1

a

a

a

 

29000
25

0501701958106
25

58106 32
1

.

...

aa.
a










