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“JJJ OUTLINE

e Exact methods
e Naive Gaussian Elimination
e Gauss-Siedel Method

e LU Decomposition
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mJJ System of linear equations

Consider the system of linear equations m
with n unknowns in the form of

a, x, +a,x, +...+a, x, =b,
A, X, +a,,X, +...+a, x, =b,

with coefficients a, and b, that belong to K ( K
=RorK=C)
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AGH System of linear equations

The system of linear equations:

Ax=D

where:

e A - matrix with m rows and n columns
e X — vector with n unknowns

e b - vector of m known numbers

possible solutions:

e Infinitely many solutions

e Exactly one solution

e No solution (inconsistent system)
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“JIJ! Kronecker-Capelli theorem

Matrix system of equations is called a coefficient
matrix A

Expanded matrix is called the matrix C, also
referred to as A/ B, formed from the matrix A by
adding to it a column of free terms
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“JIJJ Kronecker-Capelli theorem

Kronecker-Capelli theorem

System of m linear equations with n unknowns has
a solution if the rank r of the main matrix equals to

the rank of the expanded matrix :
rank A=rank C=r

For any matrix, the rank is equal to r if and only if there
exists a nonzero minor of rank k of this matrix, and

every minor of rank larger than k is zero.
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“JIJ! Kronecker-Capelli theorem

Kronecker-Capelli theorem

If the rank r of both matrices is equal to the number
of unknowns, there is one solution of the system of
equations , i.e., one set of numbers satisfying the
equation can be found; a system is consistent

rank A=rank C=n
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@!J! Kronecker-Capelli theorem

Kronecker-Capelli theorem
If a common order r the both matrices is smaller
than the number of unknowns n,

rank A =rank C <n

then the system has no unique solution, it depends
on (n - r) parameters

Thus, (n - r) unknowns can be chosen arbitrarily,
and the remaining r unknowns can be uniquely
determined from the matrix equation.
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“JIJ! Kronecker-Capelli theorem

Kronecker-Capelli theorem

If the rank r of the main matrix is smaller than the
rank of an extended matrix,

rank A<rank C

the system of linear equations has no solution; the
system is inconsistent
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mJJ Methods of solving sets of linear
AGH algebraic equations

Exact methods - definition

If the solution of equations Ax=Db is obtained by the
transformation of A and B, assuming exactly
performed arithmetic operations, after a finite
number of actions we get a solution.
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Exact methods

Exact methods - features

e A small number of calculations needed to determine the
solution

o If the task is ill-conditioned numerically, the solution can
be subject to a significant error.

e They can be unstable due to rounding off errors

e The transformation matrix A uses to a large extent the
machine's memory, especially if the original data A and b
should be kept to a final verification
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M]JJ Exact methods - example

AGH

Example — Cramer's formulas Method 1:
1 — 2 =
_ A, A, —d~ A a..d., —d,.d
A, X; +ayX, _b2 114922 21412 11%22 21%12

We assume accurate to two decimal digits each result before
further calculation is rounded

0.99x, +0.70x, = 0.54
0.70x, +0.50x, = 0.38

a,,a,, =0.99-0.50 = 0.4950 = 0.50
a,.a,, =0.70-0.70 = 0.4900 = 0.49

a;a,, —a,a,, =0.50-0.49=0.01

Numerical Methods - Lecture 5
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“]JJ Exact methods - example

a,,b, —a,,b, =0.50-0.54—0.70-0.38
=0.2700—0.2660 = 0.27-0.27 = 0
a,b, —a, b, =0.99-0.38—0.70-0.54

=0.3762-0.3780=0.38-0.38=0
0

x=——=0
0.01

X, =L=O
0.01

The exact solution to this system of equations gives the result:

x, =0.80 x, =—0.36

Numerical Methods - Lecture 5
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M]JJ Exact methods - example

AGH

Method 2: Gaussian elimination method 0.99x, +0.70x, = 0.54
0.70x, +0.50x, = 0.38

We eliminate the unknown x; from the second equation of the
system of equations. For this purpose multiplying the first

equation by:
G _ 0'78 ~0.7070=0.71

ay

We receive: 0.70x, +0.4949x, = 0.3818
0.70x, +0.50x, = 0.38

By subtracting the equations, after having rounded to two digits:

0.00x, =0.00
The system has infinitely many solutions.
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@]}JIJJ Sets of equations with triangular matrix

Triangular matrix — definition

Triangular matrix is called lower (upper) triangular matrix,
where all the elements of above (under) diagonal are equal
to zero.

., 0 0 0 0 U1 U U3 Un |
12,1 lg,g 0 0 0 0 Uz U233 Uz n
L = 13‘1 13 2 . 0 0 U — 0 0 S .
: 0 0 0 0 Rt Un—1n
_ln | ln 2 ln,n—l ln,n_ N 0 0 0 0 Unn _
lower triangular matrix upper triangular matrix
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‘@]‘JJ Sets of equations with triangular matrix

Calculating the determinant of a triangular matrix comes
down to the multiplication of elements lying on the main

diagonal:
L, 0 O 0 0 ] n
by by 0 0 0 _ — : .
det(L) =11, =1, L,
: 0
_ln 1 ln 2 ln,n—l ln n
(u11 U1y U13 ... Uin | L
0 ups uzz ... Uy dCt(U) :Huii =U Uy U,
U= |0 0 "= e ‘ i=1
0 0 0 v U,
0 0 0 0 wu,,
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‘@]‘JJ Sets of equations with triangular matrix

If the matrix A system of n equations with n unknowns Ax=b
is a triangular matrix (upper or lower), then the solution x of
this system of equations can be obtained by performing a
small number of arithmetic operations with small rounding
errors

ay X +apX, +o.tap, X, +a,x, = b,

an—l,n—l'xn—l + an—l,nxn = bn—l b 5 3
= n

Generally

b—a x —..—a., X .
xi: i in na +17vi+l l=n—1,l’l—2, “.,1

u
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@JIJJ Sets of equations with triangular matrix

Calculation cost:

To determine the vector x, there should be
performed M multiplications and divisions and D

additions:
1, 1
M=—n"+—n
2 2
D:ln2+ln
2 2
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M]JJ Gaussian Elimination

AGH

The first phase (the phase of the elimination of the
"forward,, coefficients)

a, x, +a,x, +a,x, +...+a, x =b,

Ay X, + Ay X, + Ay Xy +...+a,, X, = b,

a x +a,x,+a.x,+..+a, x =b

n

n-1 steps of elimination are required

Numerical Methods - Lecture 5
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M]JJ Gaussian Elimination

AGH

Step 1. From the second row subtract the first one, divided by a,;
and multiplied by a,;

A X, + A Xn A2 X2 +...+a,.x. =b %1
11X T ApXy T A3 X3 T T Ay, X, =Dy
ﬂ ap|
r a,, ay, _ a4y
a, X, +—a,x, +..+—a, x, =——Db,
a, a, a,
{
Ay X| +AyyXy + Ay3 X5 +...4+ a5, X, =D,
Result:
a a a
21 21 _ 21
a,, ———a, |x,+..+|a, ———a,, |x, =b, ——Db,
a a a
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1l

AGH

Gaussian Elimination

Similarly, acting with subsequent rows:

QX +a,Xx, +a,x, +...+a,x, =b,

Ay X, + Ay Xy +...+a,, X, =D,
Ay X, + A3 X, +...+a;, X, = b,

a,x,+a x,+..+a, x =b

n

'

' a
. _ 721
dy
! ] a
_ 21
Ay, = Ay, — ayy,
dy

Numerical Methods - Lecture 5
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1l

AGH

Gaussian Elimination

Step 2. We repeat the procedure step 1 for the third

row

-

\

'
. . . _p d 3y
drX, + ay3 X5 + ...+ a, x, =0, a'
22

i

' ' a ' a Cl !
32 3 Q3
A3yXy +Uyy == X5 +...+a,, ==X, =—=D,
dry )y %)
Ay X, + Ay Xy +...+a, X, = b,

Result:

Numerical Methods - Lecture 5
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M]JJ Gaussian Elimination

AGH

After second step we get:

'

Ay Xy + Ay Xy + ...+ a,, X, =D,
X, +...+a;, x, =D,

a.x,+..+a x =Db

n

Numerical Methods - Lecture 5
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“JJJ Gaussian Elimination

At the end of step n-1 the set of equations takes the
form:

a, x, +a,x, +a,x, +..+a, x, =b,
Ay Xy + Xy +...+0a, x =b,

Ay X, +...+ay,,x, =D,
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mJJ Gaussian Elimination

After the n-1 elimination step of variables the
resulting equations can be written in a matrix form:

ay, dyp dyy - 4y, | X b,
0 a,, a, dr, || X2 b,
0 0 a, a, | x;,|=| b,

0 0 0 0 a""|x p

The resulting matrix is a triangular matrix!

Numerical Methods - Lecture 5 25



M]JJ Gaussian Elimination

AGH

The second phase - so called back-substitution

Start with the last equation because it has only one unknown

(n-1)
X = b,
no D
nn
(i-1) (i-1) (i-1) (i-1)
bi ;N T Xy T4, X .
X, = . fori=n—1,...1

l (z—l)

aii
bi(i—l) B i a;z‘—l) X,
X, = J:(:l) for i=n—1,..1
a

i

Numerical Methods - Lecture 5
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mJJ Gaussian Elimination

Gaussian Elimination— computational cost

The total number of multiplications and divisions:

1 1
M=—n+n*"-—=n

3 3

The total number of additions:

Numerical Methods - Lecture 5
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@],JJ Gaussian Elimination - example

Example:
Time t Velocity
(s) (m/s)
5 106.8
8 177.2
12 279.2

The velocity data is approximated by a polynomial as:
v(t):a1t2+a2t+a3, 5<t<12.

Find the velocity at t=6 seconds.

Numerical Methods - Lecture 5



“]JJ Gaussian Elimination - example

v(t): a,t’+a,t+a,, 5<t<12

- o -
[ [ a, Vi
tz [ a = |V
2 2 2 | = 2
2
Ly 1y L4911 LVs_

t, =5s,v(5) =106 ,8m /s
t, =8s,v(5) =177 ,2m /s
t; =125,v(5) =279 ,2m /s

25 5 1l[a,] [106.8]
64 8 1||a,|=]177.2
144 12 1||a;| [279.2
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25 5 1 ' 106.8]
64 8 1 ' 1772

144 12 1§ 2792

25 5 1

Subtract the result of
equation 2

We receive :

Numerical Methods - Lecture 5

mJJ Gaussian Elimination - example

Divide equation 1 by 64
25 and multiply by 64 2—5= 2.56

106.8]x2.56= [64 12.8 2.56 @ 273.408]

64 8 1 177.2]
64 12.8 256 ©  273.408]
0 —-48 -1.56 :  —96.208]
25 5 1 ¢ 106.8 |

0 —-48 -156 : -96.208

144 12 1 i 2792

30



0
144

25 5 1

Subtract the result of
equation 3

After the first step of

-4.8
12

elimination

Gaussian Elimination - example

! 106.8 Divide equation 1 by 144
~-1.56 i -96.208| 25 and multiply by 144 2—5=5.76
I 279.2

106.8]x5.76 = [144 28.8 576 : 615.168]

144 12 1 279.2]

~[144 288 5.76 615.168]

0 -168 —4.76 ~335.968

25 5 1 106.8

0 -48 -156 : -96.208

0 -168 -4.76 i -335.968

Numerical Methods - Lecture 5
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0
0

-4.8
-16.8

Gaussian Elimination - example

1
—1.56
—4.76

0 —4.8 —1.56

Subtract the result of

equation 3

After the second step of

elimination

106.8 | Divide equation 2 -16.8
o0z | DY -4.8 and multiply VT
_335968| °Y 108
~96.208]x3.5= [0 -16.8 —5.46 @ —336.728]
0 -16.8 —4.76 @ 335.968]
~[0 -16.8 -546 @ —336.728]
0 0 07 : 0.76]
25 5 1 i 106.8
0 -48 -156 @ —96.208
0o 0 07 : 076

Numerical Methods - Lecture 5 32



AGH
25 5

0 —4.38
0 0

Solving for a,

Numerical Methods - Lecture 5

Gaussian Elimination - example

1
—1.56
0.7

106.8 |
-96.2
0.7

25

=0

0

5
-4.8
0

Back Substitution

0.7a, =0.76

076

a,

07
a, =1.08571

1
—1.56

0.7

106.8
-96.208
0.76
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M

AGH

25
0
0

Solving for a,

5
-4.8
0

1
~1.56
0.7

—4.8a, —1.56a, =-96.208

= —96.208 +1.56a,

-4.8
-96.208+1.56 x1.08571

Numerical Methods - Lecture 5

a, =

a, =

a, =

106.8

=|-96.208

0.76

“]JJ Gaussian Elimination - example

a, =1.08571

19.6905

-4.8

34



@!JJ Gaussian Elimination - example

25 5 1 [a | [106.8
0 -48 -1.56]|a,|=|-96.2
0 0 0.7 |la,| | 0.76

a;=1.08571 4, =19.6905

Solving for 25a,+5a, +a, =106.8
di

106.8-5a, —a,
“ 25
~ 106.8—5x%19.6905—-1.08571
25
=0.290472
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@JIJJ Gaussian Elimination - example

25 5 1][a,] [1068]
64 8 1||a,|=[1772
144 12 1] |ay| 2792

Solution: L

a, ] [0.290472]
a, |=| 19.6905
ay | | 1.08571

v(t)=a,t” + a,t +a, =0.290472¢* +19.6905¢ +1.08571, 5<¢<12

1(6)=0.290472(6) +19.6905(6)+1.08571=129.686 m/s.
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Gaussian Elimination

Disadvantages of the method:

e May stop the process of calculation due to a division by
Zero.
e It is particularly susceptible to accumulation of rounding

errors.
Advantages of the method:

e The number of operations in the method of Gaussian
elimination is much smaller than in the method of Cramer

In case of 15 equations

M=1345 multiplications in the method of Gaussian Elimination and
M=5-1012 for Cramer formulas

Digital machine performs 10® multiplications per second: 0,01 s in
method of Gaussian Elimination and more than a year to formulas
Cramer
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mJJ Gaussian Elimination

Division by zero can occur any time during elimination
of variables

Numerical Methods - Lecture 5

In the next step, division by zero

12 10 -7|[x ] [15 12 10 -7][x] [15
6 5 3|lx|=|14]=—> |0 0 65|x[=[65
24 -1 5 ||x,| |28 0 /=21 19 || x| |[-2]
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MMJ Gaussian Elimination

AGH

The system of equations:

20 15 10][x, 45
~3 -2249 7 ||x,|=|1.751

B 1 3% | 9 |
Exact solution The solution with an The solution with an

accuracy 6 accuracy 5 decimal
decimal digits at digits at each step
each step

(x| [1] x| | 0.9625 | (x| | 0.625 |

X, | =11 x, [=| 1.05 x, |=| 1.5

| xs] L1 x; | [0.999995 ] x3 | [0.99995

Numerical Methods - Lecture 5



@]]JIJJ Gaussian Elimination

Partial pivoting method
- with a partial choice of the base element

 Prevents division by zero
« Reduces the numerical error

The basic element is called the element of matrix A, with which
eliminates the variable of further equations. So far as the basic
elements chose the element lying on the diagonal

Apr

Using partial choice the base element to select of the elements
of the k-th column in the k-th matrix, which has the largest
module. By changing sequence of rows in the matrix, you can
get the basic element lying on the diagonal
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1l

Gaussian Elimination

AGH
Example :
25 5 1
64 8 1
144 12 1]

The values in the first column are:

25 5 1
1

@121

106.8 |

177.2
279.2

a, | [1068]
a, |=|177.2
a, | 2792

144 12 1
64 8 1
25 5 1

279.2]

177.2

106.8

Exchange the third row and the first row

Numerical Methods - Lecture 5
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M]JJ Gaussian Elimination

AGH

Calculate the determinant of a matrix [A] 25 5 1]
[4]=] 64 8 1
144 12 1
After Gauss elimination 25 5 1|
[B]=| 0 -48 -1.56
0 0 0.7 |

Useful Theorem: If the matrix B is formed from the matrix
A by adding or subtracting from one row another row
multiplied by the number, the determinant remains the
same

det(A)=det(B)=25 (-4,8) (0.7)=-84,00

Numerical Methods - Lecture 5



“]JJ Gaussian Elimination

. —— 144 12 1
Following application of the
method with partial selection of [C]z 0 2917 0.8264
basic element , we have 0 0 _0.2
received matrix[C] _ R

Useful Theorem: If the matrix B is formed from the matrix
A by exchanging one row with another, then a change
of sign of the determinant occurs

det(C)=(-)(-)det(B)=144 (2.917) (-0.2)=-84,00
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M]JJ Gaussian Elimination

AGH

(144 12 1 : 2792
: Divide row 1 by 144 64
64 & 1 : 1772 and multiply by 64 —=0.4444

| 144
25 5 1 : 106.8

144 12 1 : 2792]x0.4444=[63.99 5333 04444 > 1241]

64 8 1 177.2]
—[63.99 5333 0.4444 : 124.1

0 2.667 0.5556 : 53.10)]

Subtract the result
of equation 2

144 12 1 : 27921
0 2667 0.5556 @ 53.10
|25 5 1 : 106.8 |
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mJJ Gaussian Elimination

144 12 1 io2792 . 25
. Divide equation 1 by —0.1736
0 2.667 0.5556 : 53.10| 144 and multiply by 144
25 5 1 i o1068] %

144 12 1 @ 279.2]x0.1736 =[25.00 2.083 0.1736 @ 48.47]

25 5 1 : 106.8
—[25 2.083 0.1736 : 48.47]
Subtract the result 0 2917 0.8264 : 58.33]
of equation 3 144 12 1 2792

0 2667 0.5556 @ 53.10
0 2917 0.8264 : 5833
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“]JJ Gaussian Elimination

The values in the second column of the second and
third row is: \2.667 20917‘

5

Maximum is 2.917 in the third row

Replace the third row of the second

144 12 1 : 27921 (144 12 1 : 279.2]
0 2.667 05556 : 53.10|=| 0 2917 0.8264 : 5833
0 2917 08264 : 5833] | 0 2667 0.5556 : 53.10]
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“]JJ Gaussian Elimination

144 12 I : 279.2] Divide equation 2 by 2667
0 2917 08264 : 5833| 2.917 and multiply by 2907 _ 39143
0 2667 05556 : s53.10] °°%7 2.917

[0 2917 08264 : 5833]x0.9143=[0 2.667 0.7556 : 53.33]

0 2.667 05556 : 53.10

Subtract the result [0 2.667 07556 @ 5333

of equation 3

0 0 -02 : —0.23]
(144 12 1 2792 ]
0 2917 0.8264 & 5833
0 0 -02  -0.23
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“JJJ Gaussian Elimination

144 12 1 [a] [2792
0 2917 08264 ||a,|=| 5833
0 0 02 ||a,| |-023

Solving for a,

2917a,+0.8264a, = 58.33

= 58.33-0.8264a,

2917
58.33-0.8264x1.15

a,

2917
=19.67

Numerical Methods - Lecture 5



“]JJ Gaussian Elimination

144 12 1 e ] [2792
0 2917 08264 ||a,|=| 5833
0 0 02 ||a| |-023

Solving for a;
144a, +12a, +a, =279.2

= 279.2-12a, —a,
144
- 279.2-12x19.67-1.15

a,

144
=0.2917

Numerical Methods - Lecture 5



“!JJ Gaussian Elimination

25 5 1l|a, | [106.8
64 8 1||a,|=]1772
144 12 1||a,| [2792

Solution:




mJJ Gauss-Seidel Method

System of n equations with n unknowns:

1% + a;»X, + 13X + ... T a, X,

s X + rr Xy + yy Xy + ...+ a, X,

Numerical Methods - Lecture 5

a.x, +a,x,+a.x,+..+a x =b

:bl
:b2

n
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“]JJ Gauss-Seidel Method

The transformation equations to the form:

v = by —apx, —a;x;...... — A X, from equation 1
=
ap
by — a1 X, —Arr X —an. X
p — Ay Xy —dyzX3...... 2 .
Xy = 2 — « from equation 2
%)
/Wlth n-1
b, — Ay_11% — Ay 12Xy eeeens — Ay n—2%Xn—2 — Ay nXy
xn—l —
an—l,n—l
b. —a . xi,—ad. X, —...... —a X .
x, =l nere nnl7nl  «—  from equation n
a
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“]JJ Gauss-Seidel Method

General form of the i - th equation

n

J=1

a;;

This is an iterative method

Numerical Methods - Lecture 5

B i .
X, = Ji=12,...,n.
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“]JJ Gauss-Seidel Method

We assume the initial values of x; to x, and substitute
them into previously transformed equations

Calculate the absolute value of the relative approximate
error

=] L 1x100

The iterations are stopped when the absolute value of the
relative approximate error is less than a prespecified
tolerance for all unknowns.

Numerical Methods - Lecture 5

54




M“]JJ Gauss-Seidel Method

AGH

Example:
Time t Velocity
(s) (m/s)
5 106.8
8 177.2
12 279.2

The velocity data is approximated by a polynomial as:

v(t):a1t2+a2t+a3, 5<t<12.

Find coefficients a,, a,, a; by Gauss-Seidel method

and velocity intimet =6 s

Numerical Methods - Lecture 5



Using a Matrix
template of the
form:

The system of
equations
becomes:

Initial Guess: Assume an
initial guess of

Numerical Methods - Lecture 5

144 12

“]JJ Gauss-Seidel Method
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Rewriting each equation:

Numerical Methods - Lecture 5

25 5 1][a,
64 8 1||la,|=
144 12 1||a,

Gauss-Seidel Method

106.8 |
177.2

1279.2

106.8 —5a, —a,
a, =
25
177.2—-64a, — a,
a, =
8
L 279.2 —144a, —12a,

1
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“]JJ Gauss-Seidel Method

1 8-5(2) -
a, 2 = 10638 5(2)=(5) _ 5 ¢
a2 = 2 25
a 5 _ _
@] |9 812:177.2 64(38.6720) (5):_7.8510

_279.2-144(3.6720)-12(-7.8510)
|

a, =—155.36

Numerical Methods - Lecture 5 58



M

AGH

“]JJ Gauss-Seidel Method

Finding the absolute relative approximate error:

new old
X. —X.

el = —Ix100

i x;aew
1= 3.6720—-1.0000 <100 = 72.76%

! 3.6720

g,| = —7.8510-2.0000 x100 =125.47%
2 —7.8510

c| = —155.36—-5.0000 <100 = 103.22%
3 —155.36

Numerical Methods - Lecture 5

At the end of the first
iteration:

a, | | 3.6720 |
a, |=|-7.8510
a, | |-155.36

The maximum relative
approximate error
is 125.47%
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“]JJ Gauss-Seidel Method

Second iteration:

| | 36720 _106.8-5(-7.8510)-15536 _
a, |=|-7.8510 4= 75 =
a,| |-15536
177.2—64(12.056)—155.36
The results of the a, = ( . ) =—-54.882
first iteration:
.= 279.2-144(12.056)-12(-54.882) _ oo 5,

1
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Finding the absolute

~112.056-3.6720
: 12.056

a

—54.882 —(—7.8510)

S

a

2" —54.882

—798.34—(-155.36)

€

a

3 :‘ —798.34

Numerical Methods - Lecture 5

“]JJ Gauss-Seidel Method

relative approximate error:

100 = 69.543% a, | | 12.056 |

a, |=|—-54.882

a, | |-798.54
x100 =85.695%

The maximum
relative
x100=80.540%  Approximate
error is
85.695%
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I

Gauss-Seidel Method

0
Iteration aq €, 1% a, Sal, /o as €, 3%
1 3.6720 |72.767 |-7.8510|125.47 |-155.36|103.22
2 12.056 |69.543 |-54.882 |85.695 |—798.34 |80.540
3 47.182 |74.447 | -255.51|78.521 |—-3448.9|76.852
4 193.33 | 75.595 | -1093.4 |76.632 |—14440 |76.116
5 800.53 |75.850 |-4577.2|76.112 |-60072 |75.963
6 3322.6 |75.906 |-19049 |75.972 |-24958 |75.931
0
(a, | [0.29048]
Repeating more iterations, the
) : _ a, 19.690
following values are obtained:
la; | | 1.0857
When this method is consistent?
Numerical Methods - Lecture 5
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MJJJ Gauss-Seidel Method

AGH

If the matrix is strongly diagonally dominant the
Gauss-Seidel method is convergent

n
a;|=z 2. a; foralli
j=l1, j#i
n
a.| > d;;  for at least one |
Jj=l1, j#i

Numerical Methods - Lecture 5



MJJJ Gauss-Seidel Method

AGH

Example of a matrix diagonally dominant

12 3 -5
1 5 3
'3 7 13

a33‘2‘a31‘+‘a32‘=10

Numerical Methods - Lecture 5



MJJ LU Decomposition

LU Decomposition is another method to solve a set of
simultaneous linear equations

Ax=Db
The matrix A can be represented as:

A=LU

where:
L - lower triangular matrix

U - upper triangular matrix

Numerical Methods - Lecture 5 65



MJJ LU Decomposition

For a nonsingular matrix [A] on which one can successfully conduct
the Naive Gauss elimination forward elimination steps, one can

shways write east 10y

where: L] =Lower triangular matrix

:U] =Upper triangular matrix

If one is solving a set of equations
[4][x]=[c]

T w]ix)=[e]
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I v becompill

AGH

Multiplying both sides by :L]_1 we get

L' [z]u]lx]=[2]" [C]
but: [L]_I[L]=[1] “ 7 unit matrix
1Julx]=[L]"[C]
i [U]-[0]

therefore: [U][X] = [L]_l [C]




“lJJ LU Decomposition

ulxl=[z]"Ic]

voueanreplace  [U][X]|=[Z] @ [L]'[c]=][Z]

|
L[Z)=[c] o

The idea is to solve (2) for [Z] by forward substitution and
then to use (2) to calculate the solution vector [ X] by back
substitution

Numerical Methods - Lecture 5



“lJJ LU Decomposition

Given:

Decompose [A] into [L] and [U]
Solve [L][Z] = [C] for [Z]

Solve [U][X] = [Z] for [X]

Numerical Methods - Lecture 5
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mJJ LU Decomposition

[A] Decompose to [L] and [U]

1 0 Ofu, u, u;,
[A] = [L][U] =Ly 1 0 0 uy uy
Ly Ly, 10 0 uy

[U] is the same as the coefficient matrix at the end of
the forward elimination step.

[L] is obtained using the multipliers that were used in
the forward elimination process
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MMJJ Finding the [U] matrix

AGH

Using the Forward Elimination Procedure of Gauss Elimination

25 5 1

64 8 1

144 12 1
25 5 1]
Step 1: & -1 56 Row2—Rowl(2.56)=| 0 —48 —1.56
2 144 12 1
(25 5 1

144

—5 =376 Row3—Rowl(5.76)=| 0 —4.8 —1.56
0 -16.8 -4.76

http://numericalmethods.eng.usf.edu



“]JJ Finding the [U] Matrix

AGH
_ 25 5 1
Matrix afterStep |, _,5 _{5
1: 0 -168 -4.76)
(25 5 1]
Step 2:%:3.5; Row3—Row2(3.5)=| 0 —4.8 —-1.56
B 0 0 07
25 5 1
U]=| 0 —48 -1.56
0 0 07 |

http://numericalmethods.eng.usf.edu



Finding the [L] matrix

AGH
1 0 O]
¢, 1 0
_631 s 1_

Using the multipliers used during the Forward Elimination Procedure

From the first 25 5 1 g = _ 64 _ 2.56
step of forward g 25 7
d
elimination 64 § 1
144 12 1 py =M 59
- - a,; 25

http://numericalmethods.eng.usf.edu



“]JJ Finding the [L] Matrix

AGH
From the second 25 S 1 ' _16.8
step of forward 0 _48 —1.56 l,, = 43 _ =35
elimination ‘ ‘ a,, —4.8
0 -168 -4.76

1 0 0
L]=]256 1 0
576 3.5 1

http://numericalmethods.eng.usf.edu




“]JJ Does [L][U] = [A]?

AGH
1 0 0][25 5 1
[L]u]=|256 1 0 0 -48 -156|= "
576 3.5 10 0 07

http://numericalmethods.eng.usf.edu



“]J Using LU Decomposition to

u

AGH solve SLEs

Solve the following setof | 25 5 1|[x | [1068]
linear equations using 64 8 1||x,|=[1772

LU Decomposition 144 12 1]|x,| [2792]

Using the procedure for finding the [L] and [U]

matrices
1 0 0f25 5 1
[A]=[L]U]=[256 1 0|0 —-48 —1.56
576 35 1|0 0 07

http://numericalmethods.eng.usf.edu



256 1 0]z, |=]1772
576 35 1z, | |2792
Solve for [ Z] z, =10

256z, +z, =177.2
576z, +3.5z, + z, =279.2

http://numericalmethods.eng.usf.edu
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Complete the forward substitution to solve for [Z]

z,=106.8
z, =177.2-2.562, 'z | [ 1068
=177.2-2.56(106.8) Zz]=]| z, |=| —96.21
=|z, |= .
=-96.2
2] | 0735

z,=279.2-5.76z,-3.5z, A
=279.2-5.76(106.8)—3.5(— 96.21)
=0.735

http://numericalmethods.eng.usf.edu
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AGH
2 1 |[x | [ 1068
Set [U](X] = [Z] o0 M 06
0 —48 —-156||x, |=|—-96.21
0 0 07 ||x]| | 0735
Solve for [X] The 3 equations become

25a, +5a, +a; =106.8
—4.8a, —1.56a, =-96.21
0.7a, =0.735

http://numericalmethods.eng.usf.edu



AGH Example
Substituting in a; and using the

From the 3" equation second equation

0.7a, = 0.735 —48a, —1.56a; =-96.21
5 20735 _=9621+156q;

T07 Y

a, =1.050 9621 +1.56(1.050)
’ ~48
a, =19.70

http://numericalmethods.eng.usf.edu
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AGH
Substituting in a; and a, Hence the Solution Vector
using the first equation is:
25a,+5a,+a, =1068 _a1 1 1029001
_1068-5a, - a, a, |=| 19.70
=
25
~ 1068-5(19.70)—1.050 ay | [ 1.050
25
=0.2900

http://numericalmethods.eng.usf.edu



