Test 3, 5.04.2017

1. The truncation error in calculating f'(2) for $f(x) = x^2$ by f(x+h) - f(x)

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- with h = 0.2 is (A) -0.2 (B) 0.2
 - (B) 0.2
 - (C) 4.0 (D) 4.2
 - (D) 4.2

2. The formula for normal strain in a longitudinal bar is given by $\in = \frac{F}{AE}$ where

- F = normal force applied
- A = cross-sectional area of the bar
- E = Young's modulus

If $F = 50 \pm 0.5$ N, $A = 0.2 \pm 0.002$ m², and $E = 210 \times 10^9 \pm 1 \times 10^9$ Pa, the maximum error in the measurement of strain is

- (A) 10^{-12}
- (B) 2.95×10^{-11}
- (C) 1.22×10⁻⁹
- (D) 1.19×10^{-9}
- 3. Given the two points [a, f(a)], [b, f(b)], the linear Lagrange polynomial $f_1(x)$ that passes through these two points is given by

(A)
$$f_1(x) = \frac{x-b}{a-b} f(a) + \frac{x-a}{a-b} f(b)$$

(B) $f_1(x) = \frac{x}{b-a} f(a) + \frac{x}{b-a} f(b)$
(C) $f_1(x) = f(a) + \frac{f(b) - f(a)}{b-a} (b-a)$
(D) $f_1(x) = \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b)$

4. The following incomplete y vs. x data is given.

x	1	2	4	6	7
у	5	11	????	????	32

The data is fit by quadratic spline interpolants given by

$$f(x) = ax - 1, \ 1 \le x \le 2$$

$$f(x) = -2x^2 + 14x - 9, \ 2 \le x \le 4$$

$$f(x) = bx^2 + cx + d, \ 4 \le x \le 6$$

 $f(x) = 25x^2 - 303x + 928, \quad 6 \le x \le 7$ where *a*, *b*, *c*, and *d* are constants. The value of *c* is most nearly (A) - 303.00 (B) -144.50 (C) 0.0000 (D) 14.000

5. The following data

x	1	20	30	40
У	1	400	800	1300

is regressed with least squares regression to $y = a_1x$. The value of a_1 most nearly is

- A) 27.480
- B) 28.956
- C) 32.625
- D) 40.000