Test 4, 26.04.2017

1. To find the root of f(x) = 0, a scientist is using the bisection method. At the beginning of an iteration, the lower and upper guesses of the root are x_1 and x_u . At the end of the iteration, the absolute value of relative approximate error in the estimated value of the root would be

(A)
$$\left| \frac{x_u}{x_u + x_\ell} \right|$$

(B) $\left| \frac{x_\ell}{x_u + x_\ell} \right|$
(C) $\left| \frac{x_u - x_\ell}{x_u + x_\ell} \right|$
(D) $\left| \frac{x_u + x_\ell}{x_u - x_\ell} \right|$

2. The newly predicted root for false-position and secant method can be respectively given as

$$x_{r} = x_{U} - \frac{f(x_{U})\{x_{U} - x_{L}\}}{f(x_{U}) - f(x_{L})}$$

and

$$x_{i+1} = x_i - \frac{f(x_i)\{x_i - x_{i-1}\}}{f(x_i) - f(x_{i-1})},$$

While the appearance of the above 2 equations look essentially identical, and both methods require two initial guesses, the major difference between the above two formulas is

- (A) false-position method is not guaranteed to converge.
- (B) secant method is guaranteed to converge
- (C) secant method requires the 2 initial guesses x_{i-1} and x_i to satisfy $f(x_{i-1})f(x_i) < 0$
- (D) false-position method requires the 2 initial guesses x_L and x_U to satisfy $f(x_L)f(x_U) < 0$
- 3. The next iterative value of the root of $x^2 4 = 0$ using the Newton-Raphson method, if the initial guess is 3, is
 - (A) 1.5
 - (B) 2.067
 - (C) 2.167
 - (D) 3.000

Given are the following nonlinear equation

 $e^{-2x} + 4x^2 - 36 = 0$

two initial guesses, $x_L = 1$ and $x_U = 4$, and a pre-specified relative error tolerance of 0.1%. Using the false-position method, which of the following tables is correct ($x_r =$ predicted root)?

(A)

Iteration	x_L	x_U	X _r
1	1	4	?
2	?	?	2.939
L			

(B)

Iteration	x_L	x_{U}	X _r
1	1	4	?
2	?	?	2.500

(C)

Iteration	x_L	x_U	X _r
1	1	4	?
2	?	?	1.500

(D)

Iteration	x_L	$x_{_U}$	<i>x</i> _{<i>r</i>}
1	1	4	?
2	?	?	2.784

- The value of $\int_{0.2}^{2.2} xe^x dx$ by using the three-segment trapezoidal rule is most nearly 5.
 - (A) 11.672
 - (B) 11.807
 - (C) 12.811
 - (D) 14.633

4.