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Linear classification 
 
Similarly as before, we need to have a dataset. This time, we’ll generate it from a predefined 
cluster distribution. I’ll use the following code for that:  

 

 
Clusters of data are available in our StudentToolbox archive. Note that DataDivision value 
determines split of data into classes (we can have more examples in one class than in the 
other) while v value determines how heavy are tails of the data distribution – the lower the 
parameter, the heavier are distribution's tails (we are using T-Student's distribution here). 
These parameter values allowed for obtaining dataset visible in Fig 1. It is worth noting 
that using T-Student distribution instead of a gaussian allowed for generation of a bunch of 
outliers and conveniently connected clusters to each other while still maintaining separate 
cluster centers, so we've obtained a nice and interesting two-dimensional classification 
problem. 
 

load Clusters_10 

  
Samples = 1000;         % How many data samples there are? 
DataDivision = 0.5;     % How many data samples fall into which class? 
v = 2;                  % v parameter of T Student's distribution 

  
% Definition of data 
for k = 1:Samples 
   if(rand()>DataDivision) 
       DATA(1,k) = 1; 
       Ind = randi(Clusters.ClustersA); 
       DATA(2,k) = Clusters.ACoordinates(1,Ind)+random('T',v)*0.15; 
       DATA(3,k) = Clusters.ACoordinates(2,Ind)+random('T',v)*0.15; 
   else 
       DATA(1,k) = 0; 
       Ind = randi(Clusters.ClustersB);       
       DATA(2,k) = Clusters.BCoordinates(1,Ind)+random('T',v)*0.15; 
       DATA(3,k) = Clusters.BCoordinates(2,Ind)+random('T',v)*0.15;    
   end 
end 

  
for k = 1:Samples 
    if(DATA(1,k) == 1) 
        plot(DATA(2,k),DATA(3,k),'ok'); hold on 
    else 
        plot(DATA(2,k),DATA(3,k),'xb'); hold on 
    end 
end 
xlabel('x'); 
ylabel('y'); 
ylim([-3 4]) 

  

save DATA DATA 
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Figure 1 – A classification problem generated from Clusters_10 distribution. Note that every time you generate 

data, you’ll get a clusters that look a bit different – but their centers should be in the same spots. 

 

Training and testing data 

Our data should now be prepared for the purpose of training and testing classifiers. We'll 
randomly divide it into three subsets: training, validation and testing, with 50%, 25% and 
25% of data samples, respectively. In our case it would equal 500, 250 and 250 samples. To 
this end we can use the following code: 
 

Task 3.1: Using your individual* Clusters structure generate dataset containing 1000 
samples divided equally among two classes, using v=2. Save generated dataset on disk so it 
could be used to train and test classifiers. Save both the original dataset (DATA) and its di-
vided subsets. Save also a script that was used to generate data – so it could later be used to 
generate other datasets as well. 

 

Indices = randperm(length(DATA)); 

DATA_permutated = DATA(:,Indices) 

  

TR_number = ceil(length(DATA)*0.5); 

VA_number = ceil(length(DATA)*0.25); 

TE_number = ceil(length(DATA)*0.25); 

  

TR_DATA = DATA_permutated(:,1:TR_number); 

VA_DATA = DATA_permutated(:,TR_number+1:TR_number+VA_number); 

TE_DATA = DATA_permutated(:,TR_number+VA_number+1:end); 

  

save TR_DATA TR_DATA 

save VA_DATA VA_DATA 

save TE_DATA TE_DATA 
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Design of a simple linear classifier 

We've made sure that our dataset is not linearily separable. Nontheless, we will try and 
divide these data using a straight line. To design a classifier we'll just ask a simple question 
regarding each data point: “Is this point above or below a predefined line?” 

Lets formulate equation for it: 

W1 * x1 + W2 * x2 + b > 0   (1) 

And now lets find such W1 and W2, to maximize efficiency of classification. Our classifier 
should look like this: 

 

Such a classifier can be saved as a function and then used to classify our data as in here: 
 

 
 
 

function [ClassLabel] = InitialClassifier(x,y,Parameters) 

    if(Parameters.W1*x + Parameters.W2*y + Parameters.B > 0) 

        ClassLabel = 1; 

    else 

        ClassLabel = 0; 

    end 

end 

load VA_DATA 

 

Parameters.W1 = 1; 

Parameters.W2 = 0.3; 

Parameters.B = 1; 

  

ErrorsA = 0; 

ErrorsB = 0; 

  

for k = 1:length(VA_DATA) 

   if(InitialClassifier(VA_DATA(2,k),VA_DATA(3,k),Parameters) == 1) 

      % Data point classified as A 

      if(VA_DATA(1,k) == 1) 

          % Data point classified correctly! 

          plot(VA_DATA(2,k),VA_DATA(3,k),'ok'); hold on 

      else 

          plot(VA_DATA(2,k),VA_DATA(3,k),'xr') ; hold on 

          ErrorsA = ErrorsA + 1; 

      end 

   else 

       % Data point classified as B 

       if(VA_DATA(1,k) == 0) 

        % Data point classified correctly! 

          plot(VA_DATA(2,k),VA_DATA(3,k),'xk'); hold on 

       else 

          plot(VA_DATA(2,k),VA_DATA(3,k),'or') ; hold on 

          ErrorsB = ErrorsB + 1; 

       end 

   end 

end 

xlabel('x'); 

ylabel('y'); 

ErrorsA 

ErrorsB 

ErrorsA+ErrorsB 
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The above script rendered results that are shown in Figure 2. There were 76 errors in A 
class and 27 errors in B class – not great, but so far we've picked W1, W2 and B parameters 
quite randomly.  

 

 
 

Figure 2 – Distribution of errors in our linear two-class classification problem. 

 

Could we score better? Lets note that we have a three-parameter, one-criterion optimiza-
tion problem. Our objective function that we would want to minimize is a sum of errors in 
both classes. 

We already have tools that can deal with this kind of problems, namely: various optimiza-
tion algorithms developed in scope of 1st laboratory.  

In order to use any of the solutions developed before (e.g. 1+1 or grid search) we'll need to 
save our script for using a classifier as a function – taking parameter values as input 
(marked in green in the code), returning a sum of errors (marked in cyan) and commenting 
out lines for plotting (marked in grey). If you do it properly, the optimization algorithm 
should be able to draw a clear one-line division minimizing errors. Also, we will need to 
change VA_DATA to TR_DATA, because we will be training our algorithm now, not checking 
its performance. For clusters_10 the resulting image should look like in Figure 3.  
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Figure 3 – Results of trained one-line classification for Clusters_10 data structure. We can see majority of errors 

in one spot – for one non-linearly-separable data cluster. 

 

Task 3.2: Using script developed in laboratory 1 optimize parameters of your linear classifier. 

Use a grid search algorithm. To optimize parameters use training data (TR_DATA). After suc-

cessful optimization test your classifier using validation data (VA_DATA). Save the script so it 

could be checked by the teacher later and store the result of this optimization in Table 3.1 at the 

end of this instruction. 

Note that you have three parameters to optimize so your GridSearch script will require an addi-

tional loop for a 3rd parameter modification. 

 

Task 3.3: Using script developed in laboratory 1 optimize parameters of your linear classi-
fier. Use a 1+1 algorithm with adaptive step. To optimize parameters use training data 
(TR_DATA). After successful optimization test your classifier using validation data 
(VA_DATA). Configure optimization algorithm in such a way that it consistently finds glob-
al minimum. Save the script so it could be checked by the teacher later and store the result 
of this optimization in Table 3.1 at the end of this instruction. 
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Classifier structure allowing nonlinear classification 
 
Remember that our clusters were not separable linearly? Now we’ll find a way to actually 
separate all of them. 
 
The idea that we will use is to actually do multiple classifications using many lines – and 
then somehow use this sub-results to derive final verdict about class presence. Look for 
instance in Figure 4. We could say that the class is ‘blue circle’ if the point is either below 
red line OR above orange one and at the same time below green one. Such condition would 
allow us to significantly improve classification accuracy – rendering only a bunch of points 
misclassified due to clusters overlap and outlier presence. 
 

 
Figure 4 – Adding two additional lines enables correct classification of these samples. 

 
Before we’ll build a classifier, we first need to decide how our model would operate. We will 
be using Parameters structure which will store coefficients for all the lines. Consecutive 

coefficients can be coded by consecutive elements of vectors of our structure, like in the 

following code. Coefficients defining the same lines are given in the same colour: 

 

 

We will use our previous InitialClassifier and modify its internal code to go through all the 
lines in our setup using the following instruction: 
 

Parameters.W1 = [ 0.2, 0.3,-0.5]; 

Parameters.W2 = [ 1.3, 1.1, 2.1]; 

Parameters.B =  [ 3.0, 0.1,-0.7]; 
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If we start from ClassPresence = 0 and after going through all the lines we are at 0 or higher 
– the classifier should return ClassLabel = 1. Otherwise ClassLabel should be 0. Note the k 
variable – it tracks the number of the line we are currently investigating. We will call this 

modified function a MultilineClassifier Now the only thing we need to do is to apply an 

optimization solution to actually train our classifier. We will need a vector of parameters equal in 

length to all the optimized variables (three per line). So probably we’ll introduce it  to our 

optimizer using something like this: 

 

 

 

Note that since we decided to use a structure-based representation for our classifier (to 
make it easier to understand), we need to build it from our optimized vector representation. 
We can do that simply by using the following code: 
 

 
If, at some point you’d like to do the reverse, you can simply use this code:  
 

 

 

 

If you are curious where the optimized lines are actually placed, feel free to use this piece of 
code after you plot classified points. This will draw the lines in feature space according to 
contents of Parameters structure: 
 

 

 

   ClassPresence = 0; 

    for k = 1:length(Parameters.W1) 

       if(Parameters.W1(k)*x + Parameters.W2(k)*y + Parameters.B(k) > 0) 

            ClassPresence = ClassPresence + 1; 

       else 

            ClassPresence = ClassPresence - 1; 

       end 

    end 

linesUsed = 9; 

dimensions = linesUsed * 3;          

Range = zeros(dimensions,2) 

% Here we state what range we want to draw initial solutions from: 

Range = Range + [-10,10]  

   

% And a starting point: 

Point = Range(:,1)' + rand(1,dimensions).*(Range(:,2)-Range(:,1))'; 

 

   Parameters.W1 = OptimizerOutput(1:linesUsed); 

   Parameters.W2 = OptimizerOutput(linesUsed +1:2* linesUsed); 

   Parameters.B  = OptimizerOutput(2*linesUsed +1:end); 

   OptimizerInput = [Parameters.W1,Parameters.W2,Parameters.B] 

X = [-10,10] 

Y(:,1) = -(Parameters.W1(:)*X(1) + Parameters.B(:))./Parameters.W2(:); 

Y(:,2) = -(Parameters.W1(:)*X(2) + Parameters.B(:))./Parameters.W2(:); 

for(p = 1:linesUsed)    line([X],[Y(p,:)]); hold on;  end 
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Task 3.4: Using your individual* dataset for classification: 
 
(a) Implement training of a 5-line classifier using 1+1 training method. 
(b) Configure metaparameters of 1+1 solution so it would be reasonably consistent.  
(c) Evaluate your final solution statistically (At least 20 tries) and store the results in struc-
ture generated in task 2.11.  
(e) Save statistical estimates of your tries in Table 3.1 at the end of the instruction. 

 
 

Introduction of a gradient to a classification problem 

As you probably noticed, we were not using gradient algorithm for optimization. Lets find 
out why. Just for the sake of curiosity, lets go back to our 1-line classifier used in task 3.3 
and lets pass our ObjectiveFunction to our gradient algorithm and see what happens (Fig-
ure 5): 

 
Figure 5 – Vanilla gradient used for classifier  training 

Apparently, the method in its current state cannot properly train our classifier… Why does 
it work like that? 

It is worth noting that despite having a continuous problem (we can assign floating point 
values to W1, W2 and B) we cannot use gradient descent algorithm yet. The reason for this 
is as follows: If we move our separation line and cross with it location of any data point the 
objective function value would not change gradually – instead it will be incremented or 
decremented. Very small change of any parameter would likely not cause any change of the 
objective function value. We could let it be and just refrain from using gradient-based solu-
tions, but let’s treat it as challenge and think what can we do to enable gradient approach 
here. For starters, we need a sub-function that will tell us not only if our classification line 
‘crossed’ a data point, but also “how far away” the line is from the point at all times. This 
function we will call activation function and we can define it like this: 

𝒖 =
𝟐

𝟏 + 𝒆−𝒚
− 𝟏 

where:  

𝒚 = 𝒘𝟏𝒙𝟏 +  𝒘𝟐𝒙𝟐 + 𝒃 

So lets code it down: 
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Now we can just plug this equation to where we used to have a check of whether the point 
is above or below line. Now we won’t have ones or zeros here – we’ll have a continuous 
result depending on how far away the point is from the line – with the answer approaching 
-1 or +1 for points placed far away. Our goal will be the same as before: To minimize objec-
tive function (ClassificationLossCumulated), but this time we will not actually count errors, 
but results of passing distance between each data point and a classification line through 
our ‘activation function’. Every ‘good’ classification should contribute negative values to the 
sum, every ‘bad’ classification will contribute positive values to the sum. Note that we can 
do that easily by just changing the highlighted sign (we want all the samples having activa-
tion function equal to “1” for “A” class and -1 for “B” class): 

 

If we do that, we observe that our classifier actually learns the underlying pattern. While it 
can sometimes end up in a local minimum, the convergence curve will show improvement 
for at least several of the initial iterations (see Figure 6). 

 
Figure 6 – Linear classifier fitted using an activation-function-based gradient descent method 

function[AF] = ActivationFunction(x,y,Parameters) 

   AF = 2/(1+exp(-(Parameters.W1*x + Parameters.W2*y + Parameters.B))) - 1; 

end 

function[LossCumulated] = ClassificationLossCumulated(Input) 

     

    load TR_DATA     

    Parameters.W1 = Input(1); 

    Parameters.W2 = Input(2); 

    Parameters.B =  Input(3); 

    LC = 0; 

 

    for k = 1:length(TR_DATA) 

     if(TR_DATA(1,k) == 1)    % For class A 

       LC = LC - ActivationFunction(TR_DATA(2,k),TR_DATA(3,k),Parameters); 

     else  % For class B 

      LC = LC + ActivationFunction(TR_DATA(2,k),TR_DATA(3,k),Parameters); 
     end 

    end 

 LossCumulated = LC; 

end 
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Task 3.5: Add the sigmoid function to enable gradient-descent optimization usage in our classi-

fier. Now configure and test your new gradient-based classification algorithm and store the re-

sults in Table 3.1 (Three tries of the method) 

 
Now, lets generalize our solution so it would allow for a multiline classification. Again, we 
need just a few small adjustments. We will be using the gradient descent code from 1st 
instruction with changes similar to ones necessary in task 3.5. What will be different, is the 
classifier and the actual function calculating quality of our solution. To evaluate if point 
should be classified to one or the other class, we need the following classifier: 
 

 
This basically works the same as a MultilineClassifier – we just have a sigmoidal function in 
a (-1,1) range (marked in cyan) instead of checking if point is above or below the line And 
then, since we expect the classifier to return values from a (0,1) range (indicating if its class 
0 or 1), we need to cast the result on this range using the yellow sigmoid. 
 
Now, the actual training function that goes through all the points from a training range can 
be very simple: 
 

 
Notice that Loss variable just counts errors in such a way, that it cumulatively adds results 
for class B (because they should be 0) and adds differences from 1 for class A (because they 
should be 1). 
 

Task 3.6: Repeat task 3.4 for your individual dataset, this time using a gradient-descent 
method. 

(a) Implement training of a 5-line classifier using gradient descent method. 
(b) Configure metaparameters of gradient descent so it would be consistent.  
(c) Evaluate your final solution statistically (At least 20 tries) and store the results in struc-
ture generated in previous laboratory.  
(e) Save statistical estimates of your tries in Table 3.1 at the end of the instruction.   

 

function [CumulativeActivation] = MultilineClassifierDifferentiable(x,y,Parameters) 

   CumulativeActivation = 0; 

 

   for k = 1:length(Parameters.W1) 

      AF = 2/(1+exp(-(Parameters.W1(k)*x + Parameters.W2(k)*y + Parameters.B(k)))) - 1; 

      CumulativeActivation = CumulativeActivation + AF; 

   end 

    % In order to cast the solution to the (0,1) range maintaining differentiability: 

   CumulativeActivation = 1/(1+exp(-(CumulativeActivation))); 

end 

function[Loss] = TrainTheClassifierGradient(Parameters) 

 

load TR_DATA 

Loss = 0; 

     for k = 1:length(TR_DATA) 

       if(TR_DATA(1,k) == 1)    % For class A 

         Loss = Loss + (1 - MultilineClassifierDifferentiable(TR_DATA(2,k),TR_DATA(3,k),Parameters));  

       else  % For class B 

         Loss = Loss + MultilineClassifierDifferentiable(TR_DATA(2,k),TR_DATA(3,k),Parameters);  

       end 

    end 

end 
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Table 3.1: Linear classification 
 
 

 W1 W2 B   

Grid search    Sum of errors:  

1+1    Sum of errors:  

Multiline 1+1 - 

  

  

Gradient (1st try)      

Gradient (2nd try)      

Gradient (3rd try)      

Multiline gradient - 

Mean: 
 

 

Std:  

 
 

Additional tasks: 
 
What happens to training difficulty if we increase dimensionality of our problem? 
 
OK, we have a working solution for non-linear classification. The question which feels 
important, however, is: what will happen if we will need our classifier to use much more 
lines? Will it make the problem harder? If yes – how much harder? Lets test it and see what 
happens. We will increase number of lines in our classifier and compare repeatability of 
solutions based on 1+1, gradient and multistart gradient approaches. To keep things a bit 
simpler, lets force ourselves to work with a particular number of starts in a multistart 
method (lets say: 5) and to be fair, we’ll give the same number of objective function checks 
to all our algorithms. Lets now test their performance and see what happens… 

Task 3.7: Evaluate statistically a 5, 9, 13, 17, 21 and 25 line classifiers using 1+1, gradient and 

multistart gradient algorithms in the best configuration you can provide. Save the results to our 

data structure (including statistical estimates). Draw conclusions and explain what is the insight 

we get from this experiment. 
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Is the multiline problem difficult because of local minima or exploitation difficulty? 
 
We should probably investigate this multidimensional optimization problem a bit deeper. 
For starters, choice of number of starts of a multistart method is not that obvious in high-
dimensional spaces. While intuitively it might feel like the more dimensions, the harder the 
problem gets, sometimes it is not the case… 

Task 3.8: Configure a multistart gradient training algorithm that has 1500 objective function 

checks for optimization of a 25-line classification problem. Pick number of starts equal to 1, 3, 5, 

10, 15 and 30 and adjust remaining parameters so it would provide results as consistent and good 

as possible. Then do the same for a 5-line classification problem. Draw conclusions and explain 

what is the insight we get from this experiment. 

 
Adding momentum to our optimization 
 
The basic gradient algorithm method is not utilizing momentum yet. Lets add it to our code. 
We want to add to every step the weighted value of a previous step according to the 
following formula: 

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)∇𝑓(𝜃𝑡) 
Where:  
𝑣𝑡  is the velocity of parameter change (that is: the actual step) 
𝛽 is the weight of momentum 
∇𝑓(𝜃𝑡) is the gradient of the objective function at parameters 𝜃𝑡  
 
Now, 𝑣𝑡  can be added to our current coordinates using our learning rate: 
 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑣𝑡  
 
Probably a good idea would be to start again from a simple 2D optimization function so 
we’d know if the method is working as expected. Once we have the working solution for a 
2D optimization problem, we can implement it easily also for our multidimensional 
classifier-training problem. 
 
How should we choose weight of the momentum? We of course need to have this value in 
range of 0 (no momentum influence) to almost 1 (only momentum influence). A good 
starting (default) point would be  𝛽 = 0.9. Note that our learning rate can start much lower 
now – because our algorithm will speed-up by itself. 

Task 3.9: Add momentum to your gradient algorithm, evaluate it statistically in task of op-
timizing a multiline classifiers and add its results to the data structure and to the table 3.1 

 
 
 
 


