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Baseline for comparison 
 
We have been designing polynomial regressors and neural-network-based classifiers from 
scratch (and we were training them using our own implementations of optimization 
algorithms). While it hopefully provided a better insight into how the method internals 
work, it might not be the preferred approach in terms of efficiency in solving practical 
problems. Lets now compare implementations developed in laboratory 2 and 3 with those 
available in matlab toolboxes. Lets start with a regression problem. Similarly as before, 
we’ll use RegressionTrainingData to configure model parameters and RegressionTestingData for final 
evaluation. We will use multilayered neural network (MLP) as our model for regression.  
 
In order to train the network, we will have to divide our data into training samples and 
their corresponding target values – which so far were stored just in the third column of the 
data matrix. Now we’ll need to pass them separately to our network: 
 

 
 
Now we need to design our network and then train it, which we can do using the following 
code: 
 

 
Note, that within the code we can divide dataset into subsets internally (data we pass to the 
network will be splitted into subsets while the network is trained). We already have a 
Testing set prepared – so we are using this option only to craft training and validation 
subsets. Lets investigate the network we created. The result of training should look 
somewhat similar to one presented in Figure 1 (note that depending on matlab and toolbox 
version the graphics may be different, but similar information should be provided by them). 
 

load('RegressionData1.mat');  % Make sure the .mat file is in your path 

 

% Inputs (first two columns) and targets (third column) 

X = RegressionTrainingData(:, 1:2)'; 

T = RegressionTrainingData(:, 3)'; 

%% Create a feedforward neural network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize);  % Regression network 

 

% Set training/validation/test split 

net.divideParam.trainRatio = 0.7; 

net.divideParam.valRatio   = 0.3; 

net.divideParam.testRatio  = 0.0;  % We will not use the internal test set 

 

net.trainFcn = 'trainlm';    % Define training function  

net.trainParam.showWindow = true;  % Show training window 

 

[net, tr] = train(net, X, T);     % Train the network 
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Figure 1 – Results of training in matlab GUI: nntraintool provides information about neural network shape (for 
us: 2 inputs, 10 neurons in hidden layer), other metaparameters and training progress, indicating stopping 
criterion that “fired” in green. You can open plots to look e.g. for training progress (“Performance”) or for spread 
of results from ideal line (is there a skew for particular targets?)  
 
Lets now check the results that we obtained. We can get the prediction from our trained 
network and compare it with one returned by polynomial model from laboratory 2.  
 

 
Note, however, that this is MSE for a training dataset. In order to calculate MSE for our 
external testing dataset, we need to load and pass through the network the Testing part of 
our data. Of course we don’t want to include it in the train command – just using net 
command from the above code (highlighted in yellow) on new data should be enough. 

Task 4.1: Using your individual* dataset for regression train the neural network using the 
structure given above. Then test your trained network on a testing subset of your data – 
and compare its performance with your polynomial regressor from laboratory 2. Show the 
results of the comparison using a bar graph.  

PredictedValues = net(X);  % If we want to use our trained net to predict new data, we 

do that here 

MSE = mse(T,PredictedValues) 

 

fprintf('MSE on all training+validation data: %.4f\n', MSE); 

 

%% Plot predicted vs actual 

figure; 

plot(T, PredictedValues, '.') 

xlabel('Actual Target') 

ylabel('Predicted Output') 

title('Neural Network Regression: Actual vs Predicted') 
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Now lets do the same process for the classification problem that you were solving in scope 
of Laboratory 3. Similarly as before, we’ll have to prepare our data for use by the neural 
network. We can do that using the following code: 
 

 
Design and configuration of the network works similarly as before – the only difference is 
that we are using the patternnet instead of the fitnet – which tells Matlab that our network 
is supposed to recognize classes in the final layer, and that we are refraining from automatic 
division of training and validation datasets. Note also that we are changing the training 
algorithm in our pattern recognition task: 
 
 

 
And finally we are able to calculate network performance on any dataset. Lets start with the 
training one: 
 

 
We of course want to know not only training accuracy but also result of validation (based 
on VA_DATA subset, which we’ve loaded above and didn’t use yet).  
 
 

Task 4.2: Using your individual* dataset for classification from laboratory 3 train the neu-
ral network using the TR_DATA subset. Then check its performance using TR_DATA and 
VA_DATA subsets. Compare the solution with multiline 1+1-based and multiline gradient-
based solutions developed in scope of Laboratory 3. Show the results of these comparisons 
using a bar graph. 

 
 

% Load training and validation data 

load('TR_DATA.mat');   

load('VA_DATA.mat');   

 

% Extract features and labels from training data 

X_train = TR_DATA(2:3, :);   % Features (2×N) 

T_train = TR_DATA(1, :);     % Class labels (1×N) 

 

% Extract features and labels from validation data 

X_val = VA_DATA(2:3, :); 

T_val = VA_DATA(1, :); 

% Create a MLP network: 

hiddenLayerSize = 10; 

net = patternnet(hiddenLayerSize);   

 

% Training metaparameters: 

net.divideFcn = 'dividetrain';  % For manual control of validation subset 

net.trainFcn = 'trainscg';      % Scaled conjugate gradient training method 

net.trainParam.showWindow = true; 

 

% Train the network 

[net, tr] = train(net, X_train, T_train); 

% Predict and compute training accuracy 

Y_train = net(X_train);              % Network output: probabilities 

Y_predtrain = round(Y_train);        % Convert to binary class predictions 

trainaccuracy(iteration) = sum(Y_predtrain == T_train) / length(T_train); 

fprintf('Training Accuracy: %.2f%%\n', trainaccuracy(iteration) * 100); 
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OK – now the question arises: Do we actually have the best possible network for the task? 
Here we start thinking about metaparameters – training algorithms, network structure, 
ending conditions for optimization and so on. Lets start simple by asking what will happen 
if we change number of neurons in our classification problem. Lets do it systematically by 
organizing our tests in the following loop. Note that I have prepared a vector 
hlsConfigurations with preset configurations that I want to test (marked in cyan). The 
reason for that is that while interesting stuff may happen if we change neuron number from 
2 to 3 (so I don’t want to miss on that), I don’t really think it is important to check the 
difference between, say, 43 and 44 neurons: 
 

 

The picture that I got is presented in Figure 2. 
 

 
Figure 2 – Training and validation accuracy with respect to number of neurons in hidden layer of the network. 

 
The interesting fact is that, apparently, validation accuracy lowers significantly for bigger 
networks despite the fact that training accuracy keeps climbing. What we also see is the fact 
that the relationship appears to be noisy – there is a dip in validation accuracy for 20 and 
30-neuron networks which may or may not be caused by actual network properties. Lets 
repeat this test statistically to make sure. I decided to run the test 10 times for each 
network size and then store my results in a new Statistics structure. The number assigned 
to Statistics vector tracks the number of the tested configuration. Partial results are stored 
in TrainResults and ValResults vectors. After that I can show the results using the following 
code, ending with the result displayed in Figure 3. Note the green fragment of the code. It 
serves to provide manual ticks on the x axis (corresponding to actual numbers of tested 
neurons). If you want to generate similar visualizations, you’ll need to adjust this code to be 
compatible with your data structure. 
 

 

hlsConfigurations = [1,2,3,6,10,15,20,30,40,60,100,200]; 

 

for ConfigurationNumber = 1:length(hlsConfigurations) 

        hiddenLayerSize = hlsConfigurations(ConfigurationNumber); 

        % Create a MLP network: 

        net = patternnet(hiddenLayerSize);   

 

% ... – And here the rest of the code for testing the network 
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Figure 3 – Training and validation accuracy with respect to number of neurons in hidden layer of the network – 

results of statistical evaluation. 

 

Task 4.3: Using your individual* dataset for classification from laboratory 3 evaluate sta-
tistically training and validation performance for increasing number of neurons, starting 
from 1, up to 200. Show the results in a graphical form. Then, repeat this task for the re-
gression task. Save all the results to your data structure. 

 
 
If the task 4.3 was done properly, you probably noticed something interesting: Our 
classification network appears to overfit easily while the regression net feels much more 
robust and able to generalize better. It is because of the fact that we did not actually trained 
the classifier properly. By designing training and validation dataset manually we forced the 
algorithm to not use validation checks as a stopping criterion. We can solve this problem in 
two ways. One: we can actually prepare another validation dataset by cutting part of 
training data (which will reduce amount of samples we can use for training but is simple to 
code): 
 

 
Or better: we can merge training and validation datasets and then force the network to not 
mix them up randomly but instead use them in order we provided: 
 

figure; 

for configurationNumber = 1:length(Statistics) 

    plot(configurationNumber, 100 * Statistics(configurationNumber).TrainResults, 'or'); hold on 

    plot(configurationNumber, 100 * Statistics(configurationNumber).ValResults, '*k'); hold on 

end 

 

xlabel('Number of Neurons') 

ylabel('Accuracy (%)') 

xticks(1:length(Statistics)) 

xticklabels(string([Statistics(:).NumberOfNeurons])) 

        % Set custom division 

        net.divideFcn = 'dividerand'; 

        net.divideParam.trainRatio = 0.7; 

        net.divideParam.valRatio   = 0.3; 

        net.divideParam.testRatio  = 0.0; 
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Note that in order for the second approach to work, you’ll also need to pass the new dataset 
to the network during training: 
 

 
 
 

Task 4.4: Update the code for classification network evaluation allowing the network to 
use validation dataset as a stopping criterion. Check if it modifies network’s statistical per-
formance (whether the overfitting is still present) 

 

Task 4.5: Evaluate statistically the performance of the classification network for two dif-
ferent training algorithms: trainscg and trainlm – with respect to network size. Let the size 
vary in large range, so your testing will include networks from 10 to at least 300 neurons in 
hidden layer. Check both validation accuracy and training time for both algorithms and 
then show the results in a graphical form. 

Hint: Time of training can be extracted using the tr.time(end) value – this is the time of 
the last training iteration. 

 

Task 4.6: Evaluate importance of the network depth: Design a research goal and then an 
experiment that will tell you what are the implications of using network with higher num-
ber of hidden layers. Consult your choice of experiment with the teacher before you start 
experimentation. 

Hint: There is just too many things to check at this stage so you will have to pick something. 
Would you like to check if number of layers’ influence is similar across problems (regression 
and classification)? Does it influence training time? Does it allow for better accuracy or does 
it make the training harder? Is it similar or different across different training algorithms? The 
goal is to think about a question that interests you and then design a procedure that will al-
low you to find out what the answer is. 

 
 
 

% Combine data 

X_all = [X_train, X_val]; 

T_all = [T_train, T_val]; 

 

% We will not be using the following division function now: 

% net.divideFcn = 'dividetrain'; 

 

% Define indices (1 = train, 2 = validation, 3 = test) 

trainInd = 1:size(X_train, 2); 

valInd   = size(X_train, 2)+1 : size(X_train, 2)+size(X_val, 2); 

testInd  = [];  % We again have no test data defined here 

 

% Set custom division 

net.divideFcn = 'divideind'; 

net.divideParam.trainInd = trainInd; 

net.divideParam.valInd   = valInd; 

net.divideParam.testInd  = testInd; 

[net, tr] = train(net, X_all, T_all); 
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Additional Tasks 
 

Task 4.7: Look into Matlab documentation in search of other neural network training 
algorithms possible for application in a classification tasks and then find information about 
them on the internet (you can use ChatGPT to this end) to compare them with trainlm and 
trainscg. Then pick two candidates which feel different to the algorithms we already tested. 
Design experiments that will either prove or disprove the properties you learned about 
them and then perform them, drawing conclusions. 

 

Task 4.8: Create a subset of your training data by randomly selecting 10%, 30%, 60% and 
100% of the original samples. Then do the same with validation subset. Then train the 
same network for each combination of training and validation subset. Repeat results so you 
are able to evaluate them statistically. What is more important: size of the training or size of 
the validation dataset? What do you observe about learning behavior, overfitting, and 
stability in low-data regimes? 

 

Task 4.9: Try repeating the same network training setup (same architecture, same data, 
same algorithm) multiple times. Do the results vary between runs? Why? Then explicitly fix 
the network’s initial weights using net.initFcn and/or net.IW{} using numbers from 
different ranges and repeat your experiments. How does random initialization affect the 
learning and outcome? Show the results graphically and draw conclusions about the 
importance of initialization in classification tasks. 

 
 

Task 4.10 Using a network trained for 2-dimensional classification, evaluate the output 
across a dense grid of points covering the input space. Plot the network’s predicted class for 
each grid point to visualize the decision boundary. Then repeat for networks with different 
sizes. How does model complexity influence the sharpness and shape of the decision 
boundary? 

 
 

Task 4.11 Disable the default input normalization by setting net.inputs{1}.processFcns = {} 
before training. Then train your network and record its performance. Next, manually 
normalize the data yourself (e.g., standardize to zero mean and unit variance), and compare 
training speed and validation accuracy. What does this tell you about the importance of 
input preprocessing? 

 


