

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Basics of AI and Deep Learning

Course for Mechatronic Engineering with English as instruction language

Instruction 4:

Neural networks in Matlab toolbox

 You will learn: How to use matlab toolbox for designing and using
neural networks and how to evaluate their efficiency based on
simulated data. We will learn how to recognize and deal with
overfitting, we’ll also design some experiments of our own that will
help us understand neural-networks a bit better.

 Additional materials:

- Course lectures 1 - 4

 ChatGPT was used in preparation of this instruction – for commenting
codes, unification of architecture of codes to adjust them for selected
tasks and bugfixes and for preparation of additional tasks 4.9 – 4.11

Course supervisor:
Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:

Ziemowit Dworakowski, zdw@agh.edu.pl

mailto:zdw@agh.edu.pl
mailto:zdw@agh.edu.pl

2

BAIDL: Instruction 4

Baseline for comparison

We have been designing polynomial regressors and neural-network-based classifiers from
scratch (and we were training them using our own implementations of optimization
algorithms). While it hopefully provided a better insight into how the method internals
work, it might not be the preferred approach in terms of efficiency in solving practical
problems. Lets now compare implementations developed in laboratory 2 and 3 with those
available in matlab toolboxes. Lets start with a regression problem. Similarly as before,
we’ll use RegressionTrainingData to configure model parameters and RegressionTestingData for final
evaluation. We will use multilayered neural network (MLP) as our model for regression.

In order to train the network, we will have to divide our data into training samples and
their corresponding target values – which so far were stored just in the third column of the
data matrix. Now we’ll need to pass them separately to our network:

Now we need to design our network and then train it, which we can do using the following
code:

Note, that within the code we can divide dataset into subsets internally (data we pass to the
network will be splitted into subsets while the network is trained). We already have a
Testing set prepared – so we are using this option only to craft training and validation
subsets. Lets investigate the network we created. The result of training should look
somewhat similar to one presented in Figure 1 (note that depending on matlab and toolbox
version the graphics may be different, but similar information should be provided by them).

load('RegressionData1.mat'); % Make sure the .mat file is in your path

% Inputs (first two columns) and targets (third column)

X = RegressionTrainingData(:, 1:2)';

T = RegressionTrainingData(:, 3)';

%% Create a feedforward neural network

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize); % Regression network

% Set training/validation/test split

net.divideParam.trainRatio = 0.7;

net.divideParam.valRatio = 0.3;

net.divideParam.testRatio = 0.0; % We will not use the internal test set

net.trainFcn = 'trainlm'; % Define training function

net.trainParam.showWindow = true; % Show training window

[net, tr] = train(net, X, T); % Train the network

3

BAIDL: Instruction 4

Figure 1 – Results of training in matlab GUI: nntraintool provides information about neural network shape (for
us: 2 inputs, 10 neurons in hidden layer), other metaparameters and training progress, indicating stopping
criterion that “fired” in green. You can open plots to look e.g. for training progress (“Performance”) or for spread
of results from ideal line (is there a skew for particular targets?)

Lets now check the results that we obtained. We can get the prediction from our trained
network and compare it with one returned by polynomial model from laboratory 2.

Note, however, that this is MSE for a training dataset. In order to calculate MSE for our
external testing dataset, we need to load and pass through the network the Testing part of
our data. Of course we don’t want to include it in the train command – just using net
command from the above code (highlighted in yellow) on new data should be enough.

Task 4.1: Using your individual* dataset for regression train the neural network using the
structure given above. Then test your trained network on a testing subset of your data –
and compare its performance with your polynomial regressor from laboratory 2. Show the
results of the comparison using a bar graph.

PredictedValues = net(X); % If we want to use our trained net to predict new data, we

do that here

MSE = mse(T,PredictedValues)

fprintf('MSE on all training+validation data: %.4f\n', MSE);

%% Plot predicted vs actual

figure;

plot(T, PredictedValues, '.')

xlabel('Actual Target')

ylabel('Predicted Output')

title('Neural Network Regression: Actual vs Predicted')

4

BAIDL: Instruction 4

Now lets do the same process for the classification problem that you were solving in scope
of Laboratory 3. Similarly as before, we’ll have to prepare our data for use by the neural
network. We can do that using the following code:

Design and configuration of the network works similarly as before – the only difference is
that we are using the patternnet instead of the fitnet – which tells Matlab that our network
is supposed to recognize classes in the final layer, and that we are refraining from automatic
division of training and validation datasets. Note also that we are changing the training
algorithm in our pattern recognition task:

And finally we are able to calculate network performance on any dataset. Lets start with the
training one:

We of course want to know not only training accuracy but also result of validation (based
on VA_DATA subset, which we’ve loaded above and didn’t use yet).

Task 4.2: Using your individual* dataset for classification from laboratory 3 train the neu-
ral network using the TR_DATA subset. Then check its performance using TR_DATA and
VA_DATA subsets. Compare the solution with multiline 1+1-based and multiline gradient-
based solutions developed in scope of Laboratory 3. Show the results of these comparisons
using a bar graph.

% Load training and validation data

load('TR_DATA.mat');

load('VA_DATA.mat');

% Extract features and labels from training data

X_train = TR_DATA(2:3, :); % Features (2×N)

T_train = TR_DATA(1, :); % Class labels (1×N)

% Extract features and labels from validation data

X_val = VA_DATA(2:3, :);

T_val = VA_DATA(1, :);

% Create a MLP network:

hiddenLayerSize = 10;

net = patternnet(hiddenLayerSize);

% Training metaparameters:

net.divideFcn = 'dividetrain'; % For manual control of validation subset

net.trainFcn = 'trainscg'; % Scaled conjugate gradient training method

net.trainParam.showWindow = true;

% Train the network

[net, tr] = train(net, X_train, T_train);

% Predict and compute training accuracy

Y_train = net(X_train); % Network output: probabilities

Y_predtrain = round(Y_train); % Convert to binary class predictions

trainaccuracy(iteration) = sum(Y_predtrain == T_train) / length(T_train);

fprintf('Training Accuracy: %.2f%%\n', trainaccuracy(iteration) * 100);

5

BAIDL: Instruction 4

OK – now the question arises: Do we actually have the best possible network for the task?
Here we start thinking about metaparameters – training algorithms, network structure,
ending conditions for optimization and so on. Lets start simple by asking what will happen
if we change number of neurons in our classification problem. Lets do it systematically by
organizing our tests in the following loop. Note that I have prepared a vector
hlsConfigurations with preset configurations that I want to test (marked in cyan). The
reason for that is that while interesting stuff may happen if we change neuron number from
2 to 3 (so I don’t want to miss on that), I don’t really think it is important to check the
difference between, say, 43 and 44 neurons:

The picture that I got is presented in Figure 2.

Figure 2 – Training and validation accuracy with respect to number of neurons in hidden layer of the network.

The interesting fact is that, apparently, validation accuracy lowers significantly for bigger
networks despite the fact that training accuracy keeps climbing. What we also see is the fact
that the relationship appears to be noisy – there is a dip in validation accuracy for 20 and
30-neuron networks which may or may not be caused by actual network properties. Lets
repeat this test statistically to make sure. I decided to run the test 10 times for each
network size and then store my results in a new Statistics structure. The number assigned
to Statistics vector tracks the number of the tested configuration. Partial results are stored
in TrainResults and ValResults vectors. After that I can show the results using the following
code, ending with the result displayed in Figure 3. Note the green fragment of the code. It
serves to provide manual ticks on the x axis (corresponding to actual numbers of tested
neurons). If you want to generate similar visualizations, you’ll need to adjust this code to be
compatible with your data structure.

hlsConfigurations = [1,2,3,6,10,15,20,30,40,60,100,200];

for ConfigurationNumber = 1:length(hlsConfigurations)

 hiddenLayerSize = hlsConfigurations(ConfigurationNumber);

 % Create a MLP network:

 net = patternnet(hiddenLayerSize);

% ... – And here the rest of the code for testing the network

6

BAIDL: Instruction 4

Figure 3 – Training and validation accuracy with respect to number of neurons in hidden layer of the network –

results of statistical evaluation.

Task 4.3: Using your individual* dataset for classification from laboratory 3 evaluate sta-
tistically training and validation performance for increasing number of neurons, starting
from 1, up to 200. Show the results in a graphical form. Then, repeat this task for the re-
gression task. Save all the results to your data structure.

If the task 4.3 was done properly, you probably noticed something interesting: Our
classification network appears to overfit easily while the regression net feels much more
robust and able to generalize better. It is because of the fact that we did not actually trained
the classifier properly. By designing training and validation dataset manually we forced the
algorithm to not use validation checks as a stopping criterion. We can solve this problem in
two ways. One: we can actually prepare another validation dataset by cutting part of
training data (which will reduce amount of samples we can use for training but is simple to
code):

Or better: we can merge training and validation datasets and then force the network to not
mix them up randomly but instead use them in order we provided:

figure;

for configurationNumber = 1:length(Statistics)

 plot(configurationNumber, 100 * Statistics(configurationNumber).TrainResults, 'or'); hold on

 plot(configurationNumber, 100 * Statistics(configurationNumber).ValResults, '*k'); hold on

end

xlabel('Number of Neurons')

ylabel('Accuracy (%)')

xticks(1:length(Statistics))

xticklabels(string([Statistics(:).NumberOfNeurons]))

 % Set custom division

 net.divideFcn = 'dividerand';

 net.divideParam.trainRatio = 0.7;

 net.divideParam.valRatio = 0.3;

 net.divideParam.testRatio = 0.0;

7

BAIDL: Instruction 4

Note that in order for the second approach to work, you’ll also need to pass the new dataset
to the network during training:

Task 4.4: Update the code for classification network evaluation allowing the network to
use validation dataset as a stopping criterion. Check if it modifies network’s statistical per-
formance (whether the overfitting is still present)

Task 4.5: Evaluate statistically the performance of the classification network for two dif-
ferent training algorithms: trainscg and trainlm – with respect to network size. Let the size
vary in large range, so your testing will include networks from 10 to at least 300 neurons in
hidden layer. Check both validation accuracy and training time for both algorithms and
then show the results in a graphical form.

Hint: Time of training can be extracted using the tr.time(end) value – this is the time of
the last training iteration.

Task 4.6: Evaluate importance of the network depth: Design a research goal and then an
experiment that will tell you what are the implications of using network with higher num-
ber of hidden layers. Consult your choice of experiment with the teacher before you start
experimentation.

Hint: There is just too many things to check at this stage so you will have to pick something.
Would you like to check if number of layers’ influence is similar across problems (regression
and classification)? Does it influence training time? Does it allow for better accuracy or does
it make the training harder? Is it similar or different across different training algorithms? The
goal is to think about a question that interests you and then design a procedure that will al-
low you to find out what the answer is.

% Combine data

X_all = [X_train, X_val];

T_all = [T_train, T_val];

% We will not be using the following division function now:

% net.divideFcn = 'dividetrain';

% Define indices (1 = train, 2 = validation, 3 = test)

trainInd = 1:size(X_train, 2);

valInd = size(X_train, 2)+1 : size(X_train, 2)+size(X_val, 2);

testInd = []; % We again have no test data defined here

% Set custom division

net.divideFcn = 'divideind';

net.divideParam.trainInd = trainInd;

net.divideParam.valInd = valInd;

net.divideParam.testInd = testInd;

[net, tr] = train(net, X_all, T_all);

8

BAIDL: Instruction 4

Additional Tasks

Task 4.7: Look into Matlab documentation in search of other neural network training
algorithms possible for application in a classification tasks and then find information about
them on the internet (you can use ChatGPT to this end) to compare them with trainlm and
trainscg. Then pick two candidates which feel different to the algorithms we already tested.
Design experiments that will either prove or disprove the properties you learned about
them and then perform them, drawing conclusions.

Task 4.8: Create a subset of your training data by randomly selecting 10%, 30%, 60% and
100% of the original samples. Then do the same with validation subset. Then train the
same network for each combination of training and validation subset. Repeat results so you
are able to evaluate them statistically. What is more important: size of the training or size of
the validation dataset? What do you observe about learning behavior, overfitting, and
stability in low-data regimes?

Task 4.9: Try repeating the same network training setup (same architecture, same data,
same algorithm) multiple times. Do the results vary between runs? Why? Then explicitly fix
the network’s initial weights using net.initFcn and/or net.IW{} using numbers from
different ranges and repeat your experiments. How does random initialization affect the
learning and outcome? Show the results graphically and draw conclusions about the
importance of initialization in classification tasks.

Task 4.10 Using a network trained for 2-dimensional classification, evaluate the output
across a dense grid of points covering the input space. Plot the network’s predicted class for
each grid point to visualize the decision boundary. Then repeat for networks with different
sizes. How does model complexity influence the sharpness and shape of the decision
boundary?

Task 4.11 Disable the default input normalization by setting net.inputs{1}.processFcns = {}
before training. Then train your network and record its performance. Next, manually
normalize the data yourself (e.g., standardize to zero mean and unit variance), and compare
training speed and validation accuracy. What does this tell you about the importance of
input preprocessing?

