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BAIDL: Instruction 5 – Practical decision system 

Introduction 
 
Up to this moment we have been solving “problems” created artificially (so we generated 
some points with no physical meaning and then tried to build learners to do regression or 
classification on them). While this principle will still be true today, we will take a step back 
in terms of how the data are processed and we will pretend that we are actually solving a 
real-life engineering problem. Imagine that you are tasked with interpretation of data from 
a rotary machinery. This data might come in a form of time-domain vibration signals. From 
this signals you would be expected to derive information important from the maintenance 
point of view. Maybe a machine can possibly be damaged and your task is to detect if that is 
so? Maybe you are expected to recognize operational states of this machine or infer 
relationships between particular values that we can register? Either way the information 
processing routine will be similar: you will gather data, process it to extract informative 
features, build a system for pattern recognition and try to improve the process iteratively 
by changing its components. And this is precisely what this laboratory will simulate. While 
the signals you are working with are again generated artificially (so they would be 
predictable and interesting from didactic point of view while being concise in volume), they 
exhibit similar behavior to ones you could encounter in practice – so if you would like to 
address particular problem using your context knowledge, you might want to know that 
tooth damage will probably manifest mostly in high frequency signal components, 
misalignment in frequency of the misaligned shaft, gear tooth damage will cause spikes 
occurring when the damaged tooth meshes with others and changes of load will result in 
general changes of signal amplitude in particular frequencies. 
 
Signal database processing – to create data for your own tasks 
 
We will start with “acquisition of signals”. In reality it would mean attaching sensors to our 
machinery, configuring some data acquisition units and then downloading acquired data 
from them, in our case we will simply download the AcquiredSignals structure from our 
Student Toolbox. We will need labels for our data though – and these labels will actually 
form individual tasks you are meant to solve – so depending on your task, you will have the 
same dataset labeled in a different way. You will find these vectors in your AcquiredSignals 
structure.  The list of tasks is presented in Table 5.1.  
 

Table 5.1 – Description of the individual tasks in scope of the instruction 
 

Task 
code 

Structures What the task simulates? 

0 AcquiredSignalsA, CodeVectorA1 Two different load patterns 
1 AcquiredSignalsA, CodeVectorA2 Bearing damage 
2 AcquiredSignalsA, CodeVectorA3 Misalignment 
3 AcquiredSignalsA, CodeVectorA4 Gear tooth damage 
4 AcquiredSignalsB, CodeVectorB1 Two different load patterns 
5 AcquiredSignalsB, CodeVectorB2 Bearing damage 
6 AcquiredSignalsB, CodeVectorB3 Misalignment 
7 AcquiredSignalsB, CodeVectorB4 Gear tooth damage 
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The first step in any analysis of that type requires division of data into training, validation 
and testing subsets. We should do it before we even look at our data – to avoid being biased 
in drawing any conclusions based on training dataset. So lets use our code vectors to label 
the data and then lets divide our data into subsets. Note the orange parts of the code – you 
will need to adjust CodeVector name and AcquiredSignal file to fit your individual task 
definition (from Table 5.1): 
 

 
Note that once the data are saved, this script should not be used any more. Every time you 
run it, you’ll get a different division of data into subsets. Finally we will use the code below 
to display 9 random signals (See Fig. 1): 
 

 
 

Task 5.1: Get data structure, label it using your individual task codes (See table 5.1 for 
that). Display examples of signals from same classes and opposite classes. Try to find any 
factors that would allow you to consistently recognize these signals “by hand”.  

 
 

load AcquiredSignalsA 

 

% We'll create a randomly permutated vector of indices to keep track of 

% where our data belongs. 

RP = randperm(1000); 

TrainIndices = RP(1:500); 

ValIndices = RP(501:750); 

TestIndices = RP(751:1000); 

 

% Now we'll divide data into subsets: 

TrainSignals = AcquiredSignalsA(TrainIndices); 

TrainTargets = CodeVectorA1(TrainIndices); 

ValSignals = AcquiredSignalsA(ValIndices); 

ValTargets = CodeVectorA1(ValIndices); 

TestSignals = AcquiredSignalsA(TestIndices); 

TestTargets = CodeVectorA1(TestIndices); 

 

% And now, similarily as before, we'll save our data subsets: 

save TrainData TrainSignals TrainTargets 

save ValData ValSignals ValTargets 

save TestData TestSignals TestTargets 

figure(1); 

for k = 1:9 

    subplot(3,3,k); 

    no = randi(500); % Random signal number 

    if(TrainTargets(no)==1) 

        plot(TrainSignals(no).sig,'k') 

    else 

        plot(TrainSignals(no).sig,'r') 

    end 

    title(['Signal no: ',num2str(no)]) 

end 
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Fig 1 – Examples of 9 random signals from our database. Color refers to class label. Notice that inter-class 
variability seems rather large – we can’t easily find any rule that allows for separation of red signals from black 
ones. 
 
Note that, while each signal is associated with a target value – we can’t see any feature 
space now – we did not extract any features yet. Since we are not sure now which features 
will actually help us solve the problem, lets just extract some general features and see what 
happens. Note that input and output formulation should be similar for all of them: all of the 
functions for feature extraction should take the signal and return a value which we store in 
our Features matrix: 
 

 
You can craft your own functions and you can use built-in ones, like kurtosis, skewness, 
peak2peak, rms and others. I’ve decided to use one feature of my own implementation 
(which I called MyFeature) – not because it is necessary (it is actually exactly similar to 
matlab built-in function peak2rms), but because I wanted to show you how it is done: 
 

 
 
 

for k = 1:length(TrainSignals) 

    Features_train(k,1) = mean(TrainSignals(k).sig); 

    Features_train(k,2) = std(TrainSignals(k).sig); 

    Features_train(k,3) = MyFeature(TrainSignals(k).sig); 

    % ... 

    % And here we’ll want to have many different features of your choice 

end 

function[feature] = MyFeature(signal) 

   m = max(abs(signal)); % We take the maximum absolute of a signal 

   feature = m/rms(signal); % And then divide it by rms of the signal 

end 
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Now we can extract features – and finally show any two-dimensional sub-spaces of the 
feature space. Let us associate target values with colors: 
 

 

 
Fig 2 – Scatterplot of classification space built from two features calculated for all our signals – with classes 

coded by CodeVector denoted by colors. 
 

In Figure 2 we can see now a two-feature classification space. Note that these data appear 
in many different clusters – which can be interpreted as many different operational or 
environmental states. While this space will produce results which are better than coin toss 
(there are clusters that contain only “magenta” or only “black” samples, the classification 
space is still far from perfect: some clusters of both classes overlap – and the Signal mean 
feature appears to not contribute much to our problem. 
 
 

Task 5.2: Calculate at least three different features (in addition to those already calculated 
in our code and then show all the 6 features for your entire training subset of data using 
several two-dimensional scatterplots. Try to look for such a pair of features, for which the 
data will appear to be the easiest to separate. Save the scatterplot it produces – for showing 
it to the teacher. 

 
 
 
 
 

figure(2); 

for no = 1:length(TrainSignals) 

    if(TrainTargets(no) == 1) 

        plot(Features_train(no,1),Features_train(no,2),'.k'); hold on 

    else 

        plot(Features_train(no,1),Features_train(no,2),'.m'); hold on 

    end 

    xlabel('Signal mean') 

    ylabel('Signal std') 

end 
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Initial decision system 
 
Since we now have features that can be used as inputs to our system, lets just pass the data 
through a neural network and check if we can force it to correctly recognize patterns in 
training dataset. We don’t know yet if our features are informative enough, we don’t know 
how many we should use and what will be the actual overlap (the lowest possible error in 
the best case scenario), but lets do that so we get a point of reference for further 
improvement. You will need to prepare data in such a way that it would fit to the Neural 
Network that we’ve designed in scope of Laboratory 4. 
 
 
 

Task 5.3: Train an ANN model using training subset and two features of your choice, then 
use the validation subset to estimate how general the solution is. Store the network 
configuration and its validation result in the Table 5.2 at the end of the instruction. This 
network becomes our baseline network for further evaluation 
 
Note that you will need to calculate features for Validation subset of your data in exactly the 
same way and store them in the Features_val matrix in the same columns you did for training 
dataset (Features_train). Otherwise your ANN will not be able to recognize new data! 

 
 
 
 

Task 5.4: Estimate importance of particular hyperparameters of our setup. Don’t try to 
optimize them yet, but check what is the validation result if you modify your decision 
system to: 
 
a) use significantly wider ANN model (more neurons in a layer); 
b) use a model of different depth (more hidden layers) 
c) use different training algorithm for your ANN; 
d) use different pair of features; 
e) use all of the calculated features; 
 
And then compare it with configuration from task 5.3 (baseline network), but evaluated 
statistically (so we want to check whether any of these (a) – (e) tries actually provides 
significant change when compared to natural variability of neural network training 
procedure. Store the results in Table 5.2 and be prepared to discuss your findings with the 
teacher. 
 
Note that points (a) – (e) are just results of one try, without statistics. We are saving time this 
way and are simplifying computations, because we are still in the initial phase of model setup.  
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Hyperparameter optimization 
 
There are four basic approaches to model hyperparameter setup: 
 
Approach 1: We make sure only that the model is complex enough to grasp data and go 
with „defaults” – or copy hyperparameter values from a similar setup. The approach saves 
time and data – apart from the stopping criterion, e.g. neural network training, there is no 
need to devote large subsets of data to optimize hyperparameters – and there is also no 
need to reserve time for “configuration runs” in which the model is trained only so its 
performance could be evaluated for the purpose of its hyperparameter setup, with no 
relation to the future goal of the model. We won’t be using this approach in our test case. 
 
Approach 2: We pick a reasonable starting point – often based either on default 
hyperparameter values or similar setup found in the literature, and then slightly change 
one hyperparameter at a time checking if it helps in a statistically significant way – until we 
run out of time. Effectively, it can be perceived as usage of the 1+1 optimization approach. 
Here we are allocating time as it is needed – until we stop improving our solution. If we 
would like to use this approach for our model, we could follow this routine: 

A) Pick a good starting point – e.g. based on results of Task 5.4 
B) Evaluate this point statistically (storing e.g. mean and standard deviation from 10-

30 runs, depending on how consistent these results are. 
C) We pick a hyperparameter and then modify it (noticeably but not to the extreme – so 

e.g. by 20 – 30%) 
D) We repeat step B and based on comparison of both statistical runs we decide 

whether we continue the direction, go backwards or change a hyperparameter for 
modification. 

E) We repeat steps C – D until the improvement stagnates over multiple tries. 
 
Approach 3: We decide which hyperparameters will influence the result the most – and do 
full optimization routine only for those (using grid search). Note that because we expect the 
objective function to be a smooth one, we don’t need as many repeats for every point – 
because we can average the results over neighboring points in our optimization grid. While 
we risk doing much more computations than in other approaches, we are estimating 
objective function shape with higher accuracy. If we would like to go with this approach, we 
should use the following routine: 

A) Pick a set of two to three hyperparameters which feel the most significant (based on 
the results of Task 5.4).  

B) Pick a grid of points in space defined by these hyperparameters. In each point run 
the evaluation several times. Assign density of grid and number of starts per grid 
node so that the whole procedure would not be too long (assume some constraints 
you want to meet). Note that if you go with a dense grid and not many starts per grid 
– you should probably smooth out the results – e.g. by averaging neighboring points. 

 
Approach 4: We do a one-dimensional optimization for all hyperparameters separately. So, 
starting from a selected hyperparameter values, we run optimization each time changing 
only one parameter – and moving to the found minimum before picking another 
hyperparameter to optimize. While the routine is pretty simple and does not require too 
much computation power, it can easily end in a local minimum – as Hyperparameters often 
influence each other to a large extent. If you’d like to go with this approach, you should 
probably use the following routine: 

A) Start with a starting point – e.g. selected based on results of task 5.4 
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B) Pick one of the hyperparameters that feels the most influential for the results, 
optimize only this hyperparameter, “freezing” the others. We can use random search 
here or go with grid approach (this time grid will be one-dimensional).  

C) Now lets repeat step B for a different, yet unoptimized hyperparameter. We do it 
until we run out of hyperparameters. 

 
 

Task 5.5: Select any of the approaches for hyperparameter optimization (Excluding of 
course the “no optimization, go with default” approach) and follow it until you can’t 
improve your decision system any further. Check if the obtained results are statistically 
significant – in comparison to the results of task 5.3. Finally, evaluate the optimized solution 
based on Testing subset of your data – to estimate the future efficiency of your system. Then 
store the results in Table 5.2 

 
Table 5.2 – Aggregated results of the Laboratory 5 

 
Task configuration: Signal database: 

Code vector: 
Task type: 

Baseline network result: Training: 
 

Validation: 

 
Baseline network configuration: 

(structure and training algorithm) 
 
 
 

Features used:  
 

Statistical baseline network result: Mean of 20 tries: 
Std of 20 tries: 

Validation performance for 
different model configuration: 

Neurons in layer change: Layers number change: 

 
Training algorithm change: Different feature pair: 

All the features: 

Result of hyperparameter 
optimization: 

Final configuration: 
 
 
 
Validation error (mean and best): 

Testing result: 
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Additional tasks 
 
 

Task 5.6: Calculate frequency spectrum of the signal, filter it to extract several frequency 
bands and then calculate RMS of these bands (separately, forming a set of RMS-related 
features). Then use these features to check if they allow for improvement of your decision 
system optimized in task 5.5  

 
 

Task 5.7: Pick a different approach to optimization of hyperparameters than you did in 
task 5.5 (so, e.g., if you’ve used grid search, use 1+1 approach now). Perform full 
hyperparameter optimization routine and then compare these two results with each other 
statistically.  

 
 

Task 5.8: Use other code vector (the one that you did not use in Task 5.1) as additional 
feature and then check if it allows for statistically significant improvement of your results. 
Try that several times using different code vectors. Try to explain the results (did it help? 
Why? Or why not?) 

 
 

Task 5.9: Note that our data are significantly clustered. Maybe it would be easy to perform 
classification based primarily on cluster labels? Select a 2-dimensional feature space in 
which you can clearly see many different clusters of data (similarly as in Figure 2) and then: 
 
a)  read the documentation for the k-means clustering method in matlab (doc kmeans) 
b) run the kmeans on the training AND validation data (a set consisting of both these 
subsets) to get cluster indices. 
c) Assign labels for clusters based on training target values prevalent for them (so count 
how many training points assigned to “cluster 1” have “label 1” – and if it is more than 50%, 
assign to cluster label “1”, and so on. 
d) Classify validation data using information about classes from point (c) 
e) Compare this result with ones obtained in task 5.5 and 5.3 

 
 


