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Image correlation coefficient for finding objects 
 
The image correlation coefficient can be used to find a given pattern in an image. The 
correlation function takes a pattern in the form of a smaller image and looks for it in an 
image or series of images. The variable created by the correlation function is a matrix, a 
new image, that illustrates the degree of similarity between the pattern and the area in the 
image placed below the pattern for each position of the pattern in the image. Then, by 
searching the maximum value in this matrix, the location of the pattern in the image can be 
found. To calculate the similarity map between the pattern and the image, use the function 
 
c = normxcorr2(image_pattern,image); 

 
The variable c can be displayed as an image (image() or imagesc() functions) or as a 
surface plot using the command surf(c). Then, given the similarity values as a function of 
position in the image, one can find the maximum value of the function and the location of 
this maximum. In MATLAB this can be done with code: 
 

[max_c, imax] = max(abs(c(:))); 

[ypeak, xpeak] = ind2sub(size(c),imax(1)); 

 

Remember that the normxcorr2() function changes the size of the analyzed image. 
Therefore, to display the center of the found pattern, we recalculate the indexes as follows: 
 
peak_offset = [(xpeak - size (image_pattern,2))  

(ypeak - size (image_pattern,1))]; 

 
After using surf(), use the shading flat command to display the correlation function 
response as a surface, because otherwise too many edges will be drawn in the figure and 
the entire plot will be black. 
 
Here is the simple code that searches for a pattern in the image 
 

clc; 

clear all;  

close all; 

% Correlation for pattern detection examples 

im = imread('Wagtail.JPG'); 

pattern = imread('Wagtail_P2.JPG'); 

  

imGray = rgb2gray(im); 

patternGray = rgb2gray(pattern); 

imGrayTemp = imGray; 

  

figure, 

subplot(1,2,1) 

imshow(imGray); 

subplot(1,2,2) 

imshow(patternGray); 

  

% image correlation computation - find one pattern in the image 

c = normxcorr2(patternGray,imGray); 

  

[max_c, imax] = max(abs(c(:))); 

[ypeak, xpeak] = ind2sub(size(c),imax(1)); 

  

peak_offset = [(xpeak - size (patternGray,2))  

(ypeak - size (patternGray,1))]; 

  

figure, 

subplot(1,2,1) 
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imagesc(c); 

subplot(1,2,2) 

surf(c); 

shading flat 

  

figure, 

imshow(im); hold on 

% plot(peak_offset(2),peak_offset(2),'*'); hold on 

rectangle('Position',[peak_offset',size(patternGray)],'Edgecolor','red'); 

 
Image correlation has become an important tool in non-contact measurements of 
mechanical quantities such as displacements, deflections, deformations and strains. It is the 
basis of a measurement technique called DIC (Digital Image Correlation ).  
Read about it on the Internet and try to find solutions available on the market. If this topic 
interests you, you can read more, learn about the algorithm and download and test a free 
version of the program developed in the MATLAB computing environment at 
http://www.ncorr.com/ 
 

Task 3.1. Run the MATLAB code for finding a pattern in the image. Mark the found pattern 
by enclosing it by a red rectangle or dot representing its center. See how the function finds 
different patterns. Observe the correlation response and discuss which of the patterns are 
the best for detection and why. Which of them would be more robust to noise in the image?  

 
Image Analysis – Objects detection and classification 
 
Let’s start with the review of the previous lab exercise.  Recall that the first step of object 
analysis is a binarization. You got to know the basic as well as more advanced methods. 
After binarization, the objects in the image must consists of white pixels (of value 1) while 
the background becomes black (pixels of value 0). Next, all objects have to be labeled using 
bwlabel(). This function simply gives numbers (labels) to all disconnected objects in the 

image. In the next step, the geometric parameters describing shapes are computed using 
regionprops() function. In this exercise, use that function to obtain all available 
features – use property 'all'.  
 
Here's there is a simple program from the previous class that computes all the features of 
objects.  
 

clc; 

clear all;  

close all; 

  

imRGB = imread('Objects.jpeg'); 

  

figure(1) 

subplot(1,2,1) 

imshow(imRGB); 

title('Original Image') 

  

imGray = rgb2gray(imRGB); 

  

thresh = graythresh(imGray); 

imBW = im2bw(imGray,thresh); 

  

figure(1) 

subplot(1,2,2) 

imshow(imBW); 

title('Binary Image') 

  

imLB = bwlabel(imBW,4); 
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features = regionprops(imLB,'all'); 

 
Let’s modify the program in the following exercises: 
 

Task 3.1 Change the program in such a way that all features are computed instead of just 
basic ones. Use an image in which there are several different shapes present. Perform a 
successful binarization of that image – obtaining a binary image with all objects. Write a 
code that prints a centroid of each object in the image and its number next to it. Find how 
different features change with the shape of the object. 

 
The features which you should examine in this exercise: Area, BoundingBox, Centroid, 
ConvexArea, Circularity, Eccentricity, EquivDiameter, EulerNumber, Extent, Orientation, 
MaxFeretProperties, MinFeretProperties, MajorAxisLength, MinorAxisLength, Solidity. 

 
Task 3.2 Try to find the minimum set of features that is necessary to classify all shapes in 
the image. The features should not be redundant, e.g. you should discard the feature that 
carries the same information as the other ones. Next, write a simple code for shape 
classification based on feature values using a nested if-else programming structure.  

 
Moments and moment invariants 
 
In the binary image processing, the moments and moment invariants are mathematical 
concepts that describe geometrical features of objects e.g. its shape. They are important in 
the field of object recognition and classification and shape analysis.  
 
Moments – The moments are numbers associated with objects that quantify the spatial 
distribution of image pixels and may be used to describe a shape. There are several types of 
moments which will be described in the following lab instruction. 
 

1. Ordinary Moments – they describe general geometric properties (spatial 
distribution of pixels) of objects based on their shape (pixel distribution).  
 

𝑀𝑝𝑞 =∑ ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

 

 
Where I(x,y) – is pixel intensity at (x, y) – in the case of the binary images it takes a 
value 1 for object’s pixels and p, q – are integer s indicating the order of the 
moments.  
 

2. Central Moments – they describe spatial distribution of object’s pixels relative to its 
centroid. They are robust to the shift in the position of the object in the image. In 
order to compute the central moments, you first have to compute the position of the 
centroid of the object, using first order ordinary moment. Then the central moments 
are computed as follows 

 

𝜇𝑝𝑞 =∑ ∑ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

 

 
The formula is the same as before, except, you have to subtract the centroid x and y 
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coordinate as indicated in the equation.  
 

3. Normalized Moments – these moments are robust to scale change of the objects. 
They are computed based on the central moments and area of the objects. They are 
central moments divided by a scaling factor.  

 

𝜑𝑝𝑞 =
𝜇𝑝𝑞

(𝜇00)
1+

𝑝+𝑞
2

 

 
4. Moment invariants – these are types of moments that are invariant under 

transformations of the image, such as translation, scaling and rotation. They help to 
recognize the same object type in the image, even if it is changed by these 
transformations. 
 
One of the most commonly used types of moment invariants are Hu moments. They 
were reported in the scientific literature by M.K. Hu in 1962. For each object, a set of 
7 Hu moments is computed based on the normalized central moments. Hu moments 
are invariant to translation, rotation and scaling transformations.  
 
 

In the following set of exercises, you will be applying MATLAB functions provided by the 
instructor to carry out object recognition and classification.  
 
Here is the code of the function that computes moments and moment invariants 
 
First, after image thresholding and labelling, use regionprops() function to compute 
centroids and obtain a list of pixels that belongs to each of the objects.  
 
features = regionprops(imLB, 'Centroid', 'PixelList'); 

 
Next you can loop through the objects to compute the moments, for example in the case of 
central moments: 
 

order = [3 3]; 

  

for k = 1:length(features) 

     

    % find centroids and pixel list for each of the objects 

    centroid(k).coordinates = features(k).Centroid;   

    pixelList(k).List = features(k).PixelList;   

  

    % Compute central moments for the object 

    moments(k).CentralMoments = computeCentralMoments(pixelList(k).List, 

centroid(k).coordinates,order);     

     

end 

 
 
Next, the functions that computes all moments and moments invariants.  
 
 

function moments = computeCentralMoments(pixelList, centroid,order) 

     

moments = zeros(order(1)+1, order(2)+1);  % Initialize a matrix for central moments 
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(p=0..2, q=0..2) 

    c_x = centroid(1); 

    c_y = centroid(2); 

     

    % Calculate central moments for p, q = 0, 1, 2, 3, etc.  

     

for i = 1:size(pixelList, 1) 

        x = pixelList(i, 1); 

        y = pixelList(i, 2); 

  

        for p = 0:order(1) 

            for q = 0:order(2) 

                moments(p+1, q+1) = moments(p+1, q+1) + (x - c_x)^p * (y - c_y)^q ; 

            end 

        end 

    end 

end 

 
 
To compute Hu moments, your first have to normalize central moments obtained in the 
previous step.  
 
 

 

function normalizedMomentsList = computeNormalizedMoments(momentsList) 

  

for k = 1:length(momentsList) 

     

    moments = momentsList(k).CentralMoments; 

    normalized_moments = zeros(size(moments,1), size(moments,2)); 

   

    m00 = moments(1, 1); 

     

    for p = 0:size(moments,1)-1 

        for q = 0:size(moments,2)-1 

             

            normalized_moments(p+1, q+1) = moments(p+1, q+1) / (m00^(1 + (p + q)/2)); 

             

        end 

    end 

     

    normalizedMomentsList(k).NormalizedMoments = normalized_moments; 

end 

  

end 

 
Now, you can compute a set of seven Hu moments: 
 

 

function hu_moments = computeHuMoments(normalizedMomentsList) 

  

for k = 1:length(normalizedMomentsList) 

  

normalized_moments = normalizedMomentsList(k).NormalizedMoments;   

     

    eta20 = normalized_moments(3, 1); 

    eta02 = normalized_moments(1, 3); 

    eta11 = normalized_moments(2, 2); 

    eta30 = normalized_moments(4, 1); 

    eta03 = normalized_moments(1, 4); 

    eta21 = normalized_moments(3, 2); 

    eta12 = normalized_moments(2, 3); 

  

    % Compute the 7 Hu moments 

    phi1 = eta20 + eta02; 

    phi2 = (eta20 - eta02)^2 + 4 * eta11^2; 

    phi3 = (eta30 - 3 * eta12)^2 + (3 * eta21 - eta03)^2; 

    phi4 = (eta30 + eta12)^2 + (eta21 + eta03)^2; 

    phi5 = (eta30 - 3 * eta12) * (eta30 + eta12) * ((eta30 + eta12)^2 - 3 * (eta21 + 
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eta03)^2) + (3*eta12 - eta03)*(eta12 + eta03)*(3*(eta30 + eta12)^2 - (eta21 + 

eta30)^2); 

    phi6 = (eta20 - eta02) * ((eta30 + eta12)^2 - (eta21 + eta03)^2) + 4 * eta11 * 

(eta30 + eta12) * (eta21 + eta03); 

    phi7 = (3 * eta21 - eta03) *(eta30 + eta12)* ((eta30 + eta12)^2  - 3 *(eta12 - 

eta30))-(eta30-3*eta12)*(eta21+eta03)*(3*(eta30 + eta12)^2 - (eta21 + eta30)^2); 

  

    % Store Hu moments in a vector 

    hu_moments(k).Hu = [phi1, phi2, phi3, phi4, phi5, phi6, phi7]; 

     

end 

  

end 

 

Task 3.3 Analyze the images with the same geometric objects, but with introduced changes 
– translation, rotation and scaling. Compute central moments and normalized moments. 
Compute moments of different and increasing order for each of the objects and each of the 
images.  Discuss how the value of the moments change with shapes and how they change 
with introduced transformations. Which of the moments are invariant to translation, 
scaling and rotation? 

 

Task 3.4 Repeat exercise 3.3, including the Hu moments in the feature vector. Check the 
invariance of Hu moments for transformations. Write a classification program that uses all 
moments.  

 

Task 3.5 Apply the knowledge acquired in the previous exercise to write a program for 
simple objects’ classification based on the values of moments. The program should classify 
all shapes present in the image. Draw centroids of each objects and mark each class by a 
bounding box of a distinct color.  

 

Local features and feature detectors 
 
In many practical cases, the region-based image segmentation in not enough to properly 
describe objects present in the image. Even the best algorithms may not segment the image 
into objects with the desired level of accuracy. In such cases, instead of describing the 
objects as regions, we may treat them as a set of points. The points may represent the 
characteristic parts in objects like its corners. By detecting these points and computing 
their positions we may model the entire object. For example, we may use the set of points 
to identify the same object on a series of images by analyzing spatial relations between the 
points. It is possible even if the object deforms as it moves in a video, because each of the 
point may be tracked individually. In the computer vision literature, these characteristic 
points are often called local image features (point features).  
 
There are many different feature detector and descriptors available in the programming 
packages. They differ by the types of features they detect the best (corner features vs blob 
features), time and complexity of computation and type of invariance (e.g. rotation and 
scale invariance).  

 
Here are some detectors that are implemented in MATLAB: 
 

1. Harris detector (1988) – the most known and widely used in practice corner 
detector that detects corner points, 

2. Minimum Eigenvalue algorithm (Shi-Tomasi algorithm, 1994) – corner detector 
using the same eigenvalue approach as Harris, but different scoring function, 
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3. FAST (Features From Accelerated Segment Test, 2006) – corner detector that is 
computationally fast compared to other detectors that use DoG approach (e.g. SIFT), 

4. SURF (Speed-Up Robust Features, 2006) – multiscale feature descriptor, faster than 
more known SIFT descriptor, applicable for detection of blob-like features at various 
scales, the scale-space is generated using image pyramids, 

5. ORB (Oriented FAST and Rotated BRIEF, 2011) – detector which is a combination of 
FAST corner detector to localize the feature and BRIEF descriptor, but is rotation-
invariant, free to use response to SIFT and SURF (patented ones), 

6. BRISK (Binary Invariant Robust Scalable Keypoints, 2011) – another scale-invariant 
feature descriptor that is a free response to a patented SIFT, it is in general a 
multiscale FAST corner detector, not rotationally invariant, 

7. KAZE (2012) – multiscale feature descriptor, uses Nonlinear Diffusion Filtering to 
create scale-space (instead of pyramid approach and Gaussian blurring),  it has also 
an open source code 

 
In this exercise you will learn how to compute and use image local features using feature 
detectors and descriptors.  
 
You may apply detectors using a series of built-in function as in the following example (for 
an application of Harris corner detector) 
 
points =  

detectHarrisFeatures(im,'MinQuality',0.55,'FilterSize',15);  

 
As you can see, there are several parameters which values may be changed. These values 
may be tuned to get a desired results e.g. all corner points present in the image detected, 
but no double or triple corners at the same place and no corners due to image noise are 
found. Read MATLAB documentation to learn about the meaning of all parameters and then 
try to find the values for which you obtain the best result for your image.  
 
Also you may get only N  corners for which the detector’s response is the largest.  
 
points = points.selectStrongest(N); 

 
Now you can show the corners found by the algorithm using the following code: 

 

points.Location = points.Location + [cropRect(1) cropRect(2)]; 

 

figure, 

 

  imshow(im); 

  hold on; 

  x = points.Location(:,1); 

  y = points.Location(:,2); 

   

  plot(x,y,'*g'); 

  hold on 

 

In the code, the cropRect variable is added if you first cropped a subimage. If you are using full 

image, set cropRect to zero vector. To see how the Harris corner detector operates, please 

implement the detector in a function yourself and check how it performs comparing to the Harris 
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detector implemented in the MATLAB. The exercise will be interesting since it involves many 

image processing that you have learned so far.  

 

First of all, your function must read and image and convert it into grayscale representation. Next, 

convert you image to double. 

 

I = double(I); 

 

Next, you need to create a measure of ‘cornerness’. First step is to obtain the gradient image. You 

can also filters that compute first derivative, like Sobel filter, instead. 

 

[Ix, Iy] = gradient(I); % Gradient in x and y direction 

 

Now, compute product of derivatives. 

 

Ixx = Ix.^2; 

Ixy = Ix .* Iy; 

Iyy = Iy.^2; 

 

As we discussed in the previous exercises, it is useful to blur image before further computation. 

Therefore, apply Gaussian filtering. 

 

sigma = 1; % Standard deviation for Gaussian kernel 

windowSize = 3; % Size of the window for Gaussian filter 

 

G = fspecial('gaussian', windowSize, sigma); 

Ixx = conv2(Ixx, G, 'same'); 

Ixy = conv2(Ixy, G, 'same'); 

Iyy = conv2(Iyy, G, 'same'); 

 

Now let’s compute the Harris corner response function, using k constant according to the 

literature. 

 

k = 0.04; % Harris corner constant 

R = (Ixx .* Iyy - Ixy.^2) - k * (Ixx + Iyy).^2; 

 

Now, using a threshold, find only the points for which Harris corner response function was above 

the threshold 

 

threshold = 0.01 * max(R(:)); % Threshold is a fraction of the 

maximum value of R 

corners = R > threshold; 

 

Now you can visualize the corners by drawing them on the image.  

 

Task 3.6 Write a program that detects corners in an image. Try to choose the parameters of 
the Harris corner detector to detect the highest number of true edges. Detect the corners as 
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indicated by the instructor. Try to minimize false detection e.g. places where there are no 
corners, edges, avoid double corners at the same locations. Discuss the results. 

 

Task 3.7 Repeat the Task 3.6 to test other types of feature detector and descriptors 
available in the MATLAB. Note, that some of them detect corner features, like Harris corner 
detector, other ones are better suited to detect blob-like features. You will be given different 
images containing both of these types of features. Test which detectors are better to detect 
which types, try to find the best set of parameters for a given image like in the previous 
task. 

 
There are the following functions available in MALAB: 

 
detectMinEigenFeatures(); 

detectFASTFeatures(); 

detectORBFeatures(); 

detectBRISKFeatures(); 

detectKAZEFeatures(); 

detectSURFFeatures(); 

 
An application of local features – feature matching 

 
One of the most common application of image local features is feature matching, in which 
the program matches the same feature across many images with the same scene. In can be 
applied for a particular object detection in the image with multiple objects and object 
tracking in a video sequence. Also, feature matching in one of the major steps in all 3D 
structure and motion reconstruction algorithms. It is used to find the corresponding points 
e.g. the projections of the same 3D world point on two or more images captured by a 
camera system. The mutual relationship of the corresponding points is necessary to 
compute the depth of the scene. In the case of image stitching, the feature matching is 
needed for panorama image generation.  

 
In order to match features in MATLAB, it is not enough to know the positions of the points 
in image, but we must first generate feature vector for each of these points. Feature vector 
contains information on the mathematical description of spatial distribution of intensity 
levels and geometry of an image patch in the neighborhood of the points. Let us assume 
that we have two image containing the same scene seen from two viewpoints, or the same 
objects on two different scenes, etc. and we want to find the set of corresponding feature 
point pairs.  

 
The feature matching can be carried out in the following way: 
 
First, read two images: 
 
I1 = rgb2gray(imread('ImageLeft.png')); 

I2 = rgb2gray(imread('ImageRight.png')); 

 

We extract features using one of the previously analyzed feature detectors, for example 
Harris corner detector 
 
points1 = detectHarrisFeatures(I1); 
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points2 = detectHarrisFeatures(I2); 

 

We can use plot detected feature points to see the results of our detection. Next, we have to 
build feature representation for all detected feature points. 
 

[features1,valid_points1] = extractFeatures(I1,points1); 

[features2,valid_points2] = extractFeatures(I2,points2); 

 

We can match the features based on their mathematical representation 
 
indexPairs = matchFeatures(features1,features2); 

 

The function returns a Nx2 matrix containing pairs of indices of corresponding points. Next 
we use these indices to get image coordinates of these pairs.  
 

matchedPoints1 = valid_points1(indexPairs(:,1),:); 

matchedPoints2 = valid_points2(indexPairs(:,2),:); 

 

MATLAB provides a function that quickly visualized the correspondence between points. 
 

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,’montage

’); 

 

Task 3.8 Chose a feature detector that gave you the best results in the previous exercise. 
Find the highest number of correct corresponding point pairs in the sets of two images 
provided by the instructor. Try to repeat the exercise for pairs of images captured by 
yourself.  

 
Additional Tasks 
 

Task 3.9. Create an image that contains several patterns of the same type (the patterns may 
be slightly different from each other, you can modify them by adding disturbances). Then, 
write a MATLAB program that will detect all patterns of a given type and mark them in the 
image. The program has to count the number of patterns present in the image. Test the 
program on the images provided by the instructor. 

 

Task 3.10. In this exercise, you’ll learn how robust is the correlation to changes in the 
image.  
See how the pattern detection algorithm response with the following disturbances: 
1) the image is brightened, 
2) the image is darkened, 
2) the image is blurred by a low-pass filter, 
3) the image is noisy (e.g. added salt and pepper noise, Gaussian noise, etc.), 
4) the image is rotated (e.g. using the imrotate() MATLAB function ), 
Test the robustness of the correlation function by gradually increasing the strength of each 
type disturbance and find the value of the disturbance for which the function fails to find 
the pattern. Check whether the correlation method’s effectiveness depends on the type of 
pattern to be detected. You may show your results by drawing a graph showing a position 
of a center of the detected pattern as a function of disturbance strength.  
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Task 3.11 Please, test the invariance of the features to different changes in the image. 
Prepare an object which has visible set of local features. For at least three of available 
feature descriptors, find the best parameters to detect the highest number of true local 
features in the reference image of the object. Then, change the following taking photos of 
the objects after each change: distance of the camera to the object, the focus on the object 
(slight blurring), the angle of view of the camera with respect to the object, the lighting 
conditions. After introducing each of the change, observe if the features are still detected 
and if they are detected in the correct place. Discuss the results.  
 


