

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Basics of AI and Deep Learning

Course for Mechatronic Engineering with English as instruction language

Instruction 8:

Image Features

and
Object Classification

 You will learn: what are objects in binary image, what is labelling,
how to find basic features of objects using regionprops MATLAB
function, what are geometrical features: invariant moments, Hu
moments, how to build feature vector, how to evaluate feature
sensitivity to scaling and rotation, how to build a simple object
classifier, what is the measure of similarity and how to find a known
pattern in the image, what is normalize cross-correlation coefficient,
what are local features and their applications, how to implement and
test Harris corner detector

 Additional materials:

- Course lecture
- Image Database provided by the lecturer

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Krzysztof Holak, holak@agh.edu.pl

mailto:zdw@agh.edu.pl
mailto:holak@agh.edu.pl

2

BAIDL: Instruction 1

Image correlation coefficient for finding objects

The image correlation coefficient can be used to find a given pattern in an image. The
correlation function takes a pattern in the form of a smaller image and looks for it in an
image or series of images. The variable created by the correlation function is a matrix, a
new image, that illustrates the degree of similarity between the pattern and the area in the
image placed below the pattern for each position of the pattern in the image. Then, by
searching the maximum value in this matrix, the location of the pattern in the image can be
found. To calculate the similarity map between the pattern and the image, use the function

c = normxcorr2(image_pattern,image);

The variable c can be displayed as an image (image() or imagesc() functions) or as a
surface plot using the command surf(c). Then, given the similarity values as a function of
position in the image, one can find the maximum value of the function and the location of
this maximum. In MATLAB this can be done with code:

[max_c, imax] = max(abs(c(:)));

[ypeak, xpeak] = ind2sub(size(c),imax(1));

Remember that the normxcorr2() function changes the size of the analyzed image.
Therefore, to display the center of the found pattern, we recalculate the indexes as follows:

peak_offset = [(xpeak - size (image_pattern,2))

(ypeak - size (image_pattern,1))];

After using surf(), use the shading flat command to display the correlation function
response as a surface, because otherwise too many edges will be drawn in the figure and
the entire plot will be black.

Here is the simple code that searches for a pattern in the image

clc;

clear all;

close all;

% Correlation for pattern detection examples

im = imread('Wagtail.JPG');

pattern = imread('Wagtail_P2.JPG');

imGray = rgb2gray(im);

patternGray = rgb2gray(pattern);

imGrayTemp = imGray;

figure,

subplot(1,2,1)

imshow(imGray);

subplot(1,2,2)

imshow(patternGray);

% image correlation computation - find one pattern in the image

c = normxcorr2(patternGray,imGray);

[max_c, imax] = max(abs(c(:)));

[ypeak, xpeak] = ind2sub(size(c),imax(1));

peak_offset = [(xpeak - size (patternGray,2))

(ypeak - size (patternGray,1))];

figure,

subplot(1,2,1)

3

BAIDL: Instruction 1

imagesc(c);

subplot(1,2,2)

surf(c);

shading flat

figure,

imshow(im); hold on

% plot(peak_offset(2),peak_offset(2),'*'); hold on

rectangle('Position',[peak_offset',size(patternGray)],'Edgecolor','red');

Image correlation has become an important tool in non-contact measurements of
mechanical quantities such as displacements, deflections, deformations and strains. It is the
basis of a measurement technique called DIC (Digital Image Correlation).
Read about it on the Internet and try to find solutions available on the market. If this topic
interests you, you can read more, learn about the algorithm and download and test a free
version of the program developed in the MATLAB computing environment at
http://www.ncorr.com/

Task 3.1. Run the MATLAB code for finding a pattern in the image. Mark the found pattern
by enclosing it by a red rectangle or dot representing its center. See how the function finds
different patterns. Observe the correlation response and discuss which of the patterns are
the best for detection and why. Which of them would be more robust to noise in the image?

Image Analysis – Objects detection and classification

Let’s start with the review of the previous lab exercise. Recall that the first step of object
analysis is a binarization. You got to know the basic as well as more advanced methods.
After binarization, the objects in the image must consists of white pixels (of value 1) while
the background becomes black (pixels of value 0). Next, all objects have to be labeled using
bwlabel(). This function simply gives numbers (labels) to all disconnected objects in the

image. In the next step, the geometric parameters describing shapes are computed using
regionprops() function. In this exercise, use that function to obtain all available
features – use property 'all'.

Here's there is a simple program from the previous class that computes all the features of
objects.

clc;

clear all;

close all;

imRGB = imread('Objects.jpeg');

figure(1)

subplot(1,2,1)

imshow(imRGB);

title('Original Image')

imGray = rgb2gray(imRGB);

thresh = graythresh(imGray);

imBW = im2bw(imGray,thresh);

figure(1)

subplot(1,2,2)

imshow(imBW);

title('Binary Image')

imLB = bwlabel(imBW,4);

4

BAIDL: Instruction 1

features = regionprops(imLB,'all');

Let’s modify the program in the following exercises:

Task 3.1 Change the program in such a way that all features are computed instead of just
basic ones. Use an image in which there are several different shapes present. Perform a
successful binarization of that image – obtaining a binary image with all objects. Write a
code that prints a centroid of each object in the image and its number next to it. Find how
different features change with the shape of the object.

The features which you should examine in this exercise: Area, BoundingBox, Centroid,
ConvexArea, Circularity, Eccentricity, EquivDiameter, EulerNumber, Extent, Orientation,
MaxFeretProperties, MinFeretProperties, MajorAxisLength, MinorAxisLength, Solidity.

Task 3.2 Try to find the minimum set of features that is necessary to classify all shapes in
the image. The features should not be redundant, e.g. you should discard the feature that
carries the same information as the other ones. Next, write a simple code for shape
classification based on feature values using a nested if-else programming structure.

Moments and moment invariants

In the binary image processing, the moments and moment invariants are mathematical
concepts that describe geometrical features of objects e.g. its shape. They are important in
the field of object recognition and classification and shape analysis.

Moments – The moments are numbers associated with objects that quantify the spatial
distribution of image pixels and may be used to describe a shape. There are several types of
moments which will be described in the following lab instruction.

1. Ordinary Moments – they describe general geometric properties (spatial
distribution of pixels) of objects based on their shape (pixel distribution).

𝑀𝑝𝑞 =∑ ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

Where I(x,y) – is pixel intensity at (x, y) – in the case of the binary images it takes a
value 1 for object’s pixels and p, q – are integer s indicating the order of the
moments.

2. Central Moments – they describe spatial distribution of object’s pixels relative to its
centroid. They are robust to the shift in the position of the object in the image. In
order to compute the central moments, you first have to compute the position of the
centroid of the object, using first order ordinary moment. Then the central moments
are computed as follows

𝜇𝑝𝑞 =∑ ∑ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

The formula is the same as before, except, you have to subtract the centroid x and y

5

BAIDL: Instruction 1

coordinate as indicated in the equation.

3. Normalized Moments – these moments are robust to scale change of the objects.
They are computed based on the central moments and area of the objects. They are
central moments divided by a scaling factor.

𝜑𝑝𝑞 =
𝜇𝑝𝑞

(𝜇00)
1+

𝑝+𝑞
2

4. Moment invariants – these are types of moments that are invariant under

transformations of the image, such as translation, scaling and rotation. They help to
recognize the same object type in the image, even if it is changed by these
transformations.

One of the most commonly used types of moment invariants are Hu moments. They
were reported in the scientific literature by M.K. Hu in 1962. For each object, a set of
7 Hu moments is computed based on the normalized central moments. Hu moments
are invariant to translation, rotation and scaling transformations.

In the following set of exercises, you will be applying MATLAB functions provided by the
instructor to carry out object recognition and classification.

Here is the code of the function that computes moments and moment invariants

First, after image thresholding and labelling, use regionprops() function to compute
centroids and obtain a list of pixels that belongs to each of the objects.

features = regionprops(imLB, 'Centroid', 'PixelList');

Next you can loop through the objects to compute the moments, for example in the case of
central moments:

order = [3 3];

for k = 1:length(features)

 % find centroids and pixel list for each of the objects

 centroid(k).coordinates = features(k).Centroid;

 pixelList(k).List = features(k).PixelList;

 % Compute central moments for the object

 moments(k).CentralMoments = computeCentralMoments(pixelList(k).List,

centroid(k).coordinates,order);

end

Next, the functions that computes all moments and moments invariants.

function moments = computeCentralMoments(pixelList, centroid,order)

moments = zeros(order(1)+1, order(2)+1); % Initialize a matrix for central moments

6

BAIDL: Instruction 1

(p=0..2, q=0..2)

 c_x = centroid(1);

 c_y = centroid(2);

 % Calculate central moments for p, q = 0, 1, 2, 3, etc.

for i = 1:size(pixelList, 1)

 x = pixelList(i, 1);

 y = pixelList(i, 2);

 for p = 0:order(1)

 for q = 0:order(2)

 moments(p+1, q+1) = moments(p+1, q+1) + (x - c_x)^p * (y - c_y)^q ;

 end

 end

 end

end

To compute Hu moments, your first have to normalize central moments obtained in the
previous step.

function normalizedMomentsList = computeNormalizedMoments(momentsList)

for k = 1:length(momentsList)

 moments = momentsList(k).CentralMoments;

 normalized_moments = zeros(size(moments,1), size(moments,2));

 m00 = moments(1, 1);

 for p = 0:size(moments,1)-1

 for q = 0:size(moments,2)-1

 normalized_moments(p+1, q+1) = moments(p+1, q+1) / (m00^(1 + (p + q)/2));

 end

 end

 normalizedMomentsList(k).NormalizedMoments = normalized_moments;

end

end

Now, you can compute a set of seven Hu moments:

function hu_moments = computeHuMoments(normalizedMomentsList)

for k = 1:length(normalizedMomentsList)

normalized_moments = normalizedMomentsList(k).NormalizedMoments;

 eta20 = normalized_moments(3, 1);

 eta02 = normalized_moments(1, 3);

 eta11 = normalized_moments(2, 2);

 eta30 = normalized_moments(4, 1);

 eta03 = normalized_moments(1, 4);

 eta21 = normalized_moments(3, 2);

 eta12 = normalized_moments(2, 3);

 % Compute the 7 Hu moments

 phi1 = eta20 + eta02;

 phi2 = (eta20 - eta02)^2 + 4 * eta11^2;

 phi3 = (eta30 - 3 * eta12)^2 + (3 * eta21 - eta03)^2;

 phi4 = (eta30 + eta12)^2 + (eta21 + eta03)^2;

 phi5 = (eta30 - 3 * eta12) * (eta30 + eta12) * ((eta30 + eta12)^2 - 3 * (eta21 +

7

BAIDL: Instruction 1

eta03)^2) + (3*eta12 - eta03)*(eta12 + eta03)*(3*(eta30 + eta12)^2 - (eta21 +

eta30)^2);

 phi6 = (eta20 - eta02) * ((eta30 + eta12)^2 - (eta21 + eta03)^2) + 4 * eta11 *

(eta30 + eta12) * (eta21 + eta03);

 phi7 = (3 * eta21 - eta03) *(eta30 + eta12)* ((eta30 + eta12)^2 - 3 *(eta12 -

eta30))-(eta30-3*eta12)*(eta21+eta03)*(3*(eta30 + eta12)^2 - (eta21 + eta30)^2);

 % Store Hu moments in a vector

 hu_moments(k).Hu = [phi1, phi2, phi3, phi4, phi5, phi6, phi7];

end

end

Task 3.3 Analyze the images with the same geometric objects, but with introduced changes
– translation, rotation and scaling. Compute central moments and normalized moments.
Compute moments of different and increasing order for each of the objects and each of the
images. Discuss how the value of the moments change with shapes and how they change
with introduced transformations. Which of the moments are invariant to translation,
scaling and rotation?

Task 3.4 Repeat exercise 3.3, including the Hu moments in the feature vector. Check the
invariance of Hu moments for transformations. Write a classification program that uses all
moments.

Task 3.5 Apply the knowledge acquired in the previous exercise to write a program for
simple objects’ classification based on the values of moments. The program should classify
all shapes present in the image. Draw centroids of each objects and mark each class by a
bounding box of a distinct color.

Local features and feature detectors

In many practical cases, the region-based image segmentation in not enough to properly
describe objects present in the image. Even the best algorithms may not segment the image
into objects with the desired level of accuracy. In such cases, instead of describing the
objects as regions, we may treat them as a set of points. The points may represent the
characteristic parts in objects like its corners. By detecting these points and computing
their positions we may model the entire object. For example, we may use the set of points
to identify the same object on a series of images by analyzing spatial relations between the
points. It is possible even if the object deforms as it moves in a video, because each of the
point may be tracked individually. In the computer vision literature, these characteristic
points are often called local image features (point features).

There are many different feature detector and descriptors available in the programming
packages. They differ by the types of features they detect the best (corner features vs blob
features), time and complexity of computation and type of invariance (e.g. rotation and
scale invariance).

Here are some detectors that are implemented in MATLAB:

1. Harris detector (1988) – the most known and widely used in practice corner
detector that detects corner points,

2. Minimum Eigenvalue algorithm (Shi-Tomasi algorithm, 1994) – corner detector
using the same eigenvalue approach as Harris, but different scoring function,

8

BAIDL: Instruction 1

3. FAST (Features From Accelerated Segment Test, 2006) – corner detector that is
computationally fast compared to other detectors that use DoG approach (e.g. SIFT),

4. SURF (Speed-Up Robust Features, 2006) – multiscale feature descriptor, faster than
more known SIFT descriptor, applicable for detection of blob-like features at various
scales, the scale-space is generated using image pyramids,

5. ORB (Oriented FAST and Rotated BRIEF, 2011) – detector which is a combination of
FAST corner detector to localize the feature and BRIEF descriptor, but is rotation-
invariant, free to use response to SIFT and SURF (patented ones),

6. BRISK (Binary Invariant Robust Scalable Keypoints, 2011) – another scale-invariant
feature descriptor that is a free response to a patented SIFT, it is in general a
multiscale FAST corner detector, not rotationally invariant,

7. KAZE (2012) – multiscale feature descriptor, uses Nonlinear Diffusion Filtering to
create scale-space (instead of pyramid approach and Gaussian blurring), it has also
an open source code

In this exercise you will learn how to compute and use image local features using feature
detectors and descriptors.

You may apply detectors using a series of built-in function as in the following example (for
an application of Harris corner detector)

points =

detectHarrisFeatures(im,'MinQuality',0.55,'FilterSize',15);

As you can see, there are several parameters which values may be changed. These values
may be tuned to get a desired results e.g. all corner points present in the image detected,
but no double or triple corners at the same place and no corners due to image noise are
found. Read MATLAB documentation to learn about the meaning of all parameters and then
try to find the values for which you obtain the best result for your image.

Also you may get only N corners for which the detector’s response is the largest.

points = points.selectStrongest(N);

Now you can show the corners found by the algorithm using the following code:

points.Location = points.Location + [cropRect(1) cropRect(2)];

figure,

 imshow(im);

 hold on;

 x = points.Location(:,1);

 y = points.Location(:,2);

 plot(x,y,'*g');

 hold on

In the code, the cropRect variable is added if you first cropped a subimage. If you are using full

image, set cropRect to zero vector. To see how the Harris corner detector operates, please

implement the detector in a function yourself and check how it performs comparing to the Harris

9

BAIDL: Instruction 1

detector implemented in the MATLAB. The exercise will be interesting since it involves many

image processing that you have learned so far.

First of all, your function must read and image and convert it into grayscale representation. Next,

convert you image to double.

I = double(I);

Next, you need to create a measure of ‘cornerness’. First step is to obtain the gradient image. You

can also filters that compute first derivative, like Sobel filter, instead.

[Ix, Iy] = gradient(I); % Gradient in x and y direction

Now, compute product of derivatives.

Ixx = Ix.^2;

Ixy = Ix .* Iy;

Iyy = Iy.^2;

As we discussed in the previous exercises, it is useful to blur image before further computation.

Therefore, apply Gaussian filtering.

sigma = 1; % Standard deviation for Gaussian kernel

windowSize = 3; % Size of the window for Gaussian filter

G = fspecial('gaussian', windowSize, sigma);

Ixx = conv2(Ixx, G, 'same');

Ixy = conv2(Ixy, G, 'same');

Iyy = conv2(Iyy, G, 'same');

Now let’s compute the Harris corner response function, using k constant according to the

literature.

k = 0.04; % Harris corner constant

R = (Ixx .* Iyy - Ixy.^2) - k * (Ixx + Iyy).^2;

Now, using a threshold, find only the points for which Harris corner response function was above

the threshold

threshold = 0.01 * max(R(:)); % Threshold is a fraction of the

maximum value of R

corners = R > threshold;

Now you can visualize the corners by drawing them on the image.

Task 3.6 Write a program that detects corners in an image. Try to choose the parameters of
the Harris corner detector to detect the highest number of true edges. Detect the corners as

10

BAIDL: Instruction 1

indicated by the instructor. Try to minimize false detection e.g. places where there are no
corners, edges, avoid double corners at the same locations. Discuss the results.

Task 3.7 Repeat the Task 3.6 to test other types of feature detector and descriptors
available in the MATLAB. Note, that some of them detect corner features, like Harris corner
detector, other ones are better suited to detect blob-like features. You will be given different
images containing both of these types of features. Test which detectors are better to detect
which types, try to find the best set of parameters for a given image like in the previous
task.

There are the following functions available in MALAB:

detectMinEigenFeatures();

detectFASTFeatures();

detectORBFeatures();

detectBRISKFeatures();

detectKAZEFeatures();

detectSURFFeatures();

An application of local features – feature matching

One of the most common application of image local features is feature matching, in which
the program matches the same feature across many images with the same scene. In can be
applied for a particular object detection in the image with multiple objects and object
tracking in a video sequence. Also, feature matching in one of the major steps in all 3D
structure and motion reconstruction algorithms. It is used to find the corresponding points
e.g. the projections of the same 3D world point on two or more images captured by a
camera system. The mutual relationship of the corresponding points is necessary to
compute the depth of the scene. In the case of image stitching, the feature matching is
needed for panorama image generation.

In order to match features in MATLAB, it is not enough to know the positions of the points
in image, but we must first generate feature vector for each of these points. Feature vector
contains information on the mathematical description of spatial distribution of intensity
levels and geometry of an image patch in the neighborhood of the points. Let us assume
that we have two image containing the same scene seen from two viewpoints, or the same
objects on two different scenes, etc. and we want to find the set of corresponding feature
point pairs.

The feature matching can be carried out in the following way:

First, read two images:

I1 = rgb2gray(imread('ImageLeft.png'));

I2 = rgb2gray(imread('ImageRight.png'));

We extract features using one of the previously analyzed feature detectors, for example
Harris corner detector

points1 = detectHarrisFeatures(I1);

11

BAIDL: Instruction 1

points2 = detectHarrisFeatures(I2);

We can use plot detected feature points to see the results of our detection. Next, we have to
build feature representation for all detected feature points.

[features1,valid_points1] = extractFeatures(I1,points1);

[features2,valid_points2] = extractFeatures(I2,points2);

We can match the features based on their mathematical representation

indexPairs = matchFeatures(features1,features2);

The function returns a Nx2 matrix containing pairs of indices of corresponding points. Next
we use these indices to get image coordinates of these pairs.

matchedPoints1 = valid_points1(indexPairs(:,1),:);

matchedPoints2 = valid_points2(indexPairs(:,2),:);

MATLAB provides a function that quickly visualized the correspondence between points.

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,’montage

’);

Task 3.8 Chose a feature detector that gave you the best results in the previous exercise.
Find the highest number of correct corresponding point pairs in the sets of two images
provided by the instructor. Try to repeat the exercise for pairs of images captured by
yourself.

Additional Tasks

Task 3.9. Create an image that contains several patterns of the same type (the patterns may
be slightly different from each other, you can modify them by adding disturbances). Then,
write a MATLAB program that will detect all patterns of a given type and mark them in the
image. The program has to count the number of patterns present in the image. Test the
program on the images provided by the instructor.

Task 3.10. In this exercise, you’ll learn how robust is the correlation to changes in the
image.
See how the pattern detection algorithm response with the following disturbances:
1) the image is brightened,
2) the image is darkened,
2) the image is blurred by a low-pass filter,
3) the image is noisy (e.g. added salt and pepper noise, Gaussian noise, etc.),
4) the image is rotated (e.g. using the imrotate() MATLAB function),
Test the robustness of the correlation function by gradually increasing the strength of each
type disturbance and find the value of the disturbance for which the function fails to find
the pattern. Check whether the correlation method’s effectiveness depends on the type of
pattern to be detected. You may show your results by drawing a graph showing a position
of a center of the detected pattern as a function of disturbance strength.

12

BAIDL: Instruction 1

Task 3.11 Please, test the invariance of the features to different changes in the image.
Prepare an object which has visible set of local features. For at least three of available
feature descriptors, find the best parameters to detect the highest number of true local
features in the reference image of the object. Then, change the following taking photos of
the objects after each change: distance of the camera to the object, the focus on the object
(slight blurring), the angle of view of the camera with respect to the object, the lighting
conditions. After introducing each of the change, observe if the features are still detected
and if they are detected in the correct place. Discuss the results.

