

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Basics of AI and Deep Learning

Course for Mechatronic Engineering with English as instruction language

Instruction 9:

Video Processing

and
Object/Feature Tracking

 You will learn: how to load and process video in MATLAB, how to

perform object tracing based on binary image object features, how to
apply correlation measure for object tracking, what are invariant
features (SIFT, SURF) and how to use them for object tracking, what is
optical flow and how to calculate optical flow field from frames of
video sequence

 Additional materials:

- Course lecture

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Krzysztof Holak, holak@agh.edu.pl

mailto:zdw@agh.edu.pl
mailto:holak@agh.edu.pl

2

BAIDL: Instruction 1

Object tracking

Motion detection, estimation and object tracking are the most important application of
video processing. In this exercise, you will learn the basics of the motion analysis using
MATLAB. You’ll start with the task of object tracking on the video frame sequence.

Object tracking on binary video sequence

To do this exercise, you will apply the methods that you have already learned in the
previous exercises. In the case of the video, the image processing and analysis have to
applied to each frame of the movie sequence. In this laboratory you will learn how to
process video files in MATLAB.

In MATLAB, we store video frames in an object called VideoReader. Let’s create this
object by calling the function

video = VideoReader(filename);

Instead of filename, provide the path to the video file as in the case of loading single images.
VideoReader type video object contains various information about the video sequence.
For example,
video.FrameRate contains information about the number of frames per second,
video.NumFrames has information about the number of frames in a sequence,
video.Height, video.Width has information about the resolution of each frame of
the video.

You can play the video in MATLAB window with a simple code, for example

currAxes = axes;

while hasFrame (video)

 vidFrame = readFrame(video);

 image(vidFrame,"Parent",currAxes)

 currAxes.Visible = "off";

 pause(1/v.FrameRate)

end

hasFrame() function is used to check if there are frames left in the sequence and the
v.FrameRate variable determines the appropriate frame display time.

readFrame() function is used to retrieve one frame from the video at a time .

Task 4.1 Write a simple tracker that estimates a trajectory of an object on a video
sequence. Find the centroid of the object in each of the frame of the video. Having data,
draw the object's trajectory in 2D and show its displacement along the x and y axis as a
function of time on graphs. Try to determine the object's velocity and acceleration - through
numerical differentiation.

An example of simple tracking

3

BAIDL: Instruction 1

clear all

clc

close all

video = VideoReader('bouncing_ball.mp4'); % reading video file

% % info on video

% video.FrameRate;

% video.NumFrames;

% video.Height;

% video.Width;

% Finding a drawing trajectory of the centroid

index = 1;

figure,

h = imshow(rgb2gray(read(video,1))); hold on

h1 = plot(0,0,'*'); hold on

while hasFrame (video) % look for video frame processing

 vidFrame = readFrame(video);

 im = rgb2gray(vidFrame);

 imBW = im > 10; % image thresholding, threshold set to 10 in this example

 imL = bwlabel(imBW); % labelling and object analysis – we need centroid

 features = regionprops(imL, 'centroid');

 Centroids(index,:) = features.Centroid;

 set(h, 'CData', im); % Update the frame % how to update data in figures

 set(h1,'XData',Centroids(index,1),'YData',Centroids(index,2));

 title(['Time ' num2str(video.CurrentTime)]);

 drawnow;

 index = index + 1;

end

Tracking using image correlation

As you know from previous exercises, one can find a pattern in the image using a similarity
measure, for example normalized cross correlation coefficient. When applied to the video
sequence, this approach may be used to track a pattern across frames of the sequence.
To start the exercise, you have to load a video sequence using VideoReader() function as
in the previous exercise. Next, let’s read a first frame of the sequence and covert it to a
grayscale.

% Read the first frame and convert it to grayscale

frame1 = read(video, 1);

frame1_gray = rgb2gray(frame1);

Now, you can display the frame and chose an object to be tracked across the sequence. To
do this, use imcrop() function discussed in the first lab exercises on computer vision and
image processing. Let’s assume that the cropped pattern in stored in a variable template
and its cropping rectangle is a variable rect.

You can initialize the tracking. Prepare the variables for tracking a pattern.

objectPosition = rect; % Store initial position

trackedPositions = objectPosition; % To store the positions

4

BAIDL: Instruction 1

Tracking can be visualized in the figure.

figure;

h = imshow(frame1_gray); hold on;

rect_handle = rectangle('Position', objectPosition, 'EdgeColor',

'r', 'LineWidth', 2);

Proceed with all frames in the sequence.

clear all

clc

close all

video01 = VideoReader('dvdscreensaver.mp4');

% Read the first frame and convert it to grayscale

frame1 = read(video01, 1);

frame1_gray = rgb2gray(frame1);

[template objectPosition] = imcrop(frame1_gray);

 % Store initial position

trackedPositions = objectPosition;

% visualization of tracking process

figure;

h = imshow(frame1_gray); %hold on;

rect_handle = rectangle('Position', objectPosition, 'EdgeColor', 'r', 'LineWidth', 2);

% Process each subsequent frame in the video

while hasFrame(video01)

 % Read the next frame and convert to grayscale

 frame2 = readFrame(video01);

 frame2_gray = rgb2gray(frame2);

 % Perform normalized cross-correlation (NCC) for template matching

 correlationMap = normxcorr2(template, frame2_gray);

 % Find the peak of the correlation (most similar region)

 [maxCorr, imax] = max(abs(correlationMap(:)));

 [ypeak, xpeak] = ind2sub(size(correlationMap), imax(1));

 % Compute the offset (translation) from the correlation peak

 corr_offset = [xpeak - size(template, 2), ypeak - size(template, 1)];

 % Update the object's position

 objectPosition = [corr_offset, size(template, 2), size(template, 1)];

 trackedPositions = [trackedPositions; objectPosition]; % Append new position

 % Update the displayed rectangle for the new object position

 set(rect_handle, 'Position', objectPosition);

 set(h, 'CData', frame2_gray); % Update the frame

 title(['Time ' num2str(video01.CurrentTime)]);

 drawnow;

end

Task 4.2 Write a function that tracks a template across frames of a video sequence.
Visualize the tracking using the code provided in the lab instruction. A user should be able
to chose any rectangular pattern in the first frame of the sequence manually. Modify the
function in such a way that it draws a trajectory of the tracked object in one of the frames of
the sequence.

5

BAIDL: Instruction 1

Tracking objects using optical flow

In the case of working with grayscale videos with complex scenes it may be very hard or
impossible to generate binary image frames with objects using thresholding or other
segmentation methods. Also if the object appearance change during the motion it may lead
to erroneous tracking when image correlation is applied. Moreover, all of the tracing
discussed so far need detection by object either through means of binary image analysis or
by manually choosing a template to be track. It is possible to automatically analyze the
video to detect interesting objects based on the motion of their pixels alone. You can apply a
motion estimation method and in the next step threshold the image into binary image into
objects based on the values of their displacements.

One of the most commonly used motion estimation method is called optical flow. It uses a
consecutive frames of a video sequence to estimate a displacement of pixels. In the basic
version, it assumes that the brightness of the moving objects do not change between
frames (the brightness constancy assumption). Mathematically it uses the similar approach
as in the computation of the Harris corner detector. One of the challenges of the optical flow
is that a single pixel gives one optical flow equation and there are two parameters of motion
to estimate for each pixel (u, v coordinates). Therefore one assumes that the pixels in a
close neighborhood have the same optical (motion) and its value is found by combining an
optical flow equation for each of them in single equation. The solution is obtained in a least
squares sense.

Let’s see how image segmentation and object tracking can be computed using Lukas
Kanade optical flow method.

Again, first you need to load a video file into videoReader object and read a first frame
converting it into grayscale image.
Next, you have to initialize the optical flow object and prepare visualization figure. In the
example we use Farneback method. You can also test other optical flow algorithms
available in MATLAB (classic Lukas-Kanade, Horn-Shunck)

% Initialize optical flow object

opticFlow = opticalFlowFarneback;

figure;

h = imshow(frame1_gray);

hold on;

Next, let’s estimate the motion for each frame of the video sequence, and find the regions
which undergo the largest motion. These will be our objects to be tracked in the video
sequence. Here is a code fragment that performs tracking based on estimated motion
computed by optical flow.

clear all

clc

close all

% Load video

videoFile = 'dvdscreensaver.mp4'; % path to video file

videoObj = VideoReader(videoFile);

% Display video

figure;

6

BAIDL: Instruction 1

hold on;

% Farneback optical flow initialization

opticFlow = opticalFlowFarneback;

% A variable to store centroids

centroidsPrev = [];

while hasFrame(videoObj)

 % Read a frame

 frame = readFrame(videoObj);

 % Change into grayscale

 grayFrame = rgb2gray(frame);

 % Compute Optical flow

 flow = estimateFlow(opticFlow, grayFrame);

 % Compute motion mask based on a magnitude of optical flow

 motionMask = sqrt(flow.Vx.^2 + flow.Vy.^2) > 2; % Próg ruchu

 % Find object contours

 stats = regionprops(motionMask, 'Centroid', 'Area','BoundingBox');

 % Remove small objects - noise removal operation - may use morphology

 % before regionprops

 stats = stats([stats.Area] > 100); % Set area threshold

 % Show objects

 imshow(frame);

 hold on;

 % If there are objects, track them

 if ~isempty(stats)

 % Draw centroids of objects

 for i = 1:length(stats)

 centroid = stats(i).Centroid;

 plot(centroid(1), centroid(2), 'ro'); % Centroid

 end

 end

 % Display video

 pause(1/videoObj.FrameRate);

end

Modify the code to store the centroid and bounding boxes of each tracked object for all
frames of the sequence.

Task 4.3 Write a program for tracking objects in a video sequence using chosen optical
flow method. Use a modified version that stores centroids and bounding boxes of the
tracked objects. Draw trajectory of your tracked object.

It is possible to visualize the motion of the objects without thresholding and segmenting
the scene into objects. You can show the motion of each pixels in the image sequence by
using MATLAB quiver() tool for field flows visualization. You can also use heatmap to
show the magnitude of the motion – using imshow() or other visualization function you

have learned in the previous exercises.
Therefore, for each frame, First visualize the motion vectors

flow_x = flow.Vx;

flow_y = flow.Vy;

[rows, cols] = size(frame2_gray); hold on;

quiver(repmat((1:cols), rows, 1), repmat((1:rows)', 1, cols),

flow_x, flow_y, 'r', 'MaxHeadSize', 1.5, 'LineWidth', 1.5);

7

BAIDL: Instruction 1

And see the magnitude of the optical flow using heatmap approach

imshow(flow_magnitude, []); %Display flow magnitude as a heatmap

A simple program to visualize results of optical flow tracking – to compare optical flow
methods available in MATLAB. Please note which parts of objects are considered as moving
in each of the available optical flow methods.

clear all

clc

close all

video = VideoReader('dvdscreensaver.mp4');

% bouncing_ball.mp4

frame1 = read(video, 1);

frame1_gray = rgb2gray(frame1);

% Initialize optical flow object

% opticFlow = opticalFlowHS;

opticFlow = opticalFlowFarneback;

% opticFlow = opticalFlowLK;

figure;

h = imshow(frame1_gray); hold on;

h1 = quiver(0,0,0,0,'r', 'MaxHeadSize', 1.5, 'LineWidth', 1.5);

while hasFrame(video)

 % Read the next frame and convert to grayscale

 frame2 = readFrame(video);

 frame2_gray = rgb2gray(frame2);

 [rows, cols] = size(frame2_gray); hold on;

 % Compute optical flow between the current and previous frames

 flow = estimateFlow(opticFlow, frame2_gray);

 flow_x = flow.Vx;

 flow_y = flow.Vy;

 % Compute the magnitude of the flow vectors to detect moving objects

 flow_magnitude = sqrt(flow.Vx.^2 + flow.Vy.^2);

 % Update the figure with the current frame

 set(h, 'CData', frame2_gray); % Update the frame

 set(h1,'UData',flow_x,'VData',flow_y,'XData',repmat((1:cols), rows,

1),'YData',repmat((1:rows)', 1, cols));

 %quiver(repmat((1:cols), rows, 1), repmat((1:rows)', 1, cols), flow_x, flow_y, 'r',

'MaxHeadSize', 1.5, 'LineWidth', 1.5);

 title(['Frame ' num2str(video.CurrentTime)]);

 drawnow;

end

Task 4.4 Modify the code obtained in Task 4.3 to visualize the optical flow in each frame
using discussed method. Create three video sequences that show object tracking using
thresholding approach, and visualize motion using vector field.

Tracking using Harris corner features

The tracking can be carried out using local features, like the ones computed by Harris
corner detector. Each of the corners are tracked independently, therefore this tracker can
be applied to tracking rigid as well as deformable objects. In the lab, we will use Harris

8

BAIDL: Instruction 1

corner detector provided in MATLAB – a function detectHarrisFeatures().

To track only a selected set of feature points, first initialize the point tracker in your
program. Here is an example of initialization, please remember that the settings may be
different for your video example.

tracker = vision.PointTracker('MaxBidirectionalError', 2, ...

'NumPyramidLevels', 3, 'BlockSize', [51 51]);

Next, you have to read first frame, convert it into a grayscale image and detect corner points
using one of the methods you know after previous exercise, e.g. Harris corner detector.

prevframe = read(video,1);

prevFrame = rgb2gray(frame);

corners = detectHarrisFeatures(prevFrame, ‘MinQuality’,0.001);

initialCorners = corners.Location; % Get the corners coordinates

You can chose the best features to be tracked as shown in the previous laboratory exercise.
Next you have to set the initial tracking point of the tracker to the ones, you found using
corner detector.

initialize(tracker, points.Location, prevFrame);

Next, in the loop you process frames of the video sequence one by one as in the case of all
previous tracking methods. To track the corners detected in the previous step, use the
following code:

[points, isFound] = step(tracker, currFrame);

The results of tracking can be displayed using a simple code:

 imshow(currFrame);

 hold on;

 plot(points(:, 1), points(:, 2), 'go');

 hold off;

 drawnow;

Here, is the example of the code of tracking using feature points only. Note that there is a
piece of code that checks if detected features are not outside the boundaries of the image. It
prevents the points to be lost when object it the boundary. However, if in your video the
object does not touch the boundary as it moves, this part of the code is not necessary.

clc

clear all

close all

% Load the video frames

vid = VideoReader('bouncing_ball.mp4');

numFrames = vid.NumberOfFrames;

height = vid.Height;

width = vid.Width;

% Initialize the point tracker

tracker = vision.PointTracker('MaxBidirectionalError', 2, ...

'NumPyramidLevels', 3, 'BlockSize', [51 51]);

9

BAIDL: Instruction 1

% Read the first frame

prevFrame = rgb2gray(readFrame(vid));

% Detect good features to track in the first frame

points = detectHarrisFeatures(prevFrame, 'MinQuality', 0.001);

% Initialize the point tracker with the detected points

initialize(tracker, points.Location, prevFrame);

% Create a figure to display the results

figure;

% Loop through the frames

for i = 2:numFrames

 % Read the current frame

 currFrame = rgb2gray(readFrame(vid));

 % Track the points using the point tracker

 [points, isFound] = step(tracker, currFrame);

 % Boundary checking

 for j = 1:size(points, 1)

 if points(j, 1) < 1 || points(j, 1) > width || points(j, 2) < 1 || points(j,

2) > height

 isFound(j) = false;

 end

 end

 % Remove points that are outside the image boundaries

 points = points(isFound, :);

 % Display the results

 imshow(currFrame);

 hold on;

 plot(points(:, 1), points(:, 2), 'go');

 hold off;

 drawnow;

 % Update the previous frame

 prevFrame = currFrame;

end

Task 4.5 Write a program that performs a sparse optical flow motion estimation for a
video. The program should work with one as well as many objects represented by their
local features. Write a helper function to visualize trajectories and velocities of points.
Check the function on special examples, e.g. the object which undergoes translation should
have the same velocity for all its chosen local features, rotating objects’ features should
behave according to rotational motion kinematics etc.

Another approach to feature tracking is a use of feature descriptors that have been briefly
discussed in the previous lab exercise. This approach uses invariant feature descriptors to
track a patches of image which may undergo linear transformations. As an example, we will
implement the SURF feature descriptor.

Again, the task begins with initializing a videoReader object and reading first frame of the
sequence, changing it into grayscale.

Next, you have to detect SURF features and descriptors on the first frame using proper
parameters as discussed in the previous lab instruction.

% Detect SURF features in the first frame

surfPoints = detectSURFFeatures(grayFrame);

% Extract SURF descriptors

10

BAIDL: Instruction 1

[features, validPoints] = extractFeatures(grayFrame, surfPoints);

You can visualize the features as follows

figure;

imshow(grayFrame);

hold on;

plot(validPoints.selectStrongest(100), 'showOrientation', true);

title('SURF Key Points in First Frame');

hold off;

Next, in the loop, you have to detect features in the following frames of the sequence.
Because the features are detected independently on each frame, they have to be matched
between two consecutive frames. The code for this approach to feature tracking:

clear all

clc

close all

video = VideoReader('dvdscreensaver.mp4');

frame = read(video,1);

grayFrame = rgb2gray(frame); % Convert to grayscale

% Detect SURF features in the first frame

surfPoints = detectSURFFeatures(grayFrame);

% Extract SURF descriptors

[features, validPoints] = extractFeatures(grayFrame, surfPoints);

figure;

imshow(grayFrame);

hold on;

plot(validPoints.selectStrongest(100), 'showOrientation', true); hold on

title('SURF Key Points in First Frame');

index = 1;

% Track the features in subsequent frames

figure,

 h = imshow(grayFrame); hold on

 h1 = plot(0,0,'*');

 title('Tracking objects');

while hasFrame(video)

 % Read the next frame

 frame = readFrame(video);

 grayFrame = rgb2gray(frame); % Convert to grayscale

 % Detect SURF features in the current frame

 surfPointsCurr = detectSURFFeatures(grayFrame);

 % Extract SURF descriptors from the current frame

 [featuresCurr, validPointsCurr] = extractFeatures(grayFrame, surfPointsCurr);

 % Match the features from the previous and current frames

 indexPairs = matchFeatures(features, featuresCurr);

 % Get the matched points

 matchedPointsPrev = validPoints(indexPairs(:, 1), :);

 matchedPointsCurr = validPointsCurr(indexPairs(:, 2), :);

 matches{index} = matchedPointsCurr.Location;

 % Display the matched features

 set(h,'CData',grayFrame); hold on

set(h1,'XData',matchedPointsCurr.Location(:,1),'YData',matchedPointsCurr.Location(:,2));

11

BAIDL: Instruction 1

 drawnow;

 % Update the previous points and features for the next frame

 features = featuresCurr;

 validPoints = validPointsCurr;

 index = index + 1;

end

Task 4.6 Write the program that tracks object features based on its local feature points.
Check the invariance of tracked points to the different types of motion that object may
undergo – translation, rotation, change of distance to the camera, change of viewing angle.
Test how well the method tracks local feature in the case of this types of object’s motion.

Additional Tasks

Task 4.7 Write a tracker program for tracking a number of object in the binary image. The
objects and background should be such that it is possible to extract objects using
thresholding operation. For each object you should plot its trajectory of its centroid. Also
compute velocity vector for each tracker object.

Task 4.8 Modify your correlation based tracker that it may track a number of pattern
simultaneously in the same video sequence. Draw trajectory of each tracked object in the
first frame of the sequence. Compute velocity vectors for each of the objects.

Task 4.9 Analyze the shape of a deformable body in the video sequence. Divide an image of
the body into template windows and track each of the windows using normalized cross
correlation tracker. In order to simplify the computation you may restrict the search region
for each template. Plot the shape of the body in a given frame in a graph.

Task 4.10 Write a program that carries out a tracking of local features of deformable
object. Based on the results make visualization of object’s change of shape across the frame
of the sequence. How such approach can be applied for classification problem, for example,
in a gesture recognition algorithm?

Task 4.11 Write a program that classifies objects based on their behavior in the video
sequence. The feature vector may contain features associated with geometry of objects as
well as features describing their kinematics e.g. direction of motion or velocity, if such
approach is suitable for analyzed video sequence.

