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BAIDL: Instruction 10: Shallow image classification 

Introduction 
 
 
For the purpose of the exercise we'll use letter images. The database consists of the 
following letters grouped into three groups: 
 
Group 1: Letters F H K L M N T and S 
Group 2: Letters A and D 
Group 3: Letters E G and R (not included in a students' version of the dataset) 
 
From among letters of 1st group the individual classification task are built. In order to 
determine the task to do one should divide number of letters of his or her name and 
surname by 8. The remainders of these divisions will point to classes that needs to be 
distinguished, so 1 = F, 2 = H and so on up until 0 = S. For instance Jane Doe will have a 
classification task consisting of letters L and K (Remainder of division 4 (“Jane”) by 8 is 4, 
4th letter in group 1 is L. Remainder of dividing 3 (“Doe”) by 8 is 3, 3rd letter of group 1 is K. 
In case when one would have the same number of letters in his or her name and surname, 
second class is obtained by adding 1 to the remainder, for instance Roger Moore would have 
letters M (remainder is 5) and N (Remainder is 5 + 1). 
 
All data are stored in structures named accordingly. For example, data for the letter A 
(images and pre-extracted features) are in the structure FeaturesA. The dataset includes 
letters written in various fonts — regular, bold, italic, bold-italic, and uppercase. 
Additionally, each letter appears in three subsets:  Normal: base data,  W1 and W2: 
distorted versions 
 
Pre-extracted features include: 
 
Basic regionprops features: 
 
Area, MajorAxisLength, MinorAxisLength, Eccentricity, Orientation, ConvexArea, Circularity, 
EulerNumber, EquivDiameter, Solidity, Extent oraz Perimeter 
 
Image of the letter (it can be used in order to extract further more advanced features or for 
deep learning): 
Image 
 
Moment-based features and moment invariants: 
Moments: A structure with central geometrical moments (M...) and normalized central 
moments (N...) 
 
HuInvariants: A structure with 6 initial Hu Invariants (I...) 
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Visualization of features in 2D spaces 
 
To illustrate how to approach your individual classification task, we will use the example 
of classifying the letters A and D. The first step is to become familiar with the data. Start by 
loading the relevant data: 
 

 
Now, in a workspace we have two structures. In order to access them (e.g. to see the 
particular letter instance) we could use the following code: 
 

 
Using that we've displayed the initial object of the “A” class. Distorted images of this letter 
are in here, but we won't use this for now: 
 

 
The displayed image from a “Normal” class should look like in Figure 1: 
 

 

Figure 1 – example of a letter for classification 

Task 10.1: Look into your data (data for your individual classification task). By modifying 
ObjectNumber to several randomly picked numbers try to identify some of letter examples 
that you perceive as “difficult” or “easy” for the classifier. Prepare to show these examples 
to the LA (in the form of sets of printscreens or subplot containing all of the chosen data). 
Explain to the LA your reasoning – why do you think particular examples are difficult/easy. 

 
 
 
 
 

A = load('StudentData/FeaturesA'); 

D = load('StudentData/FeaturesD'); 

ObjectNumber = 1; 

imshow(A.Data(ObjectNumber).Normal.Image) 

imshow(A.Data(ObjectNumber).W1.Image) 

imshow(A.Data(ObjectNumber).W2.Image) 
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Because the set contain as far as 600 objects in each class, detailed investigation of all the 
examples is not possible. For that reason, to view the set as a whole we need to look into 
feature space and from now on look only for patterns visible in the selected dimensions of 
the feature space.. Using the following code we can visualize area and orientation of the 
initial 300 objects: 
 

 
Note that we see only the initial 300 objects, not all of them. We do it on purpose. Why – 
we'll see in a few moments. Right now please follow this guideline and DO NOT change the  
“300” in the code to “600”! The obtained result should look as in Figure 2. We can see that 
the “A” and “D” objects do not occupy the same area – the “D” cluster appears to be moved a 
bit higher and to the right. Maybe we could classify the objects in this space and the 
obtained classification efficiency would be higher than random (higher than 50%)? Note 
the green line that shows the concept for such a classification. 
 

 

Figure 2 – Feature space consisting of two arbitrary features 

 
The aim of this stage is to find such features that allow for the easiest division possible. 
After a few tries and testing few features from Moments group it was possible to find the set 
of features presented in Figure 3. Here, the results are much closer to the desired – there 
are only a few areas in which the classes overlap. We of course aim for a possibility of a 
linear classification with 0 errors, so cluster for “A” and “D” far away from each other, but in 
vast majority of cases this will not be possible to obtain. For now we'll settle on this feature 
set and we'll see what we can do with it later. 

figure; 

for k = 1:300 

plot(A.Data(k).Normal.Area,A.Data(k).Normal.Orientation,('.r')); hold on 

plot(D.Data(k).Normal.Area,D.Data(k).Normal.Orientation,('.b')); hold on 

end 

xlabel('Area'); 

ylabel('Orientation'); 

legend('A','D'); 
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Figure 3 – Feature space allowing for a better class separation than one presented in Figure 2 

 
 

Task 10.2: Visualize different 2-dimensional feature spaces for initial 300 objects of both 
classes of your individual classification task. Identify the spaces in which the classes are 
separated as good as possible. Save plots of 2-3 examples that you deem the best. Consult 
the LA for choice of the best feature set to proceed. 
 
Note! Do not try to copy features used by your colleagues and do not try to obtain a similar-
looking result. Different tasks are to be solved with different features. The final efficiency 
will also vary significantly. In some tasks almost-perfect division is possible. In others clear 
separation of clusters will not be possible. You are graded by the correctness of steps taken, 
not by the obtained efficiency of classification. 

 
Decision Tree Classifier 
 
Based on the selected feature subset, we will now create a set of classification rules to 
distinguish between the two classes. In our example, we can observe that the normalized 
central moment N30 tends to be positive for letter "D" and negative for letter "A". Let's build 
a simple classifier using this observation and save it as a separate function: 
 

function [Class] = ClassifierDT(Object) 

    if(Object.Moments.N30 > 0) 

        Class = 1; 

    else 

        Class = 0; 

    end 

end 
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Note that this classifier is structured similarly to the one used before, except that now the 
classification rule (i.e., the condition on N30) is hard-coded. This means the classifier 
cannot be trained automatically, but it allows for easy manual adjustment — just by 
changing the threshold inside the function. 
 
Also, instead of using a general linear separator with three parameters (as before), we’re 
using a simple condition aligned with one feature axis. This limits the classifier’s flexibility 
(fewer degrees of freedom) but makes the classification rule easier to interpret. 
 
Now, let’s test how this simple decision tree performs on the training set (first 300 objects 
in each class): 
 

 
In our example, the classifier correctly recognizes most "A" samples but misclassifies 
around 42% of "D" samples: 
 

 
 
In total, this gives about 76% classification accuracy (144 errors out of 600 samples). So 
far, we’ve only used half of the data — our training set — to configure the classifier. Now 
we’ll test it on the unseen portion of the data (samples 301 to 600) to evaluate its 
generalization: 
 

 

 
 
The results show similar performance on the test set, indicating that the classifier 
generalizes reasonably well. Of course, this is only a simple demonstration. We can expand 
our classifier to include more conditions or features. For instance: 
 

ErrorsA = 0; 

ErrorsD = 0; 

for k = 1:300 

    if(ClassifierDT(A.Data(k).Normal) == 1)  % Misclassified as "D" 

        ErrorsA = ErrorsA + 1; 

    end 

    if(ClassifierDT(D.Data(k).Normal) == 0)  % Misclassified as "A" 

        ErrorsD = ErrorsD + 1; 

    end 

end 

ErrorsA = 0; 

ErrorsD = 0; 

for k = 301:600 

    if(ClassifierDT(A.Data(k).Normal) == 1) 

        ErrorsA = ErrorsA + 1; 

    end 

    if(ClassifierDT(D.Data(k).Normal) == 0) 

        ErrorsD = ErrorsD + 1; 

    end 

end 
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This classifier uses additional rules and conditions to carve out more nuanced decision 
boundaries. The graphical interpretation of its decision boundary is displayed in Figure 4.  
 

 

Figure 4 – Multilevel decision tree separation for our data 

In this case, the number of errors drops to 93 in the training set and 115 in the testing 
set. We can also visualize where the errors occur the highlighted additions to our code, 
which should produce result as in Figure 5. 
 

function [Class] = ClassifierDT2(Object) 

    if(Object.Moments.N30 > 0) 

        Class = 1; 

    elseif(Object.Moments.N30 < -0.03) 

        Class = 0; 

    elseif(Object.HuInvariants.I1 < 0.01) 

        Class = 0; 

    else 

        Class = 1; 

    end 

end 
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Figure 5 – Error plot 

 
 
 
 
 
 
 
 
 
 
 
 
 

ErrorsA = 0; 

ErrorsD = 0; 

figure; 

for k = 1:300 

  if(ClassifierDT2(A.Data(k).Normal) == 1) 

    ErrorsA = ErrorsA + 1; 

    plot(A.Data(k).Normal.HuInvariants.I1, A.Data(k).Normal.Moments.N30, '.r'); hold on 

  else 

    plot(A.Data(k).Normal.HuInvariants.I1, A.Data(k).Normal.Moments.N30, '.k'); hold on 

  end 

 

  if(ClassifierDT2(D.Data(k).Normal) == 0) 

    ErrorsD = ErrorsD + 1; 

    plot(D.Data(k).Normal.HuInvariants.I1, D.Data(k).Normal.Moments.N30, '+r'); hold on 

  else 

    plot(D.Data(k).Normal.HuInvariants.I1, D.Data(k).Normal.Moments.N30, '+k'); hold on 

  end 

end 

xlabel('2nd Hu Invariant'); 

ylabel('N30'); 
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By fine-tuning the rules, we can further reduce errors. For example, the following version of 
the classifier yields 77 training errors and 99 testing errors: 
 

 

Task 10.3: Based on your two selected features (for individual task) propose a classifier 
based on a decision tree. Configure parameters based on 300 initial examples of each class. 
Try to obtain as low number of errors in this dataset as possible. Save the initial 
configuration of the classifier and the final configuration that maximizes the performance 
based on the training data. Then test both classifiers using a second half of dataset. Save the 
obtained efficiencies. Store the results in the table at the end of the instruction. 

 
 
K-nearest neighbors classifer 
 
To classify objects, we can use the idea of comparing distances in the feature space — the 
class of an object is determined based on the class of its nearest neighbors. We'll now 
implement a simple k-nearest neighbor classifier. First, let’s construct a training dataset. 
Note that we again use only half of the data: 

 
Now, we can define the classifier, which for now will use just one nearest neighbor (k = 1). 
Save the following code as a separate function: 
 

 
 
 
 
 

function [Class] = ClassifierDT(Object) 

    if(Object.Moments.N30 > 0) 

        Class = 1; 

    elseif(Object.Moments.N30 < -0.035) 

        Class = 0; 

    elseif(Object.HuInvariants.I1 < 0.016) 

        Class = 0; 

    else 

        Class = 1; 

    end 

end 

for sample = 1:300 

    TrainingDataClass0(:,sample) = ... 

        [A.Data(sample).Normal.Moments.N30, A.Data(sample).Normal.HuInvariants.I1]; 

     

    TrainingDataClass1(:,sample) = ... 

        [D.Data(sample).Normal.Moments.N30, D.Data(sample).Normal.HuInvariants.I1]; 

end 

function [Class] = ClassifierKNN(Features, TrainingDataClass0, TrainingDataClass1) 

    distancesC1 = dist(Features, TrainingDataClass0); 

    distancesC2 = dist(Features, TrainingDataClass1); 

     

    if(min(distancesC1) < min(distancesC2)) 

        Class = 0; 

    else 

        Class = 1; 

    end 

end 
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Next, we test the classifier using the second half of the dataset: 
 

 
This classifier will always achieve 100% accuracy on the training data, because it uses the 
nearest sample — and in the training set, each sample is closest to itself. However, in our 
test data, we obtained an accuracy of 82% (i.e., 104 misclassifications out of 600). 
 

Task 10.4: Based on your 2-feature space implement and test kNN classifier (with k = 1). 
Now add more features to your classifier: let the classifier work in 4-dimensional feature 
space, 2 initial features being the features that you've used up until now and 2 added 
features taken from alternative good features found in scope of task 1. Does it allow for 
increase of efficiency? Store the codes of both classifiers in order to show the results and 
codes to the LA and the results of both tests in the table at the end of the instruction 
 
Note! Our classifier is already prepared to work in feature space with any number of 
dimensions! We don't need to adjust anything in the classifier code, we only need to add 
more features in new columns of TrainingDataClass0 and TrainingDataClass1 matrices and 
add more features (e.g. like this: [F1,F2,F3,F4 ]) in calling of our classifier. 

 
When using distance-based classifiers such as kNN, normalization of the feature space is 
crucial. Without normalization, features with a larger numerical range will 
disproportionately influence the distance calculation. This can effectively reduce the multi-
dimensional space to just one dominant feature. 
 
In our example, the ranges of the two selected features (e.g., N30 and I1) are similar — both 
span roughly 0.04 units. However, this may not always be the case, especially when adding 
new features in higher-dimensional spaces. 
 
To avoid this issue, we normalize the data. A simple and effective approach is to divide each 
feature by a representative value — such as the maximum across the training dataset. 
While this can be sensitive to outliers, alternatives require a bit more complex analysis, 
relying on determination of data quartiles or its entire statistical distribution. We’ll use 
mean then: 

figure; 

ErrorsA = 0; 

ErrorsD = 0; 

 

for k = 301:600 

  F1 = A.Data(k).Normal.Moments.N30; 

  F2 = A.Data(k).Normal.HuInvariants.I1; 

  if(ClassifierKNN([F1,F2],TrainingDataClass0,TrainingDataClass1) == 1) % Detected class "1" 

    ErrorsA = ErrorsA + 1; 

    plot(A.Data(k).Normal.HuInvariants.I1,A.Data(k).Normal.Moments.N30,'.r'); hold on 

  else 

    plot(A.Data(k).Normal.HuInvariants.I1,A.Data(k).Normal.Moments.N30,'.k'); hold on 

  end 

  F1 = D.Data(k).Normal.Moments.N30; 

  F2 = D.Data(k).Normal.HuInvariants.I1; 

  if(ClassifierKNN([F1,F2],TrainingDataClass0,TrainingDataClass1) == 0) % Detected class "0 

    ErrorsD = ErrorsD + 1; 

    plot(D.Data(k).Normal.HuInvariants.I1,D.Data(k).Normal.Moments.N30,'+r'); hold on 

  else 

    plot(D.Data(k).Normal.HuInvariants.I1,D.Data(k).Normal.Moments.N30,'+k'); hold on 

  end 

  end 

xlabel('2nd Hu Invariant');  

ylabel('N30'); 
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Next, feature extraction can look as in here: 
 

 

Task 10.5: Normalize your data. Does that affect the classifier efficiency? Store the code so 
you'll be able to present the results to the LA and store the results in the table at the end of 
the instruction. 

 
As its name suggests, the “kNN” classifier should be able to use a “k” neighbors instead of 
just 1. In order to implement such a classifier we'll modify its code in this way: 
 

 
You can now experiment with different values of k and different feature dimensionalities. 
Be sure to keep the feature normalization consistent across all tests. 
 

Task 10.6: Test a kNN classifier for k = 1, k = 3, k = 5 and k = 9 in two, four and six-
dimensional feature space. Store the obtained results (number of errors and percent 
efficiency) in the table at the end of the instruction. How well our classifier scales for 
higher-dimensional spaces? Does the increase in k affects the classifier in any consistent 
way? Store the results in the table at the end of the instruction. 

 
 
 
 
 
 
 
 

% Finding of the means for the whole dataset 

Means = abs(mean([TrainingDataClass0,TrainingDataClass1]')); 

% Dividing the data: 

TrainingDataClass0 = TrainingDataClass0./Means' 

TrainingDataClass1 = TrainingDataClass1./Means' 

F1 = A.Data(k).Normal.Moments.N30/Means(1); 

F2 = A.Data(k).Normal.HuInvariants.I1/Means(2); 

function[Class] = ClassifierKNN(Features, TrainingDataClass0,TrainingDataClass1) 

K = 3; % Metaparameter: How many neighbors do we want to take? 

distancesC1 = dist(Features,TrainingDataClass0); 

distancesC2 = dist(Features,TrainingDataClass1); 

% We store all the calculated distances into one matrix 

TestingMatrix(:,1) = [distancesC1,distancesC2]; 

% We add information from which class do rows come from 

TestingMatrix(:,2) = [zeros(1,length(distancesC1)),ones(1,length(distancesC2))]; 

% We sort the matrix so the closest distances are in the top 

SortedMatrix = sortrows(TestingMatrix,1) 

% We take K top rows and sum class indications 

CompoundNeighborClasses = sum(SortedMatrix(1:K,2)); 

% if the sum is higher than half of the K - we have class 1 

if(CompoundNeighborClasses < K/2) 

  Class = 0; 

else 

  Class = 1; 

end 

end 
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Multilayer perceptron 
 
We already know how to use MLP networks for classification tasks. Let’s return to the code 
from the previous instructions and adjust the structure of the data matrices to work with 
MATLAB’s implementation of MLPs. We can either classify new points one by one — as in 
Task 4 — or arrange the testing samples into a matrix and pass them to the network all at 
once. The latter approach is preferred, as it is much faster and will make subsequent tasks 
significantly more time-efficient. 
 

Task 10.7: Based on the chosen feature sets used in task 6 test your MLP classifier. Run the 
code a few times. Is the result the same or different? Save your program so you'll be able to 
show it to the LA and save the results in the table at the end of the instruction. 

 
ANN metaparameter optimization 
 
We have now reached the final step of our process. While it would be practical to run one of 
the selected metaparameter optimization procedures from before to save time and increase 
the likelihood of improving the result, instead we will take a different approach. We will 
statistically evaluate which metaparameters actually have an influence on performance. 
This will require significantly more tests and calculations than strictly necessary to find the 
optimal network structure, but it will help us understand which aspects are truly important 
and which can potentially be ignored in the future. To visualize our findings, we will use 
boxplots. Let’s say we want to evaluate the influence of network size — and we want to do 
it statistically. Below is a code skeleton for this task. Pay attention to the highlighted 
comments indicating where specific elements should be inserted: 
 

 

everything went well, after completing the code you should obtain an ErrorSum matrix. 
Using the boxplot command on this matrix will generate a figure resembling the one shown 
in Figure 6. In the plot, you can observe the median values (red lines), the first and third 
quartiles, and the whiskers that extend from the minimum to the maximum values — 
excluding outliers. The outliers are marked separately as red “+” signs. 
 

for TestSerie = 1:6 

NetworkSize = [2*TestSerie 2*TestSerie]; % Number of neurons in all the hidden layers 

for Test = 1:10 

   

   % Here we should have net initialization with defined network size (to reinitialize    

internal weights and start training from scratch) 

 

   % Here we should have the actual training of our net on the features from training 

dataset 

 

   % Here we simulate our net on the new (testing) data and calculate sum of errors for 

a given net run and configuration... 

 

  ErrorSum(Test,TestSerie) = % ...which we then store here. 

end 

end 

 

figure; boxplot(ErrorSum); ylabel('ErrorSum'); xlabel('NetNumber'); 
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Figure 6 – Boxplots of results obtained for 6 different neural networks. We can compare how 

different configurations produce different spread of results and have different median values – 

ranging from 85 to almost 100. 

 

Task 10.8: Lets now use this code structure to evaluate statistically influence of different 
metaparameters. Check the following metaparameters, evaluating their influence on mean 
and spread of results: 
 

- Network width (neurons in layers: from 2 to 40) 
- Neuron depth (1 – 3 hidden layers for roughly similar number of internal weights) 
- Input space shape: different configurations of input features, 2 (multiple), 4 and 6 

 
Display the results in the form of three boxplots, with aligned y axes – to allow for better 
comparison. Draw conclusions regarding your role as a decision system designer. 

 
 

Task 10.9: Modify task 8 to include also results of tasks 3 and 6 in a graphical form. Note 
that these prior assignments should not be evaluated statistically (in this configuration 
they’re deterministic!) – and you already have all the values necessary. Now you need to 
design visualization that will allow for easy comparison of all the methods. 

 
Additional tasks: 
 

Task 10.10: Check how efficiently net can transfer knowledge between different datasets: 
Test the net trained on Normal dataset can classify data from W1 dataset. Check if using 
more samples from Normal dataset for training (all the 600 samples) allows for higher 
classification efficiency on W1 data? What happens if training dataset would consist of the 
complete Normal and complete W2 datasets (1200 samples in each class) 

 

Task 10.11: Similarily to optimization of metaparameters (size) of MLP, perform 
optimization of features. Prepare a program that will propose different features to test. You 
may do that using 1+1 approach, and/or a random algorithm. Was the initially chosen set of 
features truly an optimal one? 
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Task 10.12: Using a neural net classify data in a task defined as your individual task plus 
one additional randomly picked letter. Do this task in two ways: first, by passing a class 
label equal to -1, 0 or 1 respectively for each class, and for three different outputs of the net. 
The first one “fires” (i.e. returns 1) for 1st class, 2nd fires for 2nd class etc. Finally, prepare 
three different nets. One for distinguishing one class against all the others (i.e. answering a 
question “is this class A or something else?”), second net specialized in recognizing class 2, 
third specialized in recognizing class 3. In which scenario the efficiency was statistially the 
highest? 

 

Task 10.13: How many samples do we need to efficiently train the net? How many do we 
need to efficiently test the net? Lets test the net on final 300 samples and then lets train it 
on 300, 200, 100, 50 and 10 points. How will the results differ? Now, let us train the net on 
300 samples and test it on 300, 200, 100, 50 and 10. Which value: training error and 
repeatability or uncertainty of test rises faster with reduction of the respective dataset? 

 

Task 10.14: Compare our implementation of the kNN algorithm with matlab function 
fitcknn. Consider both the final accuracy and time-efficiency. 

 
 
 

Letters for classification:  
1st feature pair   

2nd feature pair   
3rd feature pair   

 
Training: Validation: 

Decision tree, 1st try   
Decision tree, final   

kNN – 2 dimensional -  
kNN – 4 dimensional -  

kNN – 2 dimensional, normalized -  
kNN – 4 dimensional, normalized -  

kNN: influence of features and neighbors numbers 
 2 features 4 features 6 features 

k = 1    
k = 3    
k = 5    
k = 9    

MLP: 3 tries 
Try 1    
Try 2    
Try 3    

 


