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Introduction 
 
The aim of this exercise is to perform an operation analogous to the previous one (i.e. letter 
classification), but this time using deep learning. The same data and the same tasks will be 
used (the individual task is defined in exactly the same way as in the previous laboratory), 
but the data source will now be folders containing raw image files. 
 
Most likely, you already have access to the dataset, which only needs to be unpacked 
(DeepLearningData and DeepLearningDataCaptcha). If not, it can be built from the 
structure used in the previous class by using the script provided as an attachment to this 
instruction. 
 
 
imageDatastore 
 
In deep learning, datasets are often so large that it would be impossible to store all of them 
in RAM. Therefore, the standard approach in deep learning is to work with images stored 
directly on disk. In this exercise, we will use a very small dataset, but the underlying 
principle remains the same. The imageDatastore object can be created in the following way: 
 
 

 

Here, we loaded two paths: one pointing to the folder containing the letter "A" and the 
other to the folder containing the letter "D". Any number of data sources (i.e., different 
folders) can be provided here as subsequent elements in the Path vector. It is important to 
remember that the names of the folders become the labels of the objects — so if objects of 
the same category are located in different places, the names of their parent folders must be 
identical. Let’s check how some example images from our dataset look. We will display 
twenty random images (Figure 1): 
 
 

 

 Path = {    'DeepLearningData/Normal/A',... 

             'DeepLearningData/Normal/D'}; 

 imds = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames'); 

        figure; 

        perm = randperm(length(imds.Files),20); 

        for i = 1:20 

            subplot(4,5,i); 

            imshow(imds.Files{perm(i)}); 

        end 
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Figure 1 – random images from our database 

 

Next, we will check how many objects of each class are present in the dataset: 
 

 

 

 

As before, we will randomly split the data into training and validation subsets. This time, 
however, we do not need to do it manually — we will simply use a built-in function: 
 

 

We will use 400 objects for training, and the remaining 200 will go into the validation set. 
 
Components of a deep network 
 
We will construct our network using a layers vector, employing the following components: 
 
 

 

 

 

The input layer must match the size of the image. 

 

 

This is a convolutional layer. The first argument defines the filter size (in this case: 3x3), 
and the second specifies the number of filters (i.e., how many convolutional layers operate 
in parallel — here, 8). The last two arguments ensure that the size of the resulting feature 
map matches the input size. Convolution is usually used "in a bundle" with normalization 
and a nonlinear activation function. 
 

 

 

        labelCount = countEachLabel(imds) 

        numTrainFiles = 400; 

        [imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize'); 

  imageInputLayer([150 150 1])  

   convolution2dLayer(3,8,'Padding','same') 

     batchNormalizationLayer 

     reluLayer 
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This layer implements the MaxPooling algorithm, which reduces the size of the resulting feature 

maps. 

 

 

 

 

 

This is a fully connected layer. If it serves as a hidden layer, the number of neurons is 
defined in the parentheses. If it serves as the output layer the number of neurons must 
match the number of classes being classified. 
 

 

These final two layers convert the output of the last fully connected layer into a proper 
classification. 
 

First self-constructed (still relatively shallow) network 
 
Let’s begin by building a network similar to the one used previously — that is, with two 
hidden layers, each containing 10 neurons. We will call this network MLP1. This time, we 
will use the ReLU (Rectified Linear Unit) activation function: 
 

 

This network still needs to be configured for training — for that, we will use the following 
options vector: 
 

 

 
 
 
 

     maxPooling2dLayer(2,'Stride',2)    

   fullyConnectedLayer(2) 

  softmaxLayer 

    classificationLayer 

layers = [ 

    imageInputLayer([150 150 1])     

    fullyConnectedLayer(10) 

    reluLayer 

    fullyConnectedLayer(10) 

    reluLayer 

    fullyConnectedLayer(2) 

    softmaxLayer 

    classificationLayer]; 

options = trainingOptions('sgdm', ... 

    'InitialLearnRate',0.01, ... 

    'MaxEpochs',10, ... 

    'Shuffle','every-epoch', ... 

    'ValidationData',imdsValidation, ... 

    'ValidationFrequency',30, ... 

    'Verbose',false, ... 

    'Plots','training-progress'); 



 

5 

BAIDL: Instruction 11, Deep Convolutional Neural Network 

Finally, the network can be trained. The results will be presented in Figure 2: 
 

 

 

 

 

 

Figure 2 – results of training of our network 

 

In our case, we achieved a validation accuracy of 95.5% during training — which seems like 
an excellent result, considering that we are using a relatively simple network and are not 
performing any feature extraction! Let’s take a moment to reflect on why this might be 
happening. 
 

Problem for reflection: 
(Think carefully about each of the following questions — answers will likely be discussed at 
the end of the session): 
 
1 - A high classification accuracy was achieved without any preprocessing or feature 
extraction. In this context, what is the significance of the fact that the datasets were initially 
split completely at random? Does this provide any guarantee of generalization? 
 
2 - What constitutes the “world” of the trained neural network? What are the only pieces of 
information it received? Is it possible, in our case, to construct simple classification rules 
based on the values of specific image pixels? 
 
3 - What percentage of the dataset consists of truly problematic and non-standard data? 
How many letters appear to significantly overlap with one another? 

 

 

 

 net = trainNetwork(imdsTrain,layers,options); 
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Task 11.1: Adapt the neural network according to the above scheme (MLP1) for 
classification of your individual task. What classification accuracy was achieved? Is the 
result repeatable? What is its variability? Store the results in the table at the end of the 
instruction 

 

Validation of decision systems on a subset randomly selected from the original dataset 
carries a number of risks — the most important being the possibility of hidden overfitting. 
This refers to a situation in which the test data, although formally different from the 
training data (e.g., coming from a different file), are in practice identical in terms of the 
information they contain. A practical example of such a situation could be the classification 
of traffic signs. Imagine we take 100 photos of the same traffic sign that we want to classify. 
Each photo differs slightly in position, but all of them include a yellow background, because 
the sign is mounted on a yellow wall. If we now divide these images into training and test 
sets, and the algorithm learns that the easiest way to recognize this specific sign is by 
identifying the background it appears against, we may obtain 100% detection accuracy on 
the so-called “independent” validation set — but it will not translate to reliable 
performance in practice for other signs of the same type placed in different locations. 
 
For this reason, we will now evaluate our network using a genuinely independent test set. 
To do this, we will use the “W2” dataset. First, let’s load the data: 
 

 

Next, we test the network on this data: 
 

 

In our case, the achieved accuracy is 93% — so it turns out that the problem we worked so 
hard to solve in the previous session is actually much simpler than we initially assumed. 
 

Task 11.2: Test the performance of the network trained to solve your individual task using 
the “W2” dataset. What accuracy was achieved? Does retraining the network from scratch 
and testing it again change the result? Record the obtained results in the table located at 
the end of the instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 Path = {    'DeepLearningData/W2/A',... 

             'DeepLearningData/W2/D'}; 

 imdsTest = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames'); 

YPred = classify(net,imdsTest); 

YValidation = imdsTest.Labels; 

accuracy = sum(YPred == YValidation)/numel(YValidation) 
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Convolutional Neural Network 
 
Deep learning would not be meaningful without methods dedicated to extracting low-level 
features. One such method is the use of convolutional layers. Let’s try to expand our neural 
network to enable even more effective performance. The extended network will be called 
CNN1. Let the layers of the network be organized as follows: 
 

 

This is not a particularly deep network (its Credit Assignment Path Depth is only 3 — just 
one more than in the previous example), but it allowed us to achieve a validation accuracy 
of 98.5%, which means that the error rate in our case has been more than halved. Let’s 
now try using an even deeper network (we will call it C2): 
 

 

Will this version bring any further improvement? What about the performance on the test 
dataset? 
 

Task 11.3: Test the performance of the network trained to solve your individual task using 
the “W2” dataset. What accuracy was achieved? Does retraining the network from scratch 
and testing it again change the result? Record the obtained results in the table located at 
the end of the instruction. 

 
 

 

 

 

 

 

layers = [ 

    imageInputLayer([150 150 1])     

    convolution2dLayer(3,8,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

    maxPooling2dLayer(2,'Stride',2)  

    convolution2dLayer(3,16,'Padding','same') 

    batchNormalizationLayer 

    reluLayer    

    fullyConnectedLayer(2) 

    softmaxLayer 

    classificationLayer]; 

layers = [ 

    imageInputLayer([150 150 1])     

    convolution2dLayer(3,8,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

    maxPooling2dLayer(2,'Stride',2)  

    convolution2dLayer(3,16,'Padding','same') 

    batchNormalizationLayer 

    reluLayer    

    maxPooling2dLayer(2,'Stride',2)  

    convolution2dLayer(3,16,'Padding','same') 

    batchNormalizationLayer 

    fullyConnectedLayer(10)     

    reluLayer  

    fullyConnectedLayer(2) 

    softmaxLayer 

    classificationLayer]; 
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Network performance on a challenging classification problem 
 

Task 11.4: Examine how the networks perform in classifying your individual task — this 
time using the raw dataset that includes background. Load the data from the 
DeepLearningDataCaptcha database and once again compare the performance of the three 
tested networks for the two-letter classification problem. Record the obtained results in the 
table located at the end of the instruction. 
 
If you do not have access to the DeepLearningDataCaptcha database, you can easily generate 
it by uncommenting the relevant sections in Attachment 1 and using the function provided in 
Attachment 2. 
 

 
 
Działanie sieci dla problemu wieloklasowego 
 

Task 11.5: Let’s now see how our networks perform in a multi-class classification task. 
Load all letters from the “Normal” class available in the captcha dataset (A, D, F, H, K, L, M, 
N, T, and Y). Remember to change the size of the final layer in the network to match the 
number of classes (now 10). What validation and independent test accuracy do the previ-
ously configured networks — MLP1, CNN1, and CNN2 — achieve? Record the obtained re-
sults in the table located at the end of the instruction. 
 
To determine which classes are most problematic for the networks, generate a Confusion 
Matrix, for example, using the following command: 
 
plotconfusion(YValidation,YPred) 

 

 

 

Training algorithm configuration 
 
To configure the training algorithm, a number of parameters can be selected. Up to this 
point, we have been using the default settings without any modifications. Let’s now delve 
deeper into this topic. Currently, we have three solvers to choose from: 'sgdm', 'rmsprop', 
and 'adam'. For each of them, we can adjust specific parameters related to momentum, 
regularization, learning rate, learning rate decay, etc. 
 
Let’s begin by testing one of these — the learning rate: 
 

Task 11.6: For the classification problem from Task 6, and using the network that achieved 
the best result, test the influence of the LearningRate parameter. Consider which values 
should be measured, and then try to identify values of LearningRate at which “training 
breaks down.” Present the results of your experiment in graphical form. 
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Distortion detection in letters 
 

Task 11.7:  
 
Implement a task focused on detecting “waviness” in letters — that is, distinguishing letters 
from the Normal dataset from those in the W1 and W2 datasets. To achieve this, you will 
need to modify the data loading process to construct the imageDatastore object accordingly. 
 
Load images from both categories simultaneously, for example:  
 
 Path_a = {'DeepLearningData/Normal/A',... 
            'DeepLearningData/W2/A'}; 

 imdsDistortion = imageDataore(Path_a,'IncludeSubfolders',true,'LabelSource','none'); 

 

Then manually assign categories in the order in which the data was loaded, for example: 
 
 LB1 = categorical(zeros(600,1));  for k = 1:600;    LB1(k) = 'N'; end 
 LB2 = categorical(zeros(600,1));  for k = 1:600;    LB2(k) = 'W'; end 
 imdsDistortion.Labels = [LB1;LB2]; 
 imdsDistortion.Labels = setcats(imdsDistortion.Labels,{'N','W'}) 

 

What classification accuracy was achieved by each of the three networks? Why did you 
obtain that particular result? Does adding more letters to both datasets (e.g., the “N” set 
includes undistorted letters “F,” “K,” “M,” “N,” and the “W” set includes the same letters in 
distorted versions) make the task easier or harder? Is it possible to train a network to 
predict whether a letter that was not previously seen in the dataset is distorted or not? 
 

 

 

Additional tasks 
 

Task 11.8: For a problem proposed by the instructor, perform an optimization of at least 
three selected training metaparameters of the network. Remember that this optimization 
must have statistical significance — the results should be presented in the form of boxplots, 
as used in the previous instruction. Descriptions of training parameters (to help you select 
three metaparameters for optimization) can be found here: 
 
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html 

 

Task 11.9: Take your convolutional net trained to recognize captcha letters. Then take a 
number of correctly classified examples (e.g. 10) from our testing dataset and use them for 
further tests. Try to modify these examples first by gradually added noise and then by more 
advanced challenges (e.g. rotation or progressively adding different objects to the image). 
Check at which point the network starts to misclassify these examples. 

 

Task 11.10: Train your deep network to calculate features for your images. Let the input be 
the binary image of a letter and output consist of number of features that you used to 
classify your data in your previous laboratory. Then check how well your network operates 
and whether it can calculate features for unseen letter samples. In order to perform this 
task you will need to replace final layers of your net with a regressionLayer and define 
targets as features. 
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Result tables 
 

 

 

Individual task, classification of letters: ...... and ..... 

 

  Validation Independent test 

MLP1 Try 1   

Try 2   

Try 3   

CNN1 Try 1   

Try 2   

Try 3   

CNN2 Try 1   

Try 2   

Try 3   

 

 

All the letters: 

  Validation Independent test 

MLP1 -   

CNN1 -   

CNN2 -   

 

 

 

“Captcha”, Individual task, classification of letters: ...... and ..... 

 

  Validation Independent test 

MLP1 -   

CNN1 -   

CNN2 -   

 

" Captcha”, All the letters: 

  Validation Independent test 

MLP1 -   

CNN1 -   

CNN2 -   
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Attachment 1 
 

Kod zamieniający strukturę StudentData na znormalizowane obiekty pogrupowane w foldery 

nadające się do wczytania jako imageDatastore: 

 
 

Letters = {'A','D','F','H','K','L','M','N','T','Y'}; 
for k = 1:length(Letters) 
    Letter = Letters{k} 
    BS = load(strcat('StudentData/Features',Letter)); 
    mkdir(strcat('DeepLearningData/Normal/',Letter));                                 
    for k = 1:length(BS.Data);           Name = 

strcat('Image',num2str(k),'.png'); ...    
        I = BS.Data(k).Normal.Image;         S = size(I);    
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2); 
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I; 

        % New = Captcha(New);      
        imwrite(New,strcat('DeepLearningData/Normal/',Letter,'/',Name));         
    end 
    mkdir(strcat('DeepLearningData/W1/',Letter));                                  
    for k = 1:length(BS.Data);           Name = 

strcat('Image',num2str(k),'.png'); ...  
        I = BS.Data(k).W1.Image;         S = size(I);    
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2); 
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I;  

        % New = Captcha(New);     
        imwrite(New,strcat('DeepLearningData/W1/',Letter,'/',Name));        
    end 
    mkdir(strcat('DeepLearningData/W2/',Letter));                                 
    for k = 1:length(BS.Data);           Name = 

strcat('Image',num2str(k),'.png'); ...   
        I = BS.Data(k).W2.Image;         S = size(I);    
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2); 
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I;  

        % New = Captcha(New); 
        imwrite(New,strcat('DeepLearningData/W2/',Letter,'/',Name));         
    end 
end 

 

Attachment 2 
 

Funkcja Captcha tworząca "popsutą" bazę: 

 
 

function [ImageRes] = Captcha(ImgIn) 

    ImgBG = rgb2gray(imread('D:\NAUKA\__DYDAKTYKA\2019_2020 (PhD 

5)\Instrukcje\Database\Exported\BG.png')); 

    Image1 = uint8(100*ImgIn); 

    Image1 = imgaussfilt(Image1); 

    ImgBG = ImgBG.*0.8; 

    Cx = randi(size(ImgBG,1)-151); 

    Cy = randi(size(ImgBG,2)-151); 

    Image2 = ImgBG(Cx:Cx+149,Cy:Cy+149); 

    ImageRes = Image1+Image2; 

end 


