

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Basics of AI and Deep Learning

Course for Mechatronic Engineering with English as instruction language

Instruction 11:

Deep Convolutional Neural Network

 You will learn how to build your own Deep Convolutional Neural
Network from scratch – and how to configure it for classification of
raw images. You will also compare this solution with the approach
from last week and you will also try different tasks and configurations
showing the range of possibilities you might want to dive into later.

 Additional materials:

Course supervisor:
Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction authors:

Ziemowit Dworakowski, zdw@agh.edu.pl

mailto:zdw@agh.edu.pl
mailto:zdw@agh.edu.pl

2

BAIDL: Instruction 11, Deep Convolutional Neural Network

Introduction

The aim of this exercise is to perform an operation analogous to the previous one (i.e. letter
classification), but this time using deep learning. The same data and the same tasks will be
used (the individual task is defined in exactly the same way as in the previous laboratory),
but the data source will now be folders containing raw image files.

Most likely, you already have access to the dataset, which only needs to be unpacked
(DeepLearningData and DeepLearningDataCaptcha). If not, it can be built from the
structure used in the previous class by using the script provided as an attachment to this
instruction.

imageDatastore

In deep learning, datasets are often so large that it would be impossible to store all of them
in RAM. Therefore, the standard approach in deep learning is to work with images stored
directly on disk. In this exercise, we will use a very small dataset, but the underlying
principle remains the same. The imageDatastore object can be created in the following way:

Here, we loaded two paths: one pointing to the folder containing the letter "A" and the
other to the folder containing the letter "D". Any number of data sources (i.e., different
folders) can be provided here as subsequent elements in the Path vector. It is important to
remember that the names of the folders become the labels of the objects — so if objects of
the same category are located in different places, the names of their parent folders must be
identical. Let’s check how some example images from our dataset look. We will display
twenty random images (Figure 1):

 Path = { 'DeepLearningData/Normal/A',...

 'DeepLearningData/Normal/D'};

 imds = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames');

 figure;

 perm = randperm(length(imds.Files),20);

 for i = 1:20

 subplot(4,5,i);

 imshow(imds.Files{perm(i)});

 end

3

BAIDL: Instruction 11, Deep Convolutional Neural Network

Figure 1 – random images from our database

Next, we will check how many objects of each class are present in the dataset:

As before, we will randomly split the data into training and validation subsets. This time,
however, we do not need to do it manually — we will simply use a built-in function:

We will use 400 objects for training, and the remaining 200 will go into the validation set.

Components of a deep network

We will construct our network using a layers vector, employing the following components:

The input layer must match the size of the image.

This is a convolutional layer. The first argument defines the filter size (in this case: 3x3),
and the second specifies the number of filters (i.e., how many convolutional layers operate
in parallel — here, 8). The last two arguments ensure that the size of the resulting feature
map matches the input size. Convolution is usually used "in a bundle" with normalization
and a nonlinear activation function.

 labelCount = countEachLabel(imds)

 numTrainFiles = 400;

 [imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');

 imageInputLayer([150 150 1])

 convolution2dLayer(3,8,'Padding','same')

 batchNormalizationLayer

 reluLayer

4

BAIDL: Instruction 11, Deep Convolutional Neural Network

This layer implements the MaxPooling algorithm, which reduces the size of the resulting feature

maps.

This is a fully connected layer. If it serves as a hidden layer, the number of neurons is
defined in the parentheses. If it serves as the output layer the number of neurons must
match the number of classes being classified.

These final two layers convert the output of the last fully connected layer into a proper
classification.

First self-constructed (still relatively shallow) network

Let’s begin by building a network similar to the one used previously — that is, with two
hidden layers, each containing 10 neurons. We will call this network MLP1. This time, we
will use the ReLU (Rectified Linear Unit) activation function:

This network still needs to be configured for training — for that, we will use the following
options vector:

 maxPooling2dLayer(2,'Stride',2)

 fullyConnectedLayer(2)

 softmaxLayer

 classificationLayer

layers = [

 imageInputLayer([150 150 1])

 fullyConnectedLayer(10)

 reluLayer

 fullyConnectedLayer(10)

 reluLayer

 fullyConnectedLayer(2)

 softmaxLayer

 classificationLayer];

options = trainingOptions('sgdm', ...

 'InitialLearnRate',0.01, ...

 'MaxEpochs',10, ...

 'Shuffle','every-epoch', ...

 'ValidationData',imdsValidation, ...

 'ValidationFrequency',30, ...

 'Verbose',false, ...

 'Plots','training-progress');

5

BAIDL: Instruction 11, Deep Convolutional Neural Network

Finally, the network can be trained. The results will be presented in Figure 2:

Figure 2 – results of training of our network

In our case, we achieved a validation accuracy of 95.5% during training — which seems like
an excellent result, considering that we are using a relatively simple network and are not
performing any feature extraction! Let’s take a moment to reflect on why this might be
happening.

Problem for reflection:
(Think carefully about each of the following questions — answers will likely be discussed at
the end of the session):

1 - A high classification accuracy was achieved without any preprocessing or feature
extraction. In this context, what is the significance of the fact that the datasets were initially
split completely at random? Does this provide any guarantee of generalization?

2 - What constitutes the “world” of the trained neural network? What are the only pieces of
information it received? Is it possible, in our case, to construct simple classification rules
based on the values of specific image pixels?

3 - What percentage of the dataset consists of truly problematic and non-standard data?
How many letters appear to significantly overlap with one another?

 net = trainNetwork(imdsTrain,layers,options);

6

BAIDL: Instruction 11, Deep Convolutional Neural Network

Task 11.1: Adapt the neural network according to the above scheme (MLP1) for
classification of your individual task. What classification accuracy was achieved? Is the
result repeatable? What is its variability? Store the results in the table at the end of the
instruction

Validation of decision systems on a subset randomly selected from the original dataset
carries a number of risks — the most important being the possibility of hidden overfitting.
This refers to a situation in which the test data, although formally different from the
training data (e.g., coming from a different file), are in practice identical in terms of the
information they contain. A practical example of such a situation could be the classification
of traffic signs. Imagine we take 100 photos of the same traffic sign that we want to classify.
Each photo differs slightly in position, but all of them include a yellow background, because
the sign is mounted on a yellow wall. If we now divide these images into training and test
sets, and the algorithm learns that the easiest way to recognize this specific sign is by
identifying the background it appears against, we may obtain 100% detection accuracy on
the so-called “independent” validation set — but it will not translate to reliable
performance in practice for other signs of the same type placed in different locations.

For this reason, we will now evaluate our network using a genuinely independent test set.
To do this, we will use the “W2” dataset. First, let’s load the data:

Next, we test the network on this data:

In our case, the achieved accuracy is 93% — so it turns out that the problem we worked so
hard to solve in the previous session is actually much simpler than we initially assumed.

Task 11.2: Test the performance of the network trained to solve your individual task using
the “W2” dataset. What accuracy was achieved? Does retraining the network from scratch
and testing it again change the result? Record the obtained results in the table located at
the end of the instruction.

 Path = { 'DeepLearningData/W2/A',...

 'DeepLearningData/W2/D'};

 imdsTest = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames');

YPred = classify(net,imdsTest);

YValidation = imdsTest.Labels;

accuracy = sum(YPred == YValidation)/numel(YValidation)

7

BAIDL: Instruction 11, Deep Convolutional Neural Network

Convolutional Neural Network

Deep learning would not be meaningful without methods dedicated to extracting low-level
features. One such method is the use of convolutional layers. Let’s try to expand our neural
network to enable even more effective performance. The extended network will be called
CNN1. Let the layers of the network be organized as follows:

This is not a particularly deep network (its Credit Assignment Path Depth is only 3 — just
one more than in the previous example), but it allowed us to achieve a validation accuracy
of 98.5%, which means that the error rate in our case has been more than halved. Let’s
now try using an even deeper network (we will call it C2):

Will this version bring any further improvement? What about the performance on the test
dataset?

Task 11.3: Test the performance of the network trained to solve your individual task using
the “W2” dataset. What accuracy was achieved? Does retraining the network from scratch
and testing it again change the result? Record the obtained results in the table located at
the end of the instruction.

layers = [

 imageInputLayer([150 150 1])

 convolution2dLayer(3,8,'Padding','same')

 batchNormalizationLayer

 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,16,'Padding','same')

 batchNormalizationLayer

 reluLayer

 fullyConnectedLayer(2)

 softmaxLayer

 classificationLayer];

layers = [

 imageInputLayer([150 150 1])

 convolution2dLayer(3,8,'Padding','same')

 batchNormalizationLayer

 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,16,'Padding','same')

 batchNormalizationLayer

 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,16,'Padding','same')

 batchNormalizationLayer

 fullyConnectedLayer(10)

 reluLayer

 fullyConnectedLayer(2)

 softmaxLayer

 classificationLayer];

8

BAIDL: Instruction 11, Deep Convolutional Neural Network

Network performance on a challenging classification problem

Task 11.4: Examine how the networks perform in classifying your individual task — this
time using the raw dataset that includes background. Load the data from the
DeepLearningDataCaptcha database and once again compare the performance of the three
tested networks for the two-letter classification problem. Record the obtained results in the
table located at the end of the instruction.

If you do not have access to the DeepLearningDataCaptcha database, you can easily generate
it by uncommenting the relevant sections in Attachment 1 and using the function provided in
Attachment 2.

Działanie sieci dla problemu wieloklasowego

Task 11.5: Let’s now see how our networks perform in a multi-class classification task.
Load all letters from the “Normal” class available in the captcha dataset (A, D, F, H, K, L, M,
N, T, and Y). Remember to change the size of the final layer in the network to match the
number of classes (now 10). What validation and independent test accuracy do the previ-
ously configured networks — MLP1, CNN1, and CNN2 — achieve? Record the obtained re-
sults in the table located at the end of the instruction.

To determine which classes are most problematic for the networks, generate a Confusion
Matrix, for example, using the following command:

plotconfusion(YValidation,YPred)

Training algorithm configuration

To configure the training algorithm, a number of parameters can be selected. Up to this
point, we have been using the default settings without any modifications. Let’s now delve
deeper into this topic. Currently, we have three solvers to choose from: 'sgdm', 'rmsprop',
and 'adam'. For each of them, we can adjust specific parameters related to momentum,
regularization, learning rate, learning rate decay, etc.

Let’s begin by testing one of these — the learning rate:

Task 11.6: For the classification problem from Task 6, and using the network that achieved
the best result, test the influence of the LearningRate parameter. Consider which values
should be measured, and then try to identify values of LearningRate at which “training
breaks down.” Present the results of your experiment in graphical form.

9

BAIDL: Instruction 11, Deep Convolutional Neural Network

Distortion detection in letters

Task 11.7:

Implement a task focused on detecting “waviness” in letters — that is, distinguishing letters
from the Normal dataset from those in the W1 and W2 datasets. To achieve this, you will
need to modify the data loading process to construct the imageDatastore object accordingly.

Load images from both categories simultaneously, for example:

 Path_a = {'DeepLearningData/Normal/A',...
 'DeepLearningData/W2/A'};

 imdsDistortion = imageDataore(Path_a,'IncludeSubfolders',true,'LabelSource','none');

Then manually assign categories in the order in which the data was loaded, for example:

 LB1 = categorical(zeros(600,1)); for k = 1:600; LB1(k) = 'N'; end
 LB2 = categorical(zeros(600,1)); for k = 1:600; LB2(k) = 'W'; end
 imdsDistortion.Labels = [LB1;LB2];
 imdsDistortion.Labels = setcats(imdsDistortion.Labels,{'N','W'})

What classification accuracy was achieved by each of the three networks? Why did you
obtain that particular result? Does adding more letters to both datasets (e.g., the “N” set
includes undistorted letters “F,” “K,” “M,” “N,” and the “W” set includes the same letters in
distorted versions) make the task easier or harder? Is it possible to train a network to
predict whether a letter that was not previously seen in the dataset is distorted or not?

Additional tasks

Task 11.8: For a problem proposed by the instructor, perform an optimization of at least
three selected training metaparameters of the network. Remember that this optimization
must have statistical significance — the results should be presented in the form of boxplots,
as used in the previous instruction. Descriptions of training parameters (to help you select
three metaparameters for optimization) can be found here:

https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html

Task 11.9: Take your convolutional net trained to recognize captcha letters. Then take a
number of correctly classified examples (e.g. 10) from our testing dataset and use them for
further tests. Try to modify these examples first by gradually added noise and then by more
advanced challenges (e.g. rotation or progressively adding different objects to the image).
Check at which point the network starts to misclassify these examples.

Task 11.10: Train your deep network to calculate features for your images. Let the input be
the binary image of a letter and output consist of number of features that you used to
classify your data in your previous laboratory. Then check how well your network operates
and whether it can calculate features for unseen letter samples. In order to perform this
task you will need to replace final layers of your net with a regressionLayer and define
targets as features.

10

BAIDL: Instruction 11, Deep Convolutional Neural Network

Result tables

Individual task, classification of letters: and

 Validation Independent test

MLP1 Try 1

Try 2

Try 3

CNN1 Try 1

Try 2

Try 3

CNN2 Try 1

Try 2

Try 3

All the letters:

 Validation Independent test

MLP1 -

CNN1 -

CNN2 -

“Captcha”, Individual task, classification of letters: and

 Validation Independent test

MLP1 -

CNN1 -

CNN2 -

" Captcha”, All the letters:

 Validation Independent test

MLP1 -

CNN1 -

CNN2 -

11

BAIDL: Instruction 11, Deep Convolutional Neural Network

Attachment 1

Kod zamieniający strukturę StudentData na znormalizowane obiekty pogrupowane w foldery

nadające się do wczytania jako imageDatastore:

Letters = {'A','D','F','H','K','L','M','N','T','Y'};
for k = 1:length(Letters)
 Letter = Letters{k}
 BS = load(strcat('StudentData/Features',Letter));
 mkdir(strcat('DeepLearningData/Normal/',Letter));
 for k = 1:length(BS.Data); Name =

strcat('Image',num2str(k),'.png'); ...
 I = BS.Data(k).Normal.Image; S = size(I);
 offY = floor((150 - S(1))/2); offX = floor((150 - S(2))/2);
 New = logical(zeros(150,150)); New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I;

 % New = Captcha(New);
 imwrite(New,strcat('DeepLearningData/Normal/',Letter,'/',Name));
 end
 mkdir(strcat('DeepLearningData/W1/',Letter));
 for k = 1:length(BS.Data); Name =

strcat('Image',num2str(k),'.png'); ...
 I = BS.Data(k).W1.Image; S = size(I);
 offY = floor((150 - S(1))/2); offX = floor((150 - S(2))/2);
 New = logical(zeros(150,150)); New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I;

 % New = Captcha(New);
 imwrite(New,strcat('DeepLearningData/W1/',Letter,'/',Name));
 end
 mkdir(strcat('DeepLearningData/W2/',Letter));
 for k = 1:length(BS.Data); Name =

strcat('Image',num2str(k),'.png'); ...
 I = BS.Data(k).W2.Image; S = size(I);
 offY = floor((150 - S(1))/2); offX = floor((150 - S(2))/2);
 New = logical(zeros(150,150)); New(offY:offY+S(1)-1,offX:offX+S(2)-

1) = I;

 % New = Captcha(New);
 imwrite(New,strcat('DeepLearningData/W2/',Letter,'/',Name));
 end
end

Attachment 2

Funkcja Captcha tworząca "popsutą" bazę:

function [ImageRes] = Captcha(ImgIn)

 ImgBG = rgb2gray(imread('D:\NAUKA__DYDAKTYKA\2019_2020 (PhD

5)\Instrukcje\Database\Exported\BG.png'));

 Image1 = uint8(100*ImgIn);

 Image1 = imgaussfilt(Image1);

 ImgBG = ImgBG.*0.8;

 Cx = randi(size(ImgBG,1)-151);

 Cy = randi(size(ImgBG,2)-151);

 Image2 = ImgBG(Cx:Cx+149,Cy:Cy+149);

 ImageRes = Image1+Image2;

end

