
17.03.2025

1

Mechatronic Engineering program

Basics of AI and Deep Learning:
4: Artificial Neural Networks

– in three flavors

Ziemowit Dworakowski
AGH University of KrakowUnderstanding is measured by how many different

perspectives you can internalize for a given subject

So far, ve’ve learned:

What is classification and regression – from the data perspective

How to use optimization methods for classifier or regressor training

What is a feature space and what can we find in it…

Today, we’ll learn about neural networks

Understanding is measured by how many different
perspectives you can internalize for a given subject…

Lets model a neuron:
McCulloch – Pitts neuron (1943)

One neuron is not really that brilliant… But maybe we
can connect it with others?

1

2

3

17.03.2025

2

Rosenblatt’s Perceptron (1958) (t+15)

By adjusting weights associated with connections we can make the
network do stuff. Now the question – how should we set it up the best?

Backpropagation algorithm (1986) (t+43 years…)

Modern Multilayered Perceptron (MLP) network:

4

5

6

17.03.2025

3

How we make MLP do the stuff we want?

We pass data here We collect answers here

Compare with
target and

calculate error

We use error (actually: gradient of it)
to adjust weights

We know that we should rotate
the classification line like that.
But how the training algorithm
knows that?

x1

x2

𝑤1𝑥1 +𝑤1𝑥2 +𝑤𝑏 > 0 ?

Training interpretation from classification perspective

Training interpretation from classification perspective

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

Target value = 0

x1

x2
Classifier returns = 0.95
Classifier returns = 1

7

8

9

17.03.2025

4

Training interpretation from classification perspective

x1

x2 We can add several
surfaces together!

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

𝜎 𝒘2 ∙ 𝒙 + 𝑤𝑏,2

+

+

…

Training interpretation from classification perspective

The more „lines” we
have, the more flexible
we are

x1

x2

And each of these is
just a neuron!

Look:

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

ANN training: (Vanilla) gradient descent
(standard, without additions)

(Start from a random set of weights)

Calculate gradient of error with respect
to all the weights

Modifiy the weights in the direction of
the steepest gradient descent

x1

x2

10

11

12

17.03.2025

5

𝑦 = 𝑓(𝒘,𝒙)

Data space mapping function

We’ll need lots of flexibility and lots of non-linearity…
And we want it to be adjustable according to needs…

𝑦 = 𝑓(𝒘, 𝒙)

𝑦 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + … + 𝑓𝑛 𝒘𝑛 , 𝒙
We might want to make it compounding from different functions:

We might want to govern these functions purely by their parameters:

𝑥1
′ = 𝜎 𝒘1,1, 𝒙 + 𝜎 𝒘2,1, 𝒙 + … + 𝜎 𝒘𝑛,1, 𝒙

And now a „final decision” – another nonlinear transformation:

𝑦 = 𝜎(𝒘𝑛+1,1, 𝒙
′)

𝑥2
′ = 𝜎 𝒘1,2, 𝒙 + 𝜎 𝒘2,2, 𝒙 + … + 𝜎 𝒘𝑛,2, 𝒙
… This is a vector of our new coordinates!

If we want, we can nest it even further (so 𝑦 becomes 𝒙′′ and so on)

𝑦 = 𝑓(𝒘,𝒙)

And this tool for transformation of feature space (x) into
output space (y) we’ll call a neural network:

Data space mapping function

𝑦 = 𝜎(𝒘𝑛+1,1, 𝒙
′)

We adjust it to data using a gradient-descent backpropagation algorithm

13

14

15

17.03.2025

6

Three flavors of neural networks:

neural network is:

A compound function that does complex non-
linear mapping from input space into output space

morphing data to gradually simplify its structure

A set of hyperplanes in feature space (whose
location we can adjust) that form

layered decision surfaces

A biologically-inspired network of nodes that can
pass information through one another with

emergent feature of data understanding

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑥′1 = 𝜎 𝑤3 ∙ 𝑥1 + 𝑤5 ∙ 𝑥2 + 𝑤1

𝑥′2 = 𝜎 𝑤2 ∙ 𝑥1 + 𝑤6 ∙ 𝑥2 + 𝑤2

You can combine this to get a 𝑓 𝒘, 𝒙
function equivalent for a network

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑝

𝜕𝑑

𝜕𝑦
= 𝑦 − 𝑡

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

16

17

18

17.03.2025

7

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑝

𝑦(1 − 𝑦) 𝑦 = 𝜎 𝑝 =
1

1 + 𝑒−(𝑝)

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

𝑦 = 𝜎 𝑝 =
1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
=

𝜕

𝜕𝑝
(1 + 𝑒−𝑝)−1= −(1 + 𝑒−𝑝)−2 ∙ 𝑒−𝑝 ∙ −1

𝜕𝜎

𝜕𝑝
=

1

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)
∙ 𝑒−𝑝

𝜕𝜎

𝜕𝑝
=

𝑒−𝑝

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
=
1 + 𝑒−𝑝 − 1

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
= 1 −

1

1 + 𝑒− 𝑝
∙

1

1 + 𝑒− 𝑝
= (1 − 𝑦) ∙ 𝑦

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑝

𝜕𝑝

𝜕𝑤9
= 𝑥′2

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

19

20

21

17.03.2025

8

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑝

𝜕𝑝

𝜕𝑤9
= 𝑥′2

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient
of 𝑑 with respect to weights 𝒘:

The gradient now tells us
how to adjust weights

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑝

𝜕𝑑

𝜕𝑤6
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑥′2

𝜕𝑥′2
𝜕𝑢

𝜕𝑢

𝜕𝑤6

𝑥′2 = 𝜎 𝑤4 ∙ 𝑥1 + 𝑤6 ∙ 𝑥2 + 𝑤1

𝑢

As we go through the network backwards, we
propagate our error calculations – it is the
backpropagation algorithm

training

validation

testing

∑

∑

∑

b
b

𝒘3:6

𝒘1:2 𝑤7

𝒘8:9

Small batch
of data

Corresponding
labels

Iterations
epochs

Error

Epoch means 1 passing of the entire
training dataset through training

Training error

Validation error

We should stop
training here

We stop training when:
- Validation error starts to rise
- We run out of time
- Gradient approaches 0 (we don’t improve any more)

22

23

24

17.03.2025

9

y

x

𝑓 𝒘,𝒙 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + ⋯+ 𝑓3 𝒘3, 𝒙

The idea here is to take a lot of simple nonlinear functions
and add them together to get a more complex one

Regression with multilayered perceptron

Radial networks

∑

∑
∑

b b

𝒙
𝒘3:6

𝒙′ 𝑦

𝑤7

𝒘8:9

Trained (again!) using gradient
backpropagation

Good for local inference

Recurrent networks

∑

∑
∑

b b

𝒙
𝑦

Adding recurrent connections makes for
good short-time memory capabilities –
allowing for system identification and
prediction of time-domain signals

25

26

27

17.03.2025

10

Kohonen networks (Self-organizing maps)

x1

x2

Kohonen networks (Self-organizing maps)

x1

x2 Allows for clusterization and
mapping of data to lower
dimensionality

Physics-informed neural networks

∑
∑

b b

𝒇(𝒙)

𝒇(𝒙)

f

A

PINNs integrate expert knowledge into
ANN structure – which allows more
robust training with fewer examples

We know this is not physically
explainable – probably an outlier

28

29

30

17.03.2025

11

Autoencoders

They are taught to recreate
input at output

They compress data and are
used in detection of anomalies

1. Explain Multilayered Perceptron Networks using one of the three explanations
2. Draw and annotate McCulloch-Pitts neuron model
3. Explain why McCulloch-Pitts neuron is represented by a straight line in a

feature space
4. Draw and annotate full scheme of a Multilayer Perceptron Network
5. Explain the idea of a gradient backpropagation algorithm (no need to memorize

calculations)
6. Write equation for a sigmoid activation function
7. Explain basic procedure that allows to prevent MLP network from overfitting

(how do we use training and validation data to this end?)
8. Explain general idea behind selected network structures different than MLP

(Kohonen, PINN, Radial, Autoencoders, Recurrent)

Things to remember:

31

32

	Slajd 1
	Slajd 2: So far, ve’ve learned:
	Slajd 3: Lets model a neuron:
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7: How we make MLP do the stuff we want?
	Slajd 8: Training interpretation from classification perspective
	Slajd 9: Training interpretation from classification perspective
	Slajd 10: Training interpretation from classification perspective
	Slajd 11: Training interpretation from classification perspective
	Slajd 12: ANN training: (Vanilla) gradient descent
	Slajd 13: Data space mapping function
	Slajd 14
	Slajd 15: Data space mapping function
	Slajd 16: Three flavors of neural networks:
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25: Regression with multilayered perceptron
	Slajd 26: Radial networks
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32: Things to remember:

