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Mechatronic Engineering program

Basics of AI and Deep Learning:
4: Artificial Neural Networks 

– in three flavors

Ziemowit Dworakowski
AGH University of KrakowUnderstanding is measured by how many different 

perspectives you can internalize for a given subject

So far, ve’ve learned:

What is classification and regression – from the data perspective

How to use optimization methods for classifier or regressor training

What is a feature space and what can we find in it…

Today, we’ll learn about neural networks

Understanding is measured by how many different 
perspectives you can internalize for a given subject…

Lets model a neuron:
McCulloch – Pitts neuron (1943)

One neuron is not really that brilliant… But maybe we 
can connect it with others?
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Rosenblatt’s Perceptron (1958)  (t+15)

By adjusting weights associated with connections we can make the 
network do stuff. Now the question – how should we set it up the best?

Backpropagation algorithm (1986) (t+43 years…)

Modern Multilayered Perceptron (MLP) network:
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How we make MLP do the stuff we want?

We pass data here We collect answers here

Compare with 
target and 

calculate error

We use error (actually: gradient of it)
to adjust weights 

We know that we should rotate 
the classification line like that. 
But how the training algorithm 
knows that?

x1

x2

𝑤1𝑥1 +𝑤1𝑥2 +𝑤𝑏 > 0 ?

Training interpretation from classification perspective

Training interpretation from classification perspective

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

Target value = 0

x1

x2
Classifier returns = 0.95
Classifier returns = 1
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Training interpretation from classification perspective

x1

x2 We can add several 
surfaces together!

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

𝜎 𝒘2 ∙ 𝒙 + 𝑤𝑏,2

+

+

…

Training interpretation from classification perspective

The more „lines” we 
have, the more flexible 
we are

x1

x2

And each of these is 
just a neuron!

Look:

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1

ANN training: (Vanilla) gradient descent
(standard, without additions)

(Start from a random set of weights)

Calculate gradient of error with respect 
to all the weights

Modifiy the weights in the direction of 
the steepest gradient descent

x1

x2
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𝑦 = 𝑓(𝒘,𝒙)

Data space mapping function

We’ll need lots of flexibility and lots of non-linearity…
And we want it to be adjustable according to needs…

𝑦 = 𝑓(𝒘, 𝒙)

𝑦 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + … + 𝑓𝑛 𝒘𝑛 , 𝒙
We might want to make it compounding from different functions:

We might want to govern these functions purely by their parameters:

𝑥1
′ = 𝜎 𝒘1,1, 𝒙 + 𝜎 𝒘2,1, 𝒙 + … + 𝜎 𝒘𝑛,1, 𝒙

And now a „final decision” – another nonlinear transformation: 

𝑦 = 𝜎(𝒘𝑛+1,1, 𝒙
′)

𝑥2
′ = 𝜎 𝒘1,2, 𝒙 + 𝜎 𝒘2,2, 𝒙 + … + 𝜎 𝒘𝑛,2, 𝒙
… This is a vector of our new coordinates!

If we want, we can nest it even further (so 𝑦 becomes 𝒙′′ and so on)

𝑦 = 𝑓(𝒘,𝒙)

And this tool for transformation of feature space (x) into 
output space (y) we’ll call a neural network:

Data space mapping function

𝑦 = 𝜎(𝒘𝑛+1,1, 𝒙
′)

We adjust it to data using a gradient-descent backpropagation algorithm
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Three flavors of neural networks:

neural network is:

A compound function that does complex non-
linear mapping from input space into output space 

morphing data to gradually simplify its structure

A set of hyperplanes in feature space (whose 
location we can adjust) that form 

layered decision surfaces

A biologically-inspired network of nodes that can 
pass information through one another with 

emergent feature of data understanding

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑥′1 = 𝜎 𝑤3 ∙ 𝑥1 + 𝑤5 ∙ 𝑥2 + 𝑤1

𝑥′2 = 𝜎 𝑤2 ∙ 𝑥1 + 𝑤6 ∙ 𝑥2 + 𝑤2

You can combine this to get a 𝑓 𝒘, 𝒙
function equivalent for a network

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑝

𝜕𝑑

𝜕𝑦
= 𝑦 − 𝑡

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7
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∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑝

𝑦(1 − 𝑦) 𝑦 = 𝜎 𝑝 =
1

1 + 𝑒−(𝑝)

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

𝑦 = 𝜎 𝑝 =
1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
=

𝜕

𝜕𝑝
(1 + 𝑒−𝑝)−1= −(1 + 𝑒−𝑝)−2 ∙ 𝑒−𝑝 ∙ −1

𝜕𝜎

𝜕𝑝
=

1

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)
∙ 𝑒−𝑝

𝜕𝜎

𝜕𝑝
=

𝑒−𝑝

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
=
1 + 𝑒−𝑝 − 1

1 + 𝑒−(𝑝)
∙

1

1 + 𝑒−(𝑝)

𝜕𝜎

𝜕𝑝
= 1 −

1

1 + 𝑒− 𝑝
∙

1

1 + 𝑒− 𝑝
= (1 − 𝑦) ∙ 𝑦

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑝

𝜕𝑝

𝜕𝑤9
= 𝑥′2

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7
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∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑝

𝜕𝑝

𝜕𝑤9
= 𝑥′2

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated 
with each input vector 𝒙. Using 
that, we can calculate error 𝑑:

𝒘1:2 𝑤7

𝒘8:9

𝑑 =
1

2
(𝑦 − 𝑡)2

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,
𝜕𝑑

𝜕𝑤2
,
𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient 
of 𝑑 with respect to weights 𝒘:

The gradient now tells us 
how to adjust weights

𝑦 = 𝜎 𝑤8 ∙ 𝑥
′
1 +𝑤9 ∙ 𝑥

′
2 +𝑤7

𝜕𝑑

𝜕𝑤9
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑤9
= 𝑦 − 𝑡 𝑦 1 − 𝑦 ∙ 𝑥′2

𝑝

𝜕𝑑

𝜕𝑤6
=
𝜕𝑑

𝜕𝑦

𝜕𝑦

𝜕𝑝

𝜕𝑝

𝜕𝑥′2

𝜕𝑥′2
𝜕𝑢

𝜕𝑢

𝜕𝑤6

𝑥′2 = 𝜎 𝑤4 ∙ 𝑥1 + 𝑤6 ∙ 𝑥2 + 𝑤1

𝑢

As we go through the network backwards, we 
propagate our error calculations – it is the 
backpropagation algorithm

training

validation

testing

∑

∑

∑

b
b

𝒘3:6

𝒘1:2 𝑤7

𝒘8:9

Small batch 
of data

Corresponding 
labels

Iterations
epochs

Error

Epoch means 1 passing of the entire 
training dataset through training

Training error

Validation error

We should stop 
training here

We stop training when:
- Validation error starts to rise
- We run out of time
- Gradient approaches 0 (we don’t improve any more)
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23

24



17.03.2025

9

y

x

𝑓 𝒘,𝒙 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + ⋯+ 𝑓3 𝒘3, 𝒙

The idea here is to take a lot of simple nonlinear functions 
and add them together to get a more complex one

Regression with multilayered perceptron

Radial networks

∑

∑
∑

b b

𝒙
𝒘3:6

𝒙′ 𝑦

𝑤7

𝒘8:9

Trained (again!) using gradient 
backpropagation

Good for local inference

Recurrent networks

∑

∑
∑

b b

𝒙
𝑦

Adding recurrent connections makes for 
good short-time memory capabilities –
allowing for system identification and 
prediction of time-domain signals

25
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Kohonen networks (Self-organizing maps)

x1

x2

Kohonen networks (Self-organizing maps)

x1

x2 Allows for clusterization and 
mapping of data to lower 
dimensionality

Physics-informed neural networks

∑
∑

b b

𝒇(𝒙)

𝒇(𝒙)

f

A

PINNs integrate expert knowledge into 
ANN structure – which allows more 
robust training with fewer examples 

We know this is not physically 
explainable – probably an outlier

28
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Autoencoders

They are taught to recreate 
input at output

They compress data and are 
used in detection of anomalies

1. Explain Multilayered Perceptron Networks using one of the three explanations
2. Draw and annotate McCulloch-Pitts neuron model
3. Explain why McCulloch-Pitts neuron is represented by a straight line in a 

feature space
4. Draw and annotate full scheme of a Multilayer Perceptron Network
5. Explain the idea of a gradient backpropagation algorithm (no need to memorize 

calculations)
6. Write equation for a sigmoid activation function
7. Explain basic procedure that allows to prevent MLP network from overfitting 

(how do we use training and validation data to this end?)
8. Explain general idea behind selected network structures different than MLP 

(Kohonen, PINN, Radial, Autoencoders, Recurrent) 

Things to remember:
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