Mechatronic Engineering program

Basics of AI and Deep Learning: Computer Vision - An Introduction

Krzysztof Holak AGH University of Krakow

Schedule

- Lecture 1: An Introduction
- Image Preprocessing,
- Image Filtering
- Edge Detection
- Lecture 2: Image Segmentation
- Lecture 3: Image Features
- Lecture 4: Video Processing

2

What is an image?

Image as 2D function z = f(x,y)

x, y – coordinates of points in the image z – value of the points (intensity, color etc.)

This approach lets us **make** image processing algorithms in terms of mathematical approach (e.g. image gradient)

What is an image?

Image as a matrix of pixels A = A(i,j)

i, j – row and column of a pixel in a matrix A(i,j) – value of the pixels (intensity, color etc.)

This approach lets us **implement** our image processing algorithms (after all, all computer objects are discrete!)

Image representation

Let's think about our images as matrices $\mathsf{A}(i,j)$ of size MxN Digital image is discretized and quantized

M,N-number of rows and columns in our matrix – image spatial resolution Number of bits per pixel to represent color or value – bit depth

Grayscale image – 8 bits per pixel (256 gray levels) Color image (True Color) – 8 bits per color channel, 24 bits per pixels Binary image (Black and White) – 1 bit per pixel

Multispectral, Hyperspectral...

Image Histogram

Image histogram – a bar graph representing number of pixels of a given intensity value

Histogram characterizes the brightness, contrast and intensity value spread over the image – tells a lot how the image looks like! Discrete version of probability density function

Image Equalization

Previous example gives us a way to improve a contrast of an image by histogram stretching – ${\rm histogram}\ {\rm equalization}$

16

Image Equalization

Proof from **probability theory** – the probability densities for monotonic functions of random variables

Basic Operations on Images

Point Processing

The output value of a pixel is a function of input pixel's value $\mathsf{y} = \mathsf{f}(\mathsf{x})$

Local Processing

The output value of a pixel is a function of input pixel's value and value of its neighbors y=f(x,h(x))

Global Processing

The output value of a pixel is a function of all pixels' values in the image y=f(x,l)

22

Basic Operations on Images

Point Processing

Local Processing

Linear filters Nonlinear filters Morphological filters Edge detection Image correlation

Global Processing

Basic Operations on Images

- Point Processing
- Local Processing
- Global Processing
 - Image Transforms: Fourier Transform Cosine Transform Wavelet Transform

25

Image Filters

- To understand the concept of filtering, let us return to the idea that an image is 2D function - or even better, a 2D signal!
- Image, as any signal has frequency representation It contains spatial frequencies (SF)! Two sets of them (in x and y directions)

26

Image Filters

Low frequency conents

Average brightness (zero frequency, DC content) Slowly varying brightnes across an image

High frequency content

Rapidly varying brightness across an image Sharp Edges Details Noise

Linear image filters

Mathematically, they are realized as a **discrete convolution** of a filter mask with an image Results depend on filter mask

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Example: g - a box filter of size 3x3 f- a simple binary image

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

28

Look at details!

35

<image><complex-block><complex-block><complex-block><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row>

Filtering Results

How good is it?

40

High Pass Filters

They pass only high frequencies – edges, corners, noise etc. They are edge detectors! Called also image derivative filters or image gradient filters

$$\begin{split} & \frac{\partial f\left(x,y\right)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f\left(x+\varepsilon,y\right) - f\left(x,y\right)}{\varepsilon} \\ & \frac{\partial f\left(x,y\right)}{\partial x} \approx \frac{f\left(x+1,y\right) - f\left(x,y\right)}{1} \end{split}$$

Many masks used in practice - Sobel, Prewitt, Roberts for 1st image derivative

Laplacian for 2nd image derivative $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

43

50

Canny Edge Detection

Goal: Get all real edges, remove all edges due to any kind of noise Edge – it is 1D curve, should be one pixel wide

 $\ensuremath{\textbf{After HP}}$: Multiple edges, <code>"smeared"</code> wide edges, because the gradient value is large across the edge

Edges may be broken into pieces

Solution: $\ensuremath{\textbf{Canny Edge detector}}\xspace -$ one of the most known image processing algorithms

J. Canny, 8:679-714, 1986. <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence,

Canny Edge Detection

General Canny Edge detection algorithm

- Compute image derivatives in x and y direction
 Compute magnitude and orientation of the gradient
 Thin ,wide^{*} edges to one-pixel width Non-maxima supression
 Use two thresholds and hysteresis for thresholding and edge linking

52

the magnitude is greater than in points p and r, on both sides along gradient direction (values interpolated)

53

Edge Linking

Start at edge pixels, link the edge following the edge's direction

Closing gaps – two threshold hysteresis

Start at edge pixels, link the edge following the edge's direction

55

57

Morphological Image Filtering

They are usually used to proces binary images Theoretical and detailed explanation next lecture Today, let us say that they act as **minimum/maximum filters** The mask can be of any shape (**structuring element**)

The ouput pixel value becomes lowest/highest pixel value of pixels directly under mask centered at that pixel

Basic morphological operations

Erosion Dilation Opening Closing

58

62

Review material

- Describe a digital representation of grayscale and color images
- What is image histogram?
- What are characteristics of low/high contrast images' histograms?
- What is the effect of histogram equalization on image and its histogram?
- What do high and low spatial frequencies represent in images?
- How is linear filtering performed on 2D signals?
- How low/high pass filters change images?
- How does the median filtering work?
- How to compute image gradient?
- · Describe linear filters which are used to detect edges on images
- What are the main steps of Canny edge detection algorithm?

Thank you for attention