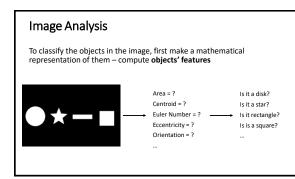
Mechatronic Engineering program

Computer Vision Image Objects and Features

Krzysztof Holak AGH University of Krakow


1

Schedule

- Lecture 1: An Introduction
- Lecture 2: Image Segmentation

• Lecture 3: Image Features

- Geometric Features
- Moments and Invariant Moments
- Template Matching and Image Correlation
- Point Features and Feature Descriptors
- Lecture 4: Video Processing

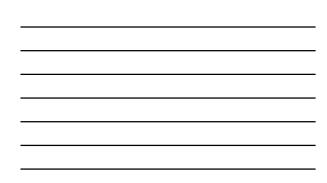
Labelling

First you have to find how many there are on the image

Perform labelling – assign a natural number to each disjoint object in the image

4

Geometric features computation

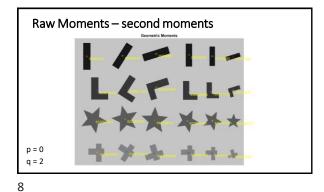

In Matlab function regionprops provides a set of geometric features Examples:

Area - How many pixels the object has (how big it is) **Centroid** – it's centroid (it's position in the image) Bounding Box - circumscribed rectangle (how much of space it takes)

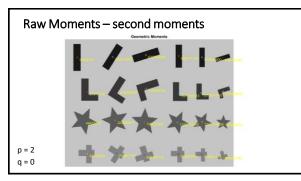
Euler number - how many holes the object has $\ensuremath{\textbf{Circularity}}\xspace - how close the object is to a disk, how round it is$ Eccentricity – how strech the object is – how far from being round

1	Geo	me	etric	: featu	ire	s co	mpı	utati	on					
	Examp									•	*			
	trust with 24 fails	a Cer	to host	lourdeallos	Hiteland	Induced I Had	Droviksbil anoti	E Downlaw 1	Osentration	Econymoles III City	and I	Elladdres III	Laboration the His	and the same little
Elder						127.0473	127.0473		0		10112	13636		
Fields		87 5000 20	5000 123							12726				
Fields	12676	87.5000.20 239.5045.3		5000.141.5000.128.128] 5.5000.151.5000.109.1041		83,8138	83.6815	0.0564	803601		10112	4388	1	127.0417
Fields 1 2	12676	239.5095.8	8.5803 [18	5.5000.151.5000.109.104)		83.8138	83.6805	0.0564			0.3614		1	127.0417 74.7546
Fields 1 2 3 4	12676 4389 3712		18.5803) [18 [19] [32						80.3601	1179		4388	1	127.0417
7 2 3 4	12676 4389 3712	(239.5095.2) (293.5000.2) (552.219) (5	18.5803) [18 19] [32 [50	5.5000.151.5000.109.104) 9.5000.194.5000.128,29] 4.5000.171.5000.95.95]		83.8138 147.6017 105.6966	83,6805 33,4863 109,6966		80.3601	7779 3712	0.3614 0.5066	4389 3712	1	127.0417 74.7546 68.7478
2 3 4	12676 4389 3712 9025	(239.5095.2) (293.5000.2) (552.219) (5	18.5803) [18 19] [32 [50	5.5000,151.5000,109,104) 9.5000,194,5000,128,29]		83.8138 147.6017 105.6966	83,6805 33,4863 109,6966		80.3601 0 0	7779 3712	0.3614 0.5066 0.8369	4388 3712 9025	1 1 1 1 1	527.0417 74.7546 68.7478 107.1960
1 2 3 4	12676 4389 3712 9025	(239.5095.2) (293.5000.2) (552.219) (5	18.5803) [18 19] [32 [50	5.5000.151.5000.109.104) 9.5000.194.5000.128,29] 4.5000.171.5000.95.95]		83.8138 147.6017 109.6966	83.6805 33.4863 109.6566	0.9740	80.3601 0 0	7779 3712 9025	0.3614 0.5066 0.8369	4388 3712 9025	MarfaretCoor	127 (0417 74 7546 68 7428 107 1960
1 2 3 4	12676 4389 3712 9025 10421 with 22 feet	(239.5095,2) (299.5000,2) (552,219) (5 (5 (219) (5 (219) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	85803) [18 9] [32 [50	5.5001.151.5001.109.104) 9.5001.194.5001.128.29 4.5001.171.5001.95.95)	etOurrets	83.8138 147.8017 105.6966	83,6805 33,4863 109,6966 gk 10 k 54 (126,5000,15	0.9740 0	80.3601 0 0 0	1779 3712 9025	0.3614 0.3614 0.8369	4388 3712 9025	1154.5000,14.50	127.0417 74.7546 58.7428 107.1960 deutes 00.244.5000
1 2 3 4	12576 4389 3712 9025 10441 with 22 fail 11 5uildity 1 0 19022	239.5095,3 (393.5000,2) (552,219) 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85803) [18 99 [32 [50	5 5000, 15 1 5000, 109 104) 9 5000, 154 5000, 128,29 4 5000, 171 5000, 95 95 1 Portmater(2), (2) Mar/ et 410,9605	etOlarrate 128.4056	83.8138 147.8017 105.0966 Mail webby 177.40 -107.60	83.6805 33.4863 109.6566 (109.6566) (109.656	0.9740 0 Auf aretCoundrus 1.5000.46.5000.25	80,3601 0 0 6,3000] 151,3000]	7779 3712 9025	0.3614 0.3614 0.8369	4388 3712 9025 45/126,500 6.1119/240,500	1154.5000,14.50	527 (Jac7 74 7546 58 7478 107 7960 fination 00.244 5000 117 215 0005

Moments

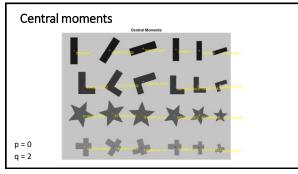

Image moments Computed as in the case of section moments in structural mechanics

$$M_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} I(x, y)$$

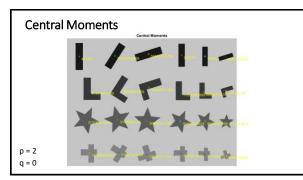

p, q - order of moment with respect to y and x axes

if p = 0 and q = 0 – object's area If (p = 0 and q = 1) or (p = 1 and q = 0) – static moment – to compute centroid If (p = 0 and q = 2) or (p = 2 and q = 0) - second moment, moment of inertia

7


Central Moments

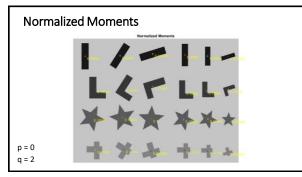
Raw (ordinary) moments **are not** shift, rotation and scale invariant! To make tchem shift invariant – compute them about the object's **centroids**!


$$\mu_{pq} = \sum\nolimits_x \sum\nolimits_y (x-\bar{x})^p (y-\bar{y})^q I(x,y)$$

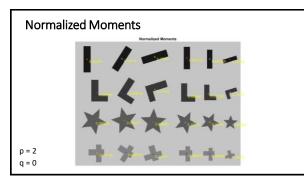
Central moment do not change as you shift objects in the image

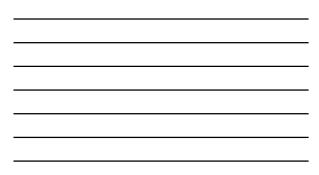
10

11


Normalized Central Moments

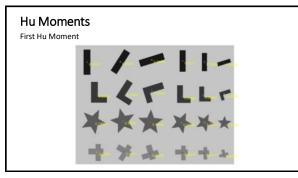
Normalize central moments to make them invariant to scaling

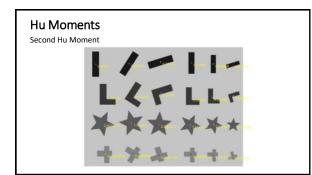

$$\varphi_{pq} = \frac{\mu_{pq}}{(\mu_{00})^{1 + \frac{p+q}{2}}}$$

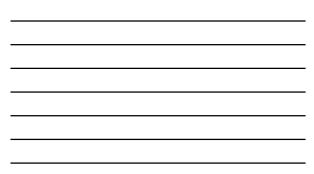

Moments are invariant to the **scale and shift** transformation of objects but **not** invariant to **rotations!**

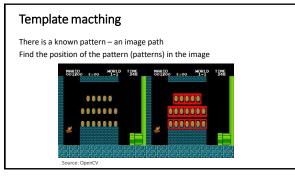
13

14

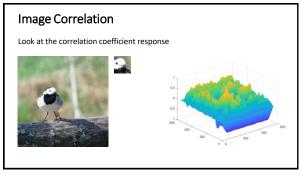

Hu Moments


Seven moments that are invariant to shift, scaling and rotation

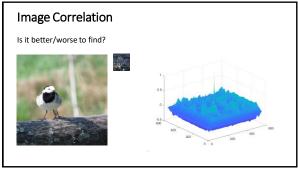

$$\begin{split} I_1 &= \eta_{20} + \eta_{02} \\ I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ I_3 &= (\eta_{20} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ I_4 &= (\eta_{20} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ &= (\eta_{20} - 3\eta_{12})(\eta_{20} + \eta_{22})^2 - (\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{20} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ &= (\eta_{20} - \eta_{02})[(\eta_{20} + \eta_{22})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{20} + \eta_{12})(\eta_{21} + \eta_{03}) \\ &= (\eta_{20} - \eta_{02})[(\eta_{20} + \eta_{22})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{20} + \eta_{12})(\eta_{21} + \eta_{03}) \\ \end{split}$$

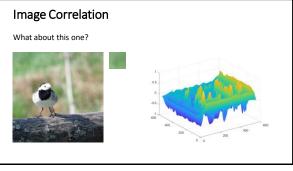

 $=(3\eta_{21}-\eta_{03})(\eta_{30}+\eta_{12})[(\eta_{30}+\eta_{12})^2-3(\eta_{21}+\eta_{03})^2]-(\eta_{30}-3\eta_{12})(\eta_{21}+\eta_{03})[3(\eta_{30}+\eta_{12})^2-(\eta_{21}+\eta_{03})^2]$

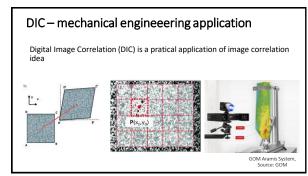
16


19

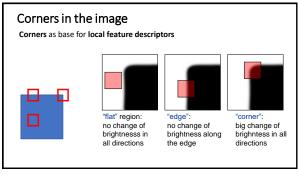
Template matching

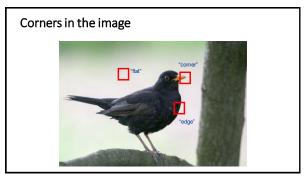

Move template across the image – compute a similarity measure between template and the image patch under it


Summed Square Distance (SSD)


$$\begin{split} h[m,n] &= \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \\ \text{Normalized Cross Correlation (NCC)} \\ h[m,n] &= \frac{\sum_{k,l} (g[k,l] - \overline{g}) (f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2 \right)} \end{split}$$

Local features


Geometric features are good for flat objects – in binary image processing What about objects that appear in more general images? cars, people, animals, buildings etc.


We need another approach to deal with such objects

One possible solution – use **local features** describing the neighborhood of characteristic points – e.g. corners

Then we can build objects' representation out of these $\ensuremath{\textit{local}}$ $\ensuremath{\textit{features}}$

25

Harris Corner Detector

Idea: For each pixel, make an image pattern centered at that pixel

Move it a little bit in two directions and observe how the brightness of the pattern changes

In terms of math – for all pixels belonging to an image pattern, compute the measure:

$$E(dx, dy) = \sum_{x, y} w(x, y) \left[I(x + dx, y + dy) - I(x, y) \right]^2$$

Where dx and dy are shifts in x and y direction, I(x,y) is pixel intensity function and w(x,y) - is a windowing function (e.g. Gaussian blur filter mask)

28

Harris Corner Detector

We want to see how the function behaves for small shifts Compute its local **quadratic** approximation Use **Taylor series** expansion for I(x+dx,y+dy)

 $I(x + dx, y + fy) \approx I(x, y) + I_x(x, y)dx + I_y(x, y)dy$

And after substituting into our equation we obtain

$$E(dx,dy) = \sum_{x,y} w(x,y) \left[I_x(x,y)dx + I_y(x,y)dy \right]^2$$

29

Harris Corner Detector

Now we write this in matrix form:

$$E(dx, dy) \approx \begin{bmatrix} dx & dy \end{bmatrix} M \begin{bmatrix} dy \\ dy \end{bmatrix}$$

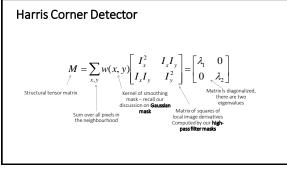
Where matrix M is called structural tensor

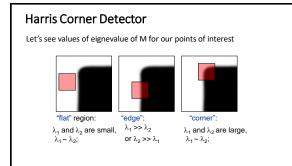
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

We can see that the elements of the matrix are computed from image gradient (derivatives in x and y directions) and w(x,y) is Gaussian mask

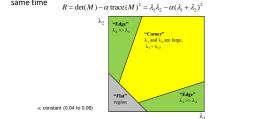
Harris Corner Detector

This is a quadratic form, an equation of an elipsoid

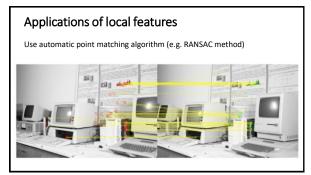

 $E(dx, dy) \approx [dx \quad dy]M \begin{bmatrix} dy\\ dy \end{bmatrix}$


Since M is symmetric matrix, it can be diagonalized

$$M = R \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R^T$$


The eigenvalus of M reveal the intensity change in two principal orthogonal gradient directions $% \left({{{\mathbf{n}}_{\mathrm{s}}}_{\mathrm{s}}} \right)$ in the window

31


34

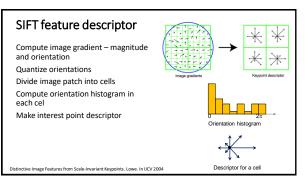
Harris Corner Detector

The Harris algorithm

- 1) Compute *M* matrix for each point of interest to get their *cornerness* scores.
- 2) Find points of interest whose surrounding window gave large corner response (*R*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Applications of local features


Use local features for point matching between two or more images

37

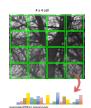
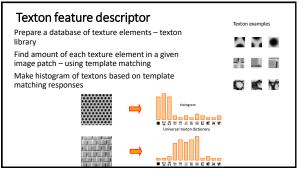

Applications of local features

Image Stitching – making panoramas Object tracking in video sequence Camera calibration Stereovision – disparity and depth computation Multiview tracking and 3D structure and pose reconstruction Object recognition, detection and matching Robot mapping and navigation



GIST feature descriptor

Compute response images to Gabor filter bank (N filters) Divide image patch into 4x4 cells Compute filter response average for each cel Make descriptor for each image patch Its size is 4x4xN

40

41

Questions for Review

List three geometric features using in binary image analysis What is a difference between raw (ordinary) and central moment? What is a difference between central and normalized moment? Which moments are invaraint to scale/rotation/shift? What is the main application of image correlation? What are local features? What kind of image features are detected by Harris algorithm? What are the applications of local features? Which linear filters are used in Harris detector algorithm? Thank you for attention