Fick Solver
Symulator czystej dyfuzji w materiałach jednorodnych, oparty na rozwiązaniu numerycznym drugiego prawa Ficka.
Internetowy symulator dyfuzji jonów w materiałach jednorodnych. Dyfuzja obliczana zgodnie z drugim prawem Ficka. Metoda Linii z jednorodną siatką została użyta do przekształcenia równania różniczkowego cząstkowego (PDE) w układ równań różniczkowych zwyczajnych (ODE). Tak powstały układ ODE jest następnie rozwiązywany jawną metodą Eulera.
Czaso-zależny model dyfuzji - podstawowe równania
Drugie Prawo Ficka
` \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}`Druga pochodna centralna stężenia w punkcie `x_i`
` \frac{\partial^2 c_i}{\partial x^2} = \frac{c_{i+1}-2c_i+c_{i-1}}{h^2}`Metoda jawna Eulera
` c_i(t_{j+1}) = c_i(t_j)+ \Delta t \cdot \frac{dc_i}{dt}`Równanie dyskretne dyfuzji
Po połączeniu trzech równań powyżej, otrzymujemy:
`c_i(t_{j+1}) = c_i(t_j)+ \frac{\Delta t}{h^2} D \cdot (c_{i+1}-2c_i+c_{i-1})`
Warunki początkowe i brzegowe
Warunki początkowe:`c(x,0) = 0`
Warunki brzegowe:
$$
\left\{ \begin{array}{l}
c(0,t) = c_L = const \\
c(l,t) = c_R = const
\end{array} \right.
$$