32.5 Efekt Comptona
Cząsteczkowa naturę światła można w pełni zaobserwować w doświadczeniu związanym z rozpraszaniem fal elektromagnetycznych na swobodnych elektronach, nazywanym zjawiskiem Comptona.
Po raz pierwszy taki proces został zaobserwowany przez Comptona w 1923 r. W doświadczeniu wiązka promieni X, o dokładnie określonej długości fali pada na blok grafitowy tak jak na rysunku 32.9.
Rys. 32.9. Układ doświadczalny zastosowany przez Comptona
Compton mierzył natężenie wiązki rozproszonej pod różnymi kątami φ jako funkcję długości fali λ. Wyniki doświadczenia są pokazane na rysunku 32.10.
Rys. 32.10. Wyniki doświadczeń Comptona. Linia po lewej stronie odpowiada długości fali λ, a po prawej λ’.
Widać, że chociaż wiązka padająca na grafit ma jedną długość fali to w promieniowaniu rozproszonym występują dwie długości fal. Jedna z nich ma długość λ identyczną jak fala padająca, druga długość λ' większą o Δλ. To tak zwane przesunięcie Comptona Δλ zmienia się wraz z kątem obserwacji φ rozproszonego promieniowania X tzn. λ 'zmienia się wraz z kątem.
Jeżeli padające promieniowanie potraktujemy jako falę to pojawienie się fali rozproszonej o zmienionej długości λ' nie daje się wyjaśnić. Dopiero przyjęcie hipotezy, że wiązka promieni X nie jest falą ale strumieniem fotonów o energii hv pozwoliło Comptonowi wyjaśnić uzyskane wyniki.
Założył on, że fotony (jak cząstki) zderzają się z elektronami swobodnymi w bloku grafitu. Podobnie jak w typowych zderzeniach (np. kul bilardowych) zmienia się w wyniku zderzenia kierunek poruszania się fotonu oraz jego energia (część energii została przekazana elektronowi). To ostatnie oznacza zmianę częstotliwości i zarazem długości fali. Sytuacja ta jest schematycznie pokazana na rys 32.11.
Rys. 32.11. Zjawisko Comptona – zderzenie fotonu ze swobodnym elektronem
Stosując do tego zderzenia zasadę zachowania pędu oraz zasadę zachowania energii otrzymujemy wyrażenie na przesunięcie Comptona
(32.14) |
gdzie m0 jest masą elektronu (spoczynkową). Tak więc przesunięcie Comptona zależy tylko od kąta rozproszenia.
W tym miejscu konieczny jest komentarz: ponieważ odrzucone elektrony mogą mieć prędkości porównywalne z prędkością światła więc dla obliczenia energii kinetycznej elektronu stosujemy wyrażenie relatywistyczne. Elementy szczególnej teorii względności są omówione w Uzupełnieniu.
Ćwiczenie Korzystając z poznanych wzorów spróbuj samodzielnie obliczyć jaką maksymalną energię kinetyczną może uzyskać elektron podczas rozpraszania promieniowania X o długości fali λ = 0.1 nm? W tym celu oblicz zmianę energii rozpraszanego fotonu. Sprawdź obliczenia i wynik. |
Na koniec musimy jeszcze wyjaśnić występowanie maksimum dla nie zmienionej długości fali λ. Ten efekt jest związany z rozpraszaniem fotonów na elektronach rdzenia atomowego. W takim zderzeniu odrzutowi ulega cały atom o masie M. Dla grafitu M = 22000 m0 więc otrzymujemy niemierzalnie małe przesunięcie Comptona.