Book Erratum
Understanding The Analytic Hierarchy Process

Konrad Kułakowski
Abstract
Errors found in the book Understanding The Analytic Hierarchy Process [1]

Page 40, line 3 from the top

is
n ij ={ 0 if i=j or { a i , a j }E 1 if ij and { a i , a j }E should be
n ij ={ 0 if i=j or { a i , a j }E 1 if ij and { a i , a j }E

Page 75, the numerical example is faulty. The correct version is:

and the constant term vector r is given as r=( ln 6 ln 21 8 - ln 3 ln 36 7 - ln 27 ).
Solving G w ^ =r leads to the following logarithmized ranking vector
w ^ =( 1 100 ( 22 ln 3+43 ln 6+2 ln 27-7 ln 36 7 +8 ln 21 8 ) 1 25 ( 8 ln 3+2 ln 6+3 ln 27+2 ln 36 7 +12 ln 21 8 ) 1 100 ( 22 ln 3-7 ln 6+2 ln 27+43 ln 36 7 +8 ln 21 8 ) 1 100 ( 22 ln 3-7 ln 6+2 ln 27+43 ln 36 7 +8 ln 21 8 ) 1 50 ( -4 ln 3- ln 6-14 ln 27- ln 36 7 -6 ln 21 8 ) )=( 1.04 1.484 -2.29 0.963 -1.19 ).
Hence, the (unscaled) ranking vector is w=( e 1.04064 e 1.48464 e -2.2937 e 0.96356 e -1.19512 )=( 2.83103 4.4134 0.100889 2.62103 0.302668 ).
The last step to receive the ranking in the usual form is scaling so that the entries of the ranking vector sum up to 1 . The final form of the ranking vector is as follows: w gm =( 0.275 0.429 0.0098 0.255 0.0294 ). According to the computed ranking, the most preferred alternative is a 1 with the ranking value w( a 2 ) =0.429 . The second place is taken by a 4 with w( a 1 ) =0.275 , then a 4 , a 5 and a 3 .
Of course, one may verify that GMM applied to the following matrix ( 1 2 3 0.275 0.0098 0.275 0.255 9 3 2 1 0.429 0.0098 7 4 0.429 0.0294 0.0098 0.275 0.0098 0.429 1 0.0098 0.255 1 3 0.255 0.275 4 7 0.255 0.0098 1 9 1 9 0.0294 0.429 3 1 9 1 ) results in w gm .

Page 80, line 1 from the top

is
where p i is the number of existing comparisons in the i-th row of C ,
should be
where p i is the number of existing comparisons in the i-th row of C except the diagonal

Page 81, line 12 from the bottom

is
q 3 = i=1 n-2 j=i+1 n-1 k=j+1 n ( 2- a ik a ij a jk - a ij a jk a ik ) should be
q 3 = i=1 n-2 j=i+1 n-1 k=j+1 n ( 2- c ik c ij c jk - c ij c jk c ik )

Page 113, line 14 from the bottom

is
6.3.8.1 Effectiveness of the Koczkodaj index
should be
6.3.8.1 Effectiveness and the Koczkodaj index

Page 123, line 5 from the top

is
T ijk =( 1 c ij c ik 1/ c ij 1 c kj c ik 1/ c kj 1 ) should be T ijk =( 1 c ij c ik 1/ c ij 1 c jk c ik 1/ c jk 1 )

Page 150, line 11 from the bottom

is
C=( 1 ( q=1 r c 1,2,q η q ) 1/r ( q=1 r c 1,n,q η q ) 1/r ( q=1 r c 2,1,q η q ) 1/r 1 ( q=1 r c n-1.n,q η q ) 1/r ( q=1 r c n,1,q η q ) 1/r 1 ),
should be
C=( 1 q=1 r c 1,2,q η q q=1 r c 1,n,q η q q=1 r c 2,1,q η q 1 q=1 r c n-1.n,q η q q=1 r c n,1,q η q 1 ),

Page 150, line 7 from the bottom

is
w( a i ) = ( k=1 n ( q=1 r c i,k,q η q ) 1/r ) 1/n
should be
w( a i ) = ( k=1 n q=1 r c i,k,q η q ) 1/n .
1K. Kułakowski, Understanding the Analytic Hierarchy Process (Chapman and Hall / CRC Press, 2020).


Erratum can also be downloaded in the PDF version here

  • user/konrad/research/book.txt